

Eukaryotic-like ribosomal RNA region in Lokiarchaeota

Authors: Petar I. Penev^{1,2}, Sara Fakhretaha-Aval^{1,3}, Vaishnavi J. Patel⁴, Jamie J. Cannone⁴, Robin R. Gutell⁴, Anton S. Petrov^{1,3*}, Loren Dean Williams^{1,2,3*}, Jennifer B. Glass^{1,2,5*}

Affiliations:

¹NASA Center for the Origin of Life, Georgia Institute of Technology, Atlanta, GA 30332-0400, USA

²School of Biological Sciences, Georgia Institute of Technology, North Avenue, Atlanta, GA 30332, USA

³School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Dr, Atlanta, GA 30332, USA

⁴Department of Integrative Biology, The University of Texas at Austin, 2415 Speedway #C0930, Austin, TX 78712, USA

⁵School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 311 Ferst Dr, Atlanta, GA 30332, USA

*Correspondence to: anton.petrov@biology.gatech.edu; loren.williams@chemistry.gatech.edu; jennifer.glass@eas.gatech.edu

12

Abstract

13

The ribosome's common core connects all life back to a common ancestor and serves as a window to relationships among organisms. In eukaryotes, the common core contains expansion segments (ES's) that vastly increase ribosomal RNA size. Supersized ES's have not been observed previously in Bacteria or Archaea, and the origin of eukaryotic ES's remains enigmatic. We discovered that the large subunit rRNA of *Lokiarchaeota*, the closest modern cell lineage to the last common ancestor of Archaea and Eukarya, bridges the gap in size between prokaryotic and eukaryotic rRNA. The long large subunit rRNA in *Lokiarchaeota* is largely due to the presence of two eukaryotic-like, supersized ES's, ES9 and ES39, which are transcribed *in situ*. We applied computational models, covariation analysis, and chemical footprinting experiments to study the structure and evolution of *Lokiarchaeota* ES9 and ES39. We also defined the eukaryotic ES39 fold for comparison. We found that *Lokiarchaeota* and eukaryotic ES's are structurally distinct: *Lokiarchaeota* ES39 has more and longer helices than the eukaryotic ES39 fold. Despite their structural differences, we found that *Lokiarchaeota* and eukaryotic ES's originated from a common ancestor that was "primed" for evolution of larger and more complex rRNAs than those found in Bacteria and other archaea.

28

Introduction

29 The ribosome connects all life on Earth back to the Last Universal Common Ancestor (LUCA)
30 (Woese and Fox 1977). The small ribosomal subunit (SSU) decodes mRNA and the large
31 ribosomal subunit (LSU) links amino acids together to produce coded protein. Both subunits are
32 made of ribosomal RNA (rRNA) and ribosomal protein (rProtein). All cytoplasmic ribosomes
33 contain a structurally conserved universal common core, comprised of 2800 nucleotides and 28
34 rProteins, and including the peptidyl transferase center (PTC) in the LSU and the decoding
35 center (DCC) in the SSU (Melnikov, et al. 2012; Bernier, et al. 2018). The rRNA of the common
36 core is a reasonable approximation of the rRNA in LUCA and is most similar to rRNA of extant
37 bacteria (Melnikov, et al. 2012; Petrov, et al. 2014b; Bernier, et al. 2018).

38 In Eukarya, the rRNA of the common core is elaborated by expansion segments (ES's,
39 **Fig. 1**) (Veldman, et al. 1981; Clark, et al. 1984; Hassouna, et al. 1984; Gonzalez, et al. 1985;
40 Michot and Bachellerie 1987; Bachellerie and Michot 1989; Gutell 1992; Lapeyre, et al. 1993;
41 Gerbi 1996; Schnare, et al. 1996). ES's emerge from a small number of conserved sites on the
42 common core and are excluded from regions of essential ribosomal function such as the DCC,
43 the PTC and the subunit interface (Ben-Shem, et al. 2010; Anger, et al. 2013). Expansion
44 segments are larger and more numerous on the LSU than on the SSU; across phylogeny, size
45 variation of the SSU rRNA is around 10% that of LSU rRNA (Gutell 1992; Gerbi 1996; Bernier,
46 et al. 2018). Metazoan rRNAs contain supersized ES's of hundreds of nucleotides (nts).

47 The recent discovery and characterization of the Asgard archaeal superphylum suggests
48 that the last archaeal and eukaryotic common ancestor (LAECA) contained key components of
49 eukaryotic cellular systems (Spang, et al. 2015; Klinger, et al. 2016; Eme, et al. 2017; Zaremba-
50 Niedzwiedzka, et al. 2017; Narrowe, et al. 2018; Spang, et al. 2019). Eukaryotic signature
51 proteins (ESPs) found in Asgard archaea are involved in cytoskeleton, trafficking, ubiquitination,
52 and translation. Asgard archaea also contain several homologs of eukaryotic ribosomal proteins
53 (Hartman and Fedorov 2002; Spang, et al. 2015; Zaremba-Niedzwiedzka, et al. 2017). Before
54 our work here, it was not known if Asgard rRNAs could contain eukaryotic-like features such as
55 supersized ES's. Eukaryotic-like, supersized ES's have not been observed previously in Bacteria
56 or Archaea and were considered unique to eukaryotes (Ware, et al. 1983; Clark, et al. 1984;
57 Hassouna, et al. 1984; Gerbi 1996; Melnikov, et al. 2012).

58 Here, we apply computation and experiment to study the structure and evolution of
59 Asgard rRNA. We find that LSU rRNA of the Asgard phylum, *Lokiarchaeota*, contains an
60 archaeal common core and supersized eukaryotic-like ES's. No es's were found in SSU rRNA of
61 *Lokiarchaeota*. In size and complexity, *Lokiarchaeota* LSU ES's exceed those of protists rRNAs
62 and rival those of metazoan rRNAs. Our data suggests that the large ES's of *Lokiarchaeota* and
63 Eukarya can be traced back to a common ancestor.

64

65 **Results**

66 **Comparative analysis reveals broad patterns of LSU rRNA size relationships.** Previously,
67 we developed the SEREB MSA (Sparse and Efficient Representation of Extant Biology,
68 Multiple Sequence Alignment) as a tool for comparative analysis of rRNA and rProtein
69 sequences (Bernier, et al. 2018). The SEREB MSA is a structure-informed alignment of a sparse
70 and unbiased group of sequences including all major phyla. The MSA was manually curated and
71 extensively cross-validated. The SEREB MSA is useful as a seed to study a variety of
72 evolutionary phenomena. Previously, we augmented the SEREB MSA to include additional
73 metazoan sequences, allowing us to characterize ES's and their evolution in metazoans (Mestre-
74 Fos, et al. 2019a; Mestre-Fos, et al. 2019b). Here, we augmented the SEREB MSA to include 21
75 sequences from the Asgard superphylum (**supplementary datasets S1,2**).

76 The SEREB MSA indicates that size relationships of LSU rRNAs follow the general
77 pattern: Bacteria (2725-2960 nts, n=61 [n is number of species]) < Archaea (2886 to 3094 nts,
78 n=48, excludes *Lokiarchaeota*) < Eukarya (3300-5200 nts, n=30; **Fig. 2**). Archaeal rRNAs
79 frequently contain micro-expansion segments (μ -ES's; stem loops of less than 20 nts) at
80 positions of eukaryotic ES's. Archaeal LSU rRNAs commonly contain μ -ES's at the sites of
81 attachment of ES9 and ES39 in eukaryotes. For example, in the archaeon *P. furiosus*, μ -ES9 is
82 33 nts and μ -ES39 is 45 nts (**Fig. 1C, supplementary figure S2**). The archaeon *Haloarcula*
83 *marismortui* contains μ -ES9 but lacks μ -ES39 (not shown).

84 ***Lokiarchaeota* bridge Eukarya and Archaea in LSU rRNA size.** The Asgard
85 augmentation of the SEREB MSA reveals unexpectedly large *Lokiarchaeota* LSU rRNAs.
86 *Lokiarchaeota* LSU rRNAs range from 3100 to 3300 nts (n=7). *Lokiarchaeota* rRNAs are close
87 to or within the observed size range of eukaryotic LSU rRNAs (**Fig. 2**). The Asgard-augmented

88 SEREB MSA reveals supersized ES's in *Lokiarchaeota* spp. These supersized ES's attach to the
89 universal common core rRNA at the sites of attachment of eukaryotic ES9 and ES39 and
90 archaeal μ -ES9 and μ -ES39 (Fig. 1). Here we explored the Asgard augmentation of the SEREB
91 MSA to investigate the structure, distribution, and evolution of rRNA expansions of Asgard
92 archaea. **ES9 and ES39 in some *Lokiarchaeota* are larger than μ -ES's of other archaea and**
93 **ES's of protists.** The MSA shows that ES39 in *Lokiarchaeota* ranges in size from 95 to 200 nts,
94 compared to 138 nts in *Saccharomyces cerevisiae*, 178 nts in *Drosophila melanogaster*, and 231
95 nts in *Homo sapiens* (Fig. 3). For *Candidatus* *Lokiarchaeota* archaeon 1244-F3-H4-B5
96 (*Lokiarchaeota* F3H4_B5), the primary focus of our work here, ES39 is 191 nts (Figs. 3, 4). ES9
97 in *Lokiarchaeota* ranges from 29 to 103 nts, and in some species is larger than any known
98 eukaryotic ES9 except the ES9 *Guillardia theta* (29 nts in *S. cerevisiae*, 44 nts in *D.*
99 *melanogaster*, 44 nts in *H. sapiens*, and 111 nts in *G. theta*; **supplementary figure S2**). ES9 is
100 86 nts in *Lokiarchaeota* F3H4_B5 (**supplementary figure S2**). ES9 and ES39 contribute to the
101 large size of *Lokiarchaeota* LSU rRNAs compared to the LSU rRNAs of other archaea. Outside
102 of *Lokiarchaeota*, archaea lack supersized ES's. Some *Lokiarchaeota* also lack supersized ES's.

103 ***Lokiarchaeota* LSU rRNA contain the common core.** We have determined the extent
104 of structural similarity of *Lokiarchaeota* LSU rRNAs with those of various eukaryotes. We
105 combined computational and experimental methods to characterize the LSU rRNA secondary
106 structure of *Lokiarchaeota* F3H4_B5 (Fig. 1E; **supplementary figure S1**). Secondary and three-
107 dimensional structures are known for ribosomes of several eukaryotes and archaea, providing a
108 basis for modeling by homology. Like all other LSU rRNAs, *Lokiarchaeota* LSU rRNA contains
109 the rRNA common core, which is trivial to model because the backbone atoms of the common
110 core are highly conserved in all cytosolic ribosomes.

111 **ES39 has a well-defined fold in eukaryotes.** To determine similarities and differences
112 between ES39's in various eukaryotes and archaea, we investigated the extent of conservation of
113 eukaryotic ES39 over phylogeny. We compared experimental three-dimensional structures of
114 rRNAs of species ranging from protists to primates (Ben-Shem, et al. 2010; Klinge, et al. 2011;
115 Khatter, et al. 2015; Li, et al. 2017). The ES39 fold consists of H98 (20-30 nts), helix *b* (40-50
116 nts), and the linkage of H98 and helix *b* by three unpaired segments of rRNA, which are each
117 around 15 nts in length (Fig. 6; **supplementary figure S3**). The ES39 fold is conserved in
118 structure but not in sequence.

119 **The ES39 fold has complex evolutionary history.** In general, ES's have increased in
120 size over evolutionary history via accretion. Growth by addition of one rRNA helix to another is
121 commonly marked an insertion fingerprint (Petrov, et al. 2014b; Petrov, et al. 2015). Eukaryotic
122 ES39 lacks insertion fingerprints. Instead, the ES39 fold has three long non-duplex rRNA strands
123 at its base that are tightly associated with the ribosomal surface. These unpaired regions are
124 unique to eukaryotic ES39 and do not appear in archaeal ES39. Two of the unpaired regions
125 interact with eukaryotic-specific helical extensions on rProteins uL13 and eL14 (**supplementary**
126 **figure S4**) and the third one interacts with ES7 and rProtein aL33 (**supplementary figures S3,**
127 **S5, S6**) (Khatter, et al. 2015). These eukaryotic-specific unpaired regions indicate a complex
128 evolutionary history in which changes in ES39 structure were coupled with changes in other
129 ribosomal components.

130 **The ES39 fold is decorated by a variable length helix.** Many, but not all, eukaryotes
131 possess a third helix (helix *a*) that extends from the ES39 fold (**Fig. 6A**). Helix *a* expands in size
132 from simple unicellular eukaryotes, such as *Tetrahymena thermophila* (no helix) and
133 *Toxoplasma gondii* (10 nts), to more complex eukaryotes such the fungus *S. cerevisiae* (18 nts)
134 and the insect *Drosophila melanogaster* (20 nts). Helix *a* is largest in the eukaryotic phylum
135 *Chordata* (106 nts for *H. sapiens*; **supplementary figure S3**).

136 **Initial *Lokiarchaeota* ES39 secondary models were predicted by two methods.** One
137 preliminary secondary structural model of ES39 of *Lokiarchaeota* F3H4_B5 was generated using
138 mfold (Zuker 2003) (**Fig. 4**). Mfold predicts a minimum free energy secondary structures using
139 experimental nearest-neighbor parameters. We selected the mfold model with lowest free energy
140 for further studies. A second model forced *Lokiarchaeota* ES39 to conform to the *H. sapiens*
141 secondary structure. The mfold model was confirmed to be correct by covariation analysis and
142 SHAPE reactivity data, below.

143 **Covariation supports the mfold model for secondary structure of ES39 of**
144 ***Lokiarchaeota* F3H4_B5.** Covariation, or cooperative changes of base-paired nucleotides across
145 phylogeny, can help reveal RNA secondary structure (Levitt 1969; Ninio, et al. 1969; Woese, et
146 al. 1980; Noller, et al. 1981; Gutell, et al. 1993; Gutell, et al. 1994). Base-pairs can be detected
147 through covariation analysis. We calculated base-pairing conservation predicted by helical
148 regions of both the mfold model and the *H. sapiens* homology model using available sequence
149 data. Helical regions of the *Lokiarchaeota* ES39 secondary structural model predicted by mfold

150 show covarying nucleotides (**Fig. 5D**), with conservation of base-pairing (**Fig. 5C**). The
151 observation of these covarying nucleotides supports the model determined by mfold.

152 **Chemical footprinting confirms the mfold model for secondary structure of ES39 of**
153 ***Lokiarchaeota F3H4_B5*.** We further tested the secondary structural model of *Lokiarchaeota*
154 F3H4_B5 ES39 using Selective 2' Hydroxyl Acylation analyzed by Primer Extension (SHAPE).
155 This experimental method provides data on RNA flexibility at the nucleotide level (Merino, et al.
156 2005; Wilkinson, et al. 2006). SHAPE reactivity is generally high in unpaired RNA, which is
157 more flexible, and low in paired RNA, which is less flexible. SHAPE has been widely used to
158 probe rRNA (Leshin, et al. 2011; Lavender, et al. 2015; Gomez Ramos, et al. 2017; Lenz, et al.
159 2017) and other RNAs (Wilkinson, et al. 2005; Gilbert, et al. 2008; Stoddard, et al. 2008; Watts,
160 et al. 2009; Novikova, et al. 2012; Spitale, et al. 2013; Huang, et al. 2014). The SHAPE results
161 from *Lokiarchaeota F3H4_B5* ES39 rRNA (**supplementary figure S7**) are in agreement with
162 the secondary structure based on co-variation and mfold. Reactivity is low for paired nucleotides
163 and is high in loops and bulges (**Fig. 5B**). The resolution and accuracy of the SHAPE data are
164 supported by observation of relatively high reactivity at the vast majority of unpaired nucleotides
165 and low reactivity for most paired nucleotides of the *Lokiarchaeota* ES39 secondary structure.
166 The *Lokiarchaeota* SHAPE data are not consistent with models that force *Lokiarchaeota* ES39 to
167 conform to the *H. sapiens* secondary structure.

168 ***Lokiarchaeota* and Asgard ES39 deviate from the eukaryotic ES39 fold.** The
169 eukaryotic ES39 junction of helices H98, *a*, and *b* contains significant extent of unpaired
170 nucleotides; it consists of three 15-nt unpaired regions. By contrast, ES39 in *Lokiarchaeota*
171 F3H4_B5 contains more paired nucleotides than in eukaryotes and lacks unpaired regions greater
172 than 8 nts (**Figs. 1E, 4**). *Lokiarchaeota F3H4_B5* ES39 is composed of four short helical regions
173 (H98, *a1*, *a2*, *b*; each up to 38 nts) and one long helical region (helix *a*: 72 nts). H98 and helix *b*
174 connect in a three-way junction with helix *a* at the base of ES39. Helices *a1* and *a2* split helix *a*
175 at the top of ES39 in a three-way junction.

176 We modeled and visualized (Cannone, et al. 2002) secondary structures of ES39
177 sequences from additional Asgard species (**supplementary figure S8**). None of these modeled
178 structures exhibited long unpaired regions. ES39 of all modelled Asgard archaea contain a three-
179 way junction that connects helices H98, *a* and *b*. This three-way junction is similar to the one
180 seen in *Lokiarchaeota F3H4_B5* (**Fig. 4**). Additionally, some members of Asgard archaea

181 revealed an additional branching of helix *a* into *a1* and *a2* mirroring the morphology of ES39 in
182 *Lokiarchaeota* F3H4_B5. Despite the common branching morphology, the length of the
183 individual helices substantially varies between different species (**Fig. 5D**).

184 **Supersized ES's of *Lokiarchaeota* are transcribed *in situ*.** To assess whether
185 *Lokiarchaeota* ES's are transcribed, we assembled metatranscriptomic reads from sediment from
186 the Gulf of Mexico (Yergeau, et al. 2015; Cai, et al. 2018). We found multiple transcripts from
187 *Lokiarchaeota*-like LSU ribosomes that contain ES9 and ES39 sequences, confirming that
188 *Lokiarchaeota* ES's are indeed transcribed *in situ* (**Fig. 5D; supplementary dataset**
189 **S2).**

Discussion

190 The recent discovery of the archaeal *Lokiarchaeota* phylum, which contain multitudes of ESPs,
191 has redefined our understanding of eukaryotic evolutionary history (Spang, et al. 2015; Zaremba-
192 Niedzwiedzka, et al. 2017). The incorporation of *Lokiarchaeota* sequences into phylogenies has
193 brought Archaea and Eukarya close together in the tree of life (Hug, et al. 2016; Fournier and
194 Poole 2018). Here, we extend the molecular comparison by identifying commonalities of rRNA
195 of Eukarya and *Lokiarchaeota*.

196 ***Lokiarchaeota* rRNA has unique eukaryotic-like features.** The ribosome has been
197 extensively studied as both an evolving system (Agmon, et al. 2005; Smith, et al. 2008; Bokov
198 and Steinberg 2009; Fox 2010; Petrov, et al. 2015; Melnikov, et al. 2018) and as a window to
199 relationships among organisms (Woese and Fox 1977; Hillis and Dixon 1991; Olsen and Woese
200 1993; Fournier and Gogarten 2010; Hug, et al. 2016). Previous work revealed robust patterns
201 that govern ribosomal variation over phylogeny (Hassouna, et al. 1984; Gerbi 1996; Melnikov, et
202 al. 2012) and suggest mechanisms of ribosomal change over evolution (Petrov, et al. 2014b;
203 Petrov, et al. 2015; Kovacs, et al. 2017; Melnikov, et al. 2018). Here, we extend structure-based
204 methods of comparative analysis to *Lokiarchaeota* rRNA and demonstrate its distinctive
205 eukaryotic-like features. We provide mechanistic models for the evolution of common rRNA
206 features of eukaryotes and *Lokiarchaeota*.

207 We assessed the extent to which *Lokiarchaeota* ribosomes follow or deviate from
208 previously established patterns of ribosomal structure. We found that *Lokiarchaeota* ribosomes
209 follow several established patterns.

210 *Lokiarchaeota* ribosomes:

211 • contain the universal common core of rRNA and rProteins (this work) (Spang, et al.
212 2015),
213 • confine rRNA diversity of structure and size to ES's/μ-ES's (this work),
214 • restrict ES's to universally conserved sites on the common core (Ware, et al. 1983;
215 Clark, et al. 1984; Hassouna, et al. 1984; Michot and Bachellerie 1987; Bachellerie and
216 Michot 1989; Lapeyre, et al. 1993; Gerbi 1996),
217 • avoid ES attachment from the ribosomal interior or near functional centers (Ben-Shem,
218 et al. 2010; Anger, et al. 2013), and
219 • concentrate diversity in structure and size on LSU rRNA, not SSU rRNA (Gerbi 1996;
220 Bernier, et al. 2018).

221 *Lokiarchaeota* ribosomes deviate from several previous patterns of variation of ribosome
222 structure over phylogeny. *Lokiarchaeota* LSU rRNAs are larger than their place on the archaeal
223 domain of the tree of life would predict. Excluding *Lokiarchaeota*, rRNA length increases in the
224 order: Bacteria < Archaea ≪ protists ≪ metazoans (Melnikov, et al. 2012; Petrov, et al. 2014b;
225 Bernier, et al. 2018). *Lokiarchaeota* rRNA is eukaryotic-like in length, eclipsing the rRNA of
226 many protists. *Lokiarchaeota* ES39 is larger than ES39 in protists and some metazoans. ES9 of
227 *Lokiarchaeota* is larger than ES9 of any system except *Guillardia theta*. Both ES9 and ES39 of
228 *Lokiarchaeota* are larger than ES9 and ES39 of any other archaeal phylum known to date.

229 ***Lokiarchaeota* ES39 is located within an archaeal structural environment in the**
230 **ribosome.** ES39 in Eukarya protrudes from helices 94 and 99 of the ribosomal common core
231 (**Fig. 6B**). In three dimensions, ES39 is close to ES7 and rProteins uL13, eL14, and aL33
232 (**supplementary figures S3, S4, S5**). These elements in *Lokiarchaeota* are more similar to
233 Archaea than to Eukarya. Additionally, *Lokiarchaeota*, like all Archaea, contain helix 1 (H1),
234 which is in direct contact with H98 at the base of ES39, whereas eukaryotes lack H1 (**Fig 4B**).
235 Combined with the eukaryotic-like size of *Lokiarchaeota* ES39, these characteristics predict that
236 *Lokiarchaeota* ribosomes have a unique structure in this region.

237 **The pathway of ES39 evolution is unique.** The ribosome has grown in size by a process
238 of accretion (Petrov, et al. 2014b). Basal structure is preserved when new rRNA is acquired. For
239 instance, ES7 shows continuous growth over phylogeny, expanding from LUCA to Archaea to
240 protists to metazoans to mammals (Petrov, et al. 2014b; Bernier, et al. 2018). The accretion
241 model predicts that H98, at the base of ES39, would superimpose in Bacteria, Archaea, and

242 Eukarya, but in fact H98 does not overlap in superimposed 3D structures (**Fig. 6B**). The
243 archaeon *P. furiosus* has a slightly extended and bent H98 compared to the bacterium *E. coli*
244 (**Fig. 6B**). This spatial divergence is likely due to the difference in how *E. coli* H98 and *P.*
245 *furiosus* H98 interact with H1 of the LSU. *E. coli* H98 interacts within the H1 minor groove
246 through an A-minor interaction, while in *P. furiosus* H98 is positioned on top of H1 (**Fig. 6B**).
247 H1 is absent in eukaryotes (**Fig. 1**), allowing H98 to occupy the position of H1 (**Fig. 6B**).

248 **LAECA likely had a large ES39.** The observation of supersized ES39's in species with
249 and without H1 suggests that ES39 growth is independent of the presence or absence of H1.
250 Whether LAECA had a large or small ES39 is difficult to ascertain because the Asgard
251 superphylum shows wide size variability in ES39 (**Fig. 3**). However, the accretion model
252 suggests that LAECA contained a large ES39, which fulfilled a patching role upon the loss of
253 H1. In this model, ES39 was remodeled upon loss of H1. ES39 underwent strand dissociation in
254 Eukarya to fill the space left by the deletion of H1; this unpaired ES39 structure was further
255 stabilized by eukaryotic extensions of rProteins uL13 and eL14 (**supplementary figure S4**).
256 This pattern of structural patching has been observed in mitoribosomes (Petrov, et al. 2019). If
257 ES39 grew to its eukaryotic size after the loss of H1, one would not expect remodeling to form
258 the unpaired structure; ES39 would have gradually accreted helices like other parts of the
259 ribosome.

260 ***Lokiarchaeota* ES39 may extend in a different direction than eukaryotic ES39.**
261 *Lokiarchaeota* spp. have larger ES39 than other archaea (**Fig. 3**) and possess H1, unlike Eukarya
262 (**Fig 4B**). We predict that *Lokiarchaeota* ES39 has an archaeal-like interaction with H1 through
263 H98 and helix *b* (**Fig. 6B**). *Lokiarchaeota* helix *a* likely grows out from the three-way junction
264 between H98 and helix *b*, perpendicular to the eukaryotic helix *a* (**Fig. 6B**). While helix *a* of
265 eukaryotic ES39 is pointed in the direction of the sarcin-ricin loop, helix *a* of *Lokiarchaeota* is
266 likely pointed in the direction of the central protuberance or the exit tunnel.

267 **Growth of *Lokiarchaeota* ES9 is unrestricted due to absence of ES15.** To date, ES9 in
268 *Lokiarchaeota* is longer than ES9 in any organism except the alga *Guillardia theta*
269 (**supplementary figure S2**). In *H. sapiens*, ES9 forms a kissing-loop structure with ES15
270 (**supplementary figure S6**). ES15 is not present in *Lokiarchaeota*, which may permit
271 unrestricted growth of ES9.

272 **Lokiarchaeota have higher complexity of rRNA than other archaea, consistent with**
273 **higher *Lokiarchaeota* molecular complexity.** Previously, we demonstrated that biological
274 complexity is correlated with LSU rRNA sizes (Petrov, et al. 2014b). Here, we found that
275 *Lokiarchaeota* spp. have ES39's with lengths that eclipse many eukaryotes and are close to those
276 of Chordates, resulting in larger LSU rRNAs in *Lokiarchaeota* than other archaea. This size
277 pattern is consistent with the idea that LSU rRNA size tracks organismal complexity because
278 *Lokiarchaeota* have more complex cellular infrastructure than other archaea (Akil and Robinson
279 2018; Imachi, et al. 2019).

280 The specific roles of μ -ES's and ES's over phylogeny are unknown but are likely
281 complex, polymorphic, and pleotropic. The observation of μ -ES's in Archaea, ES's in Eukarya,
282 and supersized ES's in *Lokiarchaeota* suggest that (i) the roots of ribosomal complexity are
283 inextricably intertwined with the roots of Eukarya, and (ii) the roots of Eukarya penetrate more
284 deeply into the archaeal domain than previously recognized, conclusions that are consistent with
285 recent phylogenetic results that root Eukarya within the archaeal branch (Williams, et al. 2020).

286

287 **Conclusions**

288 *Lokiarchaeota* ribosomes contain supersized ES39's with structures that are distinct from
289 eukaryotic ES39's. *Lokiarchaeota* ES9's are larger than eukaryotic ES9's. To date,
290 *Lokiarchaeota* is the only prokaryotic phylum with supersized ES's, bringing the size range of
291 archaeal LSU close to those of eukarya. *Lokiarchaeota* ES39 likely grows outward from the
292 ribosomal surface in a different direction than eukaryotic ES39's. Our findings raise the
293 possibility that eukaryotic-sized ES's existed on the ribosomal surface before LECA, suggesting
294 that ribosomal complexity is more deeply rooted than previously known.

295 **Materials and Methods**

296

297 **Genome sequencing, assembly, and binning**

298 **Sample collection.** Sediments were cored from deep seafloor sediment at ODP site 1244
299 (44°35.1784'N; 125°7.1902'W; 895 m water depth) on the eastern flank of Hydrate Ridge ~3 km
300 northeast of the southern summit on ODP Leg 204 in 2002 (Tréhu, et al. 2003) and stored at -
301 80°C at the IODP Gulf Coast Repository.

302 **DNA extraction.** DNA was extracted from sediment from F3-H4 (18.10 meters below
303 the seafloor) using a MO-BIO PowerSoil total RNA Isolation Kit with the DNA Elution
304 Accessory Kit, following the manufacturer protocol without beads. Approximately 2 grams of
305 sediments were used for the extraction from six extractions (12 g total) and DNA pellets from the
306 two replicates from each depth were pooled together. DNA concentrations were measured using
307 a Qubit 2.0 fluorometer with dsDNA High Sensitivity reagents (Invitrogen, Grand Island, NY,
308 USA). DNA yield was 7.5 ng per gram of sediment.

309 **Multiple displacement amplification, library preparation, and sequencing.** Genomic
310 DNA was amplified using a REPLI-g Single Cell Kit (Qiagen, Germantown, MD, USA) using
311 UV-treated sterile plasticware and reverse transcription-PCR grade water (Ambion, Grand
312 Island, NY, USA). Quantitative PCR showed that the negative control began amplifying after 5
313 hr of incubation at 30°C, and therefore, the 30°C incubation step was shortened to 5 hr using a
314 Bio-Rad C1000 Touch thermal cycler (Bio-Rad, Hercules, CA, USA). DNA concentrations were
315 measured by Qubit. Two micrograms of MDA-amplified DNA were used to generate genome
316 libraries using a TruSeq DNA PCR-Free Kit following the manufacturer's protocol (Illumina,
317 San Diego, CA, USA). The resulting libraries were sequenced using a Rapid-Run on an Illumina
318 HiSeq 2500 to obtain 100 bp paired-end reads. Metagenomic sequences were deposited into
319 NCBI as accession numbers SAMN07256342-07256348 (BioProject PRJNA390944).

320 **Metagenome assembly, binning, and annotation.** Demultiplexed Illumina reads were
321 mapped to known adapters using Bowtie2 in local mode to remove any reads with adapter
322 contamination. Demultiplexed Illumina read pairs were quality trimmed with Trim Galore
323 (Martin 2011) using a base Phred33 score threshold of Q25 and a minimum length cutoff of 80
324 bp. Paired-end reads were then assembled into contigs using SPAdes assembler (Bankevich, et
325 al. 2012) with --meta option for assembling metagenomes, iterating over a range of k-mer values

326 (21,27,33,37,43,47,51,55,61,65,71,75,81,85,91,95). Assemblies were assessed with reports
327 generated with QUAST (Gurevich, et al. 2013). Features on contigs were predicted through the
328 Prokka pipeline with RNAmmer for rRNA, Aragorn for tRNA, Infernal and Rfam for other non-
329 coding RNA and Prodigal for protein coding genes. Each genomic bin was searched manually
330 for 23S rRNA sequences. The *Lokiarchaeota* F3-H4-B5 bin (estimated 2.8% completeness and
331 0% contamination) was found to contain a 3300 nt 23S rRNA sequence. The *Lokiarchaeota* F3-
332 H4-B5 bin was deposited into NCBI as BioSample SAMN13223206 and GenBank genome
333 accession number WNEK00000000.

334

335 Environmental 23S rRNA transcript assembly and analysis

336 **Assembly.** Publicly available environmental meta-transcriptomic reads were downloaded
337 from NCBI BioProject PRJNA288120 (Yergeau, et al. 2015). Quality evaluation of the reads
338 was performed with FastQC (Andrews 2012) and trimming was done with TrimGalore (Martin
339 2011). Assembly of SRR5992925 was done using the SPADES (Bankevich, et al. 2012)
340 assembler with --meta and --rna options, to evaluate which performs better. Basic statistic
341 measures such as Nx, contig/transcript coverage and length were compared (**Supplementary**
342 **Datasets S3, S4**) yielding better results for the rnaSpades assembler. All subsequent meta-
343 transcriptomic datasets were assembled with rnaSpades.

344 **Identifying ribosomal RNA sequences.** BLAST databases were constructed (Altschul,
345 et al. 1990) from the resulting contig files and they were queried for ribosomal regions
346 characteristic of the Asgardian clade (ES39/ES9 sequences from GC14_75). Additionally, the
347 program quast (Gurevich, et al. 2013) with --rna-finding option was used.

348 **SEREB Multiple Sequence Alignment (MSA) augmentation.** High scoring transcripts,
349 as well as genomic sequences with Asgard origin, were included in the SEREB MSA (Bernier, et
350 al. 2018) using the program mafft (Katoh and Standley 2013) with the --add option. Known
351 intronic regions (Cannone, et al. 2002) were removed from new sequences. The highly variable
352 region of ES39 was manually aligned using structural predictions from mfold (Zuker 2003).

353 **LSU size comparison.** The LSU size comparison was based on the transcribed gene for
354 the LSU, which is comprised of a single uninterrupted rRNA sequence for bacteria and archaea
355 (**Fig. 1A,C,E**), and is comprised of multiple concatenated rRNA sequences for the fragmented
356 eukaryotic rRNA gene (**Fig. 1B,D,F**). The 5S rRNA, which is essentially constant, is excluded

357 from the size calculation. The comparison excludes rRNAs of endosymbionts and pathogens,
358 which tend to contain reduced genomes, metabolisms, and translation systems (Peyretailleade, et
359 al. 1998; Moran 2002; McCutcheon and Moran 2011).

360 **Secondary structure models.** To model the secondary structure of *Candidatus*
361 *Lokiarchaeota archaeon* 1244-F3-H4-B5 LSU rRNA, we used the secondary structure of *P.*
362 *furirosus* (Petrov, et al. 2014a) and a multiple sequence alignment (MSA) of archaeal LSU rRNAs
363 broadly sampled over the phylogeny (**supplementary dataset S1**). Locations of expansion
364 segments were unambiguously identified from the MSA. Due to the low percent identity (<50%)
365 (Bernhart and Hofacker 2009) we applied *ab initio* modelling for ES regions. The secondary
366 structures of the ES's were predicted by mfold (Zuker 2003).

367 **Covariation.** To verify the secondary structures of the highly variable ES regions base-
368 pairing conservation was calculated with the program Jalview (Waterhouse, et al. 2009). Gaps
369 from the MSA were ignored in the calculation to produce comparable results about available
370 regions. The base-pairing model of secondary structures of ES9 (**supplementary figure S9**) and
371 ES39 (**Fig. 4C,D**) was generated in the Jalview annotation format and used for the base-pairing
372 conservation calculation.

373 **Defining the eukaryotic ES39 fold.** To identify the structurally invariant part of ES39 in
374 Eukaryotes, we used superimposition based on the common core within domain VI of the
375 ribosomal structures from 4 eukaryotes (*Tetrahymena thermophila*, *Toxoplasma gondii*,
376 *Saccharomyces cerevisiae*, *Homo sapiens*; **supplementary figure S3**). Initially the *Drosophila*
377 *melanogaster* ribosomal structure (PDB ID: 4V6W) was used in identifying the core. However,
378 as it has additional loops elongating the unpaired regions, we excluded it from our analysis.
379 *Drosophila melanogaster* is known to have AU-enriched ES's; therefore, it is not surprising that
380 it has perturbations in its ES39.

381 382 **ES39 rRNA SHAPE analysis**

383 **Synthesis of *Lokiarchaeota* ES39 rRNA.** pUC57 constructs containing T7 promoter and
384 the gene encoding *Lokiarchaeota* ES39 rRNA was linearized using HindIII restriction enzyme.
385 *Lokiarchaeota* ES39 rRNA was synthesized by *in vitro* transcription using HiScribe™ T7 High
386 Yield RNA Synthesis Kit; New England Biolabs. RNA was then precipitated in
387 ethanol/ammonium acetate and purified by G25 size exclusion chromatography

388 (illustraTMNAPTM-10, GE Healthcare). RNA purity was assayed by denaturing gel
389 electrophoresis.

390 **SHAPE reaction.** Selective 2'-hydroxyl acylation analyzed by primer extension
391 (SHAPE; Wilkinson, et al. 2006) was performed to chemically probe local nucleotide flexibility
392 in ES39 rRNA. *In vitro*-transcribed ES39 rRNA was added to folding buffer (180mM NaOAc,
393 50mM Na-HEPES (pH 8.0) and 1 mM 1,2- diaminocyclohexanetetraacetic acid (DCTA))to
394 obtain 400nM RNA in total volume of 80 μ L. RNA was annealed by cooling from 75 °C to
395 25 °C at 1 °C/min. RNA modification reaction was performed with final concentration of
396 100mM benzoyl cyanide (Sigma) prepared in dimethyl sulfoxide (DMSO). Non-modified RNA
397 samples were incubated with DMSO. Reactions were carried out for 2 min at room temperature.
398 Modified RNAs and control sample were purified by precipitation in ethanol and ammonium
399 acetate at 20 °C for 2 hr. RNA samples were centrifuged at 4°C for 10 min. The RNA pellets
400 were washed out with 100 μ L of 80% ethanol for two times and dried out using Speedvac. 22 μ L
401 of TE buffer [1mM EDTA and 10mM Tris-Cl (pH 8.0)] were added into each samples and pellet
402 were resuspended.

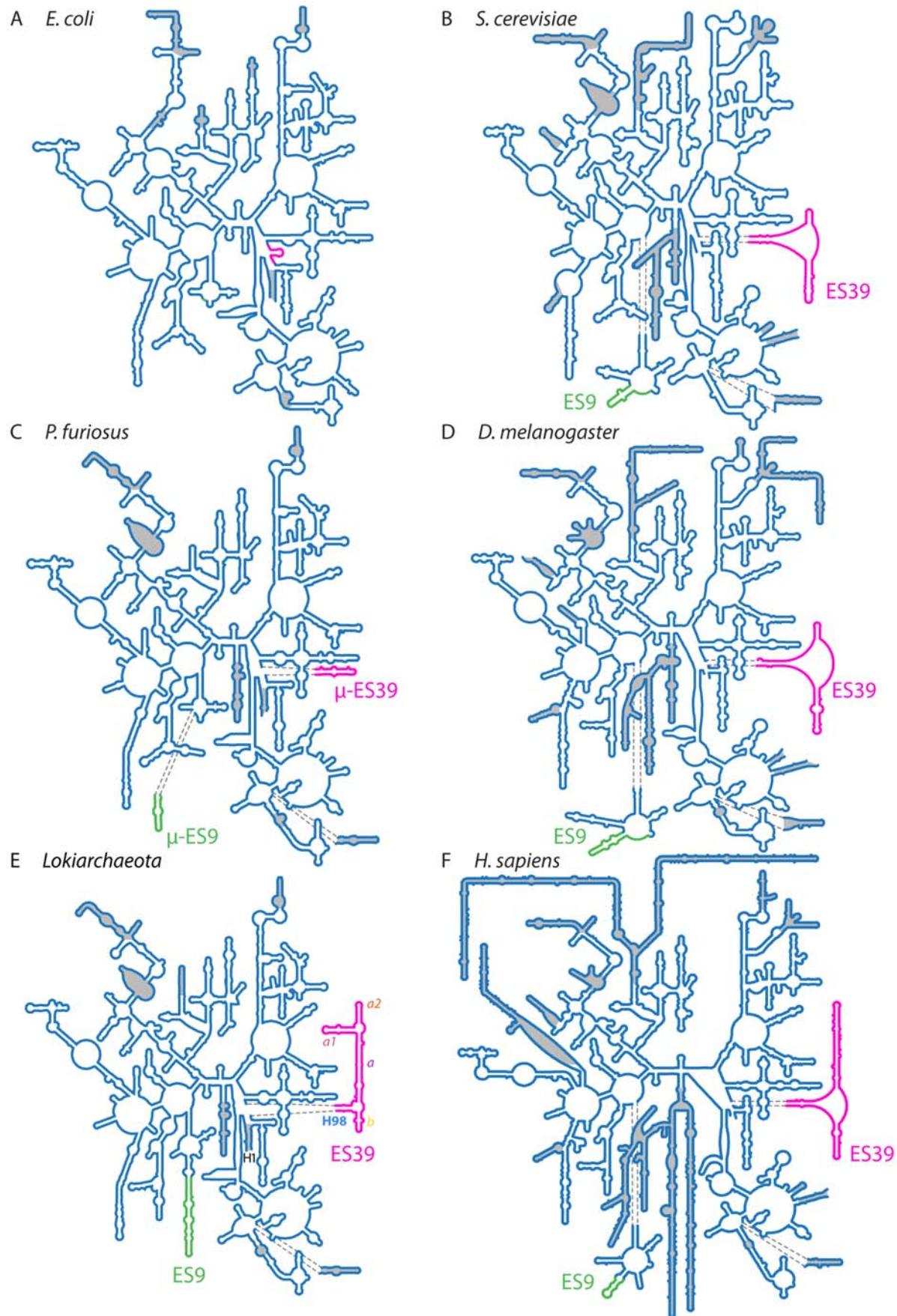
403 **Reverse transcription.** Reverse transcription was conducted on 20 μ L of modified RNAs
404 and unmodified RNA sample as a control, in presence of 8 pmol 5'[6-FAM] labeled primer (5'-
405 GAACCGGACCGAAGCCG-3'), 2 mM DTT, 625 μ M of each deoxynucleotidetriphosphate
406 (dNTP), and 5 μ L of reverse transcription (RT) 5X first-strand buffer [250 mM Tris-HCl (pH
407 8.3), 375 mM KCl, 15 mM MgCl₂]. To anneal the primer, samples were heated at 95°C for 30
408 secs, held at 65°C for 3 min, and then 4°C for 10 min. RT mixtures were incubated at 52°C for
409 2 min before addition of 1 μ L(200 U) of Superscript III Reverse transcriptase (Invitrogen) and
410 reactions were incubated at 55°C for 2 hr. later, RT terminated by heating smaples at 70°C for 15
411 min. Chain termination sequencing reaction was performed on 10 pmol unmodified RNA
412 prepared in TE buffer, 8 pmol 5'[6-FAM] labeled primer, with a ratio of 1:1 dideoxynucleotide
413 (ddNTP) to dNTP. A sequencing reaction was performed with the same condition without
414 ddNTPs.

415 **Capillary electrophoresis of RT reaction products and data analysis.** Capillary
416 electrophoresis of RT reactions was performed as described previously (Hsiao, et al. 2013). For
417 each reaction 0.6 μ l DNA size standard (Geneflo™ 625), 17.4 μ l Hi-Di Formamide (Applied
418 Biosystems), and 2 μ l of RT reaction mixture were loaded in a 96-well plate. Samples were

419 heated at 95°C for 5 min before electrophoresis and the RT products were resolved using applied
420 biosystems. SHAPE data were processed using a Matlab scripts as described previously
421 (Athavale, et al. 2012). SHAPE profile was mapped onto ES39 rRNA secondary structure with
422 the RiboVision program (Bernier, et al. 2014).

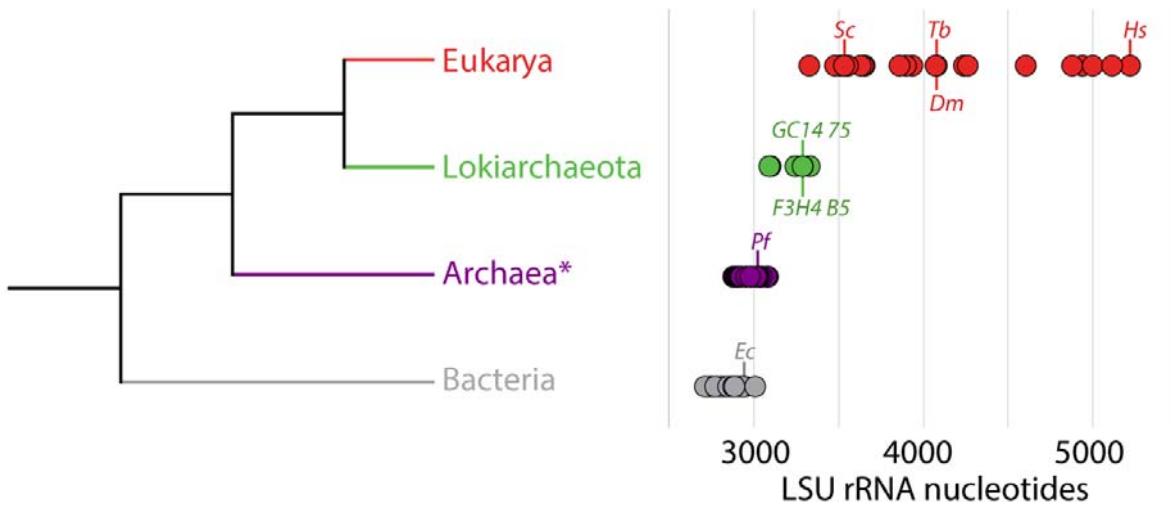
423
424 **Acknowledgments:** We thank Cecilia Kretz and Piyush Ranjan for sample preparation and
425 genome binning. We thank Brett Baker for providing an unpublished *Heimdallarchaeota*
426 sequence (Fig. S8B). We thank Jessica Bowman, Santi Mestre-Fos, Aaron Engelhart, Anthony
427 Poole, and Betül Kaçar for helpful conversations.

428 **Funding:** This research was supported by National Aeronautics and Space Administration grants
429 NNX16AJ29G, the Center for the Origin of Life grant 80NSSC18K1139, and a Center for Dark
430 Energy Biosphere Investigations (C-DEBI) Small Research Grant. This is C-DEBI contribution
431 [will be provided upon paper acceptance]. This research was supported in part through research
432 cyberinfrastructure resources and services provided by the Partnership for an Advanced
433 Computing Environment (PACE) at the Georgia Institute of Technology, Atlanta, Georgia, USA.


434 **Author contributions:** ASP, LDW, and JBG conceptualized the research. PIP curated the data.
435 ASP, LDW, and JBG acquired the funding and administered the project. SF-A performed the
436 SHAPE experiments. JJC and VJP performed analyses. ASP, LDW, RRG, and JBG supervised
437 the research. RRG validated the research. PIP and VJP prepared the figures. PIP, JBG, and LDW
438 wrote the manuscript with input from all authors.

439 **Competing interests:** Authors declare no competing interests.

440 **Data and materials availability:** Metagenomic sequences were deposited into NCBI as
441 accession numbers SAMN07256342-07256348 (BioProject PRJNA390944). The *Lokiarchaeota*
442 F3-H4-B5 bin was deposited into NCBI as BioSample SAMN13223206 and GenBank genome
443 accession number WNEK00000000. The *Lokiarchaeota* F3H4_B5 23S rRNA gene is in the
444 reverse complement of contig WNEK01000002.1, nucleotide positions 251-3579.


445

Figures

446 **Figure 1: Secondary structures of the LSU rRNA from Bacteria, Archaea, and Eukarya.** (A)
447 *Escherichia coli* (Bacteria), (B) *Saccharomyces cerevisiae* (fungus, Eukarya); (C) *Pyrococcus furiosus*
448 (Archaea); (D) *Drosophila melanogaster* (insect, Eukarya); (E) *Lokiarchaeota F3H4_B5* (Archaea); (F)
449 *Homo sapiens* (primate, Eukarya). Secondary structures in panels A, B, C, D, and F are taken from
450 *Petrov, et al. (2014a)*. Secondary structure in panel E is from this study. Universal rRNA common core is
451 shown in blue lines (not shaded). ES9 is shown with a green line. ES39 is shown with a magenta line. H1
452 and ES39 helices are labeled on *Lokiarchaeota* (panel E). ES's and helices not present in the common
453 core are shaded in gray. Sizes of secondary structures are to scale. The numbering scheme of *Noller, et al.*
454 (*1981*) and *Leffers, et al. (1987)* were used to label the helices and ES's.
455

456

457 **Figure 2. Length of LSU rRNA increases from Bacteria, to Archaea (excluding Asgard archaea), to**
458 **Lokiarchaeota, to Eukarya.** LSU rRNA lengths were obtained from the updated SEREB database.
459 Abbreviations: *Ec*, *Escherichia coli*; *Pf*, *Pyrococcus furiosus*; *F3H4_B5*, *Lokiarchaeota F3H4_B5*; *GC14*
460 *75*, *Lokiarchaeota GC14_75*; *Tb*, *Trypanosoma brucei*; *Sc*, *Saccharomyces cerevisiae*; *Dm*, *Drosophila*
461 *melanogaster*; *Hs*, *Homo sapiens*.

462

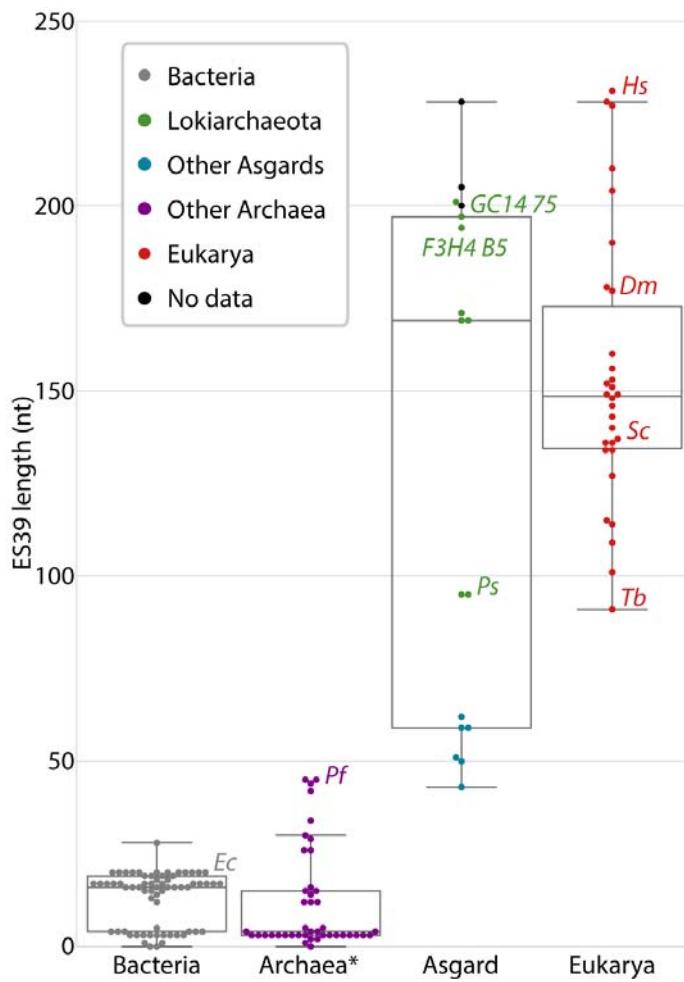
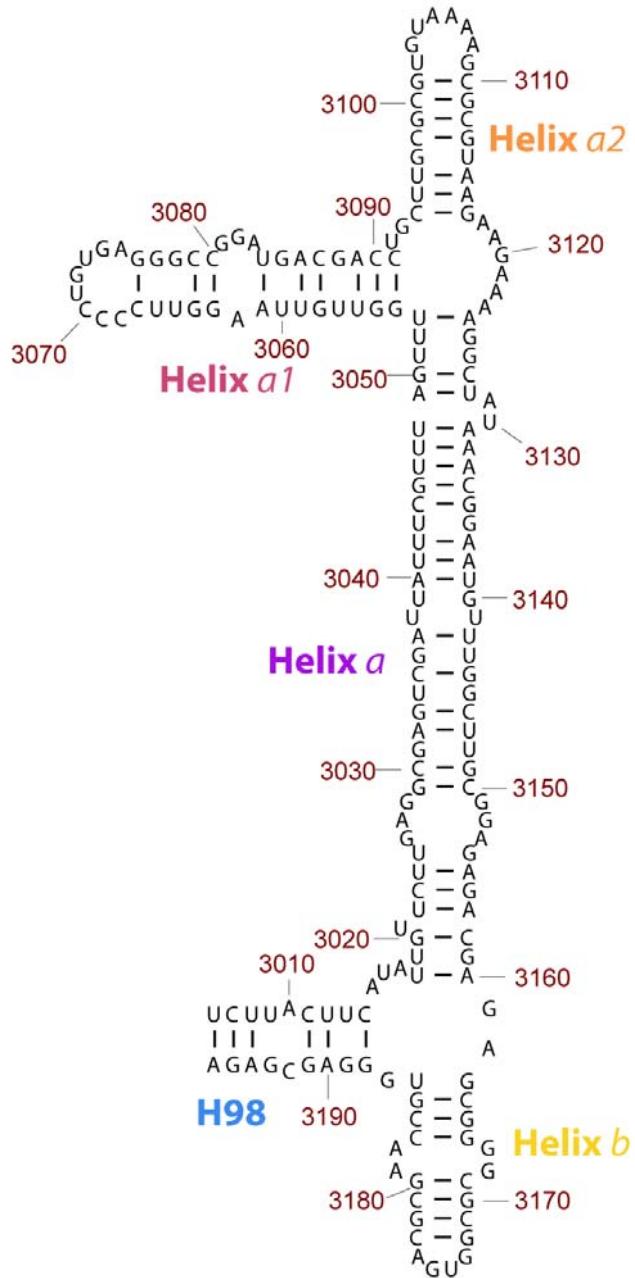
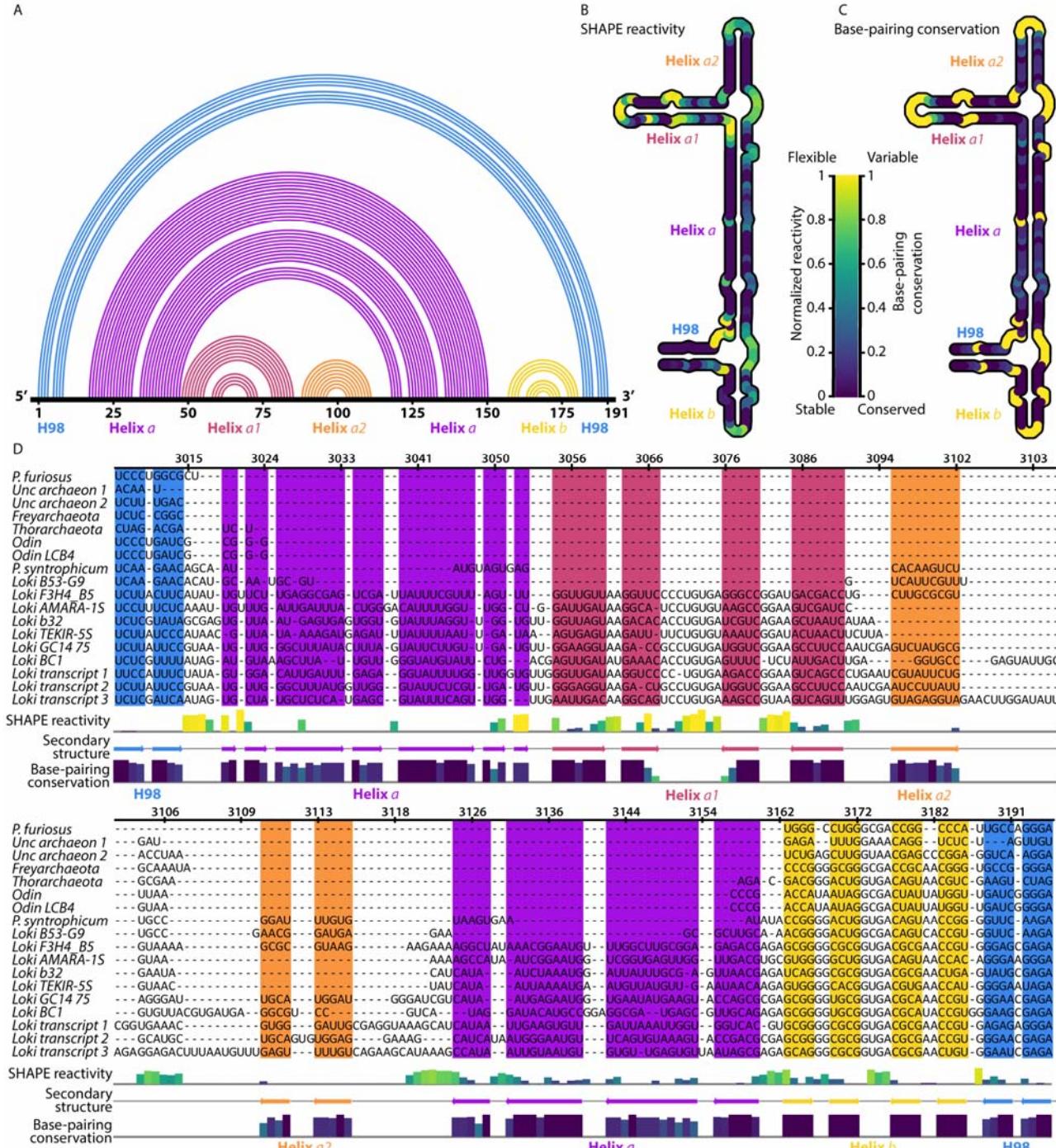



Figure 3: Distribution of ES39 lengths from the three domains of life, including Asgard archaea.

The number of nucleotides calculated between alignment positions 4891 and 5123 (*H. sapiens* numbering) of the LSU alignment for each species (supplementary dataset S1). The box shows the quartiles of the dataset. Whiskers extend to show the rest of the distribution, except for points that are determined to be outliers using a function of the inter-quartile range. Bacteria sequences are gray, *Lokiarchaeota* sequences are green, other Asgard sequences are blue, other archaeal sequences are purple, eukaryotic sequences are red, sequences from metatranscriptomic contigs (supplementary dataset S2) for which there is no species determination are black. Abbreviations: *Ps*: *Prometheoarchaeum syntrophicum*; the rest are described in Figure 2.


463
464

465
466
467
468
469
470
471
472
473
474

475

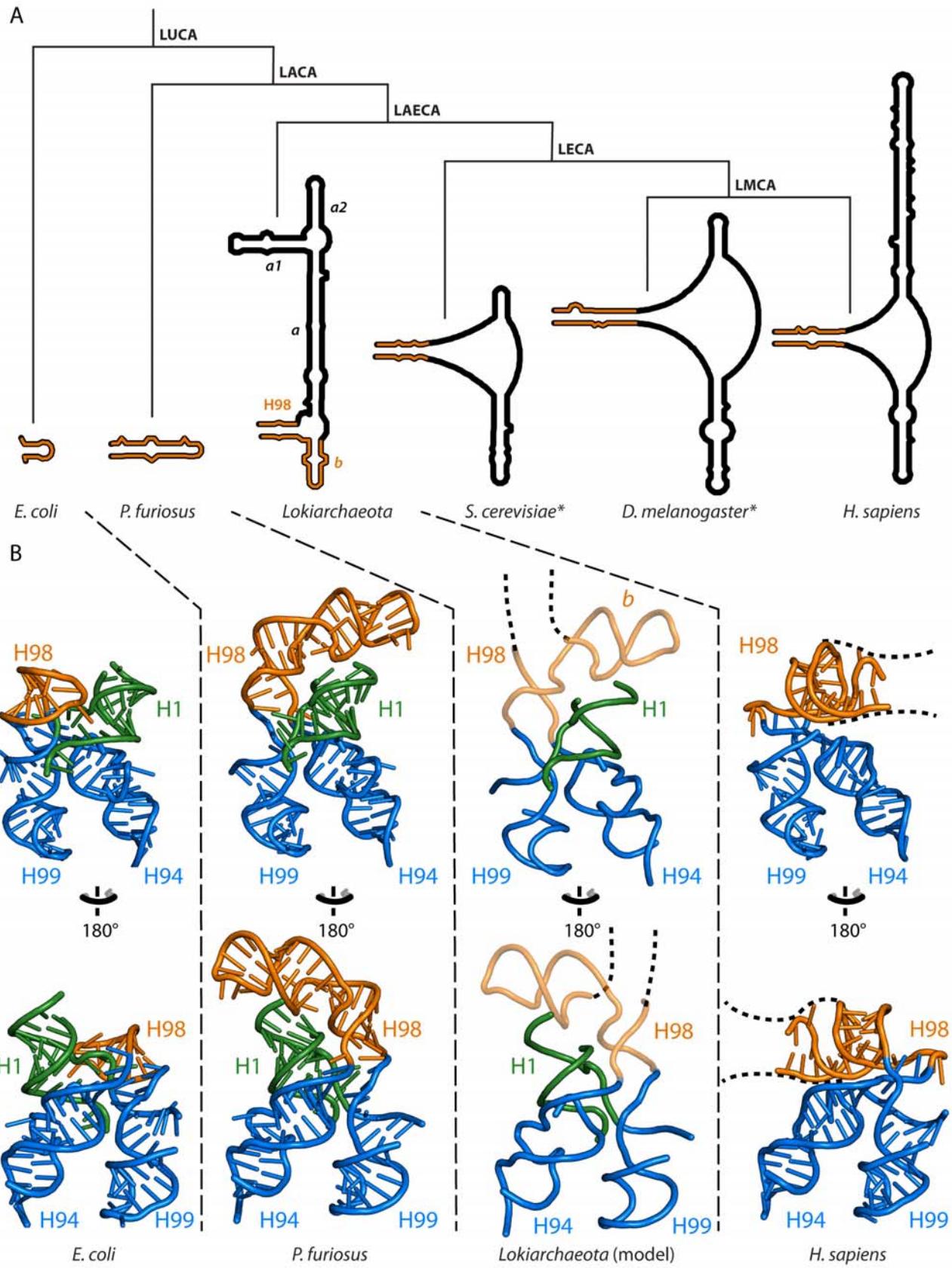
476 **Figure 4: Secondary structure model of *Lokiarchaeota* F3H4_B5 ES39.** The secondary structure of
477 ES39 spans nucleotide positions 3006-3196 of the F3H4_B5 LSU rRNA sequence. Canonical base-
478 pairing positions are indicated with black lines. Helices are annotated with colored labels: blue – H98,
479 purple – Helix *a*, pink – Helix *a1*, orange – Helix *a2*, gold – Helix *b*. Figure was generated with
480 RiboVision (Bernier, et al. 2014).

Figure 5: Secondary structure of *Lokiarchaeota* F3H4_B5 ES39 from experiment and computation.
 (A) 1-D topology map of base pairs. The primary sequence of ES39 is on the horizontal line, Arcs indicate base pairs. Each helix is a distinct color. (B) SHAPE reactivity for ES39 mapped onto the secondary structure. Darker color indicates less flexible (paired) rRNA. (C) Base pairing covariation within the Asgard superphylum mapped on the secondary structure. Darker color indicates covarying

481

482

483


484

485

486

487 (paired) rRNA across Asgard. Unpaired rRNA, for which no covariation data can be calculated, is gold.
488 (D) SHAPE reactivity and base-pairing conservation mapped onto the ES39 MSA of Asgard sequences.
489 *Lokiarchaeota* F3H4_B5 numbering was used. The secondary structure is indicated with colored arrows
490 bellow the alignment and as colored background. SHAPE reactivity is indicated with a bar graph above
491 the secondary structure annotation, colors of the bars are consistent with panel B. Base-pairing
492 conservation is indicated with a bar graph bellow the secondary structure annotation; colors of the bars
493 are consistent with panel C. Panel D was generated with Jalview (Waterhouse, et al. 2009). Helices are
494 labeled with colored text in each panel; blue, H98; violet, helix *a*; pink, helix *a1*; orange, helix *a2*; yellow,
495 helix *b*. Full sequence names and sequencing project identifiers are available in **supplementary dataset**
496 **S2**. Both SHAPE reactivity and covariation are normalized.

497

499 **Figure 6: Secondary and tertiary structures of ES39 mapped on the tree of life** (A) secondary structures of
500 *Escherichia coli* (Bacteria), *Pyrococcus furiosus* (Archaea), *Lokiarchaeota F3H4_B5* (Archaea), *Saccharomyces*
501 *cerevisiae* (Eukarya), *Drosophila melanogaster* (Eukarya), and *Homo sapiens* (Eukarya). Ancestral clades on the
502 phylogenetic tree are labeled as LUCA: last universal common ancestor; LACA: Last Archaeal Common Ancestor;
503 LAECA: Last Archaeal and Eukaryotic Common Ancestor; LECA: Last Eukaryotic Common Ancestor; LMCA:
504 Last Metazoan Common Ancestor. H98 is highlighted in orange. (B) Three dimensional structures of ES39 and its
505 neighborhood. H98 is orange, H1 is green, H94 and H99 are blue. The *P. furiosus* structure is used as model for the
506 *Lokiarchaeota* structure. Likely position and direction of the *Lokiarchaeota* ES39 continuation is indicated with a
507 black dashed line. Direction of eukaryotic ES39 continuation is indicated with a black dashed line. *3D structures
508 for *S. cerevisiae* and *D. melanogaster* are identical to *H. sapiens* in this region and are not shown.

509

510 **References:**

511 Agmon I, Bashan A, Zarivach R, Yonath A. 2005. Symmetry at the active site of the ribosome:
512 structural and functional implications. In: *Biological Chemistry*. p. 833.

513 Akıl C, Robinson RC. 2018. Genomes of Asgard archaea encode profilins that regulate actin.
514 *Nature* 562:439-443.

515 Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool.
516 *J Mol Biol.* 215:403-410.

517 Andrews S. 2012. FastQC: a quality control tool for high throughput sequence data. Available at
518 <https://www.bioinformatics.babraham.ac.uk/projects/fastqc/>.

519 Anger AM, Armache JP, Berninghausen O, Habeck M, Subklewe M, Wilson DN, Beckmann R.
520 2013. Structures of the human and *Drosophila* 80S ribosome. *Nature* 497:80-85.

521 Athavale SS, Gossett JJ, Hsiao C, Bowman JC, O'Neill E, Hershkovitz E, Preeprem T, Hud NV,
522 Wartell RM, Harvey SC, et al. 2012. Domain III of the *T. thermophilus* 23S rRNA folds
523 independently to a near-native state. *RNA* 18:752-758.

524 Bachellerie JP, Michot B. 1989. Evolution of large subunit rRNA structure. The 3' terminal
525 domain contains elements of secondary structure specific to major phylogenetic groups.
526 *Biochimie* 71:701-709.

527 Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko
528 SI, Pham S, Prjibelski AD, et al. 2012. SPAdes: a new genome assembly algorithm and its
529 applications to single-cell sequencing. *Journal of computational biology : a journal of*
530 *computational molecular cell biology* 19:455-477.

531 Ben-Shem A, Jenner L, Yusupova G, Yusupov M. 2010. Crystal structure of the eukaryotic
532 ribosome. *Science* 330:1203-1209.

533 Bernhart SH, Hofacker IL. 2009. From consensus structure prediction to RNA gene finding.
534 *Briefings in Functional Genomics* 8:461-471.

535 Bernier CR, Petrov AS, Kovacs NA, Penev PI, Williams LD. 2018. Translation: The Universal
536 Structural Core of Life. *Mol Biol Evol.* 35:2065-2076.

537 Bernier CR, Petrov AS, Waterbury CC, Jett J, Li F, Freil LE, Xiong X, Wang L, Migliozzi BL,
538 Hershkovits E, et al. 2014. RiboVision suite for visualization and analysis of ribosomes. *Faraday*
539 *Discuss* 169:195-207.

540 Bokov K, Steinberg SV. 2009. A hierarchical model for evolution of 23S ribosomal RNA.
541 *Nature* 457:977-980.

542 Cai M, Liu Y, Zhou Z, Yang Y, Pan J, Gu J-D, Li M. 2018. Asgard archaea are diverse,
543 ubiquitous, and transcriptionally active microbes. *bioRxiv*:374165.

544 Cannone JJ, Subramanian S, Schnare MN, Collett JR, D'Souza LM, Du Y, Feng B, Lin N,
545 Madabusi LV, Muller KM, et al. 2002. The comparative RNA web (CRW) site: an online
546 database of comparative sequence and structure information for ribosomal, intron, and other
547 RNAs. *BMC Bioinformatics* 3:2.

548 Clark CG, Tague BW, Ware VC, Gerbi SA. 1984. *Xenopus laevis* 28S ribosomal RNA: a
549 secondary structure model and its evolutionary and functional implications. *Nucleic Acids Res.*
550 12:6197-6220.

551 Eme L, Spang A, Lombard J, Stairs CW, Ettema TJG. 2017. Archaea and the origin of
552 eukaryotes. *Nature Rev Microbiol.* 15:711-723.

553 Fournier GP, Gogarten JP. 2010. Rooting the Ribosomal Tree of Life. *Mol Biol Evol.* 27:1792-
554 1801.

555 Fournier GP, Poole AM. 2018. A Briefly Argued Case That Asgard Archaea Are Part of the
556 Eukaryote Tree. *Frontiers in Microbiology* 9.

557 Fox GE. 2010. Origin and evolution of the ribosome. *Cold Spring Harb Perspect Biol.*
558 2:a003483.

559 Gerbi S. 1996. Expansion segments: regions of variable size that interrupt the universal core
560 secondary structure of ribosomal RNA. *Ribosomal RNA structure, evolution, processing, and*
561 *function in protein biosynthesis* 71:87.

562 Gilbert SD, Rambo RP, Van Tyne D, Batey RT. 2008. Structure of the SAM-II riboswitch bound
563 to S-adenosylmethionine. *Nat Struct Mol Biol.* 15:177-182.

564 Gomez Ramos LM, Degtyareva NN, Kovacs NA, Holguin SY, Jiang L, Petrov AS, Biesiada M,
565 Hu MY, Purzycka KJ, Arya DP, et al. 2017. Eukaryotic Ribosomal Expansion Segments as
566 Antimicrobial Targets. *Biochemistry* 56:5288-5299.

567 Gonzalez IL, Gorski JL, Campen TJ, Dorney DJ, Erickson JM, Sylvester JE, Schmickel RD.
568 1985. Variation among human 28S ribosomal RNA genes. *Proc Natl Acad Sci USA.* 82:7666-
569 7670.

570 Gurevich A, Saveliev V, Vyahhi N, Tesler G. 2013. QUAST: quality assessment tool for genome
571 assemblies. *Bioinformatics* 29:1072-1075.

572 Gutell RR. 1992. Evolutionary Characteristics of 16S and 23S rRNA Structure. In: H. Hartman
573 KM, editor. *The Origin and Evolution of the Cell.* p. 243-309.

574 Gutell RR, Gray MW, Schnare MN. 1993. A compilation of large subunit (23S and 23S-like)
575 ribosomal RNA structures: 1993. *Nucleic Acids Res.* 21:3055-3074.

576 Gutell RR, Larsen N, Woese CR. 1994. Lessons from an evolving rRNA: 16S and 23S rRNA
577 structures from a comparative perspective. *Microbiological reviews* 58:10-26.

578 Hartman H, Fedorov A. 2002. The origin of the eukaryotic cell: a genomic investigation. Proc
579 Natl Acad Sci USA. 99:1420-1425.

580 Hassouna N, Mithot B, Bachellerie J-P. 1984. The complete nucleotide sequence of mouse 28S
581 rRNA gene. Implications for the process of size increase of the large subunit rRNA In higher
582 eukaryotes. Nucleic Acids Res. 12:3563-3583.

583 Hillis DM, Dixon MT. 1991. Ribosomal DNA: Molecular Evolution and Phylogenetic Inference.
584 The Quarterly Review of Biology 66:411-453.

585 Hsiao C, Lenz TK, Peters JK, Fang P-Y, Schneider DM, Anderson EJ, Preeprem T, Bowman JC,
586 O'Neill EB, Lie L, et al. 2013. Molecular paleontology: a biochemical model of the ancestral
587 ribosome. Nucleic Acids Res. 41:3373-3385.

588 Huang H, Suslov NB, Li NS, Shelke SA, Evans ME, Koldobskaya Y, Rice PA, Piccirilli JA.
589 2014. A G-quadruplex-containing RNA activates fluorescence in a GFP-like fluorophore. Nat
590 Chem Biol. 10:686-691.

591 Hug LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ, Castelle CJ, Butterfield CN,
592 Hernsdorf AW, Amano Y, Ise K, et al. 2016. A new view of the tree of life. Nature Microbiology
593 1:16048.

594 Imachi H, Nobu MK, Nakahara N, Morono Y, Ogawara M, Takaki Y, Takano Y, Uematsu K,
595 Ikuta T, Ito M, et al. 2019. Isolation of an archaeon at the prokaryote-eukaryote interface.
596 bioRxiv:726976.

597 Katoh K, Standley DM. 2013. MAFFT Multiple Sequence Alignment Software Version 7:
598 Improvements in Performance and Usability. Mol Biol Evol. 30:772-780.

599 Khatter H, Myasnikov AG, Natchiar SK, Klaholz BP. 2015. Structure of the human 80S
600 ribosome. Nature 520:640.

601 Klinge S, Voigts-Hoffmann F, Leibundgut M, Arpagaus S, Ban N. 2011. Crystal Structure of the
602 Eukaryotic 60S Ribosomal Subunit in Complex with Initiation Factor 6. Science 334:941-948.

603 Klinger CM, Spang A, Dacks JB, Ettema TJG. 2016. Tracing the Archaeal Origins of Eukaryotic
604 Membrane-Trafficking System Building Blocks. Mol Biol Evol. 33:1528-1541.

605 Kovacs NA, Petrov AS, Lanier KA, Williams LD. 2017. Frozen in Time: The History of
606 Proteins. Mol Biol Evol. 34:1252-1260.

607 Lapeyre B, Michot B, Feliu J, Bachellerie J-P. 1993. Nucleotide sequence of the
608 Schizosaccharomyces pombe 25S ribosomal RNA and its phylogenetic implications. Nucleic
609 Acids Res. 21:3322-3322.

610 Lavender CA, Lorenz R, Zhang G, Tamayo R, Hofacker IL, Weeks KM. 2015. Model-Free RNA
611 Sequence and Structure Alignment Informed by SHAPE Probing Reveals a Conserved Alternate
612 Secondary Structure for 16S rRNA. PLoS Comp Biol. 11:e1004126-e1004126.

613 Leffers H, Kjems J, Østergaard L, Larsen N, Garrett RA. 1987. Evolutionary relationships
614 amongst archaebacteria: A comparative study of 23 S ribosomal RNAs of a sulphur-dependent
615 extreme thermophile, an extreme halophile and a thermophilic methanogen. *J Mol Biol.* 195:43-
616 61.

617 Lenz TK, Norris AM, Hud NV, Williams LD. 2017. Protein-free ribosomal RNA folds to a near-
618 native state in the presence of Mg²⁺. *RSC Advances* 7:54674-54681.

619 Leshin JA, Heselpoth R, Belew AT, Dinman J. 2011. High throughput structural analysis of
620 yeast ribosomes using hSHAPE. *RNA biology* 8:478-487.

621 Levitt M. 1969. Detailed molecular model for transfer ribonucleic acid. *Nature* 224:759-763.

622 Li Z, Guo Q, Zheng L, Ji Y, Xie Y-T, Lai D-H, Lun Z-R, Suo X, Gao N. 2017. Cryo-EM
623 structures of the 80S ribosomes from human parasites *Trichomonas vaginalis* and *Toxoplasma*
624 *gondii*. *Cell Res.* 27:1275-1288.

625 Martin M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads.
626 2011 17:3.

627 McCutcheon JP, Moran NA. 2011. Extreme genome reduction in symbiotic bacteria. *Nature Rev
628 Microbiol.* 10:13-26.

629 Melnikov S, Ben-Shem A, Garreau de Loubresse N, Jenner L, Yusupova G, Yusupov M. 2012.
630 One core, two shells: bacterial and eukaryotic ribosomes. *Nat Struct Mol Biol.* 19:560.

631 Melnikov S, Manakongtreeep K, Söll D. 2018. Revising the Structural Diversity of
632 Ribosomal Proteins Across the Three Domains of Life. *Mol Biol Evol.* 35:1588-1598.

633 Merino EJ, Wilkinson KA, Coughlan JL, Weeks KM. 2005. RNA structure analysis at single
634 nucleotide resolution by selective 2'-hydroxyl acylation and primer extension (SHAPE). *J Am
635 Chem Soc.* 127:4223-4231.

636 Mestre-Fos S, Penev PI, Richards JC, Dean WL, Gray RD, Chaires JB, Williams LD. 2019a.
637 Profusion of G-quadruplexes on both subunits of metazoan ribosomes. *PLoS One* 14:e0226177.

638 Mestre-Fos S, Penev PI, Suttipitugsakul S, Hu M, Ito C, Petrov AS, Wartell RM, Wu R,
639 Williams LD. 2019b. G-Quadruplexes in Human Ribosomal RNA. *J Mol Biol.* 431:1940-1955.

640 Michot B, Bachellerie JP. 1987. Comparisons of large subunit rRNAs reveal some eukaryote-
641 specific elements of secondary structure. *Biochimie* 69:11-23.

642 Moran NA. 2002. Microbial minimalism: genome reduction in bacterial pathogens. *Cell*
643 108:583-586.

644 Narrowe AB, Spang A, Stairs CW, Caceres EF, Baker BJ, Miller CS, Ettema TJG. 2018.
645 Complex Evolutionary History of Translation Elongation Factor 2 and Diphthamide Biosynthesis
646 in Archaea and Parabasalids. *Genome biology and evolution* 10:2380-2393.

647 Ninio J, Favre A, Yaniv M. 1969. Molecular model for transfer RNA. *Nature* 223:1333-1335.

648 Noller HF, Kop J, Wheaton V, Brosius J, Gutell RR, Kopylov AM, Dohme F, Herr W, Stahl DA,
649 Gupta R, et al. 1981. Secondary structure model for 23S ribosomal RNA. *Nucleic Acids Res.*
650 9:6167-6189.

651 Novikova IV, Hennelly SP, Sanbonmatsu KY. 2012. Structural architecture of the human long
652 non-coding RNA, steroid receptor RNA activator. *Nucleic Acids Res.* 40:5034-5051.

653 Olsen GJ, Woese CR. 1993. Ribosomal RNA: a key to phylogeny. *The FASEB Journal* 7:113-
654 123.

655 Petrov AS, Bernier CR, Gulen B, Waterbury CC, Hershkovits E, Hsiao C, Harvey SC, Hud NV,
656 Fox GE, Wartell RM, et al. 2014a. Secondary Structures of rRNAs from All Three Domains of
657 Life. *PLoS One* 9:e88222.

658 Petrov AS, Bernier CR, Hsiao C, Norris AM, Kovacs NA, Waterbury CC, Stepanov VG, Harvey
659 SC, Fox GE, Wartell RM, et al. 2014b. Evolution of the ribosome at atomic resolution. *Proc Natl
660 Acad Sci USA*. 111:10251-10256.

661 Petrov AS, Gulen B, Norris AM, Kovacs NA, Bernier CR, Lanier KA, Fox GE, Harvey SC,
662 Wartell RM, Hud NV, et al. 2015. History of the ribosome and the origin of translation. *Proc
663 Natl Acad Sci USA*. 112:15396-15401.

664 Petrov AS, Wood EC, Bernier CR, Norris AM, Brown A, Amunts A. 2019. Structural Patching
665 Fosters Divergence of Mitochondrial Ribosomes. *Mol Biol Evol.* 36:207-219.

666 Peyretailade E, Biderre C, Peyret P, Duffieux F, Méténier G, Gouy M, Michot B, Vivarès CP.
667 1998. Microsporidian *Encephalitozoon cuniculi*, a unicellular eukaryote with an unusual
668 chromosomal dispersion of ribosomal genes and a LSU rRNA reduced to the universal core.
669 *Nucleic Acids Res.* 26:3513-3520.

670 Schnare MN, Damberger SH, Gray MW, Gutell RR. 1996. Comprehensive Comparison of
671 Structural Characteristics in Eukaryotic Cytoplasmic Large Subunit (23 S-like) Ribosomal RNA.
672 *J Mol Biol.* 256:701-719.

673 Smith TF, Lee JC, Gutell RR, Hartman H. 2008. The origin and evolution of the ribosome.
674 *Biology Direct* 3:16.

675 Spang A, Saw JH, Jørgensen SL, Zaremba-Niedzwiedzka K, Martijn J, Lind AE, van Eijk R,
676 Schleper C, Guy L, Ettema TJ. 2015. Complex archaea that bridge the gap between prokaryotes
677 and eukaryotes. *Nature* 521:173-179.

678 Spang A, Stairs CW, Dombrowski N, Eme L, Lombard J, Caceres EF, Greening C, Baker BJ,
679 Ettema TJG. 2019. Proposal of the reverse flow model for the origin of the eukaryotic cell based
680 on comparative analyses of Asgard archaeal metabolism. *Nature Microbiology* 4:1138-1148.

681 Spitale RC, Crisalli P, Flynn RA, Torre EA, Kool ET, Chang HY. 2013. RNA SHAPE analysis
682 in living cells. *Nat Chem Biol.* 9:18-20.

683 Stoddard CD, Gilbert SD, Batey RT. 2008. Ligand-dependent folding of the three-way junction
684 in the purine riboswitch. *RNA* 14:675-684.

685 Tréhu AM, Bohrmann G, Rack FR, Torres ME, Richter C, Bangs NL, Barr SR, Borowski WS,
686 Claypool GE, Collett TS, et al. 2003. ODP Leg 204; gas hydrate distribution and dynamics
687 beneath southern Hydrate Ridge. *JOIDES Journal* 29:5.

688 Veldman GM, Klootwijk J, de Regt VC, Planta RJ, Branstat C, Krol A, Ebel JP. 1981. The
689 primary and secondary structure of yeast 26S rRNA. *Nucleic Acids Res.* 9:6935-6952.

690 Ware VC, Tague BW, Graham Clark C, Gourse RL, Brand RC, Gerbi SA. 1983. Sequence
691 analysis of 28S ribosomal DNA from the amphibian *Xenopus laevis*. *Nucleic Acids Res.*
692 11:7795-7817.

693 Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ. 2009. Jalview Version 2—a
694 multiple sequence alignment editor and analysis workbench. *Bioinformatics* 25:1189-1191.

695 Watts JM, Dang KK, Gorelick RJ, Leonard CW, Bess JW, Jr., Swanstrom R, Burch CL, Weeks
696 KM. 2009. Architecture and secondary structure of an entire HIV-1 RNA genome. *Nature*
697 460:711-716.

698 Wilkinson KA, Merino EJ, Weeks KM. 2005. RNA SHAPE Chemistry Reveals Nonhierarchical
699 Interactions Dominate Equilibrium Structural Transitions in tRNAAsp Transcripts. *J Am Chem
700 Soc.* 127:4659-4667.

701 Wilkinson KA, Merino EJ, Weeks KM. 2006. Selective 2'-hydroxyl acylation analyzed by
702 primer extension (SHAPE): quantitative RNA structure analysis at single nucleotide resolution.
703 *Nat Protoc.* 1:1610-1616.

704 Williams TA, Cox CJ, Foster PG, Szöllösi GJ, Embley TM. 2020. Phylogenomics provides
705 robust support for a two-domains tree of life. *Nat Ecol Evol.* 4:138-147.

706 Woese CR, Fox GE. 1977. Phylogenetic structure of the prokaryotic domain: the primary
707 kingdoms. *Proc Natl Acad Sci USA.* 74:5088-5090.

708 Woese CR, Magrum LJ, Gupta R, Siegel RB, Stahl DA, Kop J, Crawford N, Brosius J, Gutell R,
709 Hogan JJ, et al. 1980. Secondary structure model for bacterial 16S ribosomal RNA:
710 phylogenetic, enzymatic and chemical evidence. *Nucleic Acids Res.* 8:2275-2293.

711 Yergeau E, Maynard C, Sanschagrin S, Champagne J, Juck D, Lee K, Greer CW. 2015.
712 Microbial community composition, functions and activities in the Gulf of Mexico, one year after
713 the Deepwater Horizon accident. *Appl Environ Microbiol.* 81:5855-5866.

714 Zaremba-Niedzwiedzka K, Caceres EF, Saw JH, Bäckström D, Juzokaite L, Vancaester E, Seitz
715 KW, Anantharaman K, Starnawski P, Kjeldsen KU, et al. 2017. Asgard archaea illuminate the
716 origin of eukaryotic cellular complexity. *Nature* 541:353.

717 Zuker M. 2003. Mfold web server for nucleic acid folding and hybridization prediction. *Nucleic
718 Acids Res.* 31:3406-3415.

719