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Biomedical research often involves conducting experiments on model organisms in the anticipation 

that the biology learnt from these experiments will transfer to the human. Yet, it is commonly the 

case that biology does not transfer effectively, often for unknown reasons. Despite its importance to 

translational research this transfer process is not currently rigorously quantified. Here, we show 

that transfer learning – the branch of machine learning that concerns passing information from one 

domain to another – can be used to efficiently map biology from mouse to man, using the bone 

marrow (BM) as a representative example of a complex tissue. We first trained an artificial neural 

network (ANN) to accurately recognize various different cell types in mouse BM using data obtained 

from single-cell RNA-sequencing (scRNA-Seq) experiments. We found that this ANN, trained 

exclusively on mouse data, was able to identify individual human cells obtained from comparable 

scRNA-Seq experiments of human BM with 83% overall accuracy. However, while some human cell 

types were easily identified, others were not, indicating important differences in biology. To obtain 

a more accurate map of the human BM we then retrained the mouse ANN using scRNA-Seq data 

from a limited sample of human BM cells. Typically, less than 10 human cells of a given type were 

needed to accurately learn its representation in the updated model. In some cases, human cell 

identities could be inferred directly from the mouse ANN without retraining, via a process of 

biologically-guided zero-shot learning. These results show how machine learning can be used to 

reconstruct complex biology from limited data and have broad implications for biomedical research. 
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The translational biomedical research pipeline typically consists of a sequence of phases that starts with a 

discovery phase, which usually involves experiments on cell lines cultured in vitro as well as in vivo studies 

in model organisms, and ends with carefully controlled clinical, review and monitoring phases.1 The 

eventual success of this pipeline depends upon effective transfer of information from one phase of the 

process to the next. Despite the tremendous cost associated with translational research failure,2 this 

information transfer process remains poorly understood.  

 Transfer learning (TL) is the branch of machine learning that takes information derived from one 

setting and applies it to improve generalization in another area.3 The basic idea of TL is to mimic the 

human ability to learn new concepts from limited examples by associating new information with prior 

understanding. In the TL process, information gained from solving a problem in a “source” domain is 

passed to another related problem in a “target” domain thereby improving target domain performance. The 

gain from such knowledge-transfer is particularly apparent whenever data is abundant in the source domain 

but scarce in the target domain. In this case, new concepts can be effectively learnt in the target domain 

from very few training samples, via leveraging of prior knowledge. 

 Here, we show how TL can be used to map bone marrow (BM) biology from mouse to man. The 

problem of passing information from a model organism (the source domain, here the mouse) to the human 

(the target domain) was chosen because it is central to successful translational research. Bone marrow was 

chosen because it is a complex tissue, consisting of numerous different cell types, present in differing 

proportions, with a well-established physiology in mouse that is broadly conserved, and yet only partially 

understood, in human.  

 

Mapping mouse bone marrow 

To begin, we collected gene expression signatures using droplet-based scRNA-Seq (Drop-Seq4) from 

unfractionated total bone marrow (TBM) samples as well as from weakly lineage-depleted bone marrow 

(DBM) Cd45/Ter119 dual negative subsets in order to enrich for rarer cell types, from three different mice 

(Fig. 1a). Overall, 6,800 single-cell transcriptomes were sequenced, yielding greater than 9x104 reads per 

cell on average. Following pre-processing and filtering, a total of 5,504 cells were retained, expressing on 

average 2,684 transcripts per cell.  

We then performed unsupervised clustering to identify the various hematopoietic and niche-cell 

types present (see Methods). Despite the significant technical variability that is typically encountered in 

scRNA-seq data5 we found that cells clustered according to their type, rather than the mouse from which 

they were obtained, suggesting the presence of a common and robust “map” of the mouse bone marrow 

(Fig. 1b-d and Fig. S1, Fig. S3a). Assignment of cell identities to clusters was performed by examining 

the localization of established lineage markers to distinct clusters (see Fig. 1f, Fig. S1 and Methods). Our 

cluster annotation was in accordance with other recent publications.6,7 In total, we identified 19 cell 

populations, covering the erythroid, myeloid and lymphoid branches of hematopoietic lineage tree, as well 
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Figure 1 Dissecting the cellular heterogeneity of the mouse BM. (a) Experiment schematic. Single-cell RNA-

sequencing was performed on total and depleted (CD45-/Ter119-) BM cells. (b) Projection of data onto two 

dimensions using t-distributed stochastic neighbor embedding (tSNE8) highlights the BM population structure and 

overlap between biological replicates (n=3). (c) Cell types were identified using unsupervised clustering followed by 

annotation of clusters according to localization of known markers for different cell types. (d) Clusters naturally 

arrange in accordance with the known BM lineage tree. The lineage tree shown is taken from Ref. 9. HSPCs: 

hematopoietic stem and progenitor cells (e) Relative abundance of cell types in total and depleted bone marrow 

samples. Bar height indicates the mean over the biological replicates (n=3). (f) Key markers of the main branches of 

the hematopoietic lineage tree and niche cells localize to distinct clusters in the data. The following representative 

markers are shown: stem and progenitor cells: Cd34; niche cells: Kitl; myeloid lineage: Spi1; erythroid lineage: 

Gata1; lymphoid lineage: Pax5. See Fig. S1 for localization patterns of a range of other markers.  (g) Schematic of 

the artificial neural network (ANN) used to identify cell types from gene expression profiles obtained from mouse 

BM cell samples. The ANN consists of an input layer, a 16-node hidden layer, and a 14-class softmax output layer. 

(h) Confusion matrix of validation data, showing accurate classification of cell identities by the ANN. Data displayed 

is the average over a 5-fold cross-validation. (i) Distribution of misclassified cells in the training data. Color 

represents the distance d between the true and predicted label in the cell lineage tree in panel e.  

 

as separate populations of non-hematopoietic supporting cell types including endothelial cells and 

pericytes (Fig. 1c-f). 
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Three features of this clustering are notable. Firstly, the proportion of cells in each cluster varied 

considerably, reflecting the balance of different cell types present in the mouse BM (Fig. 1e). Clusters 

associated with rare cell types, such as hematopoietic stem and progenitor cells (HSPCs), contained very 

few cells. In contrast, clusters associated with abundant cell types, such as erythroid cells, contained large 

numbers of cells. To gain resolution on rare/immature cell types the depletion protocol we used reduced 

the relative abundance of various mature cell types in the DBM fraction – including monocytes (-8.1 ±3.2% 

relative to TBM), myelocytes (-11.4 ±5.6% relative to TBM), pro-B-lymphocytes (-9.4 ±3.8% relative to 

TBM), while neutrophils, pre-B- and T-lymphocytes were completely ablated – while enriching for 

immature cells including HSPCs (+4.0 ±0.9% relative to TBM), myeloblasts (+7.5 ±3.7% relative to 

TBM), monoblasts (+2.8 ±1.7% relative to TBM), erythroblasts (+5.4 ±1.9% relative to TBM), Pericytes 

(+0.9 ±0.3% relative to TBM) and endothelial cells (+2.1 ±0.5% relative to TBM). 

Secondly, while some clusters represent distinct cell identities, others are associated with the 

discretization of continuous maturation processes. For example, the erythroblast cluster (shown in red in 

Fig. 1c) consists of a heterogeneous mixture of cells at different stages in the erythrocyte maturation 

process, representing a gradual transition from immature pro-normoblast to late normoblast (see Fig. S1). 

This observation will be important later, when we translate BM biology from mouse to man.   

Thirdly, it is well-established that cell types in the hematopoietic cell lineages of the BM are 

arranged according to a hierarchical structure.9–11 By considering adjacency relationships between clusters, 

we were able to broadly recapitulate the known structure of this hierarchy, indicating that the clustering 

structure that we observed captures salient features of the mouse BM biology (Fig. 1d). 

Collectively these clusters, and the spatial relationships between them, constitute a reference map 

of the mouse BM. However, this map is not in a form directly amenable to comparison with human BM. 

To do this, we trained an artificial neural network (ANN) to classify individual cells from their gene 

expression profiles. Since we ultimately wanted to compare this map with a similar map of human BM we 

restricted our analysis to those genes with a unique human orthologue (see Methods). Because cell 

identities were determined from unsupervised clustering of the data, this is an easy learning problem 

readily solved by a multi-layer perceptron with a single hidden layer of 14 units (Fig. 1g-i). The resulting 

model performed well, achieving average balanced classification accuracy of 96.7±0.9% (standard 

deviation over 5-fold cross-validation), and was able to reliably identify cells of every type (Fig. 1h).  

Notably, misclassification was largely constrained to cells in proximity to cluster boundaries 

imposed along continuous developmental trajectories (Fig. 1i). To dissect this observation further we 

systematically investigated misclassification by taking advantage of the fact that the classes in the mouse 

training data are arranged according to a biologically meaningful hierarchy that encodes the BM lineage 

tree (see Fig. 1d). Whenever misclassification of a cell occurred, we determined the relationship between 

its true class and its (falsely) predicted class. We denoted a misclassification to be proximal if the predicted 

class is immediately adjacent to the true class in the lineage tree and distal otherwise. Overall, a low 
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incidence of proximal misclassification was observed (2.7±0.5%; mean ± s.d., n=5), while distal 

misclassification occurred even more rarely (0.8±0.4%; mean ± s.d., n=5).  

Moreover, patterns of misclassification were not uniform. For example, cells in the HSPC cluster 

were most likely to be misclassified (proximal: 9.9±2.3%; distal: 0.3±0.7%; mean±s.d., n=5). This is likely 

partly due to the limited number of HSPC training samples available. It also indicates that HSPCs represent 

a heterogeneous population with expression patterns that partially intersect with several other cell types. 

This observation agrees with recent studies in mouse, human and zebra fish, that have shown that the HSPC 

pool is a particularly variable cell population,7,9,10,12,13 and highlights the fact that classification accuracy 

will depend upon both the amount of data available for training and the heterogeneity intrinsic to the cell 

population being considered. This issue will also be important when we consider transferring mouse 

biology to the human. 

To further dissect the biological basis of this classifier, we also conducted an information-theoretic 

sensitivity analysis designed to determine subsets of genes (i.e. predictors) that are most strongly associated 

with each cell identity (i.e. output classes, see Methods for details). This analysis recapitulated well-

established molecular markers of BM cell type identities (see Table S1). 

For instance, among the top-ranking features associated with the HSPC identity are Angpt1 and 

Myct1, both known regulators of stem cell proliferation;14,15 Irf8, a monocyte lineage determinant,16 was 

most strongly associated with the monoblast identity; Ccr2 and Ctss, which are known to play a central 

role in chemotaxis and antigen presentation of monocytes,17,18 were most influential for monocyte 

classification. Assignment of the myeloblast identity was highly sensitive to Prtn3 (also known as 

Myeloblastin), while transcripts encoding components of secretory vesicles that are sequentially produced 

during myelopoiesis,19 and define the morphologically distinct stages of myeloblasts (primary granules; 

Elane), myelocytes (secondary granules; Ltf) and neutrophils (tertiary granules containing the neutrophil-

collagenase Mmp8) also strongly influenced these class assignments. Similarly, various different immature 

lymphocytes were discriminated based on the expression of Vpreb3 (pro-B-cells), Cd74 (pre-B-cells) and 

Ccl5 (TEM cells); while (peri-)vascular cells were determined based on Serping1 (pericytes) and Fabp4 

(endothelial cells) expression among other genes. Table S1 contains a complete list of all the top-ranking 

genes associated each cell type.  

To investigate the functional significance of these gene sets we also performed Gene Ontology 

(GO) term analysis (see Methods). We found that significantly enriched GO terms associated with these 

gene lists summarized the biological function of their associated cell type. Key GO associations included 

hemopoiesis for HSPCs (p=8.5e-5; modified Fisher’s exact test), blood coagulation for megakaryocytes 

(p=1e-8), B-cell receptor signaling for pro-B- and pre-B-cells (p=1.2e-8; p=3.9e-10); T-cell receptor 

signaling for T-lymphocytes (p=1.6e-10); cell adhesion and osteoblast differentiation for pericytes 

(p=7.6e-10; p=9.5e-9); cellular response to VEGF for endothelial cells (p=8.4e-8); positive regulation of 

mast cell degranulation for basophils (p=1.2e-6); and innate immune response and related terms for 
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monocyte- and granulocyte-lineages. Table S2 contains a complete list of GO terms associated with each 

cell type. 

Collectively, these results indicate that our ANN captures the essential biology of the mouse BM 

and can accurately discriminate between mouse BM cell types based upon differences in biologically 

significant gene expression patterns. 

 

Mapping human bone marrow 

We next sought to determine the extent to which the biology learnt in the mouse “source” domain could 

be transferred to the human “target” domain of true interest. To do this, we sequenced BM samples from 

three patients, undergoing routine hip replacement surgery at Southampton General Hospital.  In total, 

~25,000 single-cell transcriptomes were sequenced yielding on average 5x104 reads per cell. As with the 

mouse, we sequenced unfractionated BM as well as depleted populations in order to enrich for rarer cell 

types. Following pre-processing and filtering of low-quality cells (see Methods) we obtained data for 

9,394 cells expressing on average 3,070 transcripts per cell. As with the mouse data we then performed 

unsupervised clustering to identify the various hematopoietic and niche-cell types present and assigned 

cell identities based upon localization of established lineage markers (see Fig. S2 and Supplementary 

Material). As with the mouse data this analysis resulted in a set of single cell transcriptomes in which 

each cell is annotated with a unique identity determined by unsupervised clustering.   

We subsequently assessed the extent to which our mouse classifier, which was trained exclusively 

on mouse data, was able to predict human cell identities (Fig. 2a). We found that the mouse classifier 

predicted human cell identities remarkably well, achieving an average balanced accuracy of 83.3%. 

Notably, this overall accuracy was not consistent across all cell classes: rather, accuracy ranged from 60.0 

to 98.0% for individual cell classes (Fig. 2b). Thus, while some human cell types were identified 

remarkably well by the mouse classifier, indicating strongly shared biology, others cell types were much 

more poorly aligned, indicating systematic differences in underlying biology between the species. For 

example, human erythroblasts and T-lymphocytes were rarely misclassified by the naïve mouse model 

(which achieved 97.5% and 98.0% balanced accuracy in identifying these classes respectively), while other 

cell types were frequently misclassified (Fig. 2b).  

As with the mouse data, we found that misclassification of human cells was commonly proximal 

in nature (13.9% versus 8% for distal misclassification overall), suggesting that the mouse classifier had 

partially learnt human cellular identities, and misclassification was not entirely artefactual (Fig. 2b-d). For 

instance, human HSPCs were systematically misclassified as one of their proximal descendent classes 

(17.8% misclassification), but less frequently distally misclassified (6.9% misclassification). A similar 

pattern of misclassification of mouse HSPCs was also seen (Fig. 1i). Likewise, myelocytes were 

systematically misclassified as their progenitors, myeloblasts, or their descendants, neutrophils (29.6% 

proximal versus 8.7% distal misclassification) (Fig. 2b-d). However, this pattern was not universal.  
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Figure 2 Bone marrow biology maps partially from mouse to man. (a) Schematic of the naïve transfer process. 

ANN trained in the source domain (mouse) is used to classify test data from the target domain (human). (b) Confusion 

matrix of classification consensus from 5-fold cross validation. The dashed box highlights cell types identified in the 

mouse but not the human data. (c-d) Projection of human data onto two dimensions using tSNE8. Points represent 

cells coloured by (c) predicted cell identity or (d) misclassification. (e-f) Co-clustering of expression patterns in 

mouse and human cells discriminates human HSPCs from megakaryocytes (e) and pericytes from endothelial cells 

(f). In both panels clustering is performed using the top-ranking genes from sensitivity analysis 
 

For example, while human immature-B lymphocytes were commonly misclassified as their 

progenitors, pro-B and pre-B lymphocytes, they were also systematically misclassified as a range of other 

types of progenitors (14.1% proximal misclassification versus 33.8% distal; see Figs. 2b-d), indicating 

that the mouse classifier was not able to fully resolve the human immature-B cell identity. Notably, the 

mouse data did not contain a comparable immature-B cell cluster, and so the mouse model was never 

explicitly trained to recognize the expression signatures of B-lymphocytes. Nevertheless, the mouse 

classifier assigned the majority of immature B lymphocytes to adjacent clusters and hence to the correct 

branch of B-cell development.  

Taken together, these results indicate that while much biology is conserved between the mouse 

and human BM, there are systematic differences. These differences are important because they indicate 

the circumstances in which the mouse is likely to be a good model of human biology and when it will 

likely not; and they highlight instances where a comparison is not immediately possible. 

 

Discovery of hidden cell identities using zero-shot learning 

While the mouse and human datasets contain data from many of the same cell types, some cell types were 

not resolvable in the human samples with accuracy comparable to the mouse. In particular, we could not 
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identify distinguishable clusters associated with endothelial cells or megakaryocytes, yet both of these cell 

populations were clearly apparent in the mouse data. Because many aspects of BM are conserved between 

mouse and man, we next sought to determine if the mouse model could be used to help resolve the biology 

such hard-to-identify human cell types. 

Interestingly, a significant subset (19.4%) of human HSPCs were identified as megakaryocytes by 

the mouse classifier (Fig. 2b, c). This high overlap is notable because HSPCs and megakaryocytes are 

proximal in the mouse hematopoietic cell lineage map (Fig. 1d), reflecting the fact that megakaryocytes 

emerge directly via differentiation from HSPCs9,20,21. This result suggested to us that the mouse classifier 

might be revealing aspects of human HSPC/megakaryocyte biology that are not apparent from 

unsupervised clustering of the human dataset alone. To investigate these differences further, we conducted 

sensitivity analysis (see Methods) to identify the genes that carry the most discriminatory information in 

distinguishing between megakaryocytes and HSPCs in the mouse classifier. Examination of co-expression 

patterns of these genes in human and mouse cells confirmed that megakaryocytes are characterized by 

broadly similar expression signatures in both mouse and human, and are distinguishable from HPSCs based 

on these expression patterns (Fig. 2f).  

Notably, both mouse and human megakaryocytes expressed high levels of genes involved in 

platelet biogenesis such as Rab27b,22 Ppbp,23 and in platelet function (hemostasis) such as Itga224 

(encoding collagen receptor CD49b) and F2rl225 (encoding coagulation factor 2) (Fig. 2f). Similarly, 

HSPCs in both species shared expression of key transcription factors such as Zfp36l2 and Sox4 (Fig. 2f) 

that are known to control stem cell self-renewal15,26.  

Similarly, when shown to the mouse classifier a significant subset (20.3%) of human pericytes 

were identified as endothelial cells (Fig. 2b, c). While the ontogeny of pericytes and endothelial cells in 

the adult bone marrow remains unclear,27 both cell types are constituents of the vasculature, and are in 

close spatial proximity in the BM, again suggesting that the mouse classifier might be revealing aspects of 

human biology that are not apparent from unsupervised analysis of the human dataset alone. To investigate 

these differences further we again conducted sensitivity analysis (see Methods) to identify the genes that 

carry the most discriminatory information in distinguishing between endothelial cells and pericytes in the 

mouse model. Among the genes that were identified were a number of important endocrine modulators 

and sensors of energy homeostasis such as Igfbp5 and Lepr;28,29 paracrine signaling molecules such as 

Cxcl12;30 and components of the iron cycle such as Cp. Examination of co-expression patterns of these 

genes revealed a substantial overlap between mouse and human pericyte expression patterns, indicating 

that much of the central molecular machinery of these cells is evolutionarily conserved (Fig. 2e). Similarly, 

both human and mouse endothelial cells shared expression of known angiogenic-signal receptors such as 

Kdr31 and the Vegf target gene Fabp432 (Fig. 2e), again highlighting shared biology.  However, we also 

observed that a subset of human pericytes clustered with mouse endothelial cells again suggesting that the 

mouse classifier was able to reveal aspects of human cell identities not apparent from the human data alone 

(Fig. 2e).  
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Collectively these results indicate that once encoded in a machine learning model, mouse data can 

be used to contextualize human data, identify evolutionarily conserved gene expression patterns and 

thereby provide insight into poorly resolved cell populations. In the machine learning literature, the process 

of object identification without training examples is known as zero-shot learning, and typically relies on 

importing prior knowledge from a related source domain.33 Here, because the mouse classifier encodes 

evolutionary conserved information, it can be used, in conjunction with prior knowledge of the BM lineage 

tree, to infer poorly resolved human cell populations via a process of biologically-guided zero-shot 

learning. 

 

Transferring biology from mouse to man  

Since the mouse classifier was not able to accurately identify all human cell identities, yet appeared to be 

capturing aspects of evolutionarily conserved biology we next sought to determine if it could be used to 

train a more accurate model of the human BM. To achieve this objective, we re-trained the mouse classifier 

using a limited set of human BM cell gene expression signatures as additional training data (Fig. 3a).  

We produced a series of ANNs by retraining the mouse classifier using increasing numbers of 

additional human training examples (Fig. 3a, c). Classification performance sharply increased on 

retraining, even when only a very small number of representative human training examples were used (Fig. 

3c). Notably, classifier performance began to saturate when retraining using 4-8 additional human training 

examples for each class (44-88 cells in total). At this point retrained models achieved over 90% balanced 

accuracy (up from 83% in the naïve mouse model) and a significantly improved F1 score (88.4±0.8% up 

from 63.1±0.6%; mean ± s.d., n=5) indicating that human cell identities can be reliably predicted upon 

retraining with very few training examples (Fig. 3c). 

In order to assess the extent to which pre-learning in the mouse source domain improves 

classification performance in the human target domain, an equivalent set of ANNs were trained without 

transfer from the mouse (i.e. from randomized initial conditions, referred to as naïve models; Fig. 3b-c). 

Since they benchmark the efficiency with which human BM biology can be learnt from low volumes of 

data without pre-training in the mouse these naïve models act as controls for the transfer learning process.  

To assess the information-transfer process we plotted classifier performance (here, the F1 score, 

which accounts for both the precision and recall of the classifiers) of transferred and naïve models against 

each other as the number of human training examples varied to produce characteristic learning curves (Fig. 

3d, e). This analysis indicates the extent to which the biology of each cell type is shared between species 

(see Fig. 3d and further explanation in Fig. 3e). Four distinct groups of cell types can be distinguished 

based on their different characteristic learning curves (Fig. 3d). 
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Figure 3. Mapping biology from mouse to man using transfer learning. (a) Schematic of the transfer learning 

process. Abundant data from source domain (here the mouse) is used to train a source ANN. Sparse data from the 

target domain (here the human) is used to fine-tune the parameters of the source ANN, thereby transferring knowledge 

from source to target domain. (b) Schematic of naïve learning as a control for transfer learning. Rather than updating 

the pre-trained mouse model, a series of separate ANNs are trained from random initial conditions on sparse data 

from the human target domain. (c) Both transfer and naïve learning improves with the number of human samples 

used for training (shown is data for 0,1, 2, …, 10, 15, 20, 25, 30 human cells per class). Transfer learning performance 

(top) and naïve learning (bottom). Displayed is the average F1 score from 5-fold cross validation as a measure of 

classifier performance. (d) Learning curves illustrate the evolution of classification performance starting from the 

initial mouse (triangle) to the final model (square; trained on 30 human examples per class). (e) Schematic to interpret 

the learning curves in panel d. Three features are of importance. A is the initial performance deficit = 1 – F10, where 

F10 is the F1 score of the mouse model in predicting human samples. B is the learning curve: each point on this curve 

plots the F1 score of the retrained mouse model against the naïve human model for a fixed number of human training 

examples from 0 to 30 per class. C is the final performance deficit = 1 – F1end, where F1end is the F1 score of the naïve 

human model trained on 30 samples per class in predicting human samples. The line y = x is in black. On this line 

the naïve and retrained models have equivalent accuracy for the same number of human training samples. At this 

point the mouse biology has been forgotten, and equivalent learning can be achieved by a naïve human model.  All 

learning trajectories eventually converge to this line. (f) Cell types may be grouped by their initial and final 

performance deficits.  
 

The first group contains cell types with highly conserved phenotypes, which display high 

classification performance initially (i.e. the mouse classifier is able to identify human cells without 

additional training using human data) that does not improve significantly upon re-training in the target 

domain (i.e. using additional human data; Fig. 3d-f). This group includes erythroblasts and T-lymphocytes. 

These cell types: (1) are highly homogeneous in their expression patterns in human and thus are 

consistently classified; and (2) have a biology that is highly conserved between mouse and man. These cell 

types can be reliably identified from the mouse classifier and do not require any human training data to 

learn their representation. The mouse is a good model of human biology for these cell types.  
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The second group contains cell types that display good (but not excellent) classification 

performance initially, that does not improve significantly upon re-training with human data (Fig. 3d-f). 

The second group includes pericytes, myeloblasts, myelocytes, neutrophils and monocytes. These cell 

types: (1) are more heterogeneous in their expression patterns in human and thus are less consistently 

classified than group 1; and (2) have a biology that is highly conserved between mouse and man. This 

group of cell types requires a moderate amount of human training data to learn their representations.  

The third group contains cell types that display initially low classification performance that 

improves rapidly upon re-training with human data (Fig. 3d-f). This group contains pro-B/pre-B 

lymphocytes, and immature B lymphocytes. These cell types: (1) are homogeneous in their expression 

patterns in human; yet (2) have a biology that is distinct between species. The biological differences 

between species for these cell types are in part due to differences in cluster definition in mouse and human 

data. Specifically, while the mouse ANN was trained to distinguish pro-B and pre-B cells, these cells are 

part of the same cluster in the human data. Hence, re-training involves separating the joint cluster of pro-

B and pre-B lymphocytes from previously unseen immature B lymphocytes. This group of cell types 

requires a moderate amount of human training data to learn their representations. 

Finally, the fourth group contains cell types that display low classification performance initially 

that does not improve significantly upon re-training with human data (Fig. 3d-f). This group contains 

monoblasts and HSPCs. These cell types: (1) are heterogeneous in their expression patterns in human; and 

(2) have a biology that is distinct between species. This group of cell types requires a large amount of 

human training data to learn their representations. 

Collectively, this analysis shows how tools from transfer learning can be used to dissect those 

aspects of biology that will effectively transfer between the species and those aspects that do not.  

 

Discussion 

Successful biomedical research is critically dependent on the effective transfer of information between 

different stages of the research pipeline.  A critical step in this process is knowledge transfer from model 

organisms to the human. Here, we have shown how methods from transfer learning can be used to 

efficiently pass biological information between species using the bone marrow as an example. As 

increasingly detailed single cell maps of whole organism biology become more available, we anticipate 

that transfer learning approaches will provide essential tools for comparative physiology. More generally, 

the transfer learning philosophy is not limited to single cell data. Similar approaches are relevant whenever 

data is easily obtained from a data-rich source domain, yet hard to obtain in a related data-sparse target 

domain. As an example, understanding of rare disease biology may be substantially improved by 

leveraging understanding of related, yet common, diseases. Similarly, transfer learning could be used to 

pass knowledge of drug responses from pre-clinical model systems to the human. In conclusion we 

anticipate that transfer learning methods can be used to reconstruct complex biology from limited data and, 
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will significantly streamline future biomedical research and help bring therapies more quickly and cost-

effectively to the clinic.  

 
Methods 
 

Mouse tissue origin 

Bone marrow from female 8-week old C57BL/6 mice was used in this study. All experimental work 

including mice were approved by the Kyushu University animal experiment committee.  

 

Human tissue origin 

Excess marrow was collected from patients undergoing routine hip replacement surgery, with informed 

consent, and use of human tissue was approved by the regional ethics committee (reference 18/NW/0231). 

 

Bone marrow cell isolation 

Mouse bone marrow mononuclear cells (mBM-MNCs) were prepared as described previously.29 Bone 

marrow was flushed from tibiae and femurs and digested with 1 mg/ml collagenase IV (Thermo Fisher, 

17104019) and 2 mg/ml dispase (Gibco, 17105041) in Hank’s balanced salt solution (HBSS; Gibco, 

14025092) for 30 min at 37 °C. Dissociated cells were treated with ammonium chloride solution to remove 

erythrocytes (155 mM NH4Cl, 12 mM NaHCO3 and 0.1 mM EDTA) for 5 min at room temperature, 

following 3x washes in HBSS. 

 

Human bone marrow mononuclear cells (hBM-MNCs) were prepared described previously,34 with the 

additional removal of erythrocytes following density centrifugation through lysis in ammonium chloride 

solution (155 mM NH4Cl, 12 mM NaHCO3 and 0.1 mM EDTA) for 5 min at room temperature, following 

3x washes in plain α-MEM. 

 

Magnetic cell sorting 

Cells were immuno-labelled with magnetic microbeads for cell separation according to manufacturer’s 

instructions. Up to a total of 1x108 BM-MNCs were used for each separation. Human cells expressing 

CD45 (Miltenyi Biotec, 130-045-801) or CD235a (Miltenyi Biotec, 130-050-501) and mouse cells 

expressing CD45 (Miltenyi Biotec, 130-052-301) or TER119 (Miltenyi Biotec, 130-049-901) were 

depleted using LS columns (Miltenyi Biotec, 130-042-401) according to manufacturer’s instructions. 

 

Collagenase release of bone lining cells from human bone marrow 

Trabecular bone fragments obtained after the first step of cell isolation were incubated in 20 U/ml 

Collagenase IV (Thermo Fisher, 17104019) for 3h at 37°C under continuous rotation. Bone fragments 
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were washed with plain α-MEM (Thermo Fisher, 12000-014) and cells released from ECM were filtered 

using a 40µm cell strainer. 

 

Single-cell RNA-sequencing 

Single-cell sequencing was performed as described in detail elsewhere4 and alterations of the original 

protocol are reported below. Hydrophobic surface treatment of polydimethylsiloxane (PDMS) microfluidic 

devices was performed by incubating channels with 1% Trichloro(1H,1H,2H,2H-perfluoro-octyl)silane 

(Sigma-Aldrich, 448931) in Fluorinert FC-40 (Sigma-Aldrich, F9755) for 5-10min at RT. Syringe pumps 

to drive both aqueous and non-aqueous phases were made in-house according to published, open source 

protocols.35 Protocols for NGS library preparation described in Macosko et al. 2015 were closely followed 

and pre-amplification was conducted using 4+12 PCR cycles (95°C 3 minutes - 4 cycles of: 98°C 20s; 

65°C 45s; 72°C 3min - 12 cycles of: 98°C 20s; 67°C 20s; 72°C 3min - 72°C 5min; 4°C hold). Processed 

libraries were sequenced using a NextSeq 500 system (Illumina) and NextSeq 500/550 High Output Kit 

v2 (Illumina, TG-160-2005).  

 

Sequence alignment 

Sequence alignment was performed as detailed in Macosko et al. 2015 using the mm10 (GSE63472) and 

hg19 (GSM1629193) reference genomes and STAR (version 2.5.2b) for sequence alignment. Raw reads 

were demuliplexed and condensed into the digital gene expression matrix (DGE) using DropSeq tools 

(v1.0; Macosko et al. 2015), using a modified alignment score to reduce the number of reads discarded due 

to multiple alignment. 

 

Data pre-processing 

Data was analyzed using the software R (version 3.5.0) and the Seurat package (version 2.3.1). A gene 

mapping between mouse and human was created using the orthologue annotation provided by Ensembl.36 

Unscaled data was discretized (threshold >0) and the union of genes from both species previously 

identified as variable (threshold for mean 𝑥̅𝑥 > 0.0125, and 𝑥̅𝑥 < 4; and log of dispersion > 0.5) in Seurat 

were selected for training if they were unambiguous orthologues. 

 

Cluster analysis 

Clustering was performed in Seurat using the Louvain algorithm37 with resolution parameter set to 1.1. 

 

Cluster annotation 

To assign meaningful labels to the clusters proposed by the Louvain algorithm, differentially expressed 

genes were identified using the likelihood-ratio test38 built-in to Seurat (with settings: prevalence > 25%; 

fold-change > 2; p-value < 0.001). Thus, obtained cluster markers were screened for previously described 

biomarkers for given bone marrow cell populations. 
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Cell lineage tree 

A qualitative description of the cell lineage tree was obtained from the literature.9  

 

Prerequisites to machine learning of cell identities across species 

The problem of mapping between the cell identities of any number of species consists of two parts: Firstly, 

a mapping between features (here: genes), and secondly, a mapping between cell types. A useful feature 

map contains genes that were present in a last common ancestor. Such a mapping between features 

(orthologous genes in these data) can be easily obtained by adopting existing annotation from Ensembl 

that is based on sophisticated phylogenetic sequence analysis.36 In mouse and human only half of the 

genomic DNA can be mapped between genomes,39 limiting our analysis initially to the remaining 

conserved features. The other part, the non-conserved features, can thus be regarded separately from theses 

analyses and contribute foremost to the species-specific biology of cell types. 

 

Machine learning 

Artificial neural networks (ANNs) were trained using the keras for R package (v2.2.4; 

https://keras.rstudio.com/) and the TensorFlow backend (v1.8.0; https://www.tensorflow.org/) on a 

GeForce GTX 1050 GPU (NVIDIA, Santa Clara, CA, USA). To ensure robustness and protect against 

over-fitting 5-fold cross validation was used throughout. Data was split by classes into 5 equal parts and 5 

ANNs were trained using an 80/20 percent training/validation split. 

 

All models consisted of an input layer with 4374 nodes and a drop-out rate of 0.5 (to account for technical 

variability in single-cell data). Because we were interested in the shared logic between the species, rather 

than gene expression kinetics, expression levels were binarized (1 if the gene was expressed at any level, 

and zero otherwise) prior to learning. A 16-unit hidden layer with ReLU activation and L1 regularization 

(l=0.001), and a 14-unit softmax output layer. Training was performed for 21 epochs with a step size of 

42, and a sample generator to re-sample 5 training examples per class per step. Loss was calculated using 

cross-entropy and gradient descent optimization was conducted using RMSprop with default parameters. 

For training in the target domain, the step size was set to be proportional to the number of training examples 

up to a maximum of 30 steps per epoch to avoid overfitting. Each model from the source domain was re-

trained on 1, 2, …, 10, 15, 20, 25, 30 examples per class (excluding unrepresented classes in the target 

domain) using 5-fold cross validation. 

 

Evaluation of classification performance 

To account for the extreme class imbalance, balanced accuracy (BA)40 was adapted from the binary setting 

described in Brodersen et al. 2010 to the multi-class setting. BA was calculated as the arithmetic mean of 

sensitivity (true positive rate) and specificity (true negative rate) for a given class against all other classes. 

Overall performance across all classes was calculated as the average balanced accuracy. Further, the F1 
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score was calculated from the harmonic mean of sensitivity and precision (predicted positive rate). 

Performance metrics were reported as the average from 5-fold cross validation. For analyses related to Fig. 

2, classification performance of the source ANN in target domain was calculated from an ensemble of all 

5 ANNs via plurality vote. Performance in the target domain was independently assessed using a test set 

containing all cell not used in training (~95% of human data; range: 17.2% to 98.7% of human cells per 

class). 

 

Topology of misclassification 

The relationship between classes is specified by an acyclic graph G, the cell lineage tree (see Fig. 1d for 

reference), which is a hierarchical representation of the developmental history of cell types that is derived 

elsewhere (see for instance Tusi et al. 2018). In this graph, cell types are nodes and edges are direct 

developmental trajectories. We consider cells to be correctly classified, if the distance between the true 

label and the predicted label along the edges in G is d = 0. Misclassification events are categorized as 

proximal if the distance between true and predicted labels d = 1; and distal if the distance between labels 

d > 1. 

 

Sensitivity analysis 

Because we binarized data prior to learning we were able to systematically assess the mutual information 

between input gene expression patterns and out posterior probabilities from the softmax output layer. 

Specifically, the mutual information41 was calculated using the input and output of the ANN trained on 

mouse data. To do so, the discretized gene expression xg ∈ {0,1} for gene g and the discretized posterior 

probabilities yc ∈ {[0, 1/3], (1/3, 2/3], (2/3, 1]} for class c were extracted from the training data and cross 

tabulated to obtain an xg by yc contingency matrix M. By normalizing M by the total number of 

observations, an estimate of the joint probability distribution 𝑃𝑃(𝒙𝒙𝑔𝑔;𝑦𝑦𝑐𝑐), as well as estimates of the marginal 

distributions 𝑃𝑃𝒙𝒙𝑔𝑔and 𝑃𝑃𝑦𝑦𝑐𝑐  were obtained, from which the mutual information 

 

𝐼𝐼�𝒙𝒙𝑔𝑔,𝒚𝒚𝑐𝑐� = � � 𝑃𝑃�𝒙𝒙𝑔𝑔;𝑦𝑦𝑐𝑐�(𝑖𝑖, 𝑗𝑗)
𝑗𝑗∈𝒚𝒚𝑐𝑐𝑖𝑖∈𝒙𝒙𝑔𝑔

log�
𝑃𝑃�𝒙𝒙𝑔𝑔;𝑦𝑦𝑐𝑐�(𝑖𝑖, 𝑗𝑗)

𝑃𝑃𝒙𝒙𝑔𝑔(𝑖𝑖)𝑃𝑃𝑦𝑦𝑐𝑐(𝑗𝑗)�
, 

 

was calculated. Genes were then ranked for each class based upon mutual information, as a measure of the 

extent to which they contribute to class assignments.  

 

Gene set analysis 

To obtain a functional annotation of the ranked gene lists obtained from the sensitivity analysis (see above), 

gene set analysis was performed, using the 100 highest ranking genes for each class as an input to the 
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functional annotation tool in DAVID42 (v6.8; https://david.ncifcrf.gov/) and reference gene sets defined in 

the biological process gene ontology (GO). 

 

Data availability 

Data reported in this work are available from ArrayExpress under accession E-MTAB-8629 and E-MTAB-

8630. 
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Supplementary Figures 

 

 
Supplementary Figure 1. Gene expression localizes to developmental branches of mouse hematopoiesis. 

a-g Average gene expression superimposed onto 2D embedding of scRNAseq data. Displayed are the mean 

expression values for each 2D-bin. Localized expression indicative of a erythropoiesis, b granulopoiesis, 

c monocytopoiesis, d hematopoietic stem and progenitor cells and niche cells, e endothelial cells and 

pericytes, f lymphopoiesis, g thrombopoiesis. h Color scale. i Cluster structure from Fig. 1c for reference. 
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Supplementary Figure 2. Gene expression localizes to developmental branches of human hematopoiesis. 

a-g Average gene expression superimposed onto 2D embedding of scRNAseq data. Localized expression 

indicative of a erythropoiesis, b granulopoiesis, c monocytopoiesis, d hematopoietic stem and progenitor 

cells and niche cells, e endothelial cells and pericytes, f lymphopoiesis, g pericytes. h Color scale. i 

Unsupervised clustering and annotation derived from the literature. 
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Supplementary Figure 3. (a) Related to Fig. 1b, c. Alternative projection of mouse bone marrow 

scRNAseq data onto two dimensions using UMAP43. Data points represent cells, colored by cluster 

membership detailed in Fig. 1. (b) Related to Fig. 1b-e. Dendrogram of mouse bone marrow cell type 

dissimilarity. Displayed is the Euclidean distance between cluster median-centres44, calculated from the 

first 11 principal components. (c) Related to Fig 3. Confusion matrices at various levels of re-training (5, 

10, 30 examples per class) for transfer learning and naïve learning. (d) Related to Fig 3. Average F1 score 

over all classes from 5-fold cross validation (primary y-axis), and corresponding negative logarithm (base 

10) of p-values (FDR corrected; secondary y-axis), from one-tailed paired t-tests (alternative: F1transfer > 

F1naive). Dashed line denotes a significance level of α = 0.01.  
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Supplementary Material 

Human bone marrow cell characterization 

To enrich the progenitor and niche cell subsets contained in bone marrow mononuclear cells (BM-MNCs), 

magnetic cell sorting (MACS) was employed to deplete cells expressing pan-leucocyte marker CD45 

[PTPRC] or erythrocyte marker CD235a [GYPA] as well as to enrich skeletal stem cell marker STRO-1 

[HSPA8].45 To discriminate broad classes of cells among the BM-MNCs, unsupervised clustering was 

employed at low resolution in Seurat (resolution parameter = 1.1; see Fig. S2i). This revealed the presence 

of 16 distinct cell types (including five erythroblast clusters and two myelocyte clusters that were each 

summarized as one cluster each, due to the apparent homogeneity analogous to mouse erythroblasts, 

compare Fig. S3b). At this deliberately low resolution, individual genes possessed sufficient discriminative 

power for their identification (see Fig. S2a-g). For instance, specific stages of neutrophil development can 

be identified based on the enzyme content of the secretory vesicles,46 such as primary azurophilic granules 

(AZU1), secondary specific granules (LTF), and tertiary gelatinase granules (MMP9), while mature 

neutrophils are identified based on the characteristic expression of CD16 (FCGR3B; Fig. S1b). Moreover, 

CD14 positive monocytes and CD1C positive dendritic cells47 can be identified among monoblasts 

expressing versican (VCAN; Fig. S2c). Additionally, the BM-MNC population contains a number of 

hematopoietic stem and progenitor cells (HSPCs), marked by the surface antigen CD34, KIT, and ANGPT1 

(Fig. S2d). Notably, a small but distinct subset of cells is marked by high levels of CXCL12 (Fig. S1g), an 

important hematopoietic niche factor  that, in mouse, is secreted by both osteoblasts at the endosteal 

surface30 and by pericytes at the endothelial interface48, and expression of Leptin receptor (LEPR), another 

marker of pericytes and adipocytes.28 As another example, lymphocytes such as Pro-B- and Pre-B-

lymphocytes characterized by CD19 and CD20 (MS4A1) respectively can be distinguished from more 

mature B-lymphocytes marked by IgG heavy chain (IGHG2) and MZB1 (a co-chaperone important for 

immunoglobulin-folding49) respectively (Fig. S2e-f). 

 

Modification to the bioinformatics pipeline to resolve multiple alignments 

See separate document. 
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