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ABSTRACT 
The Drosophila ventral nerve cord (VNC), the fly equivalent of the spinal cord, is composed of 
thousands of neurons that are born from a set of individually identifiable stem cells. The VNC 
harbors neuronal circuits required for the execution of vital behaviors, such as flying and 
walking.  Taking advantage of the lineage-based functional organization of the VNC and genetic 
tools we developed, we investigated the molecular and developmental basis of behavior by 
focusing on lineage-specific functions of the homeodomain transcription factor, Unc-4. We 
found that Unc-4 functions in lineage 11A to promote cholinergic neurotransmitter identity and 
suppress the GABA fate. In 7B lineage, Unc-4 promotes proper neuronal projections to the leg 
neuropil, the hub for leg-related neuronal circuits and a specific flight-related take-off behavior. 
We also uncovered that Unc-4 acts peripherally to promote the development of proprioceptive 
sense organs and the abilities of flies to execute specific leg-related behaviors such as walking, 
climbing, and grooming. Our findings, thus, initiates the work on revealing molecular and 
developmental events that shape the VNC related behaviors.      
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INTRODUCTION 
How does a complex nervous system arise during development? Millions to billions of neurons, 
each one essentially unique, precisely interconnect to create a functional central nervous system 
(CNS) that drives animal behavior (HERCULANO-HOUZEL 2009). Work over several decades 
shows that developmentally established layers of spatial and temporal organization underlie the 
genesis of a complex CNS. For example, during spinal cord development in vertebrates, different 
types of progenitor cells arise across the dorso-ventral axis and generate distinct neuronal 
lineages in a precise spatial and temporal order. The pMN progenitors are located in a narrow 
layer in the ventral spinal cord and generate all motor neurons (TSUCHIDA et al. 1994; PFAFF et 
al. 1996; BRISCOE et al. 2000). Similarly, twelve distinct pools of progenitors that arise in 
distinct dorso-ventral domains generate at least 22 distinct interneuronal lineages. Within each 
lineage, neurons appear to acquire similar identities: they express similar sets of transcription 
factors, use the same neurotransmitter, extend processes in a similar manner and participate in 
circuits executing a specific behavior (JESSELL 2000; ALAYNICK et al. 2011; LU et al. 2015).  
 
The adult Drosophila ventral nerve cord (VNC), like the vertebrate spinal cord, also manifests a 
lineage-based organization. The cellular complexity of the VNC arises from a set of segmentally 
repeated set of 30 paired and one unpaired neural stem cells (Neuroblasts [NBs]), which arise at 
stereotypic locations during early development (DOE 1992). These individually identifiable NBs 
undergo two major phases of proliferation: the embryonic phase generates the functional neurons 
of the larval CNS, some of which are remodeled to function in the adult, and the post-embryonic 
phase generates most of the adult neurons (TRUMAN AND BATE 1988; TRUMAN 1990; PROKOP 
AND TECHNAU 1991; BOSSING et al. 1996; SCHMID et al. 1999; CONSOULAS et al. 2002). The 
division mode within NB lineages adds another layer to the lineage-based organization of the 
VNC. Each NB generates a secondary precursor cell, which divides via Notch-mediated 
asymmetric cell division to generate two neurons with distinct identities (SPANA AND DOE 1996). 
After many rounds of such cell divisions, each NB ends up producing two distinct hemilineages 
of neurons, termed Notch-ON or the ‘A’ and Notch-OFF or the ‘B’ hemilineage. Within a 
hemilineage, neurons acquire similar fates based on transcription factor expression, 
neurotransmitter usage, and axonal projection (TRUMAN et al. 2010; LACIN et al. 2014; LACIN et 
al. 2019). Moreover, neurons of each hemilineage appear dedicated for specific behaviors. For 
example, artificial neuronal activation of the glutamatergic hemilineage 2A neurons elicit 
specifically high frequency wing beating, while the same treatment of the cholinergic 
hemilineage 7B neurons leads to a specific take-off behavior (HARRIS et al. 2015). Thus, 
hemilineages represent the fundamental developmental and functional unit of the VNC.  
 
We previously mapped the embryonic origin, axonal projection pattern, transcription factor 
expression, and neurotransmitter usage of essentially all hemilineages in the adult Drosophila 
VNC (TRUMAN et al. 2004; TRUMAN et al. 2010; LACIN et al. 2014; HARRIS et al. 2015; LACIN 
AND TRUMAN 2016; SHEPHERD et al. 2016; LACIN et al. 2019; SHEPHERD et al. 2019). Here, we 
leverage this information to elucidate how a specific transcription factor, Unc-4, acts within 
individual hemilineages during adult nervous system development to regulate neuronal 
connectivity and function, and animal behavior. Unc-4, an evolutionarily conserved 
transcriptional repressor, is expressed post-mitotically in seven of the 14 cholinergic 
hemilineages in the VNC: three ‘A’ -Notch-ON- hemilineages (11A, 12A, and 17A) and four ‘B’ 
-Notch-OFF- hemilineages (7B, 18B, 19B, and 23B) (MILLER et al. 1992; ROVESCALLI et al. 
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1996; LACIN et al. 2014; LACIN et al. 2019; NITTOLI et al. 2019). For four of the Unc-4 
hemilineages (7B, 17A, 18B, and 23B), the neurons of the sibling hemilineage undergo cell 
death (Truman et al., 2010).  For the remaining three (11A, 12A, and 19B), the neurons of the 
sibling hemilineage are GABAergic (LACIN et al. 2019). We generated a set of precise genetic 
tools that allowed us to uncover lineage-specific functions for Unc-4: in the 11A hemilineage, 
Unc-4 drives the cholinergic identity and suppresses the GABAergic fate; in the 7B hemilineage, 
Unc-4 promotes correct axonal projection patterns and the ability of flies to execute a 
stereotyped flight take-off behavior. We also find that Unc-4 is expressed in the precursors of 
chordotonal sensory neurons and required for the development of these sensory organs, with 
functional data indicating Unc-4 functions in this lineage to promote climbing, walking, and 
grooming activities. 
 
RESULTS 
In the absence of extant mutant alleles of unc-4 gene, we used CRISPR/Cas9 technology to 
engineer both null and conditional null alleles of unc-4 as well as GAL4 and split-GAL4 reporter 
lines of unc-4 in order to assess unc-4 function in the postembryonic CNS (Figure 1; see also 
methods). First, we generated the unc-4FRT fly line in which we inserted two Flippase Recognition 
Target (FRT) sites in the same orientation flanking the 2nd and 3rd unc-4 exons as well as an attP 
site immediately 5’ to the second exon. We used this parental unc-4FRT stock to generate all mutant 
lines and the GAL4/split GAL4 reporter lines. To generate the unc-4null mutant line, we used 
Flippase (FLP) to excise the 2nd and 3rd exons of unc-4 in the germline, generating an unc-4 allele 
that lacks the homeodomain (Figure 1A, B). Molecular analysis confirmed the presence of the 
expected deletion and immunostainings revealed no detectable protein expression in the unc-4null 

mutant (Figure 1C). 
 
To generate GAL4 and split GAL4 lines reporter lines of unc-4, we used Trojan-GAL4 system 
(DIAO et al. 2015) to insert three different GAL4 exons – GAL4, GAL4-AD, and GAL4-DBD into 
the attP site of the unc-4FRT line (DBD: DNA binding domain of GAL4; AD: activation domain of 
GAL4). When crossed to appropriate transgenes, each of these alleles faithfully recapitulated Unc-
4 expression in the VNC and brain in the larval and adult CNS (Figure 1D-F and not shown). Each 
of these lines is also a null allele of unc-4, as the Trojan exons truncate the Unc-4 protein after its 
first exon. This conclusion is confirmed by the absence of detectable levels of Unc-4 protein in 
larvae hemizygous for unc-4GAL4, unc-4AD, and unc-4DBD (not shown). Leveraging these 
transgenes, we tracked Unc-4 expression in the peripheral nervous system (PNS) and found that 
Unc-4 is expressed in all progenitors of leg chordotonal neurons (also called sensory organ 
precursors [SOPs]) and head sense organs in the larvae as well as many adult sensory neurons 
including chordotonal and bristle sensory neurons in the leg and Johnston’s organ and olfactory 
neurons in the antenna (Figure 1G-H; Figure 1 -Supplemental Figure 1).  
 
To determine if we can use the unc-4FRT line to ablate Unc-4 function in a lineage-specific manner, 
we used NB7-4 -GAL4 to drive UAS-linked FLP expression specifically in NB7-4 during 
embryonic stages in unc-4FRT homozygotes (LACIN AND TRUMAN 2016). NB7-4 gives rise to the 
Unc-4+ 23B neurons (LACIN et al. 2014). This manipulation resulted in loss of Unc-4 expression 
specifically in 23B neurons, but no other lineage (Figure 1I), highlighting the ability of our system 
to ablate Unc-4 function in a lineage specific manner.  
 

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 24, 2019. ; https://doi.org/10.1101/2019.12.24.887679doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.24.887679
http://creativecommons.org/licenses/by-nc-nd/4.0/


Loss of Unc-4 results in defined behavioral defects 
All loss of function unc-4 alleles we generated (null, AD, DBD, and GAL4) exhibited semi-
lethality in the hemizygous or homozygous state, with many pharate adults failing to eclose from 
the pupal case. Escaper unc-4 null flies emerged as adults with a frequency of 13% of the expected 
Mendelian rate. Adult unc-4 null mutant males were fertile, but females were infertile. 
Examination of unc-4 females revealed that they were impaired in egg laying and their ovaries 
were dramatically enlarged due to egg retention (not shown), a phenotype that may arise due to 
defective functioning of sensory neurons in the female reproductive tract, some of which express 
Unc-4 (Figure 1 -Supplemental Figure 1).  
 
unc-4 mutant adults also exhibited defects in VNC executed behaviors (Figure 2). All unc-4 mutant 
animals manifested erect wings, and none could fly or jump (Figure 2A, C, I; Video 1). unc-4 
mutant adults could walk but only in an uncoordinated manner as most failed a climbing assay 
(see methods) due to falling or being extremely slow (Figure 2G, I; Videos 2 and 3). unc-4 mutants 
also showed impaired grooming due to lack of coordination among legs, and they completely failed 
in executing three-leg rubbing (Figure 2E, I; Video 4), a characteristic behavior which requires 
coordination of three legs for cleaning  (PHILLIS et al. 1993). Most observed behavioral defects 
and semilethality were rescued by expressing wild-type unc-4 transgene in otherwise unc-4 mutant 
animals. unc-4DBD-tubAD driven unc-4 expression indeed rescued the observed behavioral defects 
as well as the semilethality (Figure 2B, D, F, H; Videos 2-6). These rescued animals, however, did 
not behave like wild type: they were still slow to take-off (Video 6) and still exhibited defects in 
three-leg rubbing (not shown). To ensure that all observed defects were the result of loss of Unc-
4 function, we introduced a BAC transgene that contains the unc-4 locus (VENKEN et al. 2010) 
into unc-4 mutant flies and observed essentially 100% rescue of all observed phenotypes (Figure 
2I; also compare Video 6 and 7). Our findings, thus, clearly show that Unc-4 function is required 
for take-off, flight, climbing and grooming behaviors.  
 
Unc-4 function is required during development  
Unc-4 is expressed in both the developing and adult nervous system. To determine if unc-4 related 
behavioral defects arise due to a role for Unc-4 during development or a later role for Unc-4 during 
adult life, we used the TARGET system (MCGUIRE et al. 2004) to remove Unc-4 function at 
different time points by controlling the timing of FLP expression. We removed Unc-4 function 
starting from the embryo or from late pupal stages and assessed the resulting flies after two weeks 
(see the methods) for the erect wing, three-leg rubbing and climbing phenotypes.  We observed 
that early embryonic removal of Unc-4 resulted in the same behavioral defects as seen in unc-4 
mutants, but its removal in late pupal stages yielded flies that behaved like wild-type (not shown). 
Unc-4, therefore, functions during development to regulate this suite of specific behaviors.  
 
Peripheral contributions to the unc-4 behavioral phenotypes 
Next, we wanted to determine whether Unc-4 functions within specific CNS or PNS lineages to 
control specific behaviors. We used two GAL4 driver lines in conjunction with our unc4FRT line 
to remove Unc-4 function in both the CNS and PNS or just the CNS. We used sca-GAL4 to 
remove Unc-4 function in both the CNS and PNS  (MLODZIK et al. 1990) and dpnEE- GAL4 to 
remove Unc-4 function only in the CNS (YANG et al. 2016) (Figure 3A-H). sca-GAL4 removed 
most Unc-4 expression from the CNS, all of Unc-4 expression from the progenitors of 
chordotonal sense organs, and also Unc-4 expression in epithelial cells of the leg disc (Figure 
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3B, F). dpnEE-GAL4 which is expressed specifically in CNS NBs (EMERY AND BIER 1995; YANG 
et al. 2016) removed most Unc-4 expression from the CNS but left Unc-4 expression in leg discs 
largely intact (Figure 3C, G). sca-GAL4 mediated knock-out of Unc-4 function led to the same 
behavioral defects observed in unc-4 mutant animals: all had erect wings, failed to fly, and 
showed grooming and climbing defects (Table 1; Video 8). By contrast, the dpnEE-GAL4 
mediated removal from the CNS gave a partial phenotype with the flies having erect wings, an 
inability to fly, and mild grooming defects (Table 1), but they performed well on the climbing 
assay scoring at the same level as controls (Table 1; Video 9). These results suggest that Unc-4 
related PNS deficits are responsible for the poor climbing performance, while both PNS and 
CNS deficits are responsible for grooming defects.  
 
Due to the known role of the chordotonal organs in leg-related behaviors (TUTHILL AND WILSON 
2016), we asked if Unc-4 function in the chordotonal neurons is required for wild-type climbing 
behavior. To do this, we used a chordotonal SOP-specific driver ato-GAL4 (HASSAN et al. 2000) 
to remove Unc-4 function completely from chordotonal lineage (progenitors and neurons), while 
leaving Unc-4 expression in the CNS intact (Figure 3D, H). ato-GAL4 also unexpectedly 
removed Unc-4 expression in the epithelial cells of most leg discs (Figure 3H). ato-GAL4 
mediated removal of Unc-4 function in chordotonal lineage and epithelial cells resulted in 
coordination defects in leg movements: we observed defects in three-leg rubbing (Table 1; Video 
10) and walking (Videos 11 and 12). We did not assess climbing behavior of the resulting flies 
because ato-GAL4 driven FLP expression impaired the negative-geotaxis behavior of control 
animals (presumably due to ato-GAL4 expression in the gravity sensing Johnston organ or its 
progenitor cells). To assess walking, we challenged flies to walk horizontally in small-diameter 
tubes. Control animals walked in a coordinated manner without falling, but unc-4 null mutants 
and ato-GAL4> unc4FRT flies were slow and fell often (Videos 11 and 12; Figure 3I). Thus, our 
results indicate that loss of unc-4 function in the leg discs, presumably in the chordotonal 
lineage, is required to drive proper leg-related behaviors, including three-leg rubbing, walking, 
and likely climbing.  
 
To ascertain whether Unc-4 function during chordotonal organ development may underlie the 
observed behavioral defects, we assessed Unc-4 function on adult femoral chordotonal organ 
(feCO) neurons, the major chordotonal organ in the leg. We visualized them in control and unc-4 
mutant animals via Iav-GAL4, which marks all chordotonal neurons in the adult (KWON et al. 
2010). In control animals, feCO neuronal cell bodies are clustered and located proximally near 
the trochanter border; they extend dendrites in a stereotyped fashion (Figure 3J).  In the mutants, 
the cell bodies of many of the neurons were displaced across the femur (Figure 3K, L) and their 
bundled dendritic projections appeared to be disrupted as compared to controls; all of these 
defects were rescued with restored Unc-4 function (Figure 3M). Of note, axonal projections of 
the FeCO neurons in the VNC of unc-4 mutant animals appeared like wild-type (not shown).  
Unc-4, therefore, appears to regulate the patterning and dendritic projections of chordotonal 
neurons in the leg, with this function likely underlying the observed defects in three-leg rubbing, 
walking, and climbing. 
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Table	1	
Three-leg	rubbing	and	climbing	behavior	in	response	to	tissue	specific	removal	of	Unc-4	
  Success	in	three-leg	rubbing		 Success	in	climbing,	time	to	climb1	(in	seconds)	

Driver	
Target	cell	
types	

control	 unc-4	removal	 control	 unc-4	removal	

sca-GAL4	

All	CNS	and	
PNS	
neurons	

88.9%,	N=18	 0%***,	N=20	 100%,	17.7	sec.	
+/-	8,	N=22	 9.1%***,	N/A2,	N=22	

dpn-GAL4	
All	CNS	
neurons		

81.8%,	N=22	 28.5%***,	
N=21	

90%,	20.1	sec.	
+/-15,	N=30	

80%#,	27.6	sec.$	+/-20.5,	
N=28	

ato-Gal4	
Chordotonal	
neurons	

90%,	N=33	 14.8%***,	
N=27	 N/A3	 N/A3	

***Significant	change,	Fisher	exact	test	P	value	<	0.001					
	#	Non-significant	change,	Fisher	exact	test	P	value>0.1	
	$	Non-significant	change,	Mann-Whitney	U	Test	P	value>0.1	
	

1failed	climbing	attempts	not	included	for	quantification.	
2	not	assessed	since	most	animals	failed	to	climb.	
3	ato-GAL4>FLP	expression	impaired	the	negative	geotaxis	in	both	control	and	experimental	animals,	thus	climbing	assay	was	not	performed.		

 
 
Unc-4 and neurotransmitter expression  
The central expression of Unc-4 is striking because that seven hemilineages that express it are all 
cholinergic (LACIN et al. 2019). To determine if Unc-4 function is required for the survival or 
proper differentiation of these neurons, we combined unc-4DBD line with the ubiquitous tubAD 
line to visualize all Unc-4+ neurons in control and unc-4 mutant animals. As shown in Figure 4A, 
we observed no gross defects in the number and position of Unc-4+ neurons in the absence of 
Unc-4 function, indicating Unc-4 is not required for its own expression nor is it required for the 
survival of these neurons.  
 
We then determined the neurotransmitter profile of these neurons in control and unc-4 mutant 
background by intersecting unc-4 split GAL4 lines with neurotransmitter specific split-GAL4 
lines expressed in cholinergic, glutamatergic, or GABAergic neurons  (DIAO et al. 2015; LACIN 
et al. 2019). To identify cholinergic Unc-4+ neurons, we intersected unc-4AD expression with the 
cholinergic neuronal driver ChATDBD (Figure 4B). As expected, most Unc-4+ neurons including 
neurons of all seven postembryonic hemilineages (identified based on location and axonal 
projection) in the control VNC were marked with the split-GAL4 combination of unc-4AD-
ChATDBD, confirming the cholinergic identity of the Unc-4+ hemilineages. In the unc-4 mutant 
VNC, the expression of this split-GAL4 combination appeared grossly normal and marked all 
seven Unc-4+ postembryonic hemilineages, indicating that Unc-4 function is not necessary for 
the cholinergic fate of most (but not all, see below) neurons in these hemilineages. 
 
The relationship of Unc-4 expression to the glutamatergic phenotype was determined by 
combining VGlutDBD, which labels glutamatergic neurons, with unc-4AD. Here, unc-4AD-VGlutDBD 
driven GFP expression identified several glutamatergic Unc-4+ motor neurons in thoracic and 
abdominal segments in addition to a few occasional interneurons in the thoracic segments (Figure 
4C). Based on their axion projections, these motor neurons were the MN1-5 neurons, that innervate 
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the indirect flight muscles, as well as motoneurons to neck and haltere muscles and the abdominal 
body wall (Figure 4 -Supplemental Figure 1). Most of these adult motoneurons come from 
remodeled larval motoneurons (CONSOULAS et al. 2002).  Comparison of the adult cells with unc-
4AD-VGlutDBD expression in the larval VNC indicated that these are remodeled versions of larval 
U/CQ motor neurons, from NB7-1 while others are embryonic-born neurons from NB2-4 lineage 
(Figure 4 -Supplemental Figure 1). In the VNC of unc-4 mutant adults, these motor neurons were 
still present and marked with unc-4AD-VGlutDBD, but they were disorganized and reduced in size 
(Figure 4C; the MN5 size: 283+/-54 µm2 in controls vs 94+/-31 µm2 in mutants; N=10 and 14 
cells, respectively). Unc-4, thus, is expressed in embryonic-born remodeled adult motor neurons 
and functions to promote their growth. 
 
Finally, we intersected unc-4DBD with gad1AD, a line that is expressed in all GABAergic neurons, 
to assess whether Unc-4 regulates GABA fate. In control animals, we failed to detect any 
GABAergic Unc-4+ neurons in the VNC (Figure 4D). RNA in situ hybridization against gad1 and 
ChAT genes confirmed this and our previous published findings and showed that all Unc-4+ 
postembyonic hemilineages in the VNC express ChAT mRNA but not gad1 mRNA (Figure 4 -
Supplemental Figure 2).  In unc-4 mutants, however, unc-4DBD-gad1AD marked many neurons in 
the VNC (Figure 4D). Presence of a BAC clone containing unc-4 locus reversed this expression 
pattern, significantly reducing the number of ectopic GABAergic neurons (Figure 4E). We 
identified these cells as a subset of the cholinergic hemilineage 11A (HARRIS et al. 2015; LACIN 
et al. 2019; SHEPHERD et al. 2019) based on the following observations: (i) like 11A neurons, they 
reside in posterior and dorsal region of only T1 and T2 segments (Figure 4D), (ii) their axonal 
trajectories match that of the 11A neurons (Figure 4F-G), (iii) they express Nkx6, a marker for 
11A neurons (Figure 4H), and (iv) they intermingle with Eve+ 11B neurons, which are the sibling  
neurons of 11A neurons (Figure 4I).   
 
To test whether the transformed 11A neurons in the unc-4 mutants are purely GABAergic or 
exhibit mixed GABAergic/cholinergic identity, we assayed them for the presence of ChAT and 
gad1 mRNA (Figure 4J) and found that 92 +/- 5  % expressed gad1 mRNA, 2 +/- 4 % expressed 
ChAT mRNA, and none co-expressed both (N=93 cells, 5 CNSs). Thus, most of these 11A neurons 
switch from a cholinergic to a GABAergic fate. Moreover, most of these converted neurons show 
GABA production as well as the gad1 mRNA (Figure 4K). Unc-4, thus, appears to act in 11A 
hemilineage to promote the cholinergic fate and repress the GABAergic fate.  Importantly, 
misexpression of Unc-4 in immature neurons GABAergic VNC lineages, such as 13A and 19A, 
throughout development did not, however, alter their GABAergic fate.  Consequently, Unc-4 is 
not a general repressor of the GABAergic fate (N=5 animals; not shown). 
 
11A neurons likely function in take-off behavior of flies (HARRIS et al. 2015; KENNEDY AND 
BROADIE 2018). We could not investigate if the ectopic GABA fate observed in 11A neurons 
lead to any behavioral defect because we lacked a driver to remove Unc-4 only from this 
hemilineage.  
 
Unc-4 function is required for proper neuronal projections in 7B neurons  
To determine if loss of Unc-4 function leads to defects in the anatomy of neurons in the Unc-4+ 
hemilineages, we visualized them in both mutant and control flies. Unc-4 is expressed in 
hemilineages 7B, 11A, 12A, 17A, 18B,19B, and 23B. We used lineage specific GAL4 lines built 
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for this study (see methods) together with NB intersected reporter immortalization technique 
(Awasaki et al.,) to individually visualize the 7B, 12A, 18B, 23B hemilineages (Figure 5A-D). We 
also used the immortalization technique for the 11A and 19B neurons, but the anatomy was 
complicated by the presence of their surviving sibling hemilineages (not shown). We could not 
evaluate 17A neurons due to lack of reagents.  The loss of Unc-4 function had no gross defect on 
neuronal projections with the notable exception of hemilineage 7B.  These neurons exhibited 
altered projections into the leg neuropils in the absence of Unc-4 function (Figure 5A; see below). 
 
Lineage 7B neurons are present in all thoracic segments, but only neurons of the T2 segment 
innervate the leg neuropils (SHEPHERD et al. 2019). Using multicolor flip-out clones in wild-type 
animals (NERN et al. 2015), we found that many 7B neurons in T2 send ipsilateral projection to 
the T2 leg neuropil, others project into all of the contralateral leg neuropils,  and others do not 
innervate the leg neuropil at all (Figure 6A; not shown). Of note, we found that the projections of 
7B neurons into the ipsilateral leg neuropil have synaptic output sites, indicating that they 
communicate to other neurons to execute leg-related behaviors (Figure 6B). We used two different 
reporter immortalization strategies as well as MARCM approach to follow axonal projections of 
hemilineage 7B neuron in the absence of Unc-4 (see methods). All three gave the same result: loss 
of unc-4 severely reduced 7B projections into the ipsilateral leg neuropils and also reduced 
contralateral leg projections (Figure 6C-I). Unc-4, therefore, functions cell autonomously in 7B 
neurons to support their proper innervation of the leg neuropil.   
 
Unc-4 functions to promote the development of flight take-off circuit 
The anatomical changes in the 7B neurons with the loss of Unc-4 function is paralleled by a deficit 
in take-off behavior.  Previous work showed that activation of 7B neurons elicits take-off behavior 
in decapitated flies (HARRIS et al. 2015).    We used ey-AD;dbxDBD driven FLP expression in unc4FRT 
flies to remove Unc-4 specifically in 7B neurons (Figure 7A, B; Figure 7 Supplemental Figure 1). 
To test the take-off behavior of the resulting flies, we first assessed their response to banging the 
vial in which they are housed (Video 13). Control animals responded to this stimulus by exhibiting 
a take-off behavior. In contrast, 7B specific Unc-4 knock-out flies raised their wings in an apparent 
attempt to take off, but they failed to be airborne. Some were able to take off after an unusual 
duration and multiple rounds of wing raise. We then recorded the take-off behavior of these flies 
with a high-speed camera after eliciting escape response via a looming visual stimulus 
(WILLIAMSON et al. 2018). This analysis revealed that 7B specific Unc-4 knock-out flies process 
the visual stimulus, initiate the take-off behavior by adjusting their posture and raising their wings, 
but fail to extend their middle legs to cause lift off (Figure 7B, C; Video 14). Interestingly, some 
of these flies initiated the flight by just wing flapping without any clear jump (Video 15). These 
results demonstrate that hemilineage 7B specific removal of Unc-4 impairs take-off behavior.  
 
The altered behavior seen in the flies that have lost Unc-4 function in their 7B neurons could result 
from the loss of function of a critical component in the take-off circuit or a mis-wiring of the cells 
to make novel connections that interfere with take-off.   For example, in C. elegans, loss of Unc-
4 function alters locomotion behavior due to ectopic synaptic connections of Unc-4+ neurons. We 
investigated whether the observed take-off phenotype was due to the gain of a novel function for 
the 7B neurons by ablating them during development via expressing the apoptotic gene, head 
involution defective (hid) in NB3-2 (BERGMANN et al. 1998). The resulting animals behaved 
essentially identical as 7B specific unc-4 mutants (Video 16), indicating the impairment take-off 
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behavior is due to the loss of 7B neuronal function. Based on our findings, we conclude that Unc-
4 acts in 7B neurons to promote their leg neuropil innervation, connections that are required for 
flies to use their legs properly during take-off.  
 
DISCUSSION 
Using precise genetic tools, we dissected the function of the Unc-4 transcription factor in a lineage-
specific manner. We found that within the PNS, Unc-4 function is needed for the proper 
development of the FeCo likely leading to an impairment of walking; whereas in the CNS, Unc-4 
dictates neurotransmitter usage within lineage 11A and regulates axonal projection and flight take-
off behavior in lineage 7B.  Below, we discuss three themes arising from our work: lineage-specific 
functions of individual transcription factors, an association of Unc4+ lineages with flight, and the 
lineage-based functional organization of the CNS in flies and vertebrates. 
 
 Lineage -specific Unc-4 functions 
Seven neuronal hemilineages express Unc-4 in the adult VNC, but our phenotypic studies revealed 
a function for Unc-4 in only two of them: in the 11A hemilineage, Unc-4 promotes the cholinergic 
fate and inhibits the GABAergic fate, while in the 7B hemilineage, Unc-4 ensures proper flight 
take-off behavior likely by promoting the proper projection patterns of the 7B interneurons into 
the leg neuropil. Why did we fail to detect a loss-of-function phenotype for Unc4 in most of the 
hemilineages in which it is expressed? A few reasons may explain this failure. First, our phenotypic 
analysis was limited: We tracked neuronal projection patterns and neurotransmitter fate, but not 
other molecular, cellular, or functional phenotypes. Unc-4 may function in other lineages to 
regulate other neuronal properties we did not assay, such as neurotransmitter receptor expression, 
channel composition, synaptic partner choice, and/or neuronal activity. In addition, as our analysis 
assayed all cells within the lineage, it would have missed defects that occur in single cells or small 
groups of cells within the entire hemilineage. Second, Unc-4 may act redundantly with other 
transcription factors to regulate the differentiation of distinct sets of neurons. Genetic redundancy 
among transcription factors regulating neuronal differentiation is commonly observed in the fly 
VNC (BROIHIER et al. 2004; LACIN et al. 2009). Thus, while our research clearly identifies a role 
for Unc-4 in 2 hemilineages, it does not exclude Unc-4 regulating more subtle cellular and 
molecular phenotypes in the other hemilineages in which it is expressed.  
 
While future work will be required to ascertain whether Unc-4 functions in more than two of its 
expressing hemilineages, it’s clear that Unc-4 executes distinct functions in the 7B and 11A 
lineages. The Hox transcription factors, Ubx, Dfd, Scr, and Antp, have also been shown to execute 
distinct functions in different lineages in the fly CNS (MARIN et al. 2012; KUERT et al. 2014), 
suggesting transcription factors may commonly drive distinct cellular outcomes in the context of 
different lineages. What underlies this ability of one transcription factor to regulate distinct cellular 
events in different neuronal lineages? The ancient nature of the lineage-specific mode of CNS 
development likely holds clues to this question. The CNS of all insects arises via the repeated 
divisions of a segmentally repeated array of neural stem cells whose number, ~ 30 pairs per 
hemisegment , has changed little over the course of insect evolution (THOMAS et al. 1984; TRUMAN 
AND BALL 1998). Within this pattern, each stem cell possessing a unique identity based on its 
position and time of formation. Each stem cell lineage has then evolved independently of the others 
since at least the last common ancestor of insects, approximately 500 million years ago. Thus, if 
during evolution an individual transcription factor became expressed in multiple neuronal lineages 
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after this time, it would not be surprising that it would execute distinct functions in different 
neuronal lineages. The lineage specific evolution of the CNS development in flies, worms, and 
vertebrates may explain why neurons of different lineages that share specific properties, e.g., 
neurotransmitter expression, may employ distinct transcriptional programs to promote this trait 
(SERRANO-SAIZ et al. 2013; KONSTANTINIDES et al. 2018).  
 
Unc-4 and flight – a unifying theme? 
Although Unc-4 appears to have distinct functions in different lineages, we found that an 
association with flight is a unifying feature among most Unc4+ interneuron lineages and motor 
neurons. All Unc-4+ hemilineages in the adult VNC except the 23B hemilineage heavily innervate 
the dorsal neuropils of the VNC, which are responsible for flight motor control and wing/haltere 
related behaviors, including wing-leg coordination (HARRIS et al. 2015; NAMIKI et al. 2018; 
SHEPHERD et al. 2019). For example, hemilineages 7B, 11A, and 18B regulate flight take-off 
behavior and 12A neurons control wing-based courtship singing (HARRIS et al. 2015; SHIRANGI et 
al. 2016). In addition, most Unc-4+ motor neurons are also involved with flight – these include 
MN1-5, which innervate the indirect flight muscles, as well as motor neurons that innervate the 
haltere and neck muscles, which provide flight stabilization (Figure 4C). Since Unc-4 is conserved 
from worms to humans, it is likely that Ametabolous insects, like silverfish, which are primitively 
wingless, also have unc-4.  It has yet to be determined, though, whether in such ametabolous 
insects the same hemilineages express Unc-4, and hence this pattern was in place prior to the 
evolution of flight.  This would suggest that there was some underlying association amongst this 
set of hemilineages that may have been exploited in the evolution of flight.  Alternatively, Unc-4 
may be lacking in these hemilineages prior to the evolution of flight but then its expression may 
have been acquired by these hemilineages as they were co-opted into a unified set of wing-related 
behaviors.  
 
Lineage-based functional organization of the nervous system 
The adult fly VNC is composed of 34 segmentally repeated hemilineages, which are groups of 
lineally related neurons with similar features e.g., axonal projection and neurotransmitter 
expression (TRUMAN et al. 2004; TRUMAN et al. 2010; LACIN et al. 2014; HARRIS et al. 2015; 
LACIN AND TRUMAN 2016; SHEPHERD et al. 2016; LACIN et al. 2019; SHEPHERD et al. 2019). These 
hemilineages also appear to function as modular units, each unit appears responsible for regulating 
particular behaviors, indicating the VNC is assembled via a lineage-based functional organization 
(HARRIS et al. 2015). The vertebrate spinal cord exhibits similar organization: lineally-related 
neurons acquire similar fates (“cardinal classes”) and function in the same or parallel circuits (LU 
et al. 2015). The similarity of the lineage-based organization in insect and vertebrate nerve/spinal 
cords raises the question whether they evolved from a common ground plan or are an example of 
convergent evolution. Molecular similarities in CNS development between flies and vertebrates 
support both CNS’s arise from a common ground plan. For example, motor neuron identity in both 
flies and vertebrates, use the same set of transcription factors: Nkx6, Isl, and Lim3 (TSUCHIDA et 
al. 1994; PFAFF et al. 1996; THOR AND THOMAS 1997; SANDER et al. 2000; BROIHIER AND SKEATH 
2002; BROIHIER et al. 2004). Moreover, homologs of many transcription factors expressed in fly 
VNC interneurons, such as Eve and Lim1, also function in interneurons of the vertebrate spinal 
cord (LILLY et al. 1999; MORAN-RIVARD et al. 2001; PILLAI et al. 2007; HECKSCHER et al. 2015). 
Whether any functional/molecular homology is present between fly and vertebrate neuronal 
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classes awaits comparative genome-wide transcriptome analysis and functional characterization 
of neuronal classes in the insect VNC and vertebrate spinal cord.  
 
 
MATERIALS & METHODS   
Key Resources Table 	 	 	
Reagent type 
(species) or 
resource 

Designation Source or 
reference 

Identifiers Additional 
information 

antibody Guinea pig anti-Sens 
polyclonal 

PMID:	10975525	  1:1000 dilution 

antibody Rabbit anti-GABA 
polyclonal 

Sigma A2052 1:1000 dilution 

antibody Chicken anti-GFP 
polyclonal 

Life Tech.  A10262 1:1000 dilution 

antibody Rabbit anti-HA  
polyclonal 

Cell sig. 3724S 1:500 dilution 

antibody Rabbit anti-GFP 
polyclonal 

Thermo Fisher S.  A11122 1:1000 dilution 

antibody Rabbit anti-Unc-4 
polyclonal 

PMID: 24550109  	 1:1000 dilution 

antibody Rabbit Eve PMID:	2884106	 	 1:2000 dilution 
antibody Mouse anti-Acj6 

monoclonal 
DSHB Acj6 1:100 dilution 

antibody Rat anti-Cadherin  
monoclonal 

DSHB DN-Ex#8 1:25 dilution 

antibody goat anti-rabbit 
Alexa Fluor 488 

Life Technologies A-11034 1:500 dilution 

antibody goat anti-rabbit 
Alexa Fluor 568 

Life Technologies A-11011 1:500 dilution 

antibody goat anti-rabbit 
Alexa Fluor 633 

Life Technologies A-21070 1:500 dilution 

antibody goat anti-chicken 
Alexa Fluor 488 

Life Technologies  A-11039 1:500 dilution 

antibody goat anti-mouse 
Alexa Fluor 568 

Life Technologies  A-11004 1:500 dilution 

antibody goat anti-mouse 
Alexa Fluor 633 

Life Technologies A-21050 1:500 dilution 

antibody goat anti-rat Alexa 
Fluor568 

Life Technologies A-11077 1:500 dilution 

antibody goat anti-rat Alexa 
Fluor633 

Life Technologies A-21094 1:500 dilution 

genetic reagent (D. 
melanogaster) 

MKRS, 
P{ry[+t7.2]=hsFLP}

86E/TM6B, 
P{w[+mC]=Crew}D

H2, Tb[1] 

Bloomington 
Drosophila Stock 

Center 

RRID:BDSC_1
501 

	

11

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 24, 2019. ; https://doi.org/10.1101/2019.12.24.887679doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.24.887679
http://creativecommons.org/licenses/by-nc-nd/4.0/


genetic reagent (D. 
melanogaster) 

P{ry[+t7.2]=hsFLP}1,	
w[1118];	

Adv[1]/CyO	

Bloomington 
Drosophila Stock 

Center 

RRID:BDSC_6 	

genetic reagent (D. 
melanogaster) 

y1	w*;	P{UAS-
FLP.D}JD1	

Bloomington 
Drosophila Stock 

Center 

RRID:BDSC_4
539 

	

genetic reagent (D. 
melanogaster) 

w*;	P{UAS-
p35.H}BH1	

Bloomington 
Drosophila Stock 

Center 

RRID:BDSC_5
072 

	

genetic reagent (D. 
melanogaster) 

P{Tub-
dVP16AD.D} 

Bloomington 
Drosophila Stock 

Center 

RRID:BDSC_60
295 

	

genetic reagent (D. 
melanogaster) 

P{Tub-
GAL4DBD.D} 

Bloomington 
Drosophila Stock 

Center 

RRID:BDSC_60
298 

	

genetic reagent (D. 
melanogaster) 

w[*]; 
P{w[+mC]=iav-

GAL4.K}3 

Bloomington 
Drosophila Stock 

Center 

RRID:BDSC_5227
3	

	

genetic reagent (D. 
melanogaster) 

y[1]	w[*];	
Mi{y[+mDint2]=MIC

}TfAP-
2[MI04611]/TM3,	

Sb[1]	Ser[1]	

Bloomington 
Drosophila Stock 

Center 

RRID:BDSC_3
7965 

	

genetic reagent (D. 
melanogaster) 

13XLexAop2-IVS-
myr::GFP in attP40 

Bloomington 
Drosophila Stock 

Center 

RRID:BDSC_3221
0	

	

genetic reagent (D. 
melanogaster) 

w[*]; 
P{w[+mC]=tubP-
GAL80[ts]}2/TM2 

Bloomington 
Drosophila Stock 

Center 

RRID:BDSC_7017	 	

genetic reagent (D. 
melanogaster) 

hsFlp2::PEST;;	
HA_V5_FLAG-MCFO	

PMID: 25964354  RRID:BDSC_9
494 

 

genetic reagent (D. 
melanogaster) 

y1	w*;	P{ato-
GAL4.3.6}10	

PMID:	10774724	 	  

genetic reagent (D. 
melanogaster) 

Dpn-EE-GAL4-
attp16;T3/T6b	

PMID: 26700685 	 	

genetic reagent (D. 
melanogaster) 

pJFRC29-10XUAS-
IVS-myr::GFP-p10	in	

attP40	

PMID:	22493255		 	 	

genetic reagent (D. 
melanogaster) 

	pJFRC105-10XUAS-
IVS-nlstdTomatoi	n	

VK00040	

PMID:	22493255		 	 	

genetic reagent (D. 
melanogaster) 

Poxn-GAL4.13 PMID:12421707	 	 	

genetic reagent (D. 
melanogaster) 

 y1 w*; Mi{MIC}TfAP-2MI04611/TM3, 
Sb1 Ser1 

RRID:BDSC_3796
5	

	

genetic reagent (D. 
melanogaster) 

UAS-hidAla5	 PMID:9814704 	 	
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genetic reagent (D. 
melanogaster) 

Actin5Cp4.6>dsFR
T>nlsLexAp65 

G. Rubin 	 	

genetic reagent (D. 
melanogaster) 

pJFRC51-3XUAS-IVS-
Syt::smGFP-HA	in	

attP40	

G. Rubin 	  

genetic reagent (D. 
melanogaster) 

pJFRC12-10XUAS-
IVS-myr::GFP	in	

attP18	

G. Rubin 	  

genetic reagent (D. 
melanogaster) 

unc-4-GAL4	 this	study	 FBgn0024184 	built	by	H.	Lacin	

genetic reagent (D. 
melanogaster) 

unc-4-AD	 this	study	 FBgn0024184 	built	by	H.	Lacin	

genetic reagent (D. 
melanogaster) 

unc-4-DBD this	study	 FBgn0024184 	built	by	H.	Lacin	

genetic reagent (D. 
melanogaster) 

unc-4-FRT	 this	study	 FBgn0024184 	built	by	H.	Lacin	

genetic reagent (D. 
melanogaster) 

unc-4-null this	study	 FBgn0024184 	built	by	H.	Lacin	

genetic reagent (D. 
melanogaster) 

TfAP-2-AD	 this	study	 FBgn0261953 	built	by	H.	Lacin	

genetic reagent (D. 
melanogaster) 

TfAP-2-GAL4	 this	study	 FBgn0261953 	built	by	H.	Lacin	

genetic reagent (D. 
melanogaster) 

w*;sca-GAL4		 PMID:2125959 	  

chemical 
compound, drug 

Paraformaldehyde  EMS 15713 	

chemical 
compound, drug 

Vectashield Vector H-1000 	

chemical 
compound, drug 

Prolong Diamond  Molecular Probes P36961 	

recombinant DNA 
reagent 

pHD-DsRed-attP  Addgene 51019  	

recombinant DNA 
reagent 

pCFD4-
U6:1_U6:3tandem

gRNAs 

Addgene 49411 	

recombinant DNA 
reagent 

pBS-KS-attB2-SA(1)-
T2A-Gal4-Hsp70	

Addgene 62897 	

recombinant DNA 
reagent 

	pBS-KS-attB2-SA(1)-
T2A-Gal4DBD-Hsp70	

Addgene 62903 	

recombinant DNA 
reagent 

pBS-KS-attB2-
SA(1)-T2A-p65AD-

Hsp70 

Addgene 62914 	

recombinant DNA 
reagent 

pBS-KS-attB2-SA(0)-
T2A-Gal4-Hsp70	

Addgene 62896 	

recombinant DNA 
reagent 

	pBS-KS-attB2-SA(0)-
T2A-Gal4DBD-Hsp70	

Addgene 62902 	
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recombinant DNA 
reagent 

pBS-KS-attB2-
SA(0)-T2A-p65AD-

Hsp70 

Addgene 62912 	

 
Transgenic animals 
unc-4FRT line: 
Via Crispr and homology directed repair, we inserted two FRT sites at the same orientation into 
the first and third unc-4 introns so that FRT sites flank the second and third exons, which encode 
the homeodomain. 
Guide RNAs: 
We used two guide RNAs to direct Cas9 activity to the first and third introns of unc-4. pCFD4 
vector was used to generate tandem guide RNA expression platform with the following primers 
(PORT et al. 2014).  Forward primer: TATATAGGAAAGATATCCGGGTGAACTTCGG 
ttttcggggtcccatgtgtgGTTTTAGAGCTAGAAATAGCAAG. Reverse primer: ATTTTAACTT 
GCTATTTCTAGCTCTAAAACaagtctcaactacccatcgaCGACGTTAAATTGAAAATAGGTC 
Underlined region represents sequence from unc-4 locus.  
Donor DNA: 
Our donor construct contained three major elements:  (i) the left and (ii) right homology arms, 
which are immediately adjacent to Cas9 cutting sites, and between them, (iii) the replacement 
arm which contained two FRTsites, an attp site, 3xP3-dsRED mini gene and the intervening unc-
4 sequence to keep unc-4 exons intact. unc-4 genomic regions were cloned from a BAC clone 
(BACR01N10). PCR amplified DNA blocks were cloned into pHD-DsRed-attP vector via Aarl 
and SapI enyzme sides sequentially as previously described (GRATZ et al. 2014). 
Block 1: Primes used to generate the block 1, which contained the left homology arm (~1.6 kb) 
and the FRT sequence (underlined). Forward primer (with Aarl site): AGCCACACCTGCGA 
ATTCGCTTCCAGTTGTCGGGCACTCCAAAT. Reverse primer (with Aarl and FRT sites):   
CCAACACCTGCAAACCTACGAAGTTCCTATACTTTCTAGAGAATAGGAACTTCGAAA
ATTACCCAAAAATGGAAAACGC. The amplified DNA was inserted to the pHD-DsRed-attP 
vector via Aarl enzyme site.  
Block 2: Two PCR products (blocks 2A and 2B) were ligated to generate Block 2. 
Primes used to generate the block 2A, which contained 2nd and 3rd unc-4 exons and some intronic 
sequence. Forward primer (with SapI and XbaI sites):  TTTCTCTAGATGGGGCTCTTC 
CTATGTCCCATGTGTGTGGAGTTCGGT. Reverse primer (with BamH1 site): 
ATTCGGGATCCAGTTGAGACTTTGGTATAGCTTTTAAATTGC 
Primes used to generate the block 2B, which contained the right homology arm (~1.6 kb) and the 
FRT sequence (underlined). Forward primer (with BamH1): GGTGGGATCCGAAGTT 
CCTATTCTCTAGAAAGTATAGGAACTTCCCCATCGAATATCTGATTATTAACAC 
Reverse primer (with SapI and HindIII sites): TTCACAAAGCTTCACACTGCTC 
TTCAGACTGTCCTTAGTCAATAGACTTCTATTAC 
 
Block2A and Block2B were conjugated via BamH1site and inserted into a pUC19 vector via 
HindIII and XbaI sites in the same ligation reaction. Block 2 was recovered with SapI digestion 
and inserted into Sap1 site of the previously built construct, Block 1 in pHD-DsRed-attP.  
 
The content of the donor and guide RNA vectors was verified by Sanger sequencing. A mixture 
of these vectors was injected into vas-Cas9 flies (w[1118]; PBac(y[+mDint2]=vas-
Cas9)VK00027) by Rainbow transgenics (https://www.rainbowgene.com). 
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The transformed animals were identified based on dsRED expressions and stable stocks were 
generated. PCR analysis confirmed the expected editing.  
 
unc-4 Reporter lines: 
pBS-KS-attB2-SA(1)-T2A-Gal4-Hsp70, pBS-KS-attB2-SA(1)-T2A-Gal4DBD-Hsp70, pBS-KS-
attB2-SA(1)-T2A-p65AD-Hsp70 vectors were microinjected into Unc-4FRT flies to generate unc-
4GAL4, unc-4DBD, unc-4AD reporter lines, respectively via PhiC31-attP mediated integration. If 
necessary, LoxP flanked 3XP3-dsRED mini gene was removed from the reporter lines via Cre 
recombinase. Note that all the reporter lines behave as null mutant due to the stop codon 
introduced by Trojan constructs. Reporter lines were balanced with the FM7c balancer. 
unc-4null line:  
Second and third unc-4 exons were removed in the germline to generate unc-4null line. To do that, 
we crossed unc-4FRT line with hsFLP1 flies, and resultant larval progeny were heat shocked at 
37ºC for an hour. Adult female progeny was later crossed individually to FM7c males to isolate 
and generate unc-4null lines.  
 
Note that the unc-4 locus over FM7 balancers showed a low rate of recombination/chromosomal 
rearrangement. When unc-4 mutant animals over FM7 balancer were outcrossed to males 
carrying a wild type X chromosome, we observed occasional non FM7 male flies, which were 
not unc-4 mutants. These flies lacked 3XP3-dsRED expression, which marks edited unc-4 locus 
and behaved like wild-type. Wild type unc-4 locus in the FM7 chromosome is located close to 
the Bar locus which is known to exhibit rare chromosomal arrangements (MILLER et al. 2016). 
 
AP-2AD and AP-2GAL4 lines were generated from the TfAP-2MI04611 MIMIC line via Trojan exon 
insertion as described before (DIAO et al. 2015; NAGARKAR-JAISWAL et al. 2015; LACIN et al. 
2019). Hemilineage 12A specific expression of AP-2 was previously documented (ETHEREDGE 
2017). ey-AD;dbxDBD driver was built based on the information that Ey and Dbx are co-expressed 
only in NB3-2 in the VNC (LACIN AND TRUMAN 2016; LACIN et al. 2019). 
 
Cell Labeling Chemistry 
Immunochemistry 
Samples were dissected in phosphate buffered saline (PBS) and fixed with 2% paraformaldehyde 
in PBS for an hour at room temperature and then washed several times in PBS-TX (PBS with 1% 
Triton-X100) for a total 20 minutes. Tissues were incubated with primary antibodies (Key 
Resources Table) for two to four hours at room temperature or overnight 4°C. After three to four 
rinses with PBS-TX to remove the primary antisera, tissues were washed with PBS-TX for an 
hour. After wash, tissues secondary antibodies were applied for two hours at room temperature 
or overnight at 4°C. Tissues were washed again with PBS-TX for an hour and mounted in 
Vectashield or in DPX after dehydration through an ethanol series and clearing in xylene 
(TRUMAN et al. 2004). 
 
RNA in situ hybridization 
Hybridization chain reaction-based RNA in situ hybridization was performed with commercially 
purchased probes as described before (LACIN et al. 2019). 
 
Lineage clone generation  
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NB intersected reporter immortalization clones (AWASAKI et al. 2014; LACIN AND TRUMAN 
2016) in control and unc-4 mutant background were generated by crossing NB specific GAL4 
lines to the following lines respectively: 
[dpn>KDRT-stop-KDRT>Cre:PEST; 13XLexAop2-IVS-myr::GFP, Act5c>loxP-stop 
loxP>LexA::p65; UAS-KD] and [dpn>KDRT-stop-KDRT>Cre:PEST, unc-4null ; 13XLexAop2-
IVS-myr::GFP, Act5c>loxP-stop loxP>LexA::p65, ; UAS-KD].  

	
Reporter immortalization clones without NB intersection (7B clones in Figure 6E-G) were 
generated by using the following transgenic lines: [ey-AD;dbxDBD], [unc-4null /FM7i, actGFP], 
[13XLexAop2-IVS-myr::GFP, Actin5Cp4.6>dsFRT>nlsLexAp65], and [UAS-FLP.D] 
 
Multi-Color Flipout (MCFO) clones were	stochastically	generated	from	the	progeny	of	the	
cross	of	SS20852-GAL4	(R34H12AD;	VT040572DBD)	line	with	R57C10Flp2::PEST	;;	
HA_V5_FLAG_OLLAS /MCFO-7 (NERN et al. 2015). 
 
The MARCM technique was used to generate NB3-2 lineage clones (LEE AND LUO 2001). 
Newly hatched first instar larvae were incubated at 37°C for an hour and adult nerve cords were 
dissected, fixed and stained. The following lines were used:  
[hsFLPop, Tub-GAL80, FRT19A; act>FRT-stop-FRT>GAL4, UAS-CD8GFP], [unc-4null 
FRT19A/FM7i, actGFP], [FRT19A], [elavC155-GAL4]. 
 
TARGET mediated Unc-4 removal  
To remove Unc-4 globally starting from the early embryonic stages, embryos from the cross of 
5XUAS-FLP::PEST, unc-4FRT line with tubP-GAL4; tubP-GAL80ts  line (MCGUIRE et al. 2004) 
were collected for 6 hours at 18°C and then transferred to and kept in 29°C until adults eclosed. 
5-10 days old adults were used for behavioral analysis.  
 
To remove Unc-4 globally starting from the late pupal stages, collected embryos from the same 
cross were kept at 18°C until animals reached the pharate adult stage and then transferred to and 
kept in 29°C until emerged adults aged for two weeks for behavioral analysis.   
 
Fly stocks and behavioral experiments 
Flies were reared on the standard cornmeal fly food at 25°C unless indicated otherwise. Fly lines 
used in this study are listed in Key Resources Table. Fly behaviors were tested at room 
temperature (22–25°C). Flies were used 2–10 days post-eclosion. Flies with damaged legs and 
wings were excluded from the tests. Animal behaviors were recorded with a USB or iPad Pro 
camera except for stimuli induced take-off behaviors for which we used high speed cameras. 
 
Three leg grooming: Flies were individually observed under the microscope for three leg-
rubbing behavior that involves either pairs of front or hind leg and one mid leg. Three episodes 
were quantified for each fly; success or failure was called based on the majority. If two initial 
episodes result in failure or success, flies were not tested for the third episode.  
 Climbing: Flies were put individually into a 5ml serological pipette with a 5mm diameter and 
the pipette was banged and hold vertically to induce climbing. The event on which a fly climbed 
14 cm in 1 minute or under was called a success and the climbing time was documented. Events 
with the climbing time over 1 minute was considered as a failure.  
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Walking: Flies were put individually into sleep assay vials with a 4 mm dimeter and ends of the 
horizontally placedvials were plugged with cottons to give approximately 6 cm length for flies to 
walk. The locomotion of the flies was recorded with a USB camera. Walking speed were 
measured from the recorded locomotion tracts that were continuous i.e., not interrupted by fall or 
grooming via wrMTrck pluggin on ImageJ (HUSSON et al. 2013; BROOKS et al. 2016). 
ImageJ: http://imagej.nih.gov/ij/ and wrMTrck: http://www.phage.dk/plugins/wrmtrck.html.  
Flight Take-off: Flies individually were put on top of a large white surface (top of a chest 
freezer) and observed with naked eyes whether they take-off to fly away. The flies that were able 
to fly away was scored as successful.  
Visual stimuli induced take-off: Two kinds of visual stimuli were used to induce jumping in flies 
as described earlier (WILLIAMSON et al. 2018): (i) the looming stimulus with an 
azimuth/elevation of 90°/45° and (ii) the flickering stimulus, where the entire visual background 
scene alternated white and black at 4Hz. Videos of the flies were recorded during the visual 
stimulus at a rate of 6000 frames per second. Normally, flies exhibit a stereotyped takeoff 
sequence: adjust posture, raise wings, extend mid-thoracic legs, initiate flight. For the 
quantification of the observed phenotype reported in this paper, flies that initiated the flight 
sequence without completing the takeoff sequence were scored as "interrupted take-off." The 
flickering stimulus was represented to 54 control and 37 NB3-2>unc-4FRT flies; 0 and 16 flies 
showed take-off interruption, respectively. The looming stimulus was represented to 47 control 
and 60 NB3-2>unc-4FRT flies; 0 and 24 flies showed take-off interruption, respectively. 
Quantification in Figure 7E was based on the results obtained from both stimuli. 
Tethered-flight assay: 
Insect pins were glued to the thorax dorsally and brief air puffs were blown to the flies to induce 
wing flapping. Flies that showed high frequency wing flapping were considered successful.   
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Figure Legends 
 
Figure 1 
 Tools generated to study Unc-4 function 
(A) Homeodomains of Unc-4 protein in D. melanogaster, C. elegans and H. sapiens are shown 
with the percent identity on the right. Amino acids that differ from Drosophila sequence were 
highlighted in red. (B) Schematic representation of edited unc-4 locus in unc-4FRT line shown 
(drawing is not to scale). Two FRT sites (magenta) are present with the same orientation flanking 
2nd and 3rd exons (the homeodomain coding exons) and an attP site (yellow) is located 5’ to the 
second exon. unc-4null fly line was generated by FLP/FRT mediated excision of these exons in 
the germline. The same FLP/FRT mediated excision in somatic tissues was used for conditional 
mutant analysis. Trojan exons were inserted into the attP site to generate unc-4AD, unc-4DBD, unc-
4GAL4 reporter lines. The region that is recognized by rabbit Unc-4 antibody underlined in red. 
(C) Dissected VNC samples from control (left) and unc-4null (right) embryos are shown. In the 
control VNC, Unc-4 protein (green) is expressed in a segmentally-repeated pattern. In the mutant 
embryo, no Unc-4 expression is detected. (D-H) unc-4DBD-tubAD driven GFP expression (green) 
shown. (D) Expression of this split GAL4 combination overlaps with Unc-4 protein expression 
(magenta) in the larval VNC. The clusters of neurons correspond to ventrally located Unc-4+ 
hemilineages.  (E-F) Unc-4 is expressed in clusters of neurons in the adult VNC (E, E’) and brain 
(F). Ventrally located VNC lineages shown in E; dorsally located VNC lineages shown in E’. 
Here and in other figures, CadN antibody staining (magenta) used to define the contours of the 
adult CNS tissues. (G) Anterior body parts of an adult fly shown. Unc-4 reporter marks different 
types of sensory neurons: chordotonal (cho) organ (yellow arrow) and bristle sensory (white 
arrows) neurons in the leg, olfactory neurons in maxillary pulps (yellow arrowheads) and 
antennas (white arrowheads), and Johnston’s organ (not visible in this image) Magenta is cuticle 
autofluorescence. (H) A leg disc from an early stage pupa; anterior is to the left. Unc-4 is 
expressed in progenitors of chordotonal neurons, also called sensory organ precursors (SOPs), 
which were marked with Sens expression (magenta). (I) An example for conditional removal of 
unc-4 shown. Unc-4 (green) and Acj6 (magenta) are co-expressed in 23B neurons in the larval 
VNC but only Unc-4 is expressed in 7B neurons.  NB7-4 specific FLP expression in the unc-4FRT 
larva (right panel) removes Unc-4 expression from the 23B neurons (NB7-4 progeny) but not the 
7B neurons. 
Anterior is up in all images in this and other figures unless indicated otherwise.  
Scale bar (yellow line) is 20 microns.  
Genotypes of flies used in this figure: 
(C) unc-4null /+ females as control; unc-4null /y males as unc-4null 
(D) Control : unc-4FRT /+; UAS-FLP/NB7-4-GAL4 (19B03AD;18F07DBD) 

    NB7-4> unc-4FRT:  unc-4FRT /y; UAS-FLP/ NB7-4-GAL4 (19B03AD;18F07DBD) 

(E-I) unc-4DBD /+; tubAD; JFRC12-10XUAS-IVS-myr::GFP 

 
Figure 2 
Loss of Unc-4 function results in behavioral defects in adult flies 
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(A-H) Still images from recorded videos showing the behavioral defects observed in unc-4 
mutants (A, C, E, and G) and the rescue of these defects with uncDBD- tubAD driven UAS-unc-4 
transgene (B, D, F, and H). Images from control animals not shown as they were virtually 
identical to the images from rescued animals. Wings of unc-4 mutants are locked in an erect 
position (A); they fail flying in a tethered flight assay (C). Restoring Unc-4 function enables 
mutant animals to rest their wings in tucked position (B) and fly in the flight assay (D). Mutant 
animals fail to bring their three legs together for rubbing off dust (E) and rescue animals regain 
this three-leg rubbing behavior. (F-G) Restoring Unc-4 expression also improves climbing 
defects of unc-4 mutants.  Positions of mutant and rescued animals after bang-induced climbing 
shown; the image was reproduced from Video 5. (I) Percentage bar graphs showing the 
quantification of unc-4 mutant phenotypes (orange bars) and their rescue with uncDBD- tubAD 

driven UAS-unc-4 (green bars) or a BAC transgene (PBac(DC335)) containing the unc-4 locus 
(magenta bars). See methods for detailed explanations for the assays quantified here. See also 
Videos 1-7. 
Genotypes:  
(A, C, E, G, I) unc-4 mutants: unc-4DBD /y  
(B, D, F, H, I) GAL4 rescue: uncDBD/y; tubAD /10XUAS-IVS-myr::GFP; UAS-unc-4 
(I) BAC rescue: uncDBD/y;; PBac(DC335) /+ 
 
Figure 3 
Unc-4 function in the periphery is required for animal coordination and the formation of  
 chordotonal sensory organ  
Unc-4 expression (green) in the CNS (A-D) and leg disc (E-H) of wandering-stage larvae 
shown. sca-GAL4 (B, F), dpnEE-GAL4 (C, G), ato-GAL4 (D, H) driven FLP expression in the 
unc-4FRT line used to remove Unc-4 function in a tissue-specific manner.  (A) In the control 
CNS, Unc-4 is expressed in clusters of post-embryonically born neurons (~50 clusters per CNS). 
(B) Manipulation with sca-GAL4 removed Unc-4 expression in most of the neuronal clusters but 
spared a few clusters stochastically (arrows; 3.4 clusters per CNS, N=5). (C) dpnEE-GAL4 
removed Unc-4 expression in all clusters without sparing any cluster (N=5). In both sca-GAL4 
and dpnEE-GAL4 manipulations, some dorsally located neurons (presumably embryonic-born) 
retained Unc-4 expression (arrowheads). (D) ato-GAL4 manipulation did not appear to affect 
Unc-4 expression in the CNS. Asterisks in (A-D) indicates the bleed-through from the 3xP-
DsRed transgene present in unc-4FRT line; thus, they do not represent Unc-4 expression. (E-H) 
Unc-4 (green) and Sens (magenta) expression in leg discs shown. (E) In the control leg disc, 
Unc-4 is expressed in precursors of the chordotonal organ (arrowhead, marked with Sens) as 
well as in epithelial cells in the anterior compartment (arrows). (F) sca-GAL4 removed Unc-4 
expression in all SOPs (16/16 leg discs, N=5 animals), and also from the epithelial cells 
completely (10/16) or partially (6/16; not shown). (G) dpnEE-GAL4 manipulation did not affect 
Unc-4 expression in most leg discs (15/23, N=9 animals) but sometimes removed Unc-4 
expression in SOPs partially (3/23; not shown) or completely (5/23; not shown). (H) ato-GAL4 
manipulation removed Unc-4 expression in all SOPs (25/25 leg discs; N=8 animals) but also in 
epithelial cells completely (20/25) or partially (5/25; not shown).  (I) ato-GAL4 mediated 
removal of Unc-4 resulted in slower walking animals, which were still faster than unc-4 mutant 
animals (*** p<0.0001 student’s t test) (see also Videos 11 and 12). The walking speed was 1.4 
+/- 0.6 body length per second (BLPS) for control animals, 0.76 +/- 0.4 BLPS for ato-GAL4> 
unc4FRT flies and 0.35 +/- 0.2 BLPS for unc-4 mutants (n>27 tracts from 10 animals each). (J-L) 
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The femur of T2 (J, K, M) and T1 (L) legs shown. iav-GAL4 driven myr::GFP (green) and 
nls::TdTomato (red) used to visualize processes and cell-body location of the chordotonal 
neurons in the femur.  (J) In the control leg, clusters of chordotonal neurons were located 
proximally and close to the trochanter border in the femur (arrow). (K-L) In the unc-4 mutant 
animals, organization of the chordotonal neurons was disrupted. All animals showed this 
phenotype with varying degree of severity. In many legs (55/72; N=12 animals), all of the iav-
GAL4 marked chordotonal neurons were located away from their proximal position (arrowheads 
in K). In some legs (17/72), the phenotype was milder and only a small number of neurons were 
misplaced (arrowhead in L). Milder phenotype was observed mostly in T1 legs (15/17). (M) The 
presence of a BAC transgene containing the unc-4 locus restored the organization of the 
chordotonal neurons (36/36 legs, N=6 animals) in the unc-4 mutant background. 
 
In E-H, A:anterior; P:posterior; V:Ventral; D; Dorsal 
Whisker box plots in I: the box delineates the first and third quartiles, the line in the box is 
median, and whiskers showing minimum and maximum values within 1.5 times the interquartile 
range.  
 
Scale bar is 20 microns.  
Genotypes: 
(A, E) unc-4FRT /+ female as control 
(B, F) unc-4FRT /y; sca-GAL4/UAS-FLP 
(C, G) unc-4FRT /y; dpnEE-GAL4/UAS-FLP 
(D, H) unc-4FRT /y; ato-GAL43.6/UAS-FLP 
(I)  control: unc-4FRT /+; ato-GAL43.6/UAS-FLP  
      ato> unc-4FRT: unc-4FRT /y; ato-GAL43.6/UAS-FLP 
      unc-4 mutant: unc-4DBD /y 
(J) control : +/y;10XUAS-IVS-myr::GFP-p10 ; iav-GAL-4K, 10XUAS-IVS-nlstdTomato 
     unc-4 mutant : unc-4DBD /y;10XUAS-IVS-myr::GFP-p10 ; iav-GAL-4K, 10XUAS-IVS-
nlstdTomato 
     BAC rescue : unc-4DBD /y;10XUAS-IVS-myr::GFP-p10 ; iav-GAL-4K, 10XUAS-IVS-
nlstdTomato/ PBac(DC335) 
 
 
Figure 4 
Cholinergic 11A neurons adopt GABAergic identity in unc-4 mutant animals 
(A-D) The adult VNC from control (left) and unc-4 mutant (right) animals shown; images are 
from maximum Z projection of confocal slices. (A) All Unc-4+ neurons were visualized with 
unc-4DBD-tubAD driven GFP expression (green). No major difference was observed between the 
control and mutant. (B) unc-4AD-ChATDBD split-GAL4 combination used to label cholinergic 
Unc-4+ neurons. Most Unc-4+ neurons were marked with this combination in both the control 
and mutant VNC and no major difference was seen between two. (C) unc-4AD-VGlutDBD driver 
marked a number of embryonic-born Unc-4+ glutamatergic motor neurons in the control VNC, 
which included flight related motor neurons MN1-4 (arrowheads) and MN5 (arrows). In the 
mutant, these motor neurons get disorganized and some show reduction in cell size; e.g., MN5 
neurons. (D) unc-4DBD-gad1AD combination did not consistently show any GABAergic Unc-4+ 
neuron in the control CNS,  however, in the unc-4 mutant background GABAergic interneurons 
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were found in both the T1  ( 9 +/- 5 neurons; N = 30) and T2 (17 +/- 12 neurons; N = 30) 
segments. E) A BAC transgene containing unc-4 locus suppressed the induced GABAergic 
phenotype and reduced the number of these neurons to 1.5 +/- 1 neurons per T1segment and 1.3 
+/- 1 neurons per T2 segment (N=11 VNCs each). (F) A partial Z projection showing the main 
neuronal processes of unc-4DBD-gad1AD marked neurons in the VNC of an unc-4 mutant animal. 
They extend ipsilateral processes both anteriorly and posteriorly (arrows). (G) NB7-2 intersected 
reporter immortalization used to label all lineage 11 neurons in unc-4 mutant background and 
partial Z projection made to show only 11A neuronal processes but not that of 11B. The 
projections by the mutant cells match those of the 11A neurons (arrows). (H-K) unc-4DBD-
gad1AD expression (outlined with dashed yellow lines) in the T2 segment from unc-4 mutant 
adults. Nkx-6, a marker for 11A neurons, is expressed in a subset of unc-4DBD-gad1AD marked 
neurons (arrows in H) while Eve, a marker for 11B neurons, is not (I).  (J) ChAT (blue) and 
gad1(magenta) mRNAs were visualized via RNA in situ hybridization. Majority of unc-4DBD-
gad1AD marked neurons expressed gad1 mRNA but not ChAT mRNA. (K) unc-4DBD-gad1AD 

marked neurons were immunopositive for GABA reactivity (magenta).  
Scale bar is 20 microns. 
 
Genotypes  
(A) control: unc-4DBD/+;tubAD/+;10XUAS-IVS-myr::GFP/+ 
      unc-4 mutant: unc-4DBD/y;tubAD/+;10XUAS-IVS-myr::GFP/+ 
(B) control: unc-4AD/+;; ChATDBD /10XUAS-IVS-myr::GFP 
      unc-4 mutant: unc-4AD/y;; ChATDBD /10XUAS-IVS-myr::GFP 
(C) control: unc-4AD/+;VGluTDBD/+;10XUAS-IVS-myr::GFP/+ 
      unc-4 mutant: unc-4DBD/y;VGluTDBD/+;10XUAS-IVS-myr::GFP/+ 
(D) control: unc-4DBD/+;; gad1AD,10XUAS-IVS-myr::GFP/+ 
      unc-4 mutant: unc-4AD/y;;gad1AD,10XUAS-IVS-myr::GFP/+ 
(F) BAC rescue: unc-4AD/y;;gad1AD,10XUAS-IVS-myr::GFP/ PBac(DC335) 
(G) unc-4 mutant: unc-4AD/y;;gad1AD,10XUAS-IVS-myr::GFP/+ 
(H) NB7-2 lineage clone: hsFlp, dpn>KDRT-stop-KDRT>Cre:PEST, unc-4null; Act5c>loxP-stop 
loxP>LexA::p65/R35B12AD; UAS-KD/R28H10DBD  
(H-K) unc-4 mutant: unc-4AD/y;;gad1AD,10XUAS-IVS-myr::GFP/+ 
 
 
Figure 5 
Projections of Unc-4+ lineages in control and unc-4 mutant backgrounds 
(A-D) VNC examples from control (left panels) and unc-4 mutant (right panels) adults.  
Transverse views from a 3D projection of the region indicated by yellow bracket are shown 
under the main images. (A) NB3-2 intersected reporter immortalization with ey-AD;dbxDBD driver 
was used to visualize the 7B neurons. In the unc-4 mutant animal, the 7B neurons did not 
innervate the T2 leg neuropil (compare the regions indicated by arrows). Note that 7B neurons in 
the mutant T1 segment were not labeled in this sample (asterisk), but in other mutant samples, 
projections of 7B neurons in T1 segments were similar to the control (not shown). (B) uncDBD- 
AP-2AD driver GFP used to mark 12A neurons. No dramatic difference was observed between the 
control and mutant VNCs. (C) Poxn-GAL4 driven reporter immortalization in NB2-4 used to 
visualize 18B neurons. Their neuronal projections appeared similar in the control and mutant. 
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(D) unc-4DBD;77C10AD driven GFP expression used to visualize projections of 23B neurons, 
which did not differ between the control and mutant.  
 
Z projection images were made from a subset of confocal slices to visualize projections of all 
neurons.  
Scale bar is 20 microns.  
 
Genotypes 
(A) NB3-2 lineage clone/7B neurons:  
Control: hsFlp, dpn>KDRT-stop-KDRT>Cre:PEST; Act5c>loxP-stop loxP>LexA::p65/+; UAS-
KD/dbxDBD; eyAD/+  
unc-4 mutant:hsFlp, dpn>KDRT-stop-KDRT>Cre:PEST, unc-4null; Act5c>loxP-stop 
loxP>LexA::p65/+; UAS-KD/dbxDBD; eyAD/+  
(B) 12A neurons 
Control: uncDBD/+; 10XUAS-IVS-myr::GFP; AP-2AD 

unc-4 mutant: uncDBD/y; 10XUAS-IVS-myr::GFP; AP-2AD 

(C) NB2-4 lineage clone/18B neurons:  
Control: hsFlp, dpn>KDRT-stop-KDRT>Cre:PEST; Act5c>loxP-stop loxP>LexA::p65/+; UAS-
KD/Poxn-GAL4.13  
unc-4 mutant:hsFlp, dpn>KDRT-stop-KDRT>Cre:PEST, unc-4null; Act5c>loxP-stop 
loxP>LexA::p65/+; UAS-KD/Poxn-GAL4.13  
(D) 23B neurons 
Control: uncDBD/+; R77C10AD/10XUAS-IVS-myr::GFP 

unc-4 mutant: uncDBD/y; R77C10AD/10XUAS-IVS-myr::GFP 
 
Figure 6 
Unc-4 function is necessary for 7B neurons to innervate the leg neuropil 
(A) An adult VNC containing MCFO clones showing two 7B neurons in the T2 segment; both 
extend projections (arrows) to the ipsilateral leg neuropil. (B) A subset of 7B neurons (magenta) 
in the T2 segment marked with SS20852-GAL4 driven syt-HA (yellow) showing synaptic 
outposts in the leg neuropil. (C, D) NB3-2 intersected reporter immortalization via ey-AD;dbxDBD 
driver used to visualize projections of 7B neurons in the control (C) and mutant (D) animals. 
Cartoons in the left panels schematized projections of the T2 7B neurons observed in confocal 
images. Transverse views (corresponding the yellow brackets) shown under the cartoons.  In the 
mutant, ipsilateral (arrows) and contralateral (arrowheads) projections in the leg neuropils were 
reduced. Note that the numbers of T2 7B neurons marked with the reporter in control and mutant 
animals was the same (67 +/-6 and 68+/-9 neurons in control and mutant animals, respectively; 
N=7 clones for each). (E-G) A different immortalization technique involving FLP/FRT induced 
LexA:p65  without NB intersection used to mark 7B neurons in the VNC of control (E) and 
mutant (F,G) animals. ey-AD;dbxDBD expression was immortalized without NB intersection. Top 
panels show maximum z projections; bottom panels show the transverse view of the same 
region. As with the above manipulations, mutant 7B neurons failed to show the normal 
innervation of the leg neuropil (compare arrows in E and F). In some mutant animals, ipsilateral 
7B projections extended posteriorly without innervating leg neuropils (arrows in G). (H-I) 7B 
MARCM clones in T2 segments of the control (H) and (I) unc-4 mutant animals shown. Both 
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ipsilateral (arrows) and contralateral (arrowheads) projections into leg neuropils were reduced in 
the mutant clone (I). Control clone has 68 cells; unc-4 clone has 73 cells. 
(C-H) Maximum z projections were made of a subset of confocal slices to reveal neuronal 
processes in leg neuropils. 
n indicates the number of animals showing the phenotype.  
 
Genoypes: 
(A) SS20852-GAL4 / 10XUAS-IVS-myr::GFP in attP18;3XUAS- IVS- Syt::smGFP- HA 
(B) SS20852-GAL4/hsFlp2::PEST; HA_V5_FLAG-MCFO 
(C) dpn>KDRT-stop-KDRT>Cre:PEST; 13XLexAop2-IVS-myr::GFP, Act5c>loxP-stop 
loxP>LexA::p65/+; UAS-KD/dbxDBD; eyAD/+  
(D) dpn>KDRT-stop-KDRT>Cre:PEST, unc-4null; 13XLexAop2-IVS-myr::GFP, Act5c>loxP-
stop loxP>LexA::p65/+; UAS-KD/dbxDBD; eyAD/+  
(E) unc-4null /+;13XLexAop2-IVS-myr::GFP, Actin5Cp4.6>FRT-stop-FRT>nlsLexAp65/UAS-
FLP.D; dbxDBD/+; eyAD/+ 
(F-G) unc-4null /+;13XLexAop2-IVS-myr::GFP, Actin5Cp4.6>FRT-stop-
FRT>nlsLexAp65/UAS-FLP.D; dbxDBD/+; eyAD/+ 
(H) elav-GAL4C155, hsFLP; FRT42B, tubP-GAL80/FRT42B, UAS-mCD8::GFP 
(I) hsFLPop, Tub-GAL80, FRT19A/unc-4null FRT19A;; act>FO>GAL4, UAS-CD8GFP/+ 
 
 
Figure 7 
Removal of Unc-4 specifically in 7B neurons impairs take-off behavior 
(A-B) Unc-4 expression (magenta) in the T1/T2 region of the VNC shown. (A) Unc-4 expression 
in T1 12A and T2 7B neurons are outlined with dashed lines. (B) NB3-2-GAL4 (eyAD;dbxDBD) 
driven FLP removes Unc-4 expression specifically from 7B neurons. (C-D) Sequences of still 
images shown from videos recording the response of flies to a looming stimulus.  (C) The 
control animal exhibited stereotyped take-off behavior. It first raised its wings, and then 
extended its T2 legs (arrow) to take off. (D) The NB3-2 specific Unc-4 knock-out animal 
exhibited an interrupted take-off behavior. It responded to the looming stimulus and raised its 
wings. It attempted to jump by lifting its hindleg (arrowhead) but did not extend its T2 legs, thus 
failed to take off. See also Videos 14 and 15. (E) The percentage of animals that showed 
interrupted take-off behavior shown. See methods section for more information. 
The time under each image is in milliseconds and indicates the elapsed time after the visual 
stimulus. Scale bar is 20 microns.  
 
Genotypes: 
(C) Control:5XUAS-FLP::PEST, unc-4FRT/+; dbxDBD/+; eyAD/+ 
(D) NB-3-2-GAL4> unc-4FRT:5XUAS-FLP::PEST, unc-4FRT/y; dbxDBD/+; eyAD/+ 
 
 
 
 
Figure 1 -Supplemental Figure 1 
(A-I) GFP expression (green) driven by unc-4AD, unc-4DBD, unc-4GAL4 reporter lines shown from 
larval (A-D) and adult tissues (E-I). (A) A whole-mount second instar larval sample shown. Unc-
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4 is expressed in the CNS, head taste organ, and ventral epidermal cells, which partially overlap 
with denticle bends. (B) Unc-4 is expressed in the midgut enteroendocrine cells. (C, D) Unc-4 is 
expressed in antennal (C) and leg (D) imaginal discs. In the leg disc, Unc-4 expression is 
confined to the anterior region of the disc. (E) Adult head shown. Olfactory neurons (yellow 
arrowhead) and Johnston’s organ are marked with the Unc-4 reporter. (F-G) Adult legs shown. 
(F) unc-4AD-ChATDBD driven GFP expression marks chordotonal neurons (yellow arrow), 
campaniform sensilla neurons (arrowhead), and bristle sensory neurons (white arrows). Unc-4 
expression marks bristles sensory neurons in the anterior compartment of the leg but not the ones 
in the posterior compartment (G). (H-I) Unc-4 is expressed in sensory neurons of female (H) and 
male (I) reproductive tracts (arrowheads) in addition to ejaculatory bulb of males (arrow). The 
schematic representation of the female reproductive tract was drawn based on (REZAVAL et al. 
2012). 
Genotypes: 
(A) unc-4AD/+;tubDBD/+;10XUAS-IVS-myr::GFP/+ 
(B-E, I) unc-4GAL4/+;10XUAS-IVS-myr::GFP/+ 
(B-E, I) unc-4DBD/+;tubAD/+;10XUAS-IVS-myr::GFP/+ 
(F) unc-4AD/+;; ChATDBD /10XUAS-IVS-myr::GFP 
 
 
Figure 4 -Supplemental Figure 1  
(A-C) unc-4AD-VGlutDBD driven GFP expression in the larval (A, C) and adult (B) VNC shown. 
Eve expression (magenta) marks segmentally repeated larval U/CQ motor neurons (C). Based on 
our tracing experiment, these motor neurons are remodeled during metamorphosis to be adult 
MN1-4 and haltere motor neurons in thoracic segments, and dorsal body-wall innervating motor 
neurons in abdominal segments (B). (A) Unc-4 is also expressed in two pairs (in T1 and T2) and 
one pair (in T3 and abdominal segments) neurons, which are located on the dorsal surface of the 
pupal VNC. Based on lineage clones we generated (not shown) and previously published work 
(ROGULJA-ORTMANN et al. 2008), these neurons are likely embryonic progeny of NB2-4. (B) In 
T1, these neurons become adult neck motor neurons. In T2, one of these neurons becomes MN5 
motor neuron while its cousin is eliminated by apoptosis during pupal development (asterisks).  
Genotype: unc-4AD/+;VGluTDBD/+;10XUAS-IVS-myr::GFP/+ 
 
 
Figure 4 -Supplemental Figure 2 
ChAT (magenta) and gad1(blue) mRNAs were visualized via RNA in situ hybridization. unc-
4DBD-tubAD marked Unc-4+ hemilineages (green) express ChAT mRNA but not gad1 mRNA. 
Single confocal slices from the T2 segment of the dorsal (A) and ventral (B) VNC shown. 
Scale bar is 20 microns.  
Genotype: unc-4DBD/+;tubAD/+;10XUAS-IVS-myr::GFP/+ 
 
 
Figure 7 -Supplemental Figure 1 
(A) eyAD;dbxDBD  driven GFP expression specifically marks NB3-2 in all thoracic segments (T1, 
T2, T3) in addition to first and second abdominal segments (not visible in this projection) in the 
larval CNS. The same driver also marks a single NB in gnathal segments (S1, S2, S3; S1 
expression is not visible in projection). No NB is marked in the central brain. (B-C) NB3-2 
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intersected reporter immortalization used to visualize progeny of eyAD;dbxDBD  marked NBs in the 
larval (B) and adult CNS (C). From S3 through A2, reporter immortalization marked Unc-4+ 7B 
neurons. Marked neurons in S1 and S2 segments do not express Unc-4; in the S2 segment, 
marked neurons extend axons in a similar manner to 7B neurons. Red, yellow, and white 
arrowheads  the neurons in S1, S2, and S3 segments, respectively.   
Genotypes: 
(A) dbxDBD/10XUAS-IVS-myr::GFP; eyAD 
(B, C) hsFlp, dpn>KDRT-stop-KDRT>Cre:PEST; Act5c>loxP-stop loxP>LexA::p65/+; UAS-
KD/dbxDBD; eyAD/+  
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VIDEO LEGENDS 
Video 1: unc-4 mutant males (unc-4DBD /y) in open field. 
Video 2: Climbing activity of individual flies: left, unc-4 mutant males (unc-4DBD /y); right, 
rescued males (uncDBD/y; tubAD /10XUAS-IVS-myr::GFP; UAS-unc-4). 
Video 3: Climbing activity of group of flies: left, unc-4 mutant males (unc-4DBD /y); right, 
rescued males (uncDBD/y; tubAD /10XUAS-IVS-myr::GFP; UAS-unc-4). 
Video 4: Three-leg rubbing activity of individual flies; 2X slower: left, unc-4 mutant males (unc-
4DBD /y); right, rescued males (uncDBD/y; tubAD /10XUAS-IVS-myr::GFP; UAS-unc-4). 
Video 5: Tethered flight assay, 10X slower: left, unc-4 mutant males (unc-4DBD /y); right, 
rescued males (uncDBD/y; tubAD /10XUAS-IVS-myr::GFP; UAS-unc-4). 
Video 6: Rescue of the flight take-off activity by GAL4/UAS system (uncDBD/y; tubAD 
/10XUAS-IVS-myr::GFP; UAS-unc-4). 
Video 7: Rescue of the flight take-off activity by a BAC transgene (uncDBD/y;; PBac(DC335) /+). 
Video 8: Climbing activity of group of flies with the CNS and PNS specific deletion of unc-4: 
left, control (unc-4FRT /+; sca-GAL4/UAS-FLP.D); right, sca> unc-4FRT (unc-4FRT /y; sca-
GAL4/UAS-FLP.D). 
Video 9: Climbing activity of group of flies with the CNS specific deletion of unc-4: left, control 
(unc-4FRT /+; dpnEE-GAL4/UAS-FLP); right, dpnEE > unc-4FRT (unc-4FRT /y; dpnEE-GAL4/UAS-
FLP). 
Video 10: Three-leg rubbing activity of individual flies with the chordotonal organ lineage 
specific deletion of unc-4: left, control (unc-4FRT /+; ato-GAL43.6/UAS-FLP); right, ato > unc-
4FRT (unc-4FRT /y; ato-GAL43.6/UAS-FLP). 
Video 11, 12: Walking activity of individual flies in small-diameter tubes: control (unc-4FRT /+; 
ato-GAL43.6/UAS-FLP); ato> unc-4FRT (unc-4FRT /y; ato-GAL43.6/UAS-FLP); unc-4 mutant 
(unc-4DBD /y). 
Video 13: The flight take-off behavior of flies with the 7B hemilineage specific deletion of unc-4 
in response to banging the vial; 2X slower: left, control (5XUAS-FLP::PEST, unc-4FRT/+; 
dbxDBD/+; eyAD/+); right, NB-3-2-GAL4> unc-4FRT (5XUAS-FLP::PEST, unc-4FRT/y; dbxDBD/+; 
eyAD/+) 
Video 14: The flight take-off behavior of flies with the 7B hemilineage specific deletion of unc-
4 in response to visual looming stimuli ; 200X slower: left, control (5XUAS-FLP::PEST, unc-
4FRT/+; dbxDBD/+; eyAD/+); right, NB-3-2-GAL4> unc-4FRT (5XUAS-FLP::PEST, unc-4FRT/y; 
dbxDBD/+; eyAD/+) 
Video 15: Flies with 7B specific unc-4 deletion initiating flight without take-off (5XUAS-
FLP::PEST, unc-4FRT/y; dbxDBD/+; eyAD/+). 
Video 16: The flight take-off behavior of flies with the ablated 7B hemilineage in response to 
banging the vial; 2X slower (UAS-hidAla5/+;; dbxDBD/+; eyAD/+). 
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