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Abstract 12 

The ribosome’s common core connects all life back to a common ancestor and serves as a 13 

window to relationships among organisms. In eukaryotes, the common core contains expansion 14 

segments (ES’s) that vastly increase ribosomal RNA size. Supersized ES’s have not been 15 

observed previously in Bacteria or Archaea, and the origin of eukaryotic ES’s remains enigmatic. 16 

We discovered that the large subunit rRNA of Lokiarchaeota, the closest modern cell lineage to 17 

the last common ancestor of Archaea and Eukarya, bridges the gap in size between prokaryotic 18 

and eukaryotic rRNA. The long large subunit rRNA in Lokiarchaeota is largely due to the 19 

presence of two eukaryotic-like, supersized ES’s, ES9 and ES39, which are transcribed in situ. 20 

We applied computational models, covariation analysis, and chemical footprinting experiments 21 

to study the structure and evolution of Lokiarchaeota ES9 and ES39. We also defined the 22 

eukaryotic ES39 fold for comparison. We found that Lokiarchaeota and eukaryotic ES’s are 23 

structurally distinct: Lokiarchaeota ES39 has more and longer helices than the eukaryotic ES39 24 

fold. Despite their structural differences, we found that Lokiarchaeota and eukaryotic ES’s 25 

originated from a common ancestor that was “primed” for evolution of larger and more complex 26 

rRNAs than those found in Bacteria and other archaea.  27 
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Introduction  28 

The ribosome connects all life on Earth back to the Last Universal Common Ancestor (LUCA) 29 

(Woese and Fox 1977). The small ribosomal subunit (SSU) decodes mRNA and the large 30 

ribosomal subunit (LSU) links amino acids together to produce coded protein. Both subunits are 31 

made of ribosomal RNA (rRNA) and ribosomal protein (rProtein). All cytoplasmic ribosomes 32 

contain a structurally conserved universal common core, comprised of 2800 nucleotides and 28 33 

rProteins, and including the peptidyl transferase center (PTC) in the LSU and the decoding 34 

center (DCC) in the SSU (Melnikov, et al. 2012; Bernier, et al. 2018). The rRNA of the common 35 

core is a reasonable approximation of the rRNA in LUCA and is most similar to rRNA of extant 36 

bacteria (Melnikov, et al. 2012; Petrov, et al. 2014b; Bernier, et al. 2018). 37 

In Eukarya, the rRNA of the common core is elaborated by expansion segments (ES’s, 38 

Fig. 1) (Veldman, et al. 1981; Clark, et al. 1984; Hassouna, et al. 1984; Gonzalez, et al. 1985; 39 

Michot and Bachellerie 1987; Bachellerie and Michot 1989; Gutell 1992; Lapeyre, et al. 1993; 40 

Gerbi 1996; Schnare, et al. 1996). ES’s emerge from a small number of conserved sites on the 41 

common core and are excluded from regions of essential ribosomal function such as the DCC, 42 

the PTC and the subunit interface (Ben-Shem, et al. 2010; Anger, et al. 2013). Expansion 43 

segments are larger and more numerous on the LSU than on the SSU; across phylogeny, size 44 

variation of the SSU rRNA is around 10% that of LSU rRNA (Gutell 1992; Gerbi 1996; Bernier, 45 

et al. 2018). Metazoan rRNAs contain supersized ES’s of hundreds of nucleotides (nts).  46 

The recent discovery and characterization of the Asgard archaeal superphylum suggests 47 

that the last archaeal and eukaryotic common ancestor (LAECA) contained key components of 48 

eukaryotic cellular systems (Spang, et al. 2015; Klinger, et al. 2016; Eme, et al. 2017; Zaremba-49 

Niedzwiedzka, et al. 2017; Narrowe, et al. 2018; Spang, et al. 2019). Eukaryotic signature 50 

proteins (ESPs) found in Asgard archaea are involved in cytoskeleton, trafficking, ubiquitination, 51 

and translation. Asgard archaea also contain several homologs of eukaryotic ribosomal proteins 52 

(Hartman and Fedorov 2002; Spang, et al. 2015; Zaremba-Niedzwiedzka, et al. 2017 ). Before 53 

our work here, it was not known if Asgard rRNAs could contain eukaryotic-like features such as 54 

supersized ES’s. Eukaryotic-like, supersized ES’s have not been observed previously in Bacteria 55 

or Archaea and were considered unique to eukaryotes (Ware, et al. 1983; Clark, et al. 1984; 56 

Hassouna, et al. 1984; Gerbi 1996; Melnikov, et al. 2012). 57 
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Here, we apply computation and experiment to study the structure and evolution of 58 

Asgard rRNA. We find that LSU rRNA of the Asgard phylum, Lokiarchaeota, contains an 59 

archaeal common core and supersized eukaryotic-like ES’s. No es’s were found in SSU rRNA of 60 

Lokiarchaeota.In size and complexity, Lokiarchaeota LSU ES’s exceed those of protists rRNAs 61 

and rival those of metazoan rRNAs. Our data suggests that the large ES’s of Lokiarchaeota and 62 

Eukarya can be traced back to a common ancestor.  63 

 64 

Results 65 

Comparative analysis reveals broad patterns of LSU rRNA size relationships. Previously, 66 

we developed the SEREB MSA (Sparse and Efficient Representation of Extant Biology, 67 

Multiple Sequence Alignment) as a tool for comparative analysis of rRNA and rProtein 68 

sequences (Bernier, et al. 2018). The SEREB MSA is a structure-informed alignment of a sparse 69 

and unbiased group of sequences including all major phyla. The MSA was manually curated and 70 

extensively cross-validated. The SEREB MSA is useful as a seed to study a variety of 71 

evolutionary phenomena. Previously, we augmented the SEREB MSA to include additional 72 

metazoan sequences, allowing us to characterize ES’s and their evolution in metazoans (Mestre-73 

Fos, et al. 2019a; Mestre-Fos, et al. 2019b). Here, we augmented the SEREB MSA to include 21 74 

sequences from the Asgard superphylum (supplementary datasets S1,2).  75 

The SEREB MSA indicates that size relationships of LSU rRNAs follow the general 76 

pattern: Bacteria (2725-2960 nts, n=61 [n is number of species]) < Archaea (2886 to 3094 nts, 77 

n=48, excludes Lokiarchaeota) < Eukarya (3300-5200 nts, n=30; Fig. 2). Archaeal rRNAs 78 

frequently contain micro-expansion segments (μ-ES’s; stem loops of less than 20 nts) at 79 

positions of eukaryotic ES’s. Archaeal LSU rRNAs commonly contain μ-ES’s at the sites of 80 

attachment of ES9 and ES39 in eukaryotes. For example, in the archaeon P. furiosus, μ-ES9 is 81 

33 nts and μ-ES39 is 45 nts (Fig. 1C, supplementary figure S2). The archaeon Haloarcula 82 

marismortui contains μ-ES9 but lacks μ-ES39 (not shown). 83 

Lokiarchaeota bridge Eukarya and Archaea in LSU rRNA size. The Asgard 84 

augmentation of the SEREB MSA reveals unexpectedly large Lokiarchaeota LSU rRNAs. 85 

Lokiarchaeota LSU rRNAs range from 3100 to 3300 nts (n=7). Lokiarchaeota rRNAs are close 86 

to or within the observed size range of eukaryotic LSU rRNAs (Fig. 2). The Asgard-augmented 87 
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SEREB MSA reveals supersized ES’s in Lokiarchaeota spp. These supersized ES’s attach to the 88 

universal common core rRNA at the sites of attachment of eukaryotic ES9 and ES39 and 89 

archaeal μ-ES9 and μ-ES39 (Fig. 1). Here we explored the Asgard augmentation of the SEREB 90 

MSA to investigate the structure, distribution, and evolution of rRNA expansions of Asgard 91 

archaea.ES9 and ES39 in some Lokiarchaeota are larger than μ-ES’s of other archaea and 92 

ES’s of protists. The MSA shows that ES39 in Lokiarchaeota ranges in size from 95 to 200 nts, 93 

compared to 138 nts in Saccharomyces cerevisiae, 178 nts in Drosophila melanogaster, and 231 94 

nts in Homo sapiens (Fig. 3). For Candidatus Lokiarchaeota archaeon 1244-F3-H4-B5 95 

(Lokiarchaeota F3H4_B5), the primary focus of our work here, ES39 is 191 nts (Figs. 3, 4). ES9 96 

in Lokiarchaeota ranges from 29 to 103 nts, and in some species is larger than any known 97 

eukaryotic ES9 except the ES9 Guillardia theta (29 nts in S. cerevisiae, 44 nts in D. 98 

melanogaster, 44 nts in H. sapiens, and 111 nts in G. theta; supplementary figure S2). ES9 is 99 

86 nts in Lokiarchaeota F3H4_B5 (supplementary figure S2). ES9 and ES39 contribute to the 100 

large size of Lokiarchaeota LSU rRNAs compared to the LSU rRNAs of other archaea. Outside 101 

of Lokiarchaeota, archaea lack supersized ES’s. Some Lokiarchaeota also lack supersized ES’s.  102 

Lokiarchaeota LSU rRNA contain the common core. We have determined the extent 103 

of structural similarity of Lokiarchaeota LSU rRNAs with those of various eukaryotes. We 104 

combined computational and experimental methods to characterize the LSU rRNA secondary 105 

structure of Lokiarchaeota F3H4_B5 (Fig. 1E; supplementary figure S1). Secondary and three-106 

dimensional structures are known for ribosomes of several eukaryotes and archaea, providing a 107 

basis for modeling by homology. Like all other LSU rRNAs, Lokiarchaeota LSU rRNA contains 108 

the rRNA common core, which is trivial to model because the backbone atoms of the common 109 

core are highly conserved in all cytosolic ribosomes. 110 

ES39 has a well-defined fold in eukaryotes. To determine similarities and differences 111 

between ES39’s in various eukaryotes and archaea, we investigated the extent of conservation of 112 

eukaryotic ES39 over phylogeny. We compared experimental three-dimensional structures of 113 

rRNAs of species ranging from protists to primates (Ben-Shem, et al. 2010; Klinge, et al. 2011; 114 

Khatter, et al. 2015; Li, et al. 2017). The ES39 fold consists of H98 (20-30 nts), helix b (40-50 115 

nts), and the linkage of H98 and helix b by three unpaired segments of rRNA, which are each 116 

around 15 nts in length (Fig. 6; supplementary figure S3). The ES39 fold is conserved in 117 

structure but not in sequence. 118 
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The ES39 fold has complex evolutionary history. In general, ES’s have increased in 119 

size over evolutionary history via accretion. Growth by addition of one rRNA helix to another is 120 

commonly marked an insertion fingerprint (Petrov, et al. 2014b; Petrov, et al. 2015). Eukaryotic 121 

ES39 lacks insertion fingerprints. Instead, the ES39 fold has three long non-duplex rRNA strands 122 

at its base that are tightly associated with the ribosomal surface. These unpaired regions are 123 

unique to eukaryotic ES39 and do not appear in archaeal ES39. Two of the unpaired regions 124 

interact with eukaryotic-specific helical extensions on rProteins uL13 and eL14 (supplementary 125 

figure S4) and the third one interacts with ES7 and rProtein aL33 (supplementary figures S3, 126 

S5, S6) (Khatter, et al. 2015). These eukaryotic-specific unpaired regions indicate a complex 127 

evolutionary history in which changes in ES39 structure were coupled with changes in other 128 

ribosomal components. 129 

The ES39 fold is decorated by a variable length helix. Many, but not all, eukaryotes 130 

possess a third helix (helix a) that extends from the ES39 fold (Fig. 6A). Helix a expands in size 131 

from simple unicellular eukaryotes, such as Tetrahymena thermophila (no helix) and 132 

Toxoplasma gondii (10 nts), to more complex eukaryotes such the fungus S. cerevisiae (18 nts) 133 

and the insect Drosophila melanogaster (20 nts). Helix a is largest in the eukaryotic phylum 134 

Chordata (106 nts for H. sapiens; supplementary figure S3). 135 

Initial Lokiarchaeota ES39 secondary models were predicted by two methods. One  136 

preliminary secondary structural model of ES39 of Lokiarchaeota F3H4_B5 was generated using 137 

mfold (Zuker 2003) (Fig. 4). Mfold predicts a minimum free energy secondary structures using 138 

experimental nearest-neighbor parameters. We selected the mfold model with lowest free energy 139 

for further studies. A second model forced Lokiarchaeota ES39 to conform to the H. sapiens 140 

secondary structure. The mfold model was confirmed to be correct by covariation analysis and 141 

SHAPE reactivity data, below. 142 

Covariation supports the mfold model for secondary structure of ES39 of 143 

Lokiarchaeota F3H4_B5. Covariation, or cooperative changes of base-paired nucleotides across 144 

phylogeny, can help reveal RNA secondary structure (Levitt 1969; Ninio, et al. 1969; Woese, et 145 

al. 1980; Noller, et al. 1981; Gutell, et al. 1993; Gutell, et al. 1994). Base-pairs can be detected 146 

through covariation analysis. We calculated base-pairing conservation predicted by helical 147 

regions of both the mfold model and the H. sapiens homology model using available sequence 148 

data. Helical regions of the Lokiarchaeota ES39 secondary structural model predicted by mfold 149 
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show covarying nucleotides (Fig. 5D), with conservation of base-pairing (Fig. 5C). The 150 

observation of these covarying nucleotides supports the model determined by mfold. 151 

Chemical footprinting confirms the mfold model for secondary structure of ES39 of 152 

Lokiarchaeota F3H4_B5. We further tested the secondary structural model of Lokiarchaeota 153 

F3H4_B5 ES39 using Selective 2’ Hydroxyl Acylation analyzed by Primer Extension (SHAPE). 154 

This experimental method provides data on RNA flexibility at the nucleotide level (Merino, et al. 155 

2005; Wilkinson, et al. 2006). SHAPE reactivity is generally high in unpaired RNA, which is 156 

more flexible, and low in paired RNA, which is less flexible. SHAPE has been widely used to 157 

probe rRNA (Leshin, et al. 2011; Lavender, et al. 2015; Gomez Ramos, et al. 2017; Lenz, et al. 158 

2017) and other RNAs (Wilkinson, et al. 2005; Gilbert, et al. 2008; Stoddard, et al. 2008; Watts, 159 

et al. 2009; Novikova, et al. 2012; Spitale, et al. 2013; Huang, et al. 2014). The SHAPE results 160 

from Lokiarchaeota F3H4_B5 ES39 rRNA (supplementary figure S7) are in agreement with 161 

the secondary structure based on co-variation and mfold. Reactivity is low for paired nucleotides 162 

and is high in loops and bulges (Fig. 5B). The resolution and accuracy of the SHAPE data are 163 

supported by observation of relatively high reactivity at the vast majority of unpaired nucleotides 164 

and low reactivity for most paired nucleotides of the Lokiarchaeota ES39 secondary structure. 165 

The Lokiarchaeota SHAPE data are not consistent with models that force Lokiarchaeota ES39 to 166 

conform to the H. sapiens secondary structure. 167 

Lokiarchaeota and Asgard ES39 deviate from the eukaryotic ES39 fold. The 168 

eukaryotic ES39 junction of helices H98, a, and b contains significant extent of unpaired 169 

nucleotides; it consists of three 15-nt unpaired regions. By contrast, ES39 in Lokiarchaeota 170 

F3H4_B5 contains more paired nucleotides than in eukaryotes and lacks unpaired regions greater 171 

than 8 nts (Figs. 1E, 4). Lokiarchaeota F3H4_B5 ES39 is composed of four short helical regions 172 

(H98, a1, a2, b; each up to 38 nts) and one long helical region (helix a: 72 nts). H98 and helix b 173 

connect in a three-way junction with helix a at the base of ES39. Helices a1 and a2 split helix a 174 

at the top of ES39 in a three-way junction.  175 

We modeled and visualized (Cannone, et al. 2002) secondary structures of ES39 176 

sequences from additional Asgard species (supplementary figure S8). None of these modeled 177 

structures exhibited long unpaired regions. ES39 of all modelled Asgard archaea contain a three-178 

way junction that connects helices H98, a and b. This three-way junction is similar to the one 179 

seen in Lokiarchaeota F3H4_B5 (Fig. 4). Additionally, some members of Asgard archaea 180 
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revealed an additional branching of helix a into a1 and a2 mirroring the morphology of ES39 in 181 

Lokiarchaeota F3H4_B5. Despite the common branching morphology, the length of the 182 

individual helices substantially varies between different species (Fig. 5D). 183 

Supersized ES’s of Lokiarchaeota are transcribed in situ. To assess whether 184 

Lokiarchaeota ES’s are transcribed, we assembled metatranscriptomic reads from sediment from 185 

the Gulf of Mexico (Yergeau, et al. 2015; Cai, et al. 2018). We found multiple transcripts from 186 

Lokiarchaeota-like LSU ribosomes that contain ES9 and ES39 sequences, confirming that 187 

Lokiarchaeota ES’s are indeed transcribed in situ (Fig. 5D; supplementary dataset 188 

S2).Discussion 189 

The recent discovery of the archaeal Lokiarchaeota phylum, which contain multitudes of ESPs, 190 

has redefined our understanding of eukaryotic evolutionary history (Spang, et al. 2015; Zaremba-191 

Niedzwiedzka, et al. 2017). The incorporation of Lokiarchaeota sequences into phylogenies has 192 

brought Archaea and Eukarya close together in the tree of life (Hug, et al. 2016; Fournier and 193 

Poole 2018). Here, we extend the molecular comparison by identifying commonalities of rRNA 194 

of Eukarya and Lokiarchaeota.  195 

Lokiarchaeota rRNA has unique eukaryotic-like features. The ribosome has been 196 

extensively studied as both an evolving system (Agmon, et al. 2005; Smith, et al. 2008; Bokov 197 

and Steinberg 2009; Fox 2010; Petrov, et al. 2015; Melnikov, et al. 2018) and as a window to 198 

relationships among organisms (Woese and Fox 1977; Hillis and Dixon 1991; Olsen and Woese 199 

1993; Fournier and Gogarten 2010; Hug, et al. 2016). Previous work revealed robust patterns 200 

that govern ribosomal variation over phylogeny (Hassouna, et al. 1984; Gerbi 1996; Melnikov, et 201 

al. 2012) and suggest mechanisms of ribosomal change over evolution (Petrov, et al. 2014b; 202 

Petrov, et al. 2015; Kovacs, et al. 2017; Melnikov, et al. 2018). Here, we extend structure-based 203 

methods of comparative analysis to Lokiarchaeota rRNA and demonstrate its distinctive 204 

eukaryotic-like features. We provide mechanistic models for the evolution of common rRNA 205 

features of eukaryotes and Lokiarchaeota. 206 

We assessed the extent to which Lokiarchaeota ribosomes follow or deviate from 207 

previously established patterns of ribosomal structure. We found that Lokiarchaeota ribosomes 208 

follow several established patterns.  209 

Lokiarchaeota ribosomes: 210 
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• contain the universal common core of rRNA and rProteins (this work) (Spang, et al. 211 

2015), 212 

• confine rRNA diversity of structure and size to ES’s/μ-ES’s (this work),  213 

• restrict ES’s to universally conserved sites on the common core (Ware, et al. 1983; 214 

Clark, et al. 1984; Hassouna, et al. 1984; Michot and Bachellerie 1987; Bachellerie and 215 

Michot 1989; Lapeyre, et al. 1993; Gerbi 1996),  216 

• avoid ES attachment from the ribosomal interior or near functional centers (Ben-Shem, 217 

et al. 2010; Anger, et al. 2013), and 218 

• concentrate diversity in structure and size on LSU rRNA, not SSU rRNA (Gerbi 1996; 219 

Bernier, et al. 2018). 220 

Lokiarchaeota ribosomes deviate from several previous patterns of variation of ribosome 221 

structure over phylogeny. Lokiarchaeota LSU rRNAs are larger than their place on the archaeal 222 

domain of the tree of life would predict. Excluding Lokiarchaeota, rRNA length increases in the 223 

order: Bacteria < Archaea ≪ protists ≪ metazoans (Melnikov, et al. 2012; Petrov, et al. 2014b; 224 

Bernier, et al. 2018). Lokiarchaeota rRNA is eukaryotic-like in length, eclipsing the rRNA of 225 

many protists. Lokiarchaeota ES39 is larger than ES39 in protists and some metazoans. ES9 of 226 

Lokiarchaeota is larger than ES9 of any system except Guillardia theta. Both ES9 and ES39 of 227 

Lokiarchaeota are larger than ES9 and ES39 of any other archaeal phylum known to date. 228 

Lokiarchaeota ES39 is located within an archaeal structural environment in the 229 

ribosome. ES39 in Eukarya protrudes from helices 94 and 99 of the ribosomal common core 230 

(Fig. 6B). In three dimensions, ES39 is close to ES7 and rProteins uL13, eL14, and aL33 231 

(supplementary figures S3, S4, S5). These elements in Lokiarchaeota are more similar to 232 

Archaea than to Eukarya. Additionally, Lokiarchaeota, like all Archaea, contain helix 1 (H1), 233 

which is in direct contact with H98 at the base of ES39, whereas eukaryotes lack H1 (Fig 4B). 234 

Combined with the eukaryotic-like size of Lokiarchaeota ES39, these characteristics predict that 235 

Lokiarchaeota ribosomes have a unique structure in this region. 236 

The pathway of ES39 evolution is unique. The ribosome has grown in size by a process 237 

of accretion (Petrov, et al. 2014b). Basal structure is preserved when new rRNA is acquired. For 238 

instance, ES7 shows continuous growth over phylogeny, expanding from LUCA to Archaea to 239 

protists to metazoans to mammals (Petrov, et al. 2014b; Bernier, et al. 2018). The accretion 240 

model predicts that H98, at the base of ES39, would superimpose in Bacteria, Archaea, and 241 
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Eukarya, but in fact H98 does not overlap in superimposed 3D structures (Fig. 6B). The 242 

archaeon P. furiosus has a slightly extended and bent H98 compared to the bacterium E. coli 243 

(Fig. 6B). This spatial divergence is likely due to the difference in how E. coli H98 and P. 244 

furiosus H98 interact with H1 of the LSU. E. coli H98 interacts within the H1 minor groove 245 

through an A-minor interaction, while in P. furiosus H98 is positioned on top of H1 (Fig. 6B). 246 

H1 is absent in eukaryotes (Fig. 1), allowing H98 to occupy the position of H1 (Fig. 6B). 247 

LAECA likely had a large ES39. The observation of supersized ES39’s in species with 248 

and without H1 suggests that ES39 growth is independent of the presence or absence of H1. 249 

Whether LAECA had a large or small ES39 is difficult to ascertain because the Asgard 250 

superphylum shows wide size variability in ES39 (Fig. 3). However, the accretion model 251 

suggests that LAECA contained a large ES39, which fulfilled a patching role upon the loss of 252 

H1. In this model, ES39 was remodeled upon loss of H1. ES39 underwent strand dissociation in 253 

Eukarya to fill the space left by the deletion of H1; this unpaired ES39 structure was further 254 

stabilized by eukaryotic extensions of rProteins uL13 and eL14 (supplementary figure S4). 255 

This pattern of structural patching has been observed in mitoribosomes (Petrov, et al. 2019). If 256 

ES39 grew to its eukaryotic size after the loss of H1, one would not expect remodeling to form 257 

the unpaired structure; ES39 would have gradually accreted helices like other parts of the 258 

ribosome.  259 

Lokiarchaeota ES39 may extend in a different direction than eukaryotic ES39. 260 

Lokiarchaeota spp. have larger ES39 than other archaea (Fig. 3) and possess H1, unlike Eukarya 261 

(Fig 4B). We predict that Lokiarchaeota ES39 has an archaeal-like interaction with H1 through 262 

H98 and helix b (Fig. 6B). Lokiarchaeota helix a likely grows out from the three-way junction 263 

between H98 and helix b, perpendicular to the eukaryotic helix a (Fig. 6B). While helix a of 264 

eukaryotic ES39 is pointed in the direction of the sarcin-ricin loop, helix a of Lokiarchaeota is 265 

likely pointed in the direction of the central protuberance or the exit tunnel. 266 

Growth of Lokiarchaeota ES9 is unrestricted due to absence of ES15. To date, ES9 in 267 

Lokiarchaeota is longer than ES9 in any organism except the alga Guillardia theta 268 

(supplementary figure S2). In H. sapiens, ES9 forms a kissing-loop structure with ES15 269 

(supplementary figure S6). ES15 is not present in Lokiarchaeota, which may permit 270 

unrestricted growth of ES9. 271 
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Lokiarchaeota have higher complexity of rRNA than other archaea, consistent with 272 

higher Lokiarchaeota molecular complexity. Previously, we demonstrated that biological 273 

complexity is correlated with LSU rRNA sizes (Petrov, et al. 2014b). Here, we found that 274 

Lokiarchaeota spp. have ES39’s with lengths that eclipse many eukaryotes and are close to those 275 

of Chordates, resulting in larger LSU rRNAs in Lokiarchaeota than other archaea. This size 276 

pattern is consistent with the idea that LSU rRNA size tracks organismal complexity because 277 

Lokiarchaeota have more complex cellular infrastructure than other archaea (Akıl and Robinson 278 

2018; Imachi, et al. 2019). 279 

The specific roles of μ-ES’s and ES’s over phylogeny are unknown but are likely 280 

complex, polymorphic, and pleotropic. The observation of μ-ES’s in Archaea, ES’s in Eukarya, 281 

and supersized ES’s in Lokiarchaeota suggest that (i) the roots of ribosomal complexity are 282 

inextricably intertwined with the roots of Eukarya, and (ii) the roots of Eukarya penetrate more 283 

deeply into the archaeal domain than previously recognized, conclusions that are consistent with 284 

recent phylogenetic results that root Eukarya within the archaeal branch (Williams, et al. 2020). 285 

 286 

Conclusions 287 

Lokiarchaeota ribosomes contain supersized ES39’s with structures that are distinct from 288 

eukaryotic ES39’s. Lokiarchaeota ES9’s are larger than eukaryotic ES9’s. To date, 289 

Lokiarchaeota is the only prokaryotic phylum with supersized ES’s, bringing the size range of 290 

archaeal LSU close to those of eukarya. Lokiarchaeota ES39 likely grows outward from the 291 

ribosomal surface in a different direction than eukaryotic ES39’s. Our findings raise the 292 

possibility that eukaryotic-sized ES’s existed on the ribosomal surface before LECA, suggesting 293 

that ribosomal complexity is more deeply rooted than previously known.  294 
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Materials and Methods 295 

 296 

Genome sequencing, assembly, and binning 297 

Sample collection. Sediments were cored from deep seafloor sediment at ODP site 1244 298 

(44°35.1784´N; 125°7.1902´W; 895 m water depth) on the eastern flank of Hydrate Ridge ~3 km 299 

northeast of the southern summit on ODP Leg 204 in 2002 (Tréhu, et al. 2003) and stored at -300 

80°C at the IODP Gulf Coast Repository. 301 

DNA extraction. DNA was extracted from sediment from F3-H4 (18.10 meters below 302 

the seafloor) using a MO-BIO PowerSoil total RNA Isolation Kit with the DNA Elution 303 

Accessory Kit, following the manufacturer protocol without beads. Approximately 2 grams of 304 

sediments were used for the extraction from six extractions (12 g total) and DNA pellets from the 305 

two replicates from each depth were pooled together. DNA concentrations were measured using 306 

a Qubit 2.0 fluorometer with dsDNA High Sensitivity reagents (Invitrogen, Grand Island, NY, 307 

USA). DNA yield was 7.5 ng per gram of sediment.  308 

Multiple displacement amplification, library preparation, and sequencing. Genomic 309 

DNA was amplified using a REPLI-g Single Cell Kit (Qiagen, Germantown, MD, USA) using 310 

UV-treated sterile plasticware and reverse transcription-PCR grade water (Ambion, Grand 311 

Island, NY, USA). Quantitative PCR showed that the negative control began amplifying after 5 312 

hr of incubation at 30°C, and therefore, the 30°C incubation step was shortened to 5 hr using a 313 

Bio-Rad C1000 Touch thermal cycler (Bio-Rad, Hercules, CA, USA). DNA concentrations were 314 

measured by Qubit. Two micrograms of MDA-amplified DNA were used to generate genome 315 

libraries using a TruSeq DNA PCR-Free Kit following the manufacturer’s protocol (Illumina, 316 

San Diego, CA, USA). The resulting libraries were sequenced using a Rapid-Run on an Illumina 317 

HiSeq 2500 to obtain 100 bp paired-end reads. Metagenomic sequences were deposited into 318 

NCBI as accession numbers SAMN07256342-07256348 (BioProject PRJNA390944). 319 

Metagenome assembly, binning, and annotation. Demultiplexed Illumina reads were 320 

mapped to known adapters using Bowtie2 in local mode to remove any reads with adapter 321 

contamination. Demultiplexed Illumina read pairs were quality trimmed with Trim Galore 322 

(Martin 2011) using a base Phred33 score threshold of Q25 and a minimum length cutoff of 80 323 

bp. Paired-end reads were then assembled into contigs using SPAdes assembler (Bankevich, et 324 

al. 2012) with --meta option for assembling metagenomes, iterating over a range of k-mer values 325 
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(21,27,33,37,43,47,51,55,61,65,71,75,81,85,91,95). Assemblies were assessed with reports 326 

generated with QUAST (Gurevich, et al. 2013). Features on contigs were predicted through the 327 

Prokka pipeline with RNAmmer for rRNA, Aragorn for tRNA, Infernal and Rfam for other non-328 

coding RNA and Prodigal for protein coding genes. Each genomic bin was searched manually 329 

for 23S rRNA sequences. The Lokiarchaeota F3-H4-B5 bin (estimated 2.8% completeness and 330 

0% contamination) was found to contain a 3300 nt 23S rRNA sequence. The Lokiarchaeota F3-331 

H4-B5 bin was deposited into NCBI as BioSample SAMN13223206 and GenBank genome 332 

accession number WNEK00000000. 333 

 334 

Environmental 23S rRNA transcript assembly and analysis 335 

Assembly. Publicly available environmental meta-transcriptomic reads were downloaded 336 

from NCBI BioProject PRJNA288120 (Yergeau, et al. 2015). Quality evaluation of the reads 337 

was performed with FastQC (Andrews 2012) and trimming was done with TrimGalore (Martin 338 

2011). Assembly of SRR5992925 was done using the SPADES (Bankevich, et al. 2012) 339 

assembler with --meta and --rna options, to evaluate which performs better. Basic statistic 340 

measures such as Nx, contig/transcript coverage and length were compared (Supplementary 341 

Datasets S3, S4) yielding better results for the rnaspades assembler. All subsequent meta-342 

transcriptomic datasets were assembled with rnaspades. 343 

Identifying ribosomal RNA sequences. BLAST databases were constructed (Altschul, 344 

et al. 1990) from the resulting contig files and they were queried for ribosomal regions 345 

characteristic of the Asgardian clade (ES39/ES9 sequences from GC14_75). Additionally, the 346 

program quast (Gurevich, et al. 2013) with --rna-finding option was used. 347 

SEREB Multiple Sequence Alignment (MSA) augmentation. High scoring transcripts, 348 

as well as genomic sequences with Asgard origin, were included in the SEREB MSA (Bernier, et 349 

al. 2018) using the program mafft (Katoh and Standley 2013) with the --add option. Known 350 

intronic regions (Cannone, et al. 2002) were removed from new sequences. The highly variable 351 

region of ES39 was manually aligned using structural predictions from mfold (Zuker 2003). 352 

LSU size comparison. The LSU size comparison was based on the transcribed gene for 353 

the LSU, which is comprised of a single uninterrupted rRNA sequence for bacteria and archaea 354 

(Fig. 1A,C,E), and is comprised of multiple concatenated rRNA sequences for the fragmented 355 

eukaryotic rRNA gene (Fig. 1B,D,F). The 5S rRNA, which is essentially constant, is excluded 356 
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from the size calculation. The comparison excludes rRNAs of endosymbionts and pathogens, 357 

which tend to contain reduced genomes, metabolisms, and translation systems (Peyretaillade, et 358 

al. 1998; Moran 2002; McCutcheon and Moran 2011). 359 

Secondary structure models. To model the secondary structure of Candidatus 360 

Lokiarchaeota archaeon 1244-F3-H4-B5 LSU rRNA, we used the secondary structure of P. 361 

furiosus (Petrov, et al. 2014a) and a multiple sequence alignment (MSA) of archaeal LSU rRNAs 362 

broadly sampled over the phylogeny (supplementary dataset S1). Locations of expansion 363 

segments were unambiguously identified from the MSA. Due to the low percent identity (<50%) 364 

(Bernhart and Hofacker 2009) we applied ab initio modelling for ES regions. The secondary 365 

structures of the ES’s were predicted by mfold (Zuker 2003). 366 

Covariation. To verify the secondary structures of the highly variable ES regions base-367 

pairing conservation was calculated with the program Jalview (Waterhouse, et al. 2009). Gaps 368 

from the MSA were ignored in the calculation to produce comparable results about available 369 

regions. The base-pairing model of secondary structures of ES9 (supplementary figure S9) and 370 

ES39 (Fig. 4C,D) was generated in the Jalview annotation format and used for the base-pairing 371 

conservation calculation. 372 

Defining the eukaryotic ES39 fold. To identify the structurally invariant part of ES39 in 373 

Eukaryotes, we used superimposition based on the common core within domain VI of the 374 

ribosomal structures from 4 eukaryotes (Tetrahymena thermophila, Toxoplasma gondii, 375 

Saccharomyces cerevisiae, Homo sapiens; supplementary figure S3). Initially the Drosophila 376 

melanogaster ribosomal structure (PDB ID: 4V6W) was used in identifying the core. However, 377 

as it has additional loops elongating the unpaired regions, we excluded it from our analysis. 378 

Drosophila melanogaster is known to have AU-enriched ES’s; therefore, it is not surprising that 379 

it has perturbations in its ES39. 380 

 381 

ES39 rRNA SHAPE analysis 382 

Synthesis of Lokiarchaeota ES39 rRNA. pUC57 constructs containing T7 promoter and 383 

the gene encoding Lokiarchaeota ES39 rRNA was linearized using HindIII restriction enzyme. 384 

Lokiarchaeota ES39 rRNA was synthesized by in vitro transcription using HiScribe™ T7 High 385 

Yield RNA Synthesis Kit; New England Biolabs. RNA was then precipitated in 386 

ethanol/ammonium acetate and purified by G25 size exclusion chromatography 387 
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(illustraTMNAPTM-10, GE Healthcare).  RNA purity was assayed by denaturing gel 388 

electrophoresis. 389 

SHAPE reaction. Selective 2′-hydroxyl acylation analyzed by primer extension 390 

(SHAPE; Wilkinson, et al. 2006) was performed to chemically probe local nucleotide flexibility 391 

in ES39 rRNA. In vitro-transcribed ES39 rRNA was added to folding buffer (180mM NaOAc, 392 

50mM Na-HEPES (pH 8.0) and 1 mM 1,2- diaminocyclohexanetetraacetic acid (DCTA))to 393 

obtain 400nM RNA in total volume of 80 μL. RNA was annealed by cooling from 75 °C to 394 

25 °C at 1 °C/min. RNA modification reaction was performed with final concentration of 395 

100mM benzoyl cyanide (Sigma) prepared in dimethyl sulfoxide (DMSO). Non-modified RNA 396 

samples were incubated with DMSO. Reactions were carried out for 2 min at room temperature. 397 

Modified RNAs and control sample were purified by precipitation in ethanol and ammonium 398 

acetate at 20 °C for 2 hr. RNA samples were centrifuged at 4°C for 10 min. The RNA pellets 399 

were washed out with 100 μL of 80% ethanol for two times and dried out using Speedvac. 22 μL 400 

of TE buffer [1mM EDTA and 10mM Tris-Cl (pH 8.0)] were added into each samples and pellet 401 

were resuspended. 402 

Reverse transcription. Reverse transcription was conducted on 20 μL of modified RNAs 403 

and unmodified RNA sample as a control, in presence of 8 pmol 5’[6-FAM] labeled primer (5’-404 

GAACCGGACCGAAGCCCG-3’), 2 mM DTT, 625 μM of each deoxynucleotidetriphosphate 405 

(dNTP), and 5 μL of reverse transcription (RT) 5X first-strand buffer [250 mM Tris-HCl (pH 406 

8.3), 375 mM KCl, 15 mM MgCl2]. To anneal the primer, samples were heated at 95°C for 30 407 

secs, held at 65°C for 3 min, and then 4°C for 10 min. RT mixtures were incubated at 52°C for 408 

2 min before addition of 1 μL(200 U)  of  Superscript III Reverse transcriptase (Invitrogen) and 409 

reactions were incubated at 55°C for 2 hr. later, RT terminated by heating smaples at 70°C for 15 410 

min. Chain termination sequencing reaction was performed on 10 pmol unmodified RNA 411 

prepared in TE buffer, 8 pmol 5’[6-FAM] labeled primer, with a ratio of 1:1 dideoxynucleotide 412 

(ddNTP) to dNTP. A sequencing reaction was performed with the same condition without 413 

ddNTPs. 414 

Capillary electrophoresis of RT reaction products and data analysis. Capillary 415 

electrophoresis of RT reactions was performed as described previously (Hsiao, et al. 2013). For 416 

each reaction 0.6 μl DNA size standard (Geneflo™ 625), 17.4 μl Hi-Di Formamide (Applied 417 

Biosystems), and 2 μl of RT reaction mixture were loaded in a 96-well plate. Samples were 418 
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heated at 95°C for 5 min before electrophoresis and the RT products were resolved using applied 419 

biosystems. SHAPE data were processed using a Matlab scripts as described previously 420 

(Athavale, et al. 2012). SHAPE profile was mapped onto ES39 rRNA secondary structure with 421 

the RiboVision program (Bernier, et al. 2014). 422 
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Figures  445 
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Figure 1: Secondary structures of the LSU rRNA from Bacteria, Archaea, and Eukarya. (A) 446 

Escherichia coli (Bacteria), (B) Saccharomyces cerevisiae (fungus, Eukarya); (C) Pyrococcus furiosus 447 

(Archaea); (D) Drosophila melanogaster (insect, Eukarya); (E) Lokiarchaeota F3H4_B5 (Archaea); (F) 448 

Homo sapiens (primate, Eukarya). Secondary structures in panels A, B, C, D, and F are taken from 449 

Petrov, et al. (2014a). Secondary structure in panel E is from this study. Universal rRNA common core is 450 

shown in blue lines (not shaded). ES9 is shown with a green line. ES39 is shown with a magenta line. H1 451 

and ES39 helices are labeled on Lokiarchaeota (panel E). ES’s and helices not present in the common 452 

core are shaded in gray. Sizes of secondary structures are to scale. The numbering scheme of Noller, et al. 453 

(1981) and Leffers, et al. (1987) were used to label the helices and ES’s.  454 

  455 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 27, 2019. ; https://doi.org/10.1101/2019.12.25.888164doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.25.888164
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

19 
 

 456 

Figure 2. Length of LSU rRNA increases from Bacteria, to Archaea (excluding Asgard archaea), to 457 

Lokiarchaeota, to Eukarya. LSU rRNA lengths were obtained from the updated SEREB database. 458 

Abbreviations: Ec, Escherichia coli; Pf, Pyrococcus furiosus; F3H4 B5, Lokiarchaeota F3H4_B5; GC14 459 

75, Lokiarchaeota GC14_75; Tb, Trypanosoma brucei; Sc, Saccharomyces cerevisiae; Dm, Drosophila 460 

melanogaster; Hs, Homo sapiens. 461 

  462 
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 463 
 464 

Figure 3: Distribution of ES39 lengths from the three domains of life, including Asgard archaea. 465 

The number of nucleotides calculated between alignment positions 4891 and 5123 (H. sapiens 466 

numbering) of the LSU alignment for each species (supplementary dataset S1). The box shows the 467 

quartiles of the dataset. Whiskers extend to show the rest of the distribution, except for points that are 468 

determined to be outliers using a function of the inter-quartile range. Bacteria sequences are gray, 469 

Lokiarchaeota sequences are green, other Asgard sequences are blue, other archaeal sequences are purple, 470 

eukaryotic sequences are red, sequences from metatranscriptomic contigs (supplementary dataset S2) 471 

for which there is no species determination are black. Abbreviations: Ps: Prometheoarchaeum 472 

syntrophicum; the rest are described in Figure 2. 473 

  474 
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 475 

Figure 4: Secondary structure model of Lokiarchaeota F3H4_B5 ES39. The secondary structure of 476 

ES39 spans nucleotide positions 3006-3196 of the F3H4_B5 LSU rRNA sequence. Canonical base-477 

pairing positions are indicated with black lines. Helices are annotated with colored labels: blue – H98, 478 

purple – Helix a, pink – Helix a1, orange – Helix a2, gold – Helix b.  Figure was generated with 479 

RiboVision (Bernier, et al. 2014).  480 
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 481 
Figure 5: Secondary structure of Lokiarchaeota F3H4_B5 ES39 from experiment and computation. 482 

(A) 1-D topology map of base pairs. The primary sequence of ES39 is on the horizontal line, Arcs 483 

indicate base pairs. Each helix is a distinct color. (B) SHAPE reactivity for ES39 mapped onto the 484 

secondary structure. Darker color indicates less flexible (paired) rRNA. (C) Base pairing covariation 485 

within the Asgard superphylum mapped on the secondary structure. Darker color indicates covarying 486 
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(paired) rRNA across Asgard. Unpaired rRNA, for which no covariation data can be calculated, is gold. 487 

(D) SHAPE reactivity and base-pairing conservation mapped onto the ES39 MSA of Asgard sequences. 488 

Lokiarchaeota F3H4_B5 numbering was used. The secondary structure is indicated with colored arrows 489 

bellow the alignment and as colored background. SHAPE reactivity is indicated with a bar graph above 490 

the secondary structure annotation, colors of the bars are consistent with panel B. Base-pairing 491 

conservation is indicated with a bar graph bellow the secondary structure annotation; colors of the bars 492 

are consistent with panel C. Panel D was generated with Jalview (Waterhouse, et al. 2009). Helices are 493 

labeled with colored text in each panel; blue, H98; violet, helix a; pink, helix a1; orange, helix a2; yellow, 494 

helix b. Full sequence names and sequencing project identifiers are available in supplementary dataset 495 

S2. Both SHAPE reactivity and covariation are normalized.  496 
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Figure 6: Secondary and tertiary structures of ES39 mapped on the tree of life (A) secondary structures of 499 

Escherichia coli (Bacteria), Pyrococcus furiosus (Archaea), Lokiarchaeota F3H4_B5 (Archaea), Saccharomyces 500 

cerevisiae (Eukarya), Drosophila melanogaster (Eukarya), and Homo sapiens (Eukarya). Ancestral clades on the 501 

phylogenetic tree are labeled as LUCA: last universal common ancestor; LACA: Last Archaeal Common Ancestor; 502 

LAECA: Last Archaeal and Eukaryotic Common Ancestor; LECA: Last Eukaryotic Common Ancestor; LMCA: 503 

Last Metazoan Common Ancestor. H98 is highlighted in orange. (B) Three dimensional structures of ES39 and its 504 

neighborhood. H98 is orange, H1 is green, H94 and H99 are blue. The P. furiosus structure is used as model for the 505 

Lokiarchaeota structure. Likely position and direction of the Lokiarchaeota ES39 continuation is indicated with a 506 

black dashed line. Direction of eukaryotic ES39 continuation is indicated with a black dashed line. *3D structures 507 

for S. cerevisiae and D. melanogaster are identical to H. sapiens in this region and are not shown. 508 
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