bioRxiv preprint doi: https://doi.org/10.1101/2019.12.26.888685; this version posted December 26, 2019. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

The String Decomposition Problem and its Applications to
Centromere Assembly

Tatiana Dvorkina', Andrey V. Bzikadze?, and Pavel A. Pevzner®

1 Center for Algorithmic Biotechnology, Institute of Translational Biomedicine, Saint
Petersburg State University, Saint Petersburg, Russia

2 Graduate Program in Bioinformatics and Systems Biology, University of California,
San Diego, CA, USA

3 Department of Computer Science and Engineering, University of California, San
Diego, CA, USA

Abstract

Recent attempts to assemble long tandem repeats (such as multi-megabase long
centromeres) faced the challenge of accurate translation of long error-prone reads from the
nucleotide alphabet into the alphabet of repeat units. Centromeres represent a particularly
complex type of nested tandem repeats, where each unit is itself a repeat formed by
chromosome-specific monomers (a repeat within repeat). Given a set of monomers forming
a specific centromere, translation of a read into monomers is modeled as the String
Decomposition Problem, finding a concatenate of monomers with the highest-scoring
sequence alignment to a given read. We developed a StringDecomposer algorithm for
solving this problem, benchmarked it on the set of reads generated by the
Telomere-to-Telomere consortium, and identified a novel (rare) monomer that extends the
set of twelve X-chromosome specific monomers identified more than three decades ago.
The accurate translation of each read into a monomer alphabet turns centromere assembly
into a more tractable problem than the notoriously difficult problem of assembling
centromeres in the nucleotide alphabet. Our identification of a novel monomer emphasizes
the importance of careful identification of all (even rare) monomers for follow-up centromere
assembly efforts.

Introduction

Recent advancements in long read sequencing technologies, such as Pacific Biosciences
(PB) and Oxford Nanopore Technologies (ONT), led to a substantial increase in the
contiguity of genome assemblies (Koren et al., 2017; Kolmogorov et al., 2019; Ruan and Li,
2019; Shafin et al., 2019) and opened a possibility to resolve extra-long tandem repeats
(ETRs), the problem that was viewed as intractable until recently. Assembling ETRs is
important since variations in ETR have been linked to cancer and infertility (Barra and
Fachinetti, 2018; Black and Giunta, 2018; Ferreira et al., 2015; Giunta and Funabiki, 2017;
Miga et al., 2019; Smurova and De Wulf, 2018; Zhu et al., 2018). ETR sequencing is also
important for addressing open problems about centromere evolution (Alkan et al., 2007;
Lower et al., 2018; Shepelev et al., 2009, Henikoff et al., 2015).

The initial attempts to assemble ETRs (Jain et al., 2018; Bzikadze and Pevzner, 2019; Miga
et al., 2019) revealed the importance of the String Decomposition Problem, partitioning an

https://www.zotero.org/google-docs/?WFa31b
https://www.zotero.org/google-docs/?WFa31b
https://www.zotero.org/google-docs/?WFa31b
https://www.zotero.org/google-docs/?eCHaqX
https://www.zotero.org/google-docs/?eCHaqX
https://www.zotero.org/google-docs/?vf3sQ1
https://www.zotero.org/google-docs/?vf3sQ1
https://doi.org/10.1101/2019.12.26.888685
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.26.888685; this version posted December 26, 2019. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

ETR (or an error-prone long read sampled from an ETR) into repetitive units forming these
repeats. Although no existing tool explicitly addresses the String Decomposition Problem,
Tandem Repeats Finder (Benson, 1999), PERCON (Kazakov et al., 2003),
Alpha-CENTAURI (Sevim et al., 2016), and the Noise-Cancelling Repeat Finder (Harris et
al., 2019) address related problems. Although these tools can be adapted for string
decomposition, they often result in limited accuracy in the case of nested tandem repeats,
such as centromeres and rDNA arrays.

Centromeres are the longest tandem repeats in the human genome that are formed by units
repeating hundreds or even thousands of times with extensive variations in copy numbers in
the human population and limited nucleotide-level variations. Each such unit (referred to as
high-order repeat or HOR) usually represents a tandem repeat formed by smaller building
blocks (referred to as alpha-satellites or monomers), thus forming a nested tandem repeat,
i.e., a repeat within another repeat.

The alpha satellite repeat family occupies around 3% of the human genome (Hayden et al.,
2013). Each monomer is of length ~171bp and each HOR is formed by multiple monomers.
For example, the vast majority of HORs on human X centromere (referred to as cenX)
consist of twelve monomers. Although different HOR units on cenX are highly similar
(95-100% sequence identity), the twelve monomers forming each HOR are rather diverged
(50-90% sequence identity). In addition to standard 12-monomer HORs, some units on cenX
have non-canonical monomer structure: 35 out of 1510 units are formed by smaller or larger
number of monomers than the canonical 12-mer unit (Bzikadze and Pevzner, 2019).
Moreover, two 12-mer units on cenX represent a non-canonical order of monomers. The
tandem repeat structure of human centromeres may be interrupted by retrotransposon
insertions (for example, cenX has a single insertion of a LINE element).

Partitioning of long error-prone reads into units and monomers is critically important for
centromere assembly (Bzikadze and Pevzner, 2019; Miga et al., 2019). For example,
centroFlye (Bzikadze and Pevzner, 2019) requires a translation of each read in the
nucleotide alphabet into a monoread in the monomer alphabet. Unless these monoreads are
extremely accurate (e.g., less than 0.5% error rate), the centroFlye assembly fails. However,
the existing tools for analyzing tandem repeats (Benson, 1999; Harris et al., 2019; Sevim et
al., 2016) generate monoreads with higher error rates and thus do not provide an adequate
solution of the String Decomposition Problem.

Here we present a StringDecomposer (SD) algorithm that takes the set of monomers and a
long error-prone read (or a genomic segment) and partitions this read into distinct
monomers. The accurate translation of each read from a nucleotide alphabet into a
monomer alphabet opens a possibility to assemble the reads in the monomer alphabet, a
more tractable problem than the notoriously difficult problem of assembling ETRs in the
nucleotide alphabet.

Methods

String Decomposition Problem. Given a string R (corresponding to a read or an assembly
of a centromere) and a set of strings Blocks (each block from Blocks corresponds to an
alpha-satellite), the goal of the String Decomposition Problem is to represent R in the

https://www.zotero.org/google-docs/?omgzoq
https://www.zotero.org/google-docs/?SULKBQ
https://www.zotero.org/google-docs/?jbNJCP
https://www.zotero.org/google-docs/?jbNJCP
https://www.zotero.org/google-docs/?fA48Cm
https://www.zotero.org/google-docs/?fA48Cm
https://www.zotero.org/google-docs/?MDlWep
https://www.zotero.org/google-docs/?HoHFzj
https://www.zotero.org/google-docs/?1DYzqs
https://www.zotero.org/google-docs/?WEIiQH
https://www.zotero.org/google-docs/?WEIiQH
https://doi.org/10.1101/2019.12.26.888685
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.26.888685; this version posted December 26, 2019. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

alphabet of blocks. We define a chain as an arbitrary concatenate of blocks, and an optimal
chain for R as a chain that has the highest-scoring global alignment against R among all
possible chains. The String Decomposition Problem is to find an optimal chain for R.

String Decomposition Graph. Given a block b and a string R, their standard alignment
graph consists of all vertices (i,j) for 0 << |b|, and 0 <j < |R|, where |.| stands for the length
of a string. A vertex (i,j) is connected to vertices (i+1,)), (ij+1), and (i+1,j+1) representing
insertions, deletions, and matches/mismatches, respectively.

Informally, given a set of t blocks and a string R, their String Decomposition Graph consists
of t standard alignment graphs that are “glued together” by their 0-th row (Figure 1). We
index vertices in this graph as (b,i,j) using three indices (b represents a block, i represents a
position in the block b, and j represents a position in string R) except for vertices in the 0-th
row that are indexed simply as (0,j) since all blocks share the same “glued” 0-th row.
Additionally, we add edges that connect each vertex (b,|b|,j) in the last row (for each block b)
with vertex (0,j) in the 0-th row.

Formally, the String Decomposition Graph graph is constructed on all vertices (b,i,j), where b
is a block, 0 </ < |b|, and 0 £/ < |R| under the assumption that, for each j, all vertices (b,0,))
form a single vertex (0,j). A vertex (b,i,) is connected to vertices (b,i+1,)), (b,ij+1), and
(b,i+1,j+1) representing insertions, deletions, and matches/mismatches, respectively (as in
the standard alignment graph), and scored as —0 for insertions/deletions (indels), -o for
mismatches, and +1 for matches. Additionally, vertex (b, |b|, j) is connected by a
zero-weight block-switching edge to a vertex (0, j) for each block b from the block-set.
Although the String Decomposition Graph has directed cycles, the longest path in this graph
is well-defined since all directed cycles have negative weights. We refer to the vertex (0,0)
as the source and to each vertex (b,|b|,|R|) as a sink of the String Decomposition Graph.
string R
J

Blocks

Figure 1. The String Decomposition Graph, represented as a “book” where each page
corresponds to an alignment matrix for a single block, and pages are “glued” together by their
0-th row. Arrows represent edges of the String Decomposition Graph.

StringDecomposer algorithm for solving the String Decomposition Problem. The
i-prefix of a block is defined as the string formed by its first i symbols. Given a block b, we

https://doi.org/10.1101/2019.12.26.888685
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.26.888685; this version posted December 26, 2019. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

define a (b,i)-chain as a chain complemented by the i-prefix of b in the end (note, that
multiple (b,i)-chains exist). A dynamic programming algorithm for solving the String
Decomposition Problem is based on computing a variable

score(b, i)

defined as the score of an optimal global alignment between all possible (b,i)-chains and the
J-prefix of R. We assume that the alignment is scored using the following parameters: —6 for
indel penalties, -o for mismatch penalty, and +1 for matches. Similarly to the fitting alignment
(Gusfield, 1997), the variable score(b,i,)) is initialized as score(b,0,j)=0 for all b and j and
score(b,i,0)=-i*5 for all I.

To compute score(b, i), the StringDecomposer (SD) algorithm uses dynamic programming
to compute the length of a longest path to the vertex (b,i,j) in the String Decomposition
Graph. The solution of the String Decomposition Problem is given by the length of a longest
path from the source to one of the sinks:

max score(b,|b|,|R|).

all blocks b in the block-set
A block b that maximizes this score represents the last block in an optimal chain. Other
blocks in this chain are inferred by backtracking from the sink (b,|b|,|R]) to the source (0,0)
and are defined by the block-switching edges in the backtracking path.

The running time of the SD algorithm for solving the String Decomposition Problem for a
string R and a block-set Blocks is O(|R|*(length(Blocks) + number(Blocks)?)), where
length(Blocks) and number(Blocks)is the total length of all blocks and the number of blocks,
respectively (see Appendix “SD implementation details”). The memory footprint is
O(|R|*length(Blocks)).

Transformation from the nucleotide alphabet to the block alphabet. Given a string R
and a block-set Blocks, SD generates an optimal chain for R. For each block b in an optimal
chain, SD outputs the starting and ending positions of the alignment of this block in R. We
denote the substring of R spanning these positions as R(b), construct an alignment between
the block b and R(b), and compute the percent identity of this alignment referred to as
Identity.(b). A block b in an optimal decomposition of a string R is called reliable (unreliable)
if Identity.(b) exceeds (does not exceed) the threshold Minldentity with default value
Minldentity = 69% (see Appendix “SD implementation details”). We substitute all unreliable
blocks in the string decomposition by the gap symbol “?”, resulting in a translation of the
string R into the extended block alphabet that consists of all blocks and the gap symbol (see
Appendix “Processing gaps in the monomer alignment”). The translated sequence is referred
to as translation(R). If the string R is a centromeric read Read and blocks represent
monomers, we refer to the translation(Read) as mono(Read).

Existing approaches to solving the String Decomposition Problem. Although no existing
tool explicitly addresses the String Decomposition Problem, Minimap2 (Li, 2018), PERCON
(Kazakov et al., 2003), Tandem Repeats Finder (Benson, 1999), Alpha-CENTAURI (Sevim
et al., 2016), and Noise-Cancelling Repeat Finder (Harris et al., 2019) tools address related
problems.

https://doi.org/10.1101/2019.12.26.888685
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.26.888685; this version posted December 26, 2019. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Harris et al., 2019 demonstrated that the performance of general purpose sequence aligners
such as Minimap2 (Li, 2018) deteriorates in highly repetitive regions, making them not
suitable for solving the String Decomposition Problem.

PERCON (Kazakov et al., 2003) is a fast heuristic algorithm for solving the String
Decomposition Problem that compares octanucleotide content of a potential monomer
sequence with all known monomers. Unfortunately, PERCON is difficult to benchmark since
it was implemented only for Windows OS.

Tandem Repeats Finder (TRF) is a popular de novo tandem repeat finder, that does not
require specifying either the monomer or its size as an input (Benson, 1999). Given a string
containing a tandem repeat with unknown monomers, it reports a consensus of these
monomers and the location of each monomer in the repeat. TRF identifies monomers of
length up to 2000 bp and is able to identify alpha satellites. However, the output of TRF can
not be directly converted into a chain because TRF neither attempts to identify different
monomer classes from the input string itself, not accepts monomer classes as an input. A
drawback of this approach is that it often reports a cyclic shift of a consensus monomer and
locations of this cyclic shift in the repeat, making it difficult to benchmark TRF against other
string decomposition tools (see Appendix “Benchmarking string decomposition tools”).

The Noise-Cancelling Repeat Finder (NCRF; Harris et al., 2019) takes a consensus HOR as
an input and partitions an error-prone read into HORSs. It performs well if the entire read is
formed by canonical HORs (formed by the same order of monomers as the consensus
HOR). However, it generates a suboptimal and somewhat arbitrary partitioning into HORs
when a read contains non-canonical HORSs or retrotransposons. Since NCRF was not
designed for decomposing reads into distinct monomers, it is difficult to benchmark it against
monomer-finding tools (see Appendix “Monomer-free benchmarking”).

Alpha-CENTAURI (Sevim et al., 2016) addresses a problem similar to the String
Decomposition Problem. It takes a set of long error-prone reads as an input and uses them
to generate the most likely set of monomers. It further decomposes each read into such
monomers. However, Alpha-CENTAURI does not use additional information about
previously inferred HOR structures and has a rather high rate of the incorrectly called
monomers in the read decomposition.

Alpha-CENTAURI uses a pre-trained Hidden Markov Model (HMM) for a consensus
monomer (consensus of all monomers over all alpha-satellite monomer families in the
human genome). It aligns this HMM to all reads using the HMMer tool (Eddy, 1998) and
clusters the generated alignments in order to identify monomer classes. Since this clustering
is imperfect, the accuracy of string decomposition deteriorates as the tool reports spurious
abnormal HOR structures (see Appendix “Benchmarking string decomposition tools”).
However, the HMM alignment stage provides an accurate approximation for starting and
ending positions of each monomer. Using the input set of monomers one can identify a
monomer with the highest identity for each pair of these starting and ending positions,
generate non-overlapping monomer alignments for each read, and transform each read into
the monomer alphabet as described in the subsection “Transformation from the nucleotide

https://www.zotero.org/google-docs/?IoEFaD
https://doi.org/10.1101/2019.12.26.888685
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.26.888685; this version posted December 26, 2019. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

alphabet to the block alphabet”. We refer to this approach (based on running HMMer on the
consensus HMMs derived by Alpha-CENTAURI) as AC.

Results

Dataset. We analyzed the rel2 dataset of Oxford Nanopore reads
(https://github.com/nanopore-wgs-consortium/CHM13) generated by the
Telomere2Telomere consortium and released on March 2, 2019 (Miga et al., 2019). The
dataset contains 11,069,717 reads (155 Gb total length, 50x coverage, the N50 read length
equal to 70 kb) generated from the CHM13hTERT female haploid cell line. We used the rel2
base-calling with Guppy Flip-Flop 2.3.1. This read-set includes 999,562 ulfralong reads
(longer than 50 kb) that have the biggest impact on the centromere assembly and result in
=32x coverage of the human genome.

We benchmarked various approaches to string decomposition using centromeric reads from
chromosome X since this centromere (referred to as cenX) was recently assembled, thus
providing the ground truth for our benchmarking. This benchmarking utilized 2,680 reads
(total read length 132,9 Mb) that were recruited to cenX in Bzikadze and Pevzner, 2019).

monomers and HOR sequences on cenX. We used the cenX HOR consensus sequence
DXZ1* derived in Bzikadze and Pevzner, 2019. Appendix “Extracting monomers from
DXZ1*” describes decomposition of DXZ1* into twelve monomers using Alpha-CENTAURI
(Sevim et al., 2016). We denote these twelve monomers by letters from A to L and denote
the consensus HOR sequence as ABCDEFGHIJKL (See Appendix “cenX monomers”).

Reference cenX sequence. We analyzed the cenX v0.7 sequence assembled in Miga et
al., 2019. 1,442 out of all 2,680 cenX reads were aligned to the reference using
tandemMapper (Mikheenko et al., 2019). These reads form the set of mapped reads with
total length 121 Mbp and with total length of aligned fragments 76 Mbp (see Appendix
“Generating accurate alignments”).

Since each mapped read is typically aligned over its substring (rather than the entire read), it
can be represented as a concatenate of a non-aligned prefix, an aligned substring, and a
non-aligned suffix. We will find it convenient to trim the non-aligned prefix and suffix in each
read, resulting in shorter reads forming a read-set Reads. Each shortened read Read is now
aligned to a substring in cenX that we refer to as origin(Read).

Translating centromere and centromeric reads into monomer alphabet. Since each
read Read in Reads is aligned to a substring origin(Read) in cenX, we can compare the
sequence mono(Read) with the accurate sequence mono(origin(Read)) representing the
“ground truth” with respect to transforming sequences in the monomer alphabet. Using this
approach, we benchmark the SD and AC approaches.

We used the SD tool to transform the cenX sequence (3.1 Mb) into the mono(cenX)
sequence consisting of 18103 reliable monomers and 36 gap symbols (“?”) in the cenX
region occupied by the LINE repeat. This conversion is reliable since monomers are rather
conserved across cenX (median percent identity 98.8%). Figure 2 presents the distribution of
percent identities of twelve cenX monomers and the gap monomers.

https://github.com/nanopore-wgs-consortium/CHM13
https://www.zotero.org/google-docs/?6WlgVm
https://doi.org/10.1101/2019.12.26.888685
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.26.888685; this version posted December 26, 2019. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

C¥eV9Y ?TTT

90

80

70

60

Figure 2. Distribution of percent identities of twelve cenX monomers and the gap monomer “?”. Each
violin plot represents the distribution of the percent identity of a particular monomer across cenX. A LINE element
at positions 2773652-2779726 is represented by 36 consecutive “?” symbols in the monocentromere X.

Monoread-to-monocentromere alignments. We launched AC and SD to transform each
read in Reads into a monoread mono(Read) and aligned it against mono(origin(Read)) using
the edit distance scoring (indel and mismatch penalties equal to 1 and match score equal to
0). Each alignment column contains a pair of symbols with the first symbol corresponding to
a position in mono(origin(Read)) and the second symbol corresponding to a position in
mono(Read). The symbols include twelve monomers, «?» symbol, and «-» symbol. We
classify each column as a match or an error of one of the following types:
monomer-monomer mismatch (monomer, monomer);

monomer-gap mismatch (monomer, ?);

monomer-deletion (monomer, -);

gap-monomer mismatch (?, monomer);

gap-deletion (?, -);

monomer-insertion (-, monomer);

gap-insertion (-,7?);

Table 1 shows the error statistics for Reads and illustrates that AC generates four times
more monomer-gap mismatches than SD (3414 vs 779). The monomer-gap mismatches
usually occur in corrupted regions of reads, where the identity of the monomer-monomer
matches flanking these regions usually falls below 80% (see Appendix “Detailed analysis of
errors in string decomposition”).

Overall, SD resulted in four-fold reduction in errors as compared to AC (779 versus 3414). It
may appear that the AC tool is already accurate (0.84% error rate) and a reduction in the
error rate (from 0.84% to 0.23%) is a useful but not critically important advance. However, it
is crucially important since it provides information about much longer k-mers in monoreads
thus enabling their assembly into a highly repetitive monocentromere (Bzikadze and
Pevzner, 2019). For example, under an (unrealistic) assumption that errors are uniformly

https://doi.org/10.1101/2019.12.26.888685
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.26.888685; this version posted December 26, 2019. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

distributed, SD provides information about 434-mers, while AC provides information only
about 121-mers in monoreads (100/0.16=625, while 100/0.86=116).

~~_reads |SD [ac sD [ac sD [ac SD AC
centromé?é‘...‘__ monomer i = Total
monomer 127 151 779 3414 115 157 1021 3722
? 0 0l - 19 19 19 19
- 1 8 15 21]|- - 16 29
Total 128 159 794 3435 134 1761056 (0.23%) |3770 (0.84%)

Table 1. Summary of errors in the monoread-to-monocentromere alignments computed by the AC (black)
and SD (blue) tools. Symbol “monomer” corresponds to one of the twelve cenX monomers, “?” corresponds to a
gap symbol, “-” corresponds to a space symbol representing an indel in alignment of mono(Read) against
mono(origin(Read)). A cell (i, j) represents the number of times when a symbol of type i in mono(origin(Read))
was aligned to a symbol of type j in mono(Read). The number of matches is 445574 for SD and 442843 for AC.

Below we analyze errors made by AC and SD in details.

Analyzing monomer-monomer mismatches. 104 out of 127 monomer-monomer
mismatches made by the SD approach represent substitution of the monomer K by the
monomer F (Figure 3). This substitution represents the most frequent mismatch for both
approaches (115 out of 151 for AC). We explored the monoread alignments that substitute F
by K and found that all such alignments correspond to the non-standard 16-monomer HOR
ABCDEFGHIJFGHIJKL, where the second occurence of F is often replaced by K in
monoreads. A similar situation can be seen for K into L substitutions (3 and 5 mismatches
for the SD and AC approaches respectively) in alignments of the non-standard 11-monomer
HOR ABCDEFGHIJK.

=200

?
?

[Vl 249 320 247 282 201 274 246 292 303 369 238 393

- 160

120

F EDCZB A
F EDCUB A

80

H G
H G

40 =

Figure 3. Mismatch substitution matrices for AC (left) and SD (right). The (X,Y) cell shows the number of
times when symbol X in the monocentromere X (monomer or the gap symbol «?») was replaced by symbol Y in
the monoread.

There are 12 occurrences of the non-standard HOR ABCDEFGHIJFGHIJKL in the
monocentromere X. We computed pairwise percent identities for nucleotides sequences of
each of twelve occurrences of F in monocentromere and also compared them to monomers
F and K (Figure 4, left). This analysis reveals two clusters: monomers F at HORs 1—4 and
5—12. Monomers 1, 3, 4 are identical and very close (98%) to monomer 2 and to the

https://doi.org/10.1101/2019.12.26.888685
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.26.888685; this version posted December 26, 2019. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

monomer F (median percent identity 98%). Thus, monomers 1-4 likely represent slightly
diverged copies of F.

The second cluster consisting of F monomers at HORs 5—12 can be divided into
subclusters of identical monomers 5—10 and 11—12 (similarity between monomers from
these clusters is 98%). Surprisingly, monomers 5—12 F appear to be equidistant from both
monomer F and monomer K with rather low sequence identity 91-92%. Analysis of pairwise
alignments between these eight monomers and monomers F/K reveals that monomers 5-12
likely represent a chimeric monomer formed by the first half of K (first 81 positions of K) and
second half of F (90 last positions of F), referred to as K+F (Figure 5). The monomer K+F
has identity ~97% with all of eight monomers in the second cluster.

The non-standard HOR ABCDEFGHIJFGHIJKL was found in 272 monoreads generated by
the SD approach (a similar HOR ABCDEFGHIJKGHIJKL was found in 105 monoreads). Al
272+105=377 occurrences of these HORs originated from the non-standard HOR
ABCDEFGHIJFGHIJKL in cenX. We classify these occurrences in two groups: 154 of them
correspond to the first cluster (sequences 1—4 in Figure 4, right) and 377 - 154 = 223
correspond to the second cluster (sequences 5—12). For each of these 377 occurrences we
extracted the nucleotide sequence that corresponds to F/K and aligned them to monomers F
and K. Figure 4, right reveals two clusters of these 377 monomers that correlate well with
grouping based on two clusters in Figure 4, left, confirming that a chimeric monomer K+F is
supported by the reads.

We hypothesize a potential mechanism that generated the chimeric monomer K+F. Two cuts
were introduced to the canonical 12-mers ABCDEFGHIJKL in the middle of monomers K
and F resulting in trimmed sequences ABCDEFGHIJK’ and ‘FGHIJKL that were further
glued together to form a non-standard 16-mer ABCDEFGHIJ(K+F)GHIJKL. Our identification
of a novel K+F monomer suggests that a set of chromosome-specific monomers may quickly
change during evolution by adding and potentially expanding chimeric monomers. It also
emphasizes the importance of careful identification of all (even rare) monomers for follow-up
centromere assembly efforts.

100
-100.0 » mapped to HORs 1-4

mapped to HORs 5-12

100 98 100 100 [
98 100 98 95 [ENREIRELICI IR IK: 1) 8 95
ACCIBLIEON 91 91 91 91 91 91

SOOI RROLEI] o1 91 91 91 91 91 86 90
100 100 100 100 100 100 98
100 100 100 100 100 100 98
100 100 100 100 100 100 98

85

Identity K

100 100 100 100 100 100 98 80 o
100 100 100 100 100 100 98
75
100 100 100 100 100 100 98
98 98 98 98 98 98 100 100 M

87.5 70
98 98 98 98 98 98 100 100X

L3 91 91 91 91 91 91 92 92 87

F1l211 10 9 8 7 6 5 4 3 2 1

85.0 65
1 2 3 456 7 8 91011 12 K 65 70 75 80 85 90 95 100

Identity F

Figure 4. Analysis of the non-standard HOR ABCDEFGHIJFGHIJKL. (Left) The heatmap of
identities between the occurrences of F in twelve non-standard HORs ABCDEFGHIJFGHIJKL in cenX
as well as monomers F and K. (Right) For all 377 occurrences of ABCDEFGHIJFGHIJKL or
ABCDEFGHIJKGHIJKL in Reads, we computed the identity of 377 alignments of the monomer F

https://doi.org/10.1101/2019.12.26.888685
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.26.888685; this version posted December 26, 2019. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

(x-axis) and the monomer K (y-axis) against the corresponding substring of the read. Blue (red) circles
represent occurrences of monomer F or K aligned to F from HORs 1—4 (HORs 5—12).

L) B g | L | L = i |] | SRl |] { S | L 3
LY N B L] 0" AC E]] bl] | B | B
L) B B Frrocrle ol i | wl Fok S e B

Figure 5. A 3-way alignment between the monomer F (1st row), monomer F from 5th instance
of the non-standard HOR ABCDEFGHIJFGHIJKL (2nd row), and monomer K (3rd row). Positions
that differ in F and K are colored by red in F and by blue in K. Positions of monomer F are colored
either by red (if they have the same nucleotide as in F) or blue (if they have the same nucleotide as in
K). Two positions in F that differ from positions in both F and K are colored in yellow.

We decided to recompute monoread-to-monocentromere alignments with (K+F) monomer
added to the original set of 12 monomers. We converted each read from AlignedReads and
cenX sequence into 13-monomer alphabet. In the new representation monocentromere, the
abnormal HORs 5—12 contain monomer K+F instead of F. The number of
monomer-to-monomer mismatches for both approaches greatly decreased (from 127 to 17
for SD and from 151 to 47 for AC) and the number of other errors hardly changed (Table 2).

~__reads |SD |ac sD |AC sD [ac) [ac
centromers—. monomer ? - Total
monomer 17 47 779 3414 115 158 911 3619
? 0 0|- - 19 19 19 19
- 1 6 15 21]- - 16 27
Total 18 53 794 3435 134 177[946 (0.21%) |3665 (0.81%)

Table 2. Summary of errors in the monoread-to-monocentromere alignments computed by the AC (black)
and SD (blue) tools for 13 monomers with additional (K+F) monomer. Symbol “monomer” corresponds to
one of 13 monomers, “?” corresponds to a gap symbol, “-” corresponds to a space symbol representing an indel
in alignment of mono(Read) against mono(origin(Read)). A cell (i, j) represents the number of times when a
symbol of type i in mono(origin(Read)) was aligned to a symbol of type j in mono(Read). The number of matches
is 445684 for SD and 442946 for AC.

Non-standard 11-monomer ABCDEFGHIJK has only one occurrence within
monocentromere X and five occurrences in monoreads (a similar 11-monomer
ABCDEFGHIJL has three occurrences in monoreads). The monomer K in this 11-monomer
has a rather low identity to the monomers K and L (87%). But it has identity ~96% to a
chimeric monomer K+L constructed from the first part of monomer K (the first 66 positions)
and second part of monomer L (the last 105 positions). For all occurrences of 5+3=8 of
non-standard 11-monomer in reads, the last monomer predicted as K or L has higher identity
to K+L (~90-94%) than to either monomer K (~82-86%) or to monomer L (~85%).

Similarity between various monomers. Figure 6 illustrates that distinct monomers forming
cenX have rather low similarity with each other (less than 80% for most monomer pairs).
However, other HORs may contain more similar monomers that may lead to
monomer-to-monomer substitution errors made by string decomposition algorithms.

https://doi.org/10.1101/2019.12.26.888685
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.26.888685; this version posted December 26, 2019. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

plelsl 69 81 78 79 77 78 86 77 80 80 75
70 66 70 70 78 68 70 66 75 73 - 96
70 75 78 73 ISl 7S 76 171 74
66 75 ple 75 70 75 77 79 73 74 72 - 90
70 78 75 plele 72 72 78 74 |88 75 72
70 §EE 70 72 78 74 71 7486 72 84

F ED CB A

78 75 15 72 ?87? 78 70|85 84
@28 /] I8 74 I7T 75 9 718 74
75 ISy 74| 71 ERElTS 73 [FET 74
= 66 76 73 [88 74 70 79 73 ple 75 69

H G

78

72
43 77 74 7586 85 78 77 75 phly 78

<1 74 72 72 72 84 74 74 69 78 plly]

66
A B CDEF G H I J KL

Figure 6. The monomer similarity matrix for twelve cenX monomers.

In order to analyze how string decomposition algorithms perform in the case of very similar
monomers, we added a 13-th artificial monomer Z to the original set of 12 monomers.
Monomer Z was constructed from monomer A by applying 3, 5, or 8 random nucleotide
substitutions at randomly selected positions to the monomer A sequence (the resulting
artificial monomers are referred as Z3, Z5 and Z8 respectively), Adding an extra monomer Z
to the set of twelve monomers hardly affects the number of errors in Table 1, except for the
number of monomer-monomer mismatches, when some monomer was substituted by Z.
After adding the 13-th monomer, the number of monomer-monomer mismatches increased
by 344/116/1 for Z3/25/Z8 for the SD approach (795/428/0 for the AC approach). This
analysis illustrates that SD is better suited for string decomposition in the case when the
monomer-set contains highly similar monomers.

Discussion

StringDecomposer (SD) is the first tool designed specifically for decomposing long
error-prone reads from ETRs (including nested ETRs such as centromeres) into blocks. We
demonstrated that SD solves the String Decomposition Problem and accurately transforms
long error-prone reads from centromeric regions into monoreads. Our simulations revealed
that it remains highly accurate even in the case when the monomer-set contains highly
similar monomers with percent identity as high as 98%. We thus project that SD will
accelerate the ongoing centromere assembly efforts and will help to close the remaining
gaps in the human and other genomes. It also promises to contribute to discovery of novel
emerging (albeit still rare) monomers in the human genome as illustrated by our identification
of the emerging K+F and K+L monomers on cenX.

Code availability

StringDecomposition tool is publicly available on Github
https://github.com/ablab/stringdecomposer. All scripts that were used for statistics
calculation in Results section are available in https://github.com/TanyaDvorkina/sdpaper.

https://github.com/ablab/stringdecomposer
https://github.com/TanyaDvorkina/sdpaper
https://doi.org/10.1101/2019.12.26.888685
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.26.888685; this version posted December 26, 2019. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Acknowledgements

We are grateful to lvan Alexandrov, Karen Miga, and Alla Mikheenko for many useful
insights. This work was supported by St. Petersburg State University, St. Petersburg, Russia
(grant ID PURE 28396291).

References

Alkan, C., Ventura, M., Archidiacono, N., Rocchi, M., Sahinalp, S.C., and Eichler, E.E.
(2007). Organization and Evolution of Primate Centromeric DNA from Whole-Genome
Shotgun Sequence Data. PLoS Comput. Biol. 3(9):1807-18

Barra, V., and Fachinetti, D. (2018). The dark side of centromeres: types, causes and
consequences of structural abnormalities implicating centromeric DNA. Nat. Commun. 9,
4340

Benson, G. (1999). Tandem repeats finder: a program to analyze DNA sequences. Nucleic
Acids Res. 27, 573-580.

Black, E.M., and Giunta, S. (2018). Repetitive Fragile Sites: Centromere Satellite DNA As a
Source of Genome Instability in Human Diseases. Genes 9, 615.

Bzikadze, A.V., and Pevzner, P.A. (2019). centroFlye: Assembling Centromeres with Long
Error-Prone Reads. BioRxiv. https://doi.org/10.1101/772103

Eddy, S.R. (1998). Profile hidden Markov models. Bioinformatics 74, 755—-763.

Ferreira, D., Meles, S., Escudeiro, A., Mendes-da-Silva, A., Adega, F., and Chaves, R.
(2015). Satellite non-coding RNAs: the emerging players in cells, cellular pathways and
cancer. Chromosome Res. 23, 479-493.

Giunta, S., and Funabiki, H. (2017). Integrity of the human centromere DNA repeats is
protected by CENP-A, CENP-C, and CENP-T. Proc. Natl. Acad. Sci. 174, 1928—-1933.

Harris, R.S., Cechova, M., and Makova, K.D. (2019). Noise-cancelling repeat finder:
uncovering tandem repeats in error-prone long-read sequencing data. Bioinformatics 35,
4809-4811.

Hayden, K.E., Strome, E.D., Merrett, S.L., Lee, H.-R., Rudd, M.K., and Willard, H.F. (2013).
Sequences Associated with Centromere Competency in the Human Genome. Mol. Cell. Biol.
33, 763-772.

Henikoff, J.G., Thakur, J., Kasinathan S., Henikoff, S. (2015) A unique chromatin complex
occupies young a-satellite arrays of human centromeres. Science Advances. 1(1). pii:
e1400234.

Jain, M., Olsen, H.E., Turner, D.J., Stoddart, D., Bulazel, K.V., Paten, B., Haussler, D.,
Willard, H.F., Akeson, M., and Miga, K.H. (2018). Linear assembly of a human centromere
on the Y chromosome. Nat. Biotechnol. 36, 321-323.

https://www.zotero.org/google-docs/?HimUdX
https://www.zotero.org/google-docs/?HimUdX
https://www.zotero.org/google-docs/?HimUdX
https://www.zotero.org/google-docs/?HimUdX
https://www.zotero.org/google-docs/?HimUdX
https://www.zotero.org/google-docs/?HimUdX
https://www.zotero.org/google-docs/?HimUdX
https://www.zotero.org/google-docs/?HimUdX
https://www.zotero.org/google-docs/?HimUdX
https://www.zotero.org/google-docs/?HimUdX
https://www.zotero.org/google-docs/?HimUdX
https://www.zotero.org/google-docs/?HimUdX
https://www.zotero.org/google-docs/?HimUdX
https://www.zotero.org/google-docs/?HimUdX
https://www.zotero.org/google-docs/?HimUdX
https://doi.org/10.1101/772103
https://www.zotero.org/google-docs/?HimUdX
https://www.zotero.org/google-docs/?HimUdX
https://www.zotero.org/google-docs/?HimUdX
https://www.zotero.org/google-docs/?HimUdX
https://www.zotero.org/google-docs/?HimUdX
https://www.zotero.org/google-docs/?HimUdX
https://www.zotero.org/google-docs/?HimUdX
https://www.zotero.org/google-docs/?HimUdX
https://www.zotero.org/google-docs/?HimUdX
https://www.zotero.org/google-docs/?HimUdX
https://www.zotero.org/google-docs/?HimUdX
https://www.zotero.org/google-docs/?HimUdX
https://www.zotero.org/google-docs/?HimUdX
https://www.zotero.org/google-docs/?HimUdX
https://www.zotero.org/google-docs/?HimUdX
https://www.zotero.org/google-docs/?HimUdX
https://www.zotero.org/google-docs/?HimUdX
https://www.zotero.org/google-docs/?HimUdX
https://www.zotero.org/google-docs/?HimUdX
https://www.zotero.org/google-docs/?HimUdX
https://www.zotero.org/google-docs/?HimUdX
https://www.zotero.org/google-docs/?HimUdX
https://www.zotero.org/google-docs/?HimUdX
https://www.zotero.org/google-docs/?HimUdX
https://www.zotero.org/google-docs/?HimUdX
https://www.zotero.org/google-docs/?HimUdX
https://doi.org/10.1101/2019.12.26.888685
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.26.888685; this version posted December 26, 2019. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Lower, S.S., McGurk, M.P., Clark, A.G., and Barbash, D.A. (2018). Satellite DNA evolution:
old ideas, new approaches. Curr. Opin. Genet. Dev. 49, 70-78.

Miga, K.H., Koren, S., Rhie, A., Vollger, M.R., Gershman, A., Bzikadze, A., Brooks, S.,
Howe, E., Porubsky, D., Logsdon, G.A., et al. (2019). Telomere-to-telomere assembly of a
complete human X chromosome. BioRxiv. https://doi.org/10.1101/735928

Mikheenko, A., Bzikadze, A.V., Gurevich, A., Miga, K.H., and Pevzner, P.A. (2019).
TandemMapper and TandemQUAST: mapping long reads and assessing/improving
assembly quality in extra-long tandem repeats. BioRxiv.
https://doi.org/10.1101/2019.12.23.887158

Sevim, V., Bashir, A., Chin, C.-S., and Miga, K.H. (2016). Alpha-CENTAURI: assessing
novel centromeric repeat sequence variation with long read sequencing. Bioinformatics 32,
1921-1924.

Shepelev, V.A., Alexandrov, A.A., Yurov, Y.B., and Alexandrov, |.A. (2009). The Evolutionary
Origin of Man Can Be Traced in the Layers of Defunct Ancestral Alpha Satellites Flanking
the Active Centromeres of Human Chromosomes. PLoS Genet. 5(9).

Smurova, K., and De Wulf, P. (2018). Centromere and Pericentromere Transcription: Roles
and Regulation ... in Sickness and in Health. Front. Genet. 9: 674

Sosic, M., and Sikic, M. (2017). Edlib: a C/C ++ library for fast, exact sequence alignment
using edit distance. Bioinforma. Oxf. Engl. 33, 1394—-1395.

Zhu, Q., Hoong, N., Aslanian, A., Hara, T., Benner, C., Heinz, S., Miga, K.H., Ke, E., Verma,
S., Soroczynski, J., et al. (2018). Heterochromatin-Encoded Satellite RNAs Induce Breast
Cancer. Mol. Cell 70, 842-853.e7.

Appendices

SD implementation details

Processing gaps in monomer alignment
Benchmarking string decomposition tools
Monomer-free benchmarking

Extracting monomers from DXZ1*

cenX monomers

Generating accurate alignments

Detailed analysis of errors in string decomposition

Appendix: SD implementation details

The implementation of the SD algorithm is publicly available on GitHub
https://github.com/ablab/stringdecomposer. The main script “run_decomposer.py” accepts
as input (i) a file containing reads or a genomic sequence, and (ii) a file containing monomer
sequences (both in fasta format). It runs the SD algorithm (implemented in C++) and
converting alignment scores of individual monomers into percent identities using Edlib library

https://www.zotero.org/google-docs/?HimUdX
https://www.zotero.org/google-docs/?HimUdX
https://www.zotero.org/google-docs/?HimUdX
https://www.zotero.org/google-docs/?HimUdX
https://www.zotero.org/google-docs/?HimUdX
https://www.zotero.org/google-docs/?HimUdX
https://www.zotero.org/google-docs/?HimUdX
https://doi.org/10.1101/735928
https://www.zotero.org/google-docs/?HimUdX
https://www.zotero.org/google-docs/?HimUdX
https://www.zotero.org/google-docs/?HimUdX
https://doi.org/10.1101/2019.12.23.887158
https://www.zotero.org/google-docs/?HimUdX
https://www.zotero.org/google-docs/?HimUdX
https://www.zotero.org/google-docs/?HimUdX
https://www.zotero.org/google-docs/?HimUdX
https://www.zotero.org/google-docs/?HimUdX
https://www.zotero.org/google-docs/?HimUdX
https://www.zotero.org/google-docs/?HimUdX
https://www.zotero.org/google-docs/?HimUdX
https://www.zotero.org/google-docs/?HimUdX
https://www.zotero.org/google-docs/?HimUdX
https://www.zotero.org/google-docs/?HimUdX
https://www.zotero.org/google-docs/?HimUdX
https://www.zotero.org/google-docs/?HimUdX
https://www.zotero.org/google-docs/?HimUdX
https://www.zotero.org/google-docs/?HimUdX
https://www.zotero.org/google-docs/?HimUdX
https://www.zotero.org/google-docs/?HimUdX
https://www.zotero.org/google-docs/?HimUdX
https://www.zotero.org/google-docs/?HimUdX
https://www.zotero.org/google-docs/?HimUdX
https://www.zotero.org/google-docs/?HimUdX
https://www.zotero.org/google-docs/?HimUdX
https://github.com/ablab/stringdecomposer
https://doi.org/10.1101/2019.12.26.888685
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.26.888685; this version posted December 26, 2019. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

(Sosic and Sikic, 2017). Finally, it saves the monomer alignments to a given read-set (or
genomic sequence) in the tsv-format. Below we highlight some implementation details.

SD parallelization. The String Decomposition Graph may become rather large in the case
when the string R is long (e.g., when R is an ultralong read or an assembly of an entire
centromere) or when the block-set is large, leading to a large memory footprint. To reduce
memory footprint, we represent the string R as a set of short overlapping segments of length
SegmentlLength with default value SegmentLength = 5500 bp (the last segment can be
shorter) so that the consecutive segments overlap by Overlap nucleotide (Figure S1). The
default value Overfap (500 bp) is chosen to be larger than the monomer size and to ensure
that each monomer is positioned fully inside at least one segment. Afterwards, each
segment of the read is processed separately and all segments are “glued” together.

5500 bp
I || [| [| [| [| [| [| |

| string R |
Figure S1. Partitioning reads into overlapping segments.

SD parameters. The default penalties for indels and mismatches are equal to 1. However
script “run_decomposer.py” allows to assign them arbitrary user-defined values.

Selecting Minldentity threshold. In order to select the Minldentity threshold for
identification of the gap symbols “?”, we generated a set of 100,000 random nucleotide
sequences of size 171 bp, aligned each of them against each of 12 monomers from cenX,
and selected one of these twelve monomers with the highest percent identity /dentity.
Although the average value of /dentity across 100,000 random sequences is rather low
(61%) some sequences resulted in much higher values, illustrating a potential risk of
misidentifying a random sequence as a monomer (Table S1). Analysis of the distribution of
identities (Table S1) suggests 69% as a reasonable choice of the Minldentity threshold.

Minldentity (%) fraction of random sequences
exceeding Minldentity
60 0.72939
61 0.47397
62 0.22885
63 0.14046
64 0.04128
65 0.00892
66 0.00354
67 0.00034
68 0.00008
69 0.00002
70 0.00002

Table S1. Fraction of randomly generated sequences with Identity exceeding the given identity
threshold Minldentity (for Minldentity varying from 60% to 70%).

https://www.zotero.org/google-docs/?iOS201
https://doi.org/10.1101/2019.12.26.888685
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.26.888685; this version posted December 26, 2019. The copyright holder for this

preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Additionally we divided chromosome X assembly (Miga et al., 2019) into segments of length
5 kb and ran SD on these segments (with twelve cenX monomers) in order to analyze
spurious alignments between non-centromeric regions and cenX monomers and to check if
segments from chromosome X tend to be more similar to cenX monomers than random
sequences. Using SD we built the chromosome X decomposition into monomers, Figure S2
shows the monomer alignment identity depending on its position on chromosome X. Most
alignments outside the centromeric region have median identity ~60%. The identity
increases to ~80% in the near-centromeric regions, and to 95% in the centromere, having a
single draw-down in the cenX region occupied by the LINE element (varying from 60 to
70%).

100

0.0 0.2 0.4 0.6 08 10 12 1.4

Figure S2. Monomer alignment identity across the entire chromosome X produced by the SD approach.

Appendix: Processing gaps in monomer alignment

Some reads are translated into monoreads with gaps, where “?” symbols have low identity to
all monomers. The SD algorithm generates a read decomposition where each position is
covered by a monomer and replaces all unreliable monomers by the “?” symbol in the
monoread. However, the number of predicted “?” in a read is not necessarily an accurate
approximation of the total length of hon-monomeric positions in a read. Additionally, the AC
algorithm produces a decomposition that does not cover all positions of a read, resulting in
non-covered positions in the AC monomer decomposition, with no monomer alignment
covering these positions.

We thus modified a transformation of a read R into a monoread mono(R) by replacing a run
of non-covered positions of length L by a run of the gap symbol “?” with length
L/MonomerLength, where MonomerLength is the average length of monomers.

Appendix: Benchmarking string decomposition tools

Alpha-CENTAURI. Alpha-CENTAURI v.0.2 was run with default parameters. While HMMer
search from the first stage of the Alpha-CENTAURI algorithm (partitioning a read into
consequent monomers locations) was successful, the second stage (monomer sequences
clustering and monomer identification) did not generate a precise read decomposition into
monomers, reporting many abnormal HORs alignments, and was removed from further
analysis.

https://www.zotero.org/google-docs/?3Ah14p
https://doi.org/10.1101/2019.12.26.888685
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.26.888685; this version posted December 26, 2019. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

TandemRepeatsFinder. TRF 4.09 version was run with recommended parameters for
human genome (https://tandem.bu.edu/trf/trf.whatnew.html). Though TRF has successfully
identified the monomer length (~170 bp) in 1926 reads, its output is difficult to use for further
analysis. In particular, it is not clear how to identify monomers from the putative positions
identified by TRFs as these positions are often shifted. For example a read
bcecbeb5d2-f12f-4b59-b952-bd10f81ac89f in rel2 T2T dataset is fully covered by DXZ1*
monomers both according to SD and TRF, but TRF alignments positions have 40 bp shift
regarding SD positions and monomers can not be identified with high identity scores. In
contrast, the shift is rather small (~10-15 bp) in a read
¢500a3b1-f00c-40c1-94af-e33bae40ca71 resulting in a successful prediction of monomers
from TRF alignments.

NCRF. We launched the latest release of NCRF v1.01.02 to search for repeats of DXZ1*
sequence with parameters “--scoring=nanopore --minlength=5000". Appendix
“Monomer-free metrics” reports NCRF results and compares it with other string
decomposition approaches.

Appendix: Monomer-free benchmarking

We compared NCRF with the AC and SD approaches using the dataset Reads defined in
the Results section and analyzing two monomer-free metrics:

° read coverage, the fraction of reads’ length partitioned into monomers for (AC and
SD approaches) or covered by the DXZ1* repeat (NCRF approach).
) percentage of unaligned segments. Two consecutive aligned monomers in a read are

separated by an unaligned segment if the distance from the end of the first monomer
alignment to the start of the second monomer alignment exceeds MinUnalignedLength
(default value MinUnalignedLength = 10 bp). NCRF reports HOR without spaces in
alignment, so it has 0 unaligned segments by definition.

Table S2 illustrates that NCRF has much lower read coverage the SD and AC approaches
but by design improves on the AC and SD approaches with respect to the number of
unaligned segments.

Approach read coverage (%) % unaligned
segments
(#unaligned segments
[#monomers)

AC 98 2.95
NCRF 92 0
SD 99 0.14

Table S2. Monomer-free metrics for AC, NCRF and SD.

https://tandem.bu.edu/trf/trf.whatnew.html
https://doi.org/10.1101/2019.12.26.888685
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.26.888685; this version posted December 26, 2019. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Appendix: Extracting monomers from DXZ1*

In order to extract twelve monomer sequences we run “chop_to_monomers.py” script from
Alpha-CENTAURI v.0.2G on the consensus monomer HMM
(https://github.com/volkansevim/alpha-CENTAURI/blob/master/example/alpha.hmm) and a
concatenation of two DXZ1* sequences derived in Bzikadze and Pevzner, 2019. The twelve
cenX monomers are derived from the Alpha-CENTAURI output.

Appendix: cenX monomers

The twelve monomers forming cenX HOR monomers are usually reported as
CDEABCDEABCD since this sequence of monomers reflects the ancestral pentamer
structure (CDEAB) of the HOR from which cenX HOR (DXZ1) originated. Since this
representation is inconvenient for analyzing string decomposition of cenX, we represent
DXZ1 as ABCDEFGHIKL instead.

Appendix: Generating accurate alignments

In order to generate a set of accurate alignments, positions of alignments generated by
tandemMapper were compared to the positions of read alignments in cenX assembly
generated by centroFlye. It turned out that some tandemMapper alignments differ from
centroFlye alignments. This likely caused either by incorrect read-to-centromere mapping
(generated by tandemMapper) or erroneous recruitment of non-cenX reads to cenX
(provided by centroFlye). We thus filtered out reads with differing starting positions (by more
than 2 kbp) of tandemMapper and centroFlye alignments, resulting in 1442 read alignments.

Appendix: Detailed analysis of errors in string decomposition

Most alignment errors between monoreads and monocentromere for both SD and AC
approaches occur due to inconsistencies between (inaccurate) reads and (accurate)
centromere assembly.

Since 91% of mismatches for the AC approach are monomer-gap mismatches (Table 1), we
analyzed monomers predicted by SD but missed by AC. All SD monomer alignments that
have overlap longer than 100 bp with some gap symbol (“?”) output by AC were considered.
All monomer predicted by SD were divided into three groups: (i) the highest-scoring
monomer is a true monomer, (ii) the second highest-scoring monomer is a true monomer,
and (iii) none of the two highest-scoring monomers is a true monomer. Figure S3 presents
the scatter-plot of the scores of the highest-scoring and the second highest-scoring
monomers for each group (left) and the distribution of their differences (right). All alignments
have relatively low identity (below 85%) as compared to the average identity of all monomers
(93%). However, the highest-scoring monomer is correct in ~99% of cases and the
difference in identity between the highest-scoring and the second-highest scoring monomers
is rather substantial (more than 4% in most cases). Both the highest-scoring and the
second-highest scoring monomers are incorrect in approximately 0.3% of cases.

https://github.com/volkansevim/alpha-CENTAURI/blob/master/example/alpha.hmm
https://doi.org/10.1101/2019.12.26.888685
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.26.888685; this version posted December 26, 2019. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

100 250
g5 +

200
90

o
b=}
=
[
=t
T 85 e
E = 150
g e
o 80 -
E oo
g = 100
E o
g 70 s
@ e/ = 50
0 W ¢

65 =

60 - 0

60 65 70 75 80 85 90 95 100 0.0 2/5 5.0 7.5 10.0 12.5 15.0 172.5
Best monomer identity Best monomer - second best

Figure S3. Statistics of scores for monomers that the AC approach failed to predict. (Left)
Analysis of underpredicted monomer that were classified as monomer-gap mismatches: the
scatter-plot of the highest monomer score and the second-highest monomer score for three cases:
the highest-scoring monomer is correct (blue), the second highest-scoring monomer is correct
(green), neither the highest-scoring nor the second highest-scoring monomer are correct (red).
Intensity of the color reflects number of points with such identity values. (Right) Distribution of
differences between the identity of the highest-scoring and the second highest-scoring monomers.

SD and AC made 15 (21) gap-insertions, 1(8) monomer-insertions, and 115 (157)
monomer-deletions. Most such errors arise in corrupted regions of reads with low alignment
quality — the identities of flanking monomers located next to such region usually falls below
80%. AC has more insertions (deletions) than SD, as the run of “?” identified by AC are
sometimes longer (shorter) than the correct number of monomers in the run.

https://doi.org/10.1101/2019.12.26.888685
http://creativecommons.org/licenses/by-nc-nd/4.0/

