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Abstract

The ribosome’s common core connects all life back to a common ancestor and serves as a
window to relationships among organisms. In eukaryotes, the common core contains expansion
segments (ES’s) that vastly increase ribosomal RNA size. Supersized ES’s have not been
observed previously in Bacteria or Archaea, and the origin of eukaryotic ES’s remains enigmatic.
We discovered that the large subunit rRNA of Lokiarchaeota, the closest modern cell lineage to
the last common ancestor of Archaea and Eukarya, bridges the gap in size between prokaryotic
and eukaryotic rRNA. The long large subunit rRNA in Lokiarchaeota is largely due to the
presence of two eukaryotic-like, supersized ES’s, ES9 and ES39, which are transcribed in situ.
We applied computational models, covariation analysis, and chemical footprinting experiments
to study the structure and evolution of Lokiarchaeota ES9 and ES39. We also defined the
eukaryotic ES39 fold for comparison. We found that Lokiarchaeota and eukaryotic ES’s are
structurally distinct: Lokiarchaeota ES39 has more and longer helices than the eukaryotic ES39
fold. Despite their structural differences, we found that Lokiarchaeota and eukaryotic ES’s
originated from a common ancestor that was “primed” for evolution of larger and more complex

rRNAs than those found in Bacteria and other archaea.
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Introduction

The ribosome connects all life on Earth back to the Last Universal Common Ancestor (LUCA)
(Woese and Fox 1977). The small ribosomal subunit (SSU) decodes mRNA and the large
ribosomal subunit (LSU) links amino acids together to produce coded protein. Both subunits are
made of ribosomal RNA (rRNA) and ribosomal protein (rProtein). All cytoplasmic ribosomes
contain a structurally conserved universal common core, comprised of 2800 nucleotides and 28
rProteins, and including the peptidyl transferase center (PTC) in the LSU and the decoding
center (DCC) in the SSU (Melnikov, et al. 2012; Bernier, et al. 2018). The rRNA of the common
core is a reasonable approximation of the rRNA in LUCA and is most similar to rRNA of extant
bacteria (Melnikov, et al. 2012; Petrov, et al. 2014b; Bernier, et al. 2018).

In Eukarya, the rRNA of the common core is elaborated by expansion segments (ES’s,
Fig. 1) (Veldman, et al. 1981; Clark, et al. 1984; Hassouna, et al. 1984; Gonzalez, et al. 1985;
Michot and Bachellerie 1987; Bachellerie and Michot 1989; Gutell 1992; Lapeyre, et al. 1993;
Gerbi 1996; Schnare, et al. 1996). ES’s emerge from a small number of conserved sites on the
common core and are excluded from regions of essential ribosomal function such as the DCC,
the PTC and the subunit interface (Ben-Shem, et al. 2010; Anger, et al. 2013). Expansion
segments are larger and more numerous on the LSU than on the SSU; across phylogeny, size
variation of the SSU rRNA is around 10% that of LSU rRNA (Gutell 1992; Gerbi 1996; Bernier,

et al. 2018). Metazoan rRNAs contain supersized ES’s of hundreds of nucleotides (nts).

The recent discovery and characterization of the Asgard archaeal superphylum suggests
that the last archaeal and eukaryotic common ancestor (LAECA) contained key components of
eukaryotic cellular systems (Spang, et al. 2015; Klinger, et al. 2016; Eme, et al. 2017; Zaremba-
Niedzwiedzka, et al. 2017; Narrowe, et al. 2018; Spang, et al. 2019). Eukaryotic signature
proteins (ESPs) found in Asgard archaea are involved in cytoskeleton, trafficking, ubiquitination,
and translation. Asgard archaea also contain several homologs of eukaryotic ribosomal proteins
(Hartman and Fedorov 2002; Spang, et al. 2015; Zaremba-Niedzwiedzka, et al. 2017 ). Before
our work here, it was not known if Asgard rRNAs could contain eukaryotic-like features such as
supersized ES’s. Eukaryotic-like, supersized ES’s have not been observed previously in Bacteria
or Archaea and were considered unique to eukaryotes (Ware, et al. 1983; Clark, et al. 1984;
Hassouna, et al. 1984; Gerbi 1996; Melnikov, et al. 2012).
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Here, we apply computation and experiment to study the structure and evolution of
Asgard rRNA. We find that LSU rRNA of the Asgard phylum, Lokiarchaeota, contains an
archaeal common core and supersized eukaryotic-like ES’s. No es’s were found in SSU rRNA of
Lokiarchaeota.In size and complexity, Lokiarchaeota LSU ES’s exceed those of protists rRNAs
and rival those of metazoan rRNAs. Our data suggests that the large ES’s of Lokiarchaeota and
Eukarya can be traced back to a common ancestor.

Results

Comparative analysis reveals broad patterns of LSU rRNA size relationships. Previously,
we developed the SEREB MSA (Sparse and Efficient Representation of Extant Biology,
Multiple Sequence Alignment) as a tool for comparative analysis of rRNA and rProtein
sequences (Bernier, et al. 2018). The SEREB MSA is a structure-informed alignment of a sparse
and unbiased group of sequences including all major phyla. The MSA was manually curated and
extensively cross-validated. The SEREB MSA is useful as a seed to study a variety of
evolutionary phenomena. Previously, we augmented the SEREB MSA to include additional
metazoan sequences, allowing us to characterize ES’s and their evolution in metazoans (Mestre-
Fos, et al. 2019a; Mestre-Fos, et al. 2019b). Here, we augmented the SEREB MSA to include 21
sequences from the Asgard superphylum (supplementary datasets S1,2).

The SEREB MSA indicates that size relationships of LSU rRNAs follow the general
pattern: Bacteria (2725-2960 nts, n=61 [n is humber of species]) < Archaea (2886 to 3094 nts,
n=48, excludes Lokiarchaeota) < Eukarya (3300-5200 nts, n=30; Fig. 2). Archaeal rRNAs
frequently contain micro-expansion segments (u-ES’s; stem loops of less than 20 nts) at
positions of eukaryotic ES’s. Archaeal LSU rRNAs commonly contain u-ES’s at the sites of
attachment of ES9 and ES39 in eukaryotes. For example, in the archaeon P. furiosus, u-ES9 is
33 nts and p-ES39 is 45 nts (Fig. 1C, supplementary figure S2). The archaeon Haloarcula
marismortui contains pu-ES9 but lacks u-ES39 (not shown).

Lokiarchaeota bridge Eukarya and Archaea in LSU rRNA size. The Asgard
augmentation of the SEREB MSA reveals unexpectedly large Lokiarchaeota LSU rRNAs.
Lokiarchaeota LSU rRNAs range from 3100 to 3300 nts (n=7). Lokiarchaeota rRNAs are close
to or within the observed size range of eukaryotic LSU rRNAs (Fig. 2). The Asgard-augmented
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88 SEREB MSA reveals supersized ES’s in Lokiarchaeota spp. These supersized ES’s attach to the
89 universal common core rRNA at the sites of attachment of eukaryotic ES9 and ES39 and
90 archaeal u-ES9 and u-ES39 (Fig. 1). Here we explored the Asgard augmentation of the SEREB
91 MSA to investigate the structure, distribution, and evolution of rRNA expansions of Asgard
92 archaea.ES9 and ES39 in some Lokiarchaeota are larger than n-ES's of other archaea and
93 ES'sof protists. The MSA shows that ES39 in Lokiarchaeota ranges in size from 95 to 200 nts,
94 compared to 138 nts in Saccharomyces cerevisiae, 178 nts in Drosophila melanogaster, and 231
95 nts in Homo sapiens (Fig. 3). For Candidatus Lokiarchaeota archaeon 1244-F3-H4-B5
96 (Lokiarchaeota F3H4_BS5), the primary focus of our work here, ES39 is 191 nts (Figs. 3, 4). ES9
97 in Lokiarchaeota ranges from 29 to 103 nts, and in some species is larger than any known
98 eukaryotic ES9 except the ES9 Guillardia theta (29 nts in S cerevisae, 44 nts in D.
99 melanogaster, 44 nts in H. sapiens, and 111 nts in G. theta; supplementary figure S2). ES9 is
100 86 nts in Lokiarchaeota F3H4_B5 (supplementary figure S2). ES9 and ES39 contribute to the
101 large size of Lokiarchaeota LSU rRNAs compared to the LSU rRNAs of other archaea. Outside
102 of Lokiarchaeota, archaea lack supersized ES’s. Some Lokiarchaeota also lack supersized ES’s.
103 Lokiarchaeota L SU rRNA contain the common core. We have determined the extent
104 of structural similarity of Lokiarchaeota LSU rRNAs with those of various eukaryotes. We
105 combined computational and experimental methods to characterize the LSU rRNA secondary
106 structure of Lokiarchaeota F3H4 B5 (Fig. 1E; supplementary figure S1). Secondary and three-
107 dimensional structures are known for ribosomes of several eukaryotes and archaea, providing a
108 basis for modeling by homology. Like all other LSU rRNAs, Lokiarchaeota LSU rRNA contains
109 the rRNA common core, which is trivial to model because the backbone atoms of the common
110 core are highly conserved in all cytosolic ribosomes.
111 ES39 has a well-defined fold in eukaryotes. To determine similarities and differences
112 between ES39’s in various eukaryotes and archaea, we investigated the extent of conservation of
113 eukaryotic ES39 over phylogeny. We compared experimental three-dimensional structures of
114 rRNAs of species ranging from protists to primates (Ben-Shem, et al. 2010; Klinge, et al. 2011,
115 Khatter, et al. 2015; Li, et al. 2017). The ES39 fold consists of H98 (20-30 nts), helix b (40-50
116 nts), and the linkage of H98 and helix b by three unpaired segments of rRNA, which are each
117 around 15 nts in length (Fig. 6; supplementary figure S3). The ES39 fold is conserved in
118 structure but not in sequence.
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119 The ES39 fold has complex evolutionary history. In general, ES’s have increased in
120 size over evolutionary history via accretion. Growth by addition of one rRNA helix to another is
121 commonly marked an insertion fingerprint (Petrov, et al. 2014b; Petrov, et al. 2015). Eukaryotic
122 ES39 lacks insertion fingerprints. Instead, the ES39 fold has three long non-duplex rRNA strands
123 at its base that are tightly associated with the ribosomal surface. These unpaired regions are
124 unique to eukaryotic ES39 and do not appear in archaeal ES39. Two of the unpaired regions
125 interact with eukaryotic-specific helical extensions on rProteins uL13 and eL14 (supplementary
126 figure $4) and the third one interacts with ES7 and rProtein aL.33 (supplementary figures S3,
127 S5, S6) (Khatter, et al. 2015). These eukaryotic-specific unpaired regions indicate a complex
128 evolutionary history in which changes in ES39 structure were coupled with changes in other
129 ribosomal components.

130 The ES39 fold is decorated by a variable length helix. Many, but not all, eukaryotes
131 possess a third helix (helix a) that extends from the ES39 fold (Fig. 6A). Helix a expands in size
132 from simple unicellular eukaryotes, such as Tetrahymena thermophila (no helix) and
133 Toxoplasma gondii (10 nts), to more complex eukaryotes such the fungus S. cerevisiae (18 nts)
134 and the insect Drosophila melanogaster (20 nts). Helix a is largest in the eukaryotic phylum
135 Chordata (106 nts for H. sapiens; supplementary figure S3).

136 Initial Lokiarchaeota ES39 secondary modelswer e predicted by two methods. One
137 preliminary secondary structural model of ES39 of Lokiarchaeota F3H4_B5 was generated using
138 mfold (Zuker 2003) (Fig. 4). Mfold predicts a minimum free energy secondary structures using
139 experimental nearest-neighbor parameters. We selected the mfold model with lowest free energy
140 for further studies. A second model forced Lokiarchaeota ES39 to conform to the H. sapiens
141 secondary structure. The mfold model was confirmed to be correct by covariation analysis and
142 SHAPE reactivity data, below.

143 Covariation supports the mfold model for secondary structure of ES39 of
144 Lokiarchaeota F3H4 B5. Covariation, or cooperative changes of base-paired nucleotides across
145 phylogeny, can help reveal RNA secondary structure (Levitt 1969; Ninio, et al. 1969; Woese, et
146 al. 1980; Noller, et al. 1981; Gutell, et al. 1993; Gutell, et al. 1994). Base-pairs can be detected
147 through covariation analysis. We calculated base-pairing conservation predicted by helical
148 regions of both the mfold model and the H. sapiens homology model using available sequence
149 data. Helical regions of the Lokiarchaeota ES39 secondary structural model predicted by mfold
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150 show covarying nucleotides (Fig. 5D), with conservation of base-pairing (Fig. 5C). The
151 observation of these covarying nucleotides supports the model determined by mfold.

152 Chemical footprinting confirms the mfold model for secondary structure of ES39 of
153 Lokiarchaeota F3H4 B5. We further tested the secondary structural model of Lokiarchaeota
154 F3H4_B5 ES39 using Selective 2° Hydroxyl Acylation analyzed by Primer Extension (SHAPE).
155 This experimental method provides data on RNA flexibility at the nucleotide level (Merino, et al.
156 2005; Wilkinson, et al. 2006). SHAPE reactivity is generally high in unpaired RNA, which is
157 more flexible, and low in paired RNA, which is less flexible. SHAPE has been widely used to
158 probe rRNA (Leshin, et al. 2011; Lavender, et al. 2015; Gomez Ramos, et al. 2017; Lenz, et al.
159 2017) and other RNAs (Wilkinson, et al. 2005; Gilbert, et al. 2008; Stoddard, et al. 2008; Watts,
160 et al. 2009; Novikova, et al. 2012; Spitale, et al. 2013; Huang, et al. 2014). The SHAPE results
161 from Lokiarchaeota F3H4 B5 ES39 rRNA (supplementary figure S7) are in agreement with
162 the secondary structure based on co-variation and mfold. Reactivity is low for paired nucleotides
163 and is high in loops and bulges (Fig. 5B). The resolution and accuracy of the SHAPE data are
164 supported by observation of relatively high reactivity at the vast majority of unpaired nucleotides
165 and low reactivity for most paired nucleotides of the Lokiarchaeota ES39 secondary structure.
166 The Lokiarchaeota SHAPE data are not consistent with models that force Lokiarchaeota ES39 to
167 conform to the H. sapiens secondary structure.

168 Lokiarchaeota and Asgard ES39 deviate from the eukaryotic ES39 fold. The
169 eukaryotic ES39 junction of helices H98, a, and b contains significant extent of unpaired
170 nucleotides; it consists of three 15-nt unpaired regions. By contrast, ES39 in Lokiarchaeota
171 F3H4_B5 contains more paired nucleotides than in eukaryotes and lacks unpaired regions greater
172 than 8 nts (Figs. 1E, 4). Lokiarchaeota F3H4_B5 ES39 is composed of four short helical regions
173 (H98, a1, a2, b; each up to 38 nts) and one long helical region (helix a: 72 nts). H98 and helix b
174 connect in a three-way junction with helix a at the base of ES39. Helices al and a2 split helix a
175 at the top of ES39 in a three-way junction.

176 We modeled and visualized (Cannone, et al. 2002) secondary structures of ES39
177 sequences from additional Asgard species (supplementary figure S8). None of these modeled
178 structures exhibited long unpaired regions. ES39 of all modelled Asgard archaea contain a three-
179 way junction that connects helices H98, a and b. This three-way junction is similar to the one
180 seen in Lokiarchaeota F3H4 B5 (Fig. 4). Additionally, some members of Asgard archaea
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181 revealed an additional branching of helix a into al and a2 mirroring the morphology of ES39 in
182 Lokiarchaeota F3H4 B5. Despite the common branching morphology, the length of the
183 individual helices substantially varies between different species (Fig. 5D).

184 Supersized ES's of Lokiarchaeota are transcribed in stu. To assess whether
185 Lokiarchaeota ES’s are transcribed, we assembled metatranscriptomic reads from sediment from
186 the Gulf of Mexico (Yergeau, et al. 2015; Cai, et al. 2018). We found multiple transcripts from
187 Lokiarchaeota-like LSU ribosomes that contain ES9 and ES39 sequences, confirming that
188 Lokiarchaeota ES’s are indeed transcribed in situ (Fig. 5D; supplementary dataset
189 S2).Discussion

190 The recent discovery of the archaeal Lokiarchaeota phylum, which contain multitudes of ESPs,
191 has redefined our understanding of eukaryotic evolutionary history (Spang, et al. 2015; Zaremba-
192 Niedzwiedzka, et al. 2017). The incorporation of Lokiarchaeota sequences into phylogenies has
193 brought Archaea and Eukarya close together in the tree of life (Hug, et al. 2016; Fournier and
194 Poole 2018). Here, we extend the molecular comparison by identifying commonalities of rRNA
195 of Eukarya and Lokiarchaeota.

196 Lokiarchaeota rRNA has unique eukaryotic-like features. The ribosome has been
197 extensively studied as both an evolving system (Agmon, et al. 2005; Smith, et al. 2008; Bokov
198 and Steinberg 2009; Fox 2010; Petrov, et al. 2015; Melnikov, et al. 2018) and as a window to
199 relationships among organisms (Woese and Fox 1977; Hillis and Dixon 1991; Olsen and Woese
200 1993; Fournier and Gogarten 2010; Hug, et al. 2016). Previous work revealed robust patterns
201 that govern ribosomal variation over phylogeny (Hassouna, et al. 1984; Gerbi 1996; Melnikov, et
202 al. 2012) and suggest mechanisms of ribosomal change over evolution (Petrov, et al. 2014b;
203 Petrov, et al. 2015; Kovacs, et al. 2017; Melnikov, et al. 2018). Here, we extend structure-based
204 methods of comparative analysis to Lokiarchaeota rRNA and demonstrate its distinctive
205 eukaryotic-like features. We provide mechanistic models for the evolution of common rRNA
206 features of eukaryotes and Lokiarchaeota.

207 We assessed the extent to which Lokiarchaeota ribosomes follow or deviate from
208 previously established patterns of ribosomal structure. We found that Lokiarchaeota ribosomes
209 follow several established patterns.

210 Lokiarchaeota ribosomes:
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211 e contain the universal common core of rRNA and rProteins (this work) (Spang, et al.
212 2015),

213 o confine rRNA diversity of structure and size to ES’s/u-ES’s (this work),

214 e restrict ES’s to universally conserved sites on the common core (Ware, et al. 1983;
215 Clark, et al. 1984; Hassouna, et al. 1984; Michot and Bachellerie 1987; Bachellerie and
216 Michot 1989; Lapeyre, et al. 1993; Gerbi 1996),

217 e avoid ES attachment from the ribosomal interior or near functional centers (Ben-Shem,
218 et al. 2010; Anger, et al. 2013), and

219 e concentrate diversity in structure and size on LSU rRNA, not SSU rRNA (Gerbi 1996;
220 Bernier, et al. 2018).

221 Lokiarchaeota ribosomes deviate from several previous patterns of variation of ribosome
222 structure over phylogeny. Lokiarchaeota LSU rRNAs are larger than their place on the archaeal
223 domain of the tree of life would predict. Excluding Lokiarchaeota, rRNA length increases in the
224 order: Bacteria < Archaea « protists <« metazoans (Melnikov, et al. 2012; Petrov, et al. 2014b;
225 Bernier, et al. 2018). Lokiarchaeota rRNA is eukaryotic-like in length, eclipsing the rRNA of
226 many protists. Lokiarchaeota ES39 is larger than ES39 in protists and some metazoans. ES9 of
227 Lokiarchaeota is larger than ES9 of any system except Guillardia theta. Both ES9 and ES39 of
228 Lokiarchaeota are larger than ES9 and ES39 of any other archaeal phylum known to date.

229 Lokiarchaeota ES39 is located within an archaeal structural environment in the
230 ribosome. ES39 in Eukarya protrudes from helices 94 and 99 of the ribosomal common core
231 (Fig. 6B). In three dimensions, ES39 is close to ES7 and rProteins uL13, eL14, and alL33
232 (supplementary figures S3, $4, S5). These elements in Lokiarchaeota are more similar to
233 Archaea than to Eukarya. Additionally, Lokiarchaeota, like all Archaea, contain helix 1 (H1),
234 which is in direct contact with H98 at the base of ES39, whereas eukaryotes lack H1 (Fig 4B).
235 Combined with the eukaryotic-like size of Lokiarchaeota ES39, these characteristics predict that
236 Lokiarchaeota ribosomes have a unique structure in this region.

237 The pathway of ES39 evolution isunique. The ribosome has grown in size by a process
238 of accretion (Petrov, et al. 2014b). Basal structure is preserved when new rRNA is acquired. For
239 instance, ES7 shows continuous growth over phylogeny, expanding from LUCA to Archaea to
240 protists to metazoans to mammals (Petrov, et al. 2014b; Bernier, et al. 2018). The accretion
241 model predicts that H98, at the base of ES39, would superimpose in Bacteria, Archaea, and
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242 Eukarya, but in fact H98 does not overlap in superimposed 3D structures (Fig. 6B). The
243 archaeon P. furiosus has a slightly extended and bent H98 compared to the bacterium E. coli
244 (Fig. 6B). This spatial divergence is likely due to the difference in how E. coli H98 and P.
245 furiosus H98 interact with H1 of the LSU. E. coli H98 interacts within the H1 minor groove
246 through an A-minor interaction, while in P. furiosus H98 is positioned on top of H1 (Fig. 6B).
247 H1 is absent in eukaryotes (Fig. 1), allowing H98 to occupy the position of H1 (Fig. 6B).

248 LAECA likely had a large ES39. The observation of supersized ES39’s in species with
249 and without H1 suggests that ES39 growth is independent of the presence or absence of H1.
250 Whether LAECA had a large or small ES39 is difficult to ascertain because the Asgard
251 superphylum shows wide size variability in ES39 (Fig. 3). However, the accretion model
252 suggests that LAECA contained a large ES39, which fulfilled a patching role upon the loss of
253 H1. In this model, ES39 was remodeled upon loss of H1. ES39 underwent strand dissociation in
254 Eukarya to fill the space left by the deletion of H1; this unpaired ES39 structure was further
255 stabilized by eukaryotic extensions of rProteins uL13 and eL14 (supplementary figure $4).
256 This pattern of structural patching has been observed in mitoribosomes (Petrov, et al. 2019). If
257 ES39 grew to its eukaryotic size after the loss of H1, one would not expect remodeling to form
258 the unpaired structure; ES39 would have gradually accreted helices like other parts of the
259 ribosome.

260 Lokiarchaeota ES39 may extend in a different direction than eukaryotic ES39.
261 Lokiarchaeota spp. have larger ES39 than other archaea (Fig. 3) and possess H1, unlike Eukarya
262 (Fig 4B). We predict that Lokiarchaeota ES39 has an archaeal-like interaction with H1 through
263 H98 and helix b (Fig. 6B). Lokiarchaeota helix a likely grows out from the three-way junction
264 between H98 and helix b, perpendicular to the eukaryotic helix a (Fig. 6B). While helix a of
265 eukaryotic ES39 is pointed in the direction of the sarcin-ricin loop, helix a of Lokiarchaeota is
266 likely pointed in the direction of the central protuberance or the exit tunnel.

267 Growth of Lokiarchaeota ES9 is unrestricted due to absence of ES15. To date, ES9 in
268 Lokiarchaeota is longer than ES9 in any organism except the alga Guillardia theta
269 (supplementary figure S2). In H. sapiens, ES9 forms a kissing-loop structure with ES15
270 (supplementary figure S6). ES15 is not present in Lokiarchaeota, which may permit
271 unrestricted growth of ES9.

10
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272 Lokiarchaeota have higher complexity of rRNA than other archaea, consistent with
273 higher Lokiarchaeota molecular complexity. Previously, we demonstrated that biological
274 complexity is correlated with LSU rRNA sizes (Petrov, et al. 2014b). Here, we found that
275 Lokiarchaeota spp. have ES39’s with lengths that eclipse many eukaryotes and are close to those
276 of Chordates, resulting in larger LSU rRNAs in Lokiarchaeota than other archaea. This size
277 pattern is consistent with the idea that LSU rRNA size tracks organismal complexity because
278 Lokiarchaeota have more complex cellular infrastructure than other archaea (Akil and Robinson
279 2018; Imachi, et al. 2019).

280 The specific roles of u-ES’s and ES’s over phylogeny are unknown but are likely
281 complex, polymorphic, and pleotropic. The observation of u-ES’s in Archaea, ES’s in Eukarya,
282 and supersized ES’s in Lokiarchaeota suggest that (i) the roots of ribosomal complexity are
283 inextricably intertwined with the roots of Eukarya, and (ii) the roots of Eukarya penetrate more
284 deeply into the archaeal domain than previously recognized, conclusions that are consistent with
285 recent phylogenetic results that root Eukarya within the archaeal branch (Williams, et al. 2020).
286

287 Conclusions

288 Lokiarchaeota ribosomes contain supersized ES39’s with structures that are distinct from
289 eukaryotic ES39’s. Lokiarchaeota ES9’s are larger than eukaryotic ES9’s. To date,
290 Lokiarchaeota is the only prokaryotic phylum with supersized ES’s, bringing the size range of
291 archaeal LSU close to those of eukarya. Lokiarchaeota ES39 likely grows outward from the
292 ribosomal surface in a different direction than eukaryotic ES39’s. Our findings raise the
293 possibility that eukaryotic-sized ES’s existed on the ribosomal surface before LECA, suggesting
294 that ribosomal complexity is more deeply rooted than previously known.
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295 Materialsand Methods

296

297 Genome sequencing, assembly, and binning

298 Sample collection. Sediments were cored from deep seafloor sediment at ODP site 1244
299 (44°35.1784°N; 125°7.1902"W; 895 m water depth) on the eastern flank of Hydrate Ridge ~3 km
300 northeast of the southern summit on ODP Leg 204 in 2002 (Tréhu, et al. 2003) and stored at -
301 80°C at the IODP Gulf Coast Repository.

302 DNA extraction. DNA was extracted from sediment from F3-H4 (18.10 meters below
303 the seafloor) using a MO-BIO PowerSoil total RNA Isolation Kit with the DNA Elution

304 Accessory Kit, following the manufacturer protocol without beads. Approximately 2 grams of
305 sediments were used for the extraction from six extractions (12 g total) and DNA pellets from the
306 two replicates from each depth were pooled together. DNA concentrations were measured using
307 a Qubit 2.0 fluorometer with dsDNA High Sensitivity reagents (Invitrogen, Grand Island, N,
308 USA). DNA yield was 7.5 ng per gram of sediment.

309 Multiple displacement amplification, library preparation, and sequencing. Genomic
310 DNA was amplified using a REPLI-g Single Cell Kit (Qiagen, Germantown, MD, USA) using
311 UV-treated sterile plasticware and reverse transcription-PCR grade water (Ambion, Grand

312 Island, NY, USA). Quantitative PCR showed that the negative control began amplifying after 5
313 hr of incubation at 30°C, and therefore, the 30°C incubation step was shortened to 5 hr using a
314 Bio-Rad C1000 Touch thermal cycler (Bio-Rad, Hercules, CA, USA). DNA concentrations were
315 measured by Qubit. Two micrograms of MDA-amplified DNA were used to generate genome
316 libraries using a TruSeq DNA PCR-Free Kit following the manufacturer’s protocol (Illumina,
317 San Diego, CA, USA). The resulting libraries were sequenced using a Rapid-Run on an Illumina
318 HiSeq 2500 to obtain 100 bp paired-end reads. Metagenomic sequences were deposited into

319 NCBI as accession numbers SAMNO07256342-07256348 (BioProject PRINA390944).

320 M etagenome assembly, binning, and annotation. Demultiplexed Illumina reads were
321 mapped to known adapters using Bowtie2 in local mode to remove any reads with adapter

322 contamination. Demultiplexed Illumina read pairs were quality trimmed with Trim Galore

323 (Martin 2011) using a base Phred33 score threshold of Q25 and a minimum length cutoff of 80
324 bp. Paired-end reads were then assembled into contigs using SPAdes assembler (Bankevich, et
325 al. 2012) with --meta option for assembling metagenomes, iterating over a range of k-mer values
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326 (21,27,33,37,43,47,51,55,61,65,71,75,81,85,91,95). Assemblies were assessed with reports

327 generated with QUAST (Gurevich, et al. 2013). Features on contigs were predicted through the
328 Prokka pipeline with RNAmmer for rRNA, Aragorn for tRNA, Infernal and Rfam for other non-
329 coding RNA and Prodigal for protein coding genes. Each genomic bin was searched manually
330 for 23S rRNA sequences. The Lokiarchaeota F3-H4-B5 bin (estimated 2.8% completeness and
331 0% contamination) was found to contain a 3300 nt 23S rRNA sequence. The Lokiarchaeota F3-
332 H4-B5 bin was deposited into NCBI as BioSample SAMN13223206 and GenBank genome

333 accession number WNEKO00000000.

334

335 Environmental 23SrRNA transcript assembly and analysis

336 Assembly. Publicly available environmental meta-transcriptomic reads were downloaded
337 from NCBI BioProject PRINA288120 (Yergeau, et al. 2015). Quality evaluation of the reads
338 was performed with FastQC (Andrews 2012) and trimming was done with TrimGalore (Martin
339 2011). Assembly of SRR5992925 was done using the SPADES (Bankevich, et al. 2012)

340 assembler with --meta and --rna options, to evaluate which performs better. Basic statistic

341 measures such as Nx, contig/transcript coverage and length were compared (Supplementary
342 Datasets S3, H4) yielding better results for the rnaspades assembler. All subsequent meta-

343 transcriptomic datasets were assembled with rnaspades.

344 I dentifying ribosomal RNA sequences. BLAST databases were constructed (Altschul,
345 et al. 1990) from the resulting contig files and they were queried for ribosomal regions

346 characteristic of the Asgardian clade (ES39/ES9 sequences from GC14_75). Additionally, the
347 program quast (Gurevich, et al. 2013) with --rna-finding option was used.

348 SEREB Multiple Sequence Alignment (M SA) augmentation. High scoring transcripts,
349 as well as genomic sequences with Asgard origin, were included in the SEREB MSA (Bernier, et
350 al. 2018) using the program mafft (Katoh and Standley 2013) with the --add option. Known

351 intronic regions (Cannone, et al. 2002) were removed from new sequences. The highly variable
352 region of ES39 was manually aligned using structural predictions from mfold (Zuker 2003).

353 L SU size comparison. The LSU size comparison was based on the transcribed gene for
354 the LSU, which is comprised of a single uninterrupted rRNA sequence for bacteria and archaea
355 (Fig. 1A,C,E), and is comprised of multiple concatenated rRNA sequences for the fragmented
356 eukaryotic rRNA gene (Fig. 1B,D,F). The 5S rRNA, which is essentially constant, is excluded
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357 from the size calculation. The comparison excludes rRNAs of endosymbionts and pathogens,
358 which tend to contain reduced genomes, metabolisms, and translation systems (Peyretaillade, et
359 al. 1998; Moran 2002; McCutcheon and Moran 2011).

360 Secondary structure models. To model the secondary structure of Candidatus

361 Lokiarchaeota archaeon 1244-F3-H4-B5 LSU rRNA, we used the secondary structure of P.

362 furiosus (Petrov, et al. 2014a) and a multiple sequence alignment (MSA) of archaeal LSU rRNAs
363 broadly sampled over the phylogeny (supplementary dataset S1). Locations of expansion

364 segments were unambiguously identified from the MSA. Due to the low percent identity (<50%)
365 (Bernhart and Hofacker 2009) we applied ab initio modelling for ES regions. The secondary
366 structures of the ES’s were predicted by mfold (Zuker 2003).

367 Covariation. To verify the secondary structures of the highly variable ES regions base-
368 pairing conservation was calculated with the program Jalview (Waterhouse, et al. 2009). Gaps
369 from the MSA were ignored in the calculation to produce comparable results about available
370 regions. The base-pairing model of secondary structures of ES9 (supplementary figure S9) and
371 ES39 (Fig. 4C,D) was generated in the Jalview annotation format and used for the base-pairing
372 conservation calculation.

373 Defining the eukaryotic ES39 fold. To identify the structurally invariant part of ES39 in
374 Eukaryotes, we used superimposition based on the common core within domain VI of the

375 ribosomal structures from 4 eukaryotes (Tetrahymena ther mophila, Toxoplasma gondii,

376 Saccharomyces cerevisiae, Homo sapiens; supplementary figure S3). Initially the Drosophila
377 melanogaster ribosomal structure (PDB ID: 4V6W) was used in identifying the core. However,
378 as it has additional loops elongating the unpaired regions, we excluded it from our analysis.

379 Drosophila melanogaster is known to have AU-enriched ES’s; therefore, it is not surprising that
380 it has perturbations in its ES39.

381

382 ES39 rRNA SHAPE analysis

383 Synthesis of Lokiarchaeota ES39 rRNA. pUC57 constructs containing T7 promoter and
384 the gene encoding Lokiarchaeota ES39 rRNA was linearized using HindlIlI restriction enzyme.
385 Lokiarchaeota ES39 rRNA was synthesized by in vitro transcription using HiScribe™ T7 High
386 Yield RNA Synthesis Kit; New England Biolabs. RNA was then precipitated in

387 ethanol/ammonium acetate and purified by G25 size exclusion chromatography
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388 (illustraTMNAPTM-10, GE Healthcare). RNA purity was assayed by denaturing gel

389 electrophoresis.

390 SHAPE reaction. Selective 2'-hydroxyl acylation analyzed by primer extension

391 (SHAPE; Wilkinson, et al. 2006) was performed to chemically probe local nucleotide flexibility
392 in ES39 rRNA. In vitro-transcribed ES39 rRNA was added to folding buffer (180mM NaOAc,
393 50mM Na-HEPES (pH 8.0) and 1 mM 1,2- diaminocyclohexanetetraacetic acid (DCTA))to

394 obtain 400nM RNA in total volume of 80 uL. RNA was annealed by cooling from 75 °C to

395 25 °C at 1 °C/min. RNA modification reaction was performed with final concentration of

396 100mM benzoyl cyanide (Sigma) prepared in dimethyl sulfoxide (DMSQO). Non-modified RNA
397 samples were incubated with DMSO. Reactions were carried out for 2 min at room temperature.
398 Modified RNAs and control sample were purified by precipitation in ethanol and ammonium
399 acetate at 20 °C for 2 hr. RNA samples were centrifuged at 4°C for 10 min. The RNA pellets
400 were washed out with 100 pL of 80% ethanol for two times and dried out using Speedvac. 22 uL
401 of TE buffer [LmM EDTA and 10mM Tris-Cl (pH 8.0)] were added into each samples and pellet
402 were resuspended.

403 Rever setranscription. Reverse transcription was conducted on 20 uL of modified RNAs
404 and unmodified RNA sample as a control, in presence of 8 pmol 5’[6-FAM] labeled primer (5’-
405 GAACCGGACCGAAGCCCG-3’), 2 mM DTT, 625 uM of each deoxynucleotidetriphosphate
406 (dNTP), and 5 pL of reverse transcription (RT) 5X first-strand buffer [250 mM Tris-HCI (pH
407 8.3), 375 mM KClI, 15 mM MgCl;]. To anneal the primer, samples were heated at 95°C for 30
408 secs, held at 65°C for 3 min, and then 4°C for 10 min. RT mixtures were incubated at 52°C for
409 2 min before addition of 1 uL(200 U) of Superscript I11 Reverse transcriptase (Invitrogen) and
410 reactions were incubated at 55°C for 2 hr. later, RT terminated by heating smaples at 70°C for 15
411 min. Chain termination sequencing reaction was performed on 10 pmol unmodified RNA

412 prepared in TE buffer, 8 pmol 5’[6-FAM] labeled primer, with a ratio of 1:1 dideoxynucleotide
413 (ddNTP) to dNTP. A sequencing reaction was performed with the same condition without

414 ddNTPs.

415 Capillary electrophoresisof RT reaction products and data analysis. Capillary

416 electrophoresis of RT reactions was performed as described previously (Hsiao, et al. 2013). For
417 each reaction 0.6 ul DNA size standard (Geneflo™ 625), 17.4 ul Hi-Di Formamide (Applied
418 Biosystems), and 2 ul of RT reaction mixture were loaded in a 96-well plate. Samples were
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419 heated at 95°C for 5 min before electrophoresis and the RT products were resolved using applied
420 biosystems. SHAPE data were processed using a Matlab scripts as described previously

421 (Athavale, et al. 2012). SHAPE profile was mapped onto ES39 rRNA secondary structure with
422 the RiboVision program (Bernier, et al. 2014).

423
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Figure 1. Secondary structures of the LSU rRNA from Bacteria, Archaea, and Eukarya. (A)
Escherichia coli (Bacteria), (B) Saccharomyces cerevisiae (fungus, Eukarya); (C) Pyrococcus furiosus
(Archaea); (D) Drosophila melanogaster (insect, Eukarya); (E) Lokiarchaeota F3H4_B5 (Archaea); (F)
Homo sapiens (primate, Eukarya). Secondary structures in panels A, B, C, D, and F are taken from
Petrov, et al. (2014a). Secondary structure in panel E is from this study. Universal rRNA common core is
shown in blue lines (not shaded). ES9 is shown with a green line. ES39 is shown with a magenta line. H1
and ES39 helices are labeled on Lokiarchaeota (panel E). ES’s and helices not present in the common
core are shaded in gray. Sizes of secondary structures are to scale. The numbering scheme of Noller, et al.
(1981) and Leffers, et al. (1987) were used to label the helices and ES’s.
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457 Figure 2. Length of L SU rRNA increases from Bacteria, to Archaea (excluding Asgard archaea), to
458 L okiarchaeota, to Eukarya. LSU rRNA lengths were obtained from the updated SEREB database.
459 Abbreviations: Ec, Escherichia coli; Pf, Pyrococcus furiosus, F3H4 B5, Lokiarchaeota F3H4 B5; GC14
460 75, Lokiarchaeota GC14_75; Th, Trypanosoma brucei; Sc, Saccharomyces cerevisiae; Dm, Drosophila
461 melanogaster; Hs, Homo sapiens.
462
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Figure 3: Distribution of ES39 lengths from the three domains of life, including Asgard archaea.
The number of nucleotides calculated between alignment positions 4891 and 5123 (H. sapiens
numbering) of the LSU alignment for each species (supplementary dataset S1). The box shows the
quartiles of the dataset. Whiskers extend to show the rest of the distribution, except for points that are
determined to be outliers using a function of the inter-quartile range. Bacteria sequences are gray,
Lokiarchaeota sequences are green, other Asgard sequences are blue, other archaeal sequences are purple,
eukaryotic sequences are red, sequences from metatranscriptomic contigs (supplementary dataset S2)
for which there is no species determination are black. Abbreviations: Ps. Prometheoarchaeum

syntrophicum; the rest are described in Figure 2.
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476 Figure 4: Secondary structure model of Lokiarchaeota F3H4 B5 ES39. The secondary structure of
477 ES39 spans nucleotide positions 3006-3196 of the F3H4_B5 LSU rRNA sequence. Canonical base-
478 pairing positions are indicated with black lines. Helices are annotated with colored labels: blue — H98,
479 purple — Helix a, pink — Helix al, orange — Helix a2, gold — Helix b. Figure was generated with
480 RiboVision (Bernier, et al. 2014).
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481
482 Figure 5: Secondary structure of Lokiarchaeota F3H4_B5 ES39 from experiment and computation.
483 (A) 1-D topology map of base pairs. The primary sequence of ES39 is on the horizontal line, Arcs
484 indicate base pairs. Each helix is a distinct color. (B) SHAPE reactivity for ES39 mapped onto the
485 secondary structure. Darker color indicates less flexible (paired) rRNA. (C) Base pairing covariation
486 within the Asgard superphylum mapped on the secondary structure. Darker color indicates covarying
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(paired) rRNA across Asgard. Unpaired rRNA, for which no covariation data can be calculated, is gold.
(D) SHAPE reactivity and base-pairing conservation mapped onto the ES39 MSA of Asgard sequences.
Lokiarchaeota F3H4_B5 numbering was used. The secondary structure is indicated with colored arrows
bellow the alignment and as colored background. SHAPE reactivity is indicated with a bar graph above
the secondary structure annotation, colors of the bars are consistent with panel B. Base-pairing
conservation is indicated with a bar graph bellow the secondary structure annotation; colors of the bars
are consistent with panel C. Panel D was generated with Jalview (Waterhouse, et al. 2009). Helices are
labeled with colored text in each panel; blue, H98; violet, helix a; pink, helix al; orange, helix a2; yellow,
helix b. Full sequence names and sequencing project identifiers are available in supplementary dataset

S2. Both SHAPE reactivity and covariation are normalized.
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Figure 6. Secondary and tertiary structures of ES39 mapped on the tree of life (A) secondary structures of
Escherichia coli (Bacteria), Pyrococcus furiosus (Archaea), Lokiarchaeota F3H4_B5 (Archaea), Saccharomyces
cerevisiae (Eukarya), Drosophila melanogaster (Eukarya), and Homo sapiens (Eukarya). Ancestral clades on the
phylogenetic tree are labeled as LUCA: last universal common ancestor; LACA: Last Archaeal Common Ancestor;
LAECA: Last Archaeal and Eukaryotic Common Ancestor; LECA: Last Eukaryotic Common Ancestor; LMCA:
Last Metazoan Common Ancestor. H98 is highlighted in orange. (B) Three dimensional structures of ES39 and its
neighborhood. H98 is orange, H1 is green, H94 and H99 are blue. The P. furiosus structure is used as model for the
Lokiarchaeota structure. Likely position and direction of the Lokiarchaeota ES39 continuation is indicated with a
black dashed line. Direction of eukaryotic ES39 continuation is indicated with a black dashed line. *3D structures

for S cerevisiae and D. melanogaster are identical to H. sapiens in this region and are not shown.
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