

Running head: Ebert and Rogers: Sex differences in *Diaphorina*

1

2 Please address correspondence to:

3 Timothy A. Ebert

4 Citrus Research and Education Center

5 University of Florida

6 700 Experiment Station Rd

7 Lake Alfred, FL 33850, USA

8 tebert@ufl.edu

9

10 Probing behavior of *Diaphorina citri* (Hemiptera: Liviidae) on

11 Valencia orange influenced by sex, color, and size

12

13 Timothy A **Ebert**^{1*}, Michael E **Rogers**¹

14 ¹ University of Florida, Citrus Research and Education Center, Department of Entomology and

15 Nematology, 700 Experiment Station Rd., Lake Alfred, FL 33850

16

17

18

19

20 *Corresponding author; E-mail: tebert@ufl.edu

21

Running head: Ebert and Rogers: Sex differences in *Diaphorina*

22 **ABSTRACT:** *Candidatus Liberibacter asiaticus* is vectored by the psyllid *Diaphorina*
23 *citri* Kuwayama (Hemiptera: Liviidae) and putatively causes Huanglongbing disease in citrus.
24 Huanglongbing has reduced yields by 68% relative to pre-disease yields in Florida. Disease
25 management is partly through vector control. Understanding vector biology is essential in this
26 endeavor. Our goal was to document differences in probing behavior linked to sex. Based on
27 both a literature review and our results we conclude that there is either no effect of sex or that
28 identifying such an effect requires a sample size at least four times larger than standard
29 methodologies. Including both color and sex in statistical models did not improve model
30 performance. Both sex and color are correlated with body size, and body size has not been
31 considered in previous studies on sex in *D. citri*. An effect of body size was found wherein larger
32 psyllids took longer to reach ingestion behaviors and larger individuals spent more time
33 ingesting phloem, but these relationships explained little of the variability in these data. We
34 suggest that the effects of sex can be ignored when running EPG experiments on healthy
35 psyllids.

36

37 Key words: Electropenetrography, electrical penetration graph, EPG, negative results,
38 Asian Citrus Psyllid

39

40

Running head: Ebert and Rogers: Sex differences in *Diaphorina*

41 *Diaphorina citri* Kuwayama (Hemiptera: Liviidae) is the insect vector of *Candidatus*
42 *Liberibacter asiaticus* (CLas) which is the putative causal agent of Huanglongbing disease. The
43 disease and psyllid are now present in the three major citrus growing regions of the United
44 States: Florida (Halbert 2005), Texas (Kunta et al. 2014), and California (Kumagai et al. 2013).
45 The disease has reduced production in Florida from 291.8 million boxes in 2003-04 season down
46 to 94.2 million boxes in the 2015-16 season
47 (https://www.nass.usda.gov/Statistics_by_State/Florida) and threatens a similar outcome in the
48 other regions. Worldwide, CLas is considered the second most important insect vectored
49 bacterial plant pathogen, behind *Xylella fastidiosa* (Mansfield et al. 2012).

50 One of the three foundations for managing CLas is through insecticide applications to
51 reduce pest populations (Grafton-Cardwell et al. 2013). While mortality is an essential
52 component of efficacy, what the insect does in the time between exposure and death can
53 influence the overall success of the insecticide application as a disease management tool.
54 Because CLas is phloem limited, management techniques for *D. citri* need to focus on the ability
55 of the pesticide to reduce or prevent the psyllid from salivating into the phloem or ingesting
56 phloem wherein inoculation and acquisition events occur respectively (Bonani et al. 2010,
57 Serikawa et al. 2013). In studying this system, experiments that ignore sex risk missing
58 important differences between the sexes but including sex as a planned treatment doubles the
59 size of an experiment. The third option is to test one sex and assume that the other sex behaves
60 differently in some unknown but significant way that will be investigated in future research.
61 Understanding the behavioral differences in probing behavior between the sexes is essential for
62 proper experimental design and biological interpretation of the results.

Running head: Ebert and Rogers: Sex differences in *Diaphorina*

63 Many insects show differences between males and females beyond the required
64 anatomical and genetic differences. Sex differences can influence vector competence as
65 demonstrated in the following examples. *Bemisia tabaci* (Gennadius) (Hemiptera: Aleyrodidae)
66 females of biotype Q were better than males at transmitting tomato yellow leaf curl virus, and the
67 females were better than either males or females of biotype B. There was no significant
68 difference between males and females of biotype B. (Ning et al. 2015). In fourteen populations
69 of *Frankliniella occidentalis* Pergande (Thysanoptera Thripidae), males were more successful at
70 transmitting tomato spotted wilt virus because females feed more intensively than the males, and
71 females move less (van de Wetering et al. 1998). In *Macrostelus quadrilineatus* (Hemiptera
72 Cicadellidae) females are better at transmitting the aster yellows phytoplasma in lettuce, and the
73 pattern of disease spread for females was significantly more clustered (Beanland et al. 1999). In
74 *Scaphoideus titanus* Ball (Hemiptera: Cicadellidae), males spend more time probing than
75 females. Males and females took the same time to reach xylem, but males stayed in xylem
76 longer. Females took longer to reach phloem than males, but males remained in phloem twice as
77 long as females (Chuche et al. 2017). As the authors point out, this system could result in sex-
78 related differences in acquisition or transmission. Such examples show that keeping track of
79 males and females can be important in understanding the biology of the pest and its role as a
80 vector. The question is whether or not it makes a difference in *D. citri*. A more general literature
81 search was done to provide a background. Several reviews of *D. citri* biology already exist
82 (Halbert and Manjunath 2004, Yang et al. 2006, Grafton-Cardwell et al. 2013, Hall et al. 2013,
83 Stelinski 2019). While these reviews discuss some sex-related differences, sex was not their
84 focus.

Running head: Ebert and Rogers: Sex differences in *Diaphorina*

85 **Sex Ratio:** The male-female ratio is often close to 50:50 (Tsai and Liu 2000, Nava et al.
86 2007, Hall et al. 2008, Hall and Hentz 2016, Hall 2018). However, sometimes there exists a
87 greater percentage of females (Catling 1970, Pande 1971, Xu et al. 1994, Alves et al. 2014).

88 **Morphology:** Females are generally larger than males. Female wings are longer (Martini
89 et al. 2015). The host plant affects morphological variability in males and females, though the
90 males tend to be more variable (Garcia-Perez et al. 2013).

91 The morphology of the antennae is similar between males and females, but there are short
92 apical setae with tips that are recessed inward in the females but not the males (Onagbola et al.
93 2008). Females, but not males, have circumanal glands that produce aliphatic hydrocarbons, fatty
94 and ester waxes that are excreted with the honeydew (Ammar el et al. 2013). Males produce a
95 clear honeydew that is deposited on the leaf surface behind the insect. Females produce
96 honeydew pellets that are propelled away from the insect and off the plant (Ammar el et al.
97 2013).

98 **Life History:** Females live longer on average, though exact estimates depend on the host
99 plant. On a curry leaf host, males live an average of 15 days versus 17 days for females, but on
100 acid lime, the values are 17 and 20 respectively (Chakravarthi et al. 1998). On Rangpur lime, the
101 mean values are 24 and 31 days while the difference is 21 and 31 days respectively (males vs
102 females) on Sunki mandarin (Nava et al. 2007). Sometimes there is no significant difference with
103 both surviving an average of about 30 days on a variety of hosts (Alves et al. 2014) up to 47 days
104 on others. In starvation tests, males and females have equivalent survival rates when stressed by
105 high temperatures and different relative humidity levels with LT₅₀ values of 24.9 to 43.2 h at 25
106 C and 7 to 97% relative humidity respectively and 12.1 to 32.2 h at 30 C and 7 to 97% relative

Running head: Ebert and Rogers: Sex differences in *Diaphorina*

107 humidity respectively (McFarland and Hoy 2001). For comparison, the longest survival in
108 starvation was 94.5 h and the longest survival in non-starvation is 117 days (Liu and Tsai 2000).

109 It takes the same number of days from egg to maturity for males and females (Nava et al.
110 2010, Hall and Hentz 2016). Development time is slightly shorter for males, but the proportion
111 of females exceeds that of males at about 5 days after the first adults start to emerge from a
112 cohort (Cifuentes-Arenas et al. 2018). The effect this has on psyllid biology may be mitigated by
113 multiple overlapping generations in the field. Sexual maturity is reached by males and females 2-
114 3 days post-eclosion (Wenninger and Hall 2007).

115 **Physiology:** In uninfected adults, there was no difference between male and female
116 levels of glutathione S-transferase activity. However, enzymatic activity was higher in females
117 but not males when the adults were carrying CLas. In the same study, cytochrome P₄₅₀ levels for
118 males and females were roughly equivalent, but there was a significant interaction effect wherein
119 the difference in cytochrome levels between infected and uninfected females was significantly
120 different, but was only marginally significant for males (Tiwari et al. 2011). Acetylcholinesterase
121 levels were the same between males and females, but the infection status of field-collected
122 material was not determined (Tiwari et al. 2012).

123 There may be a male-female difference in response to some insecticides. Females but not
124 males were repelled by pyrmetrozine deposits at 24 and 48 h (Boina et al. 2011).

125 **Immune Response:** Males had higher mortality than females when infected with
126 *Bacillus subtilis* via septic injury (Arp 2017). No difference due to sex was observed when
127 bacteria were administered orally. Additional testing was done wherein *D. citri* were first primed
128 using an artificial diet containing dead bacterial cells. These adults were then exposed to an

Running head: Ebert and Rogers: Sex differences in *Diaphorina*

129 artificial diet containing *Serratia marcescens*, and mortality was assessed until all insects died.

130 Mortality rates were significantly lower for primed females relative to primed males (Arp et al.
131 2017).

132 **Dispersal:** Males and females increased dispersal rates to the same extent as a function of
133 increasing crowding from conspecifics (Martini et al. 2015). The flight distance and duration are
134 the same for males and females (Arakawa and Miyamoto 2007, Martini et al. 2014a). At
135 distances up to 60 meters, the numbers of dispersing males versus the numbers of dispersing
136 females were the same at one, two, or three meters above the soil surface (Hall and Hentz 2011).

137 **Olfaction:** Females avoid the odor of other females in a density-dependent manner, but
138 odors from plants damaged by other psyllids were attractive and attraction increased with higher
139 numbers of psyllids (Martini et al. 2014b). Thus highly damaged hosts are preferred, but within
140 such a host the shoots with the fewest psyllids are selected (Martini et al. 2014b). Both males and
141 females respond to female odors in a dose-dependent fashion, but neither respond to the odor of
142 males (Martini et al. 2014b). Cuticular hydrocarbons are one source of odors, and males have
143 hexadecane, dodecanoic acid, and tetradecanoic acid while these are below detectable levels in
144 females. Females have acetic acid, ethyl undecanoate, hexanoic acid, geranyl acetone, decanoic
145 acid, isopropyl tetradecanoate, 1-methylpropyl dodecanoate, and pentadecanoic acid that are
146 below detectable levels in the male. Both males and females had 1-dodecanol. Males respond to
147 female cuticular extract, but no other response was detected: female-female odor, male-male
148 odor, or female-male odor (Mann et al. 2013). Mann et al. (2013) also field-tested the result
149 using both clear and yellow sticky traps. More psyllids were captured in scented clear traps than
150 unscented traps and a larger proportion of captured insects were male. For yellow traps, the total
151 catch was the same for scented and unscented traps, but scented traps captured more males. A

Running head: Ebert and Rogers: Sex differences in *Diaphorina*

152 behavioral assay in the lab indicated that dodecanoic acid was the active compound. While a
153 field assay with this compound captured more males at the highest use rates, the total catch was
154 no different from the unscented control (Mann et al. 2013). The finding that males are attracted
155 to females but the other interactions are not statistically significant has also been reported
156 elsewhere (Gharaei et al. 2014).

157 Odors can be used to identify host plants. Both sexes are attracted to Mexican lime.
158 Undamaged grapefruit attracted only females. Valencia and sour orange were not attractive to
159 either sex. However, the general trend was for the female to find a suitable host, and the male is
160 then attracted to the female (Gharaei et al. 2014). Females respond to plant volatile cues while
161 males do not (Beloti et al. 2017). However, in one test it was the males that had a stronger
162 preference for plant odors (Patti and Setamou 2010). The response to plant volatiles was affected
163 by mating status, sex, and the presence of visual cues (Wenninger et al. 2009b). Unmated
164 individuals are less responsive to plant volatiles in the absence of visual cues. The female
165 antenna may be more sensitive to plant volatiles than the male antenna. The female was
166 behaviorally responsive to plant odors in a Y-tube olfactometer test when the visual cue was a
167 yellow sticky card and Navel, Sour orange, or *Murraya panniculata* L. Jack versus a clean air
168 control, while there was no response in the male when given the same choice (Wenninger et al.
169 2009b). However, the response of individuals to specific odors is complex because the psyllid's
170 attraction to specific odors is partly a learned response (Stockton et al. 2017a, Stockton et al.
171 2017c, Stockton et al. 2017b).

172 Sex has a variety of effects on chemoreception and biosynthesis, most notably in roles
173 related to pheromone production and detection. Several transcripts have been identified with
174 putative roles in male detection of female pheromones (Wu et al. 2016b).

Running head: Ebert and Rogers: Sex differences in *Diaphorina*

175 **Visual response:** Fewer males responded to white or UV-blocked white light. However,
176 within the responders, there was no difference in preference for one color over another for males
177 versus females (Paris et al. 2017).

178 **Vibrational communication:** *Diaphorina citri* uses vibrational communication by
179 vibrating their wings to generate a signal that is transmitted through the tree. The frequency of
180 the vibrations was negatively correlated with body size, but the relationship was statistically
181 significant only for males. While both males and females signal, the male searches for the female
182 who remains stationary (Wenninger et al. 2009a). In exploring the potential use of vibrational
183 signals to trap male psyllids it was reported that females were more likely to respond to signals
184 from other females relative to synthetic signals or white noise (male signals not tested), while
185 males would respond to male or female signals and a synthetic signal equally and only ignore
186 white noise (Rohde et al. 2013).

187 **Endosymbionts:** There may be an interaction between temperature and sex of the psyllid
188 in the abundance of endosymbionts. A Chinese colony of *D. citri* and *Candidatus Carsonella*
189 ruddii showed no temperature effect in endosymbiont levels for females, but the abundance of
190 the endosymbiont was reduced in males exposed to 5 °C relative to 27 and 40 °C. The colony
191 from Pakistan showed no effect of temperature (Hussain et al. 2017). In both cases, males
192 seemed to have lower levels of Carsonella, but the difference was not significant. In the same
193 study, temperatures of 40 °C reduced levels of Wolbachia in females, for both the Chinese and
194 Pakistani colonies. The same outcome was reported for males from Pakistan, but the lowest level
195 of Wolbachia in the Chinese colony was at 5 °C (Hussain et al. 2017).

196 ***Candidatus Liberibacter asiaticus:*** Exposure of nymphs to *Candidatus Liberibacter*
197 asiaticus (CLas) infected plants increased male dispersal, but not female dispersal. Furthermore,

Running head: Ebert and Rogers: Sex differences in *Diaphorina*

198 it was more likely that dispersing males carried CLas (Martini et al. 2015). However, infection
199 rates between males and females are the same (Martini et al. 2015, Wu et al. 2018a, Wu et al.
200 2018b). It has been reported that titers of CLas fluctuate with higher levels in autumn compared
201 to spring for females, but the titers were not significantly different for males (Wu et al. 2018a).
202 However, it has been observed that females have a higher transmission rate (26%) compared to
203 males (18%) (Wu et al. 2016a).

204 CLas was present in the ovaries, but not testes, though in other respects CLas distribution
205 was the same in males and females (Ammar et al. 2011a, Ammar et al. 2011b).

206 **Probing Behavior:** Several manuscripts describe sex-related differences in probing behavior
207 in *D. citri*. However, some only used females (Bonani et al. 2010, Zhu et al. 2010, Youn et al.
208 2011, Cen et al. 2012, Serikawa et al. 2012, Serikawa et al. 2013). Others either assumed that
209 there was no difference or assumed a stable sex ratio and were interested in an average outcome
210 (Boina et al. 2011, Yang et al. 2011, Kim 2013, Ebert and Rogers 2016). Of those manuscripts
211 that looked for a sex difference in probing behavior, two manuscripts reported no significant
212 differences between males and females (Luo et al. 2015, George et al. 2017). However,
213 significant differences have also been found. The duration of phloem ingestion was significantly
214 longer for females. The probe duration per event was shorter for females. The pathway duration
215 per probe was longer in females. The number of phloem ingestion events was greater in females
216 (Serikawa 2011). In another report, the minimum duration of phloem salivation was shorter in
217 females than males, but in other respects, males and females were similar (Wu et al. 2016a).

218 **Color:** *Diaphorina citri* has different color forms that include green, blue, red, orange,
219 grey, and brown. Color differences were first documented over 90 years ago (Husain and Nath
220 1927). Abdominal color influences mating success and fecundity (Wenninger et al. 2009c,

Running head: Ebert and Rogers: Sex differences in *Diaphorina*

221 Stockton et al. 2017b). While blue males had the same size testes as orange males, females
222 mated to orange males laid twice as many eggs relative to blue males. Experienced females avoid
223 blue males (Stockton et al. 2017b). Body size is correlated with both sex and abdominal color
224 with higher reproductive potential in blue/green individuals (Wenninger and Hall 2008,
225 Wenninger et al. 2009c). It has also been shown that the blue/green morph was more capable of
226 long-distance dispersal than the brown morph (Martini et al. 2014a). Finally, consistent with the
227 observation that the blue/green morph had higher expression of CYP4 genes (Tiwari et al. 2013),
228 insecticide applications increase the proportion of the blue/green morph (Martini et al. 2016).

229 Psyllids can change color over their lifetime based on age, mating status, sexual maturity,
230 and possibly other factors. However, this change is not consistent enough to be diagnostic
231 (Wenninger and Hall 2008). Gray/brown males and females are of roughly equal size, but they
232 are smaller than any other sex/color combination. Gray/brown females were ca 30% smaller than
233 blue/green females, while the difference between gray/brown versus blue/green males was ca
234 18% (Wenninger and Hall 2008). Both color and sex influenced the expression of the *Krippel-*
235 *homolog1* transcription factor involved in vitellogenesis and oogenesis where green females had
236 higher relative expression levels than brown females and levels declined with female age from 1
237 to 14 days. There was no significant difference between green and brown males, but levels
238 increased with age (Ibanez et al. 2019).

239 **Probing behavior (EPG):** This paragraph is an introduction to probing behavior in *D.*
240 *citri* as measured using EPG. Probing behavior is a sequence of events resulting in nutrient
241 acquisition or pathogen transfer. Specific events can be identified by repetitive patterns in the
242 EPG output. These events are waveforms that are given abbreviations to aid in data entry,
243 analysis, and presentation. The psyllid maintains osmotic balance by ingesting xylem (waveform

Running head: Ebert and Rogers: Sex differences in *Diaphorina*

244 G). Xylem ingestion also dilutes ingested toxins and aids in excreting toxins or their metabolites.

245 The psyllid gets most of its nutrition from ingesting phloem (waveform E2). Once it has

246 contacted phloem or xylem it has demonstrated that it is capable of further contact. Host plant

247 acceptance is indicated by long phloem ingestion events (greater than 10 minutes). Spending a

248 long time in xylem may indicate problems with osmotic balance or elevated levels of plant

249 defensive compounds. More time spent until the first probe might indicate problems with host

250 identification, while a long time to first phloem ingestion could indicate physical barriers like

251 phloem fiber cells or might indicate difficulties recognizing the cues for locating the phloem or

252 xylem. Once the psyllid has contacted the phloem or xylem it has demonstrated skill at reaching

253 nutrient. However, if the nutrient is of poor quality the psyllid might try other feeding sites

254 resulting in more probes after the first contact. Additionally, the insect is a vector, and

255 transmission occurs during phloem salivation (E1), and maybe during phloem contact (waveform

256 D). The acquisition of the pathogen by the insect is during phloem ingestion. As a final

257 consideration, the response in the psyllid could be a shift in the mean, or it could be a change in

258 the variability about the mean. These considerations are the conceptual beginning to converting

259 six waveforms (non-probing NP, and five probing waveforms consisting of pathway C, xylem

260 ingestion G, contact with phloem D, phloem salivation E1, and phloem ingestion E2) into a

261 multitude of different variables (Tjallingii 1995, Backus et al. 2007, Sarria et al. 2009, Bonani et

262 al. 2010, Ebert et al. 2015, Ebert et al. 2018b).

263 Given the inconsistent reports of a difference in the probing behavior between male and

264 female *D. citri*, we tested for a difference in probing behavior due to sex. The issue is important

265 in understanding the biology of this insect and its role as a vector. Likewise, it is important in

266 designing other experiments where a difference between males and females could confound the

Running head: Ebert and Rogers: Sex differences in *Diaphorina*

267 results if sex differences are ignored. The review showed that sex, color, and size are
268 significantly related to one another. Therefore, these factors were included in this study to
269 identify which factor was more influential on the expected changes in feeding behavior. We also
270 considered the possibility that the expected difference between males and females would be an
271 artifact of associated differences in body size with females generally being larger than males.

272

273 **Materials and Methods**

274 Psyllids in the colony were placed into two color groups blue+green versus grey+brown
275 as done elsewhere (Wenninger and Hall 2008, Wenninger et al. 2009c, Wenninger et al. 2009b,
276 Ibanez et al. 2019). This minimizes the subjective issue in placing individuals of mixed color
277 into a discrete color group.

278 **Experimental design:** The sample size for different conditions was male and green
279 (MG=17), male and brown (MB=33), female and green (FG=20), and female and brown
280 (FB=27). After recording, each psyllid was decapitated and the metathoracic leg removed. The
281 head and leg were mounted on a slide using a coverslip and mounting media (Richard-Allan
282 Scientific #4112, Kalamazoo, MI). Measurements were taken using a digital camera (OMAX
283 14MP A35140U, Omaxmicroscope.com) on a Wild M3Z microscope
284 (www.leicabiosystems.com) and processed using ImageJ (version 1.51k at
285 <https://imagej.nih.gov/ij/>). The head capsule was measured as the maximum distance from the
286 outer margin of one compound eye to the outer margin of the other eye. The metathoracic femur
287 length was also measured. There is a well-documented relationship between size, weight, and
288 fitness in insects (Calvo and Molina 2005, Pekkala et al. 2011). Examining multiple measures of

Running head: Ebert and Rogers: Sex differences in *Diaphorina*

289 body size as well as their interaction better describes size. This is because many organisms
290 undergo allometric growth wherein some body parts change faster than others. For a discussion
291 of allometry see (West et al. 1997, Centorame et al. 2019, Patel and Matheson 2019, Sober et al.
292 2019). The simplest measure of size would have been dry weight, but we lacked the necessary
293 equipment to accurately measure individual dry weights.

294 **Plants:** We used *Citrus sinensis* (L. Osbeck.) Valencia orange scion on Kuharske
295 citrange (*C. sinensis* X *Poncirus trifoliate* (L.) Raf.) rootstock (Southern Citrus Nurseries Inc.,
296 Dundee, FL: certified CLas free) for both rearing the psyllids and for the experiment. Plants were
297 in 3.92 L black plastic pots filled with Fafard Professional Custom Mix (Agawam, MA). Plants
298 were pruned to a height of 51 cm from the soil surface. Artificial light was provided by high-
299 pressure sodium lamps (16:8 h L:D). Plants were fertilized (variously with Chelated Citrus
300 Nutritional Spray from Southern Agricultural Insecticides Inc. Palmetto, FL, USA, Miracle-Gro
301 All-Purpose Plant Food, Scotts Miracle-Gro, Marysville, OH, USA, or Harrell's Profertilizer 12-
302 3-8, Harrell's LLC, Lakeland, FL) consistent with label instructions to promote flush.

303 **Insects:** Psyllids were obtained from a CLas-negative colony maintained in the
304 laboratory at the Citrus Research and Education Center, Lake Alfred, FL. The colony was tested
305 periodically for CLas using PCR methods (Li et al. 2006) but has never tested positive (results
306 not shown).

307 **Electropenetrography:** All insects were recorded feeding on the abaxial surface of
308 immature leaves (Ebert et al. 2018b). We used two 4-channel AC-DC monitors (EPG
309 Technologies, Inc., Gainesville, FL, USA) in DC mode 150 mV substrate voltage. Data was
310 acquired through a DI710 AD converter (Akron, OH) using Windaq software at a sampling rate
311 of 100 Hz/channel. Psyllids were tethered using a 2 cm long 25.4 μ m diameter gold wire

Running head: Ebert and Rogers: Sex differences in *Diaphorina*

312 (Sigmund Cohn Corp., Mt Vernon, NY) attached to thoracic tergites using silver glue (1:1:1
313 www, white glue:water:silver flake [8-10 μ m, Inframet Advanced Materials, Manchester CT]).
314 All head amps were set to an impedance of $10^9 \Omega$. A 10 cm length of 2 mm diameter copper wire
315 was inserted into the water-saturated soil as the positive electrode. There was a 30 m starvation
316 period from the time the insects were removed from the colony until they were placed on the
317 plant. All insects were wired during this period. Psyllids were not chilled or anesthetized with
318 CO_2 . The recording was started before psyllids were placed on the plant to ensure that all
319 recordings started in the NP behavior. Recordings were 23 h in duration. We chose to measure
320 only the original six waveforms (NP, C, D, E1, E2, G) (Bonani et al. 2010). Lighting was
321 provided by overhead fluorescent lights (24:0 h L:D). Room temperature was maintained at 26.6
322 $^{\circ}\text{C}$. This was a standard protocol in this laboratory that has been published previously (Ebert and
323 Rogers 2016, Killiny et al. 2017, Ebert et al. 2018b, Shugart et al. 2019).

324 **Data Analysis:** The six recorded waveforms from each insect were used to calculate 89
325 variables that can be roughly described as durations, counts, percentages, the time to key events,
326 and behaviors conditional upon some event (Ebert et al. 2015). If the null hypothesis is true
327 (there are no treatment differences), then it is inevitable that some type I errors will be made.
328 With the assumption that all the tests are independent, the probability of finding r Type I errors
329 in N tries given a significance threshold of 0.05 is calculated as $0.95^{(N-r)} \times 0.05^r \times N!/(r! \times (N-r)!)$.
330 One should ask if it is reasonable to suppose that one or two significant outcomes in many tries
331 (89 herein but varies by manuscript) represents a biological effect or a type I error. While
332 considering the number of significant outcomes relative to the number of tests is one approach, a
333 more standard solution to this problem is the Bonferroni correction wherein one divides the
334 significance threshold by the number of tests (Rice 1989).

Running head: Ebert and Rogers: Sex differences in *Diaphorina*

335 All variables discussed in this manuscript are calculated for each insect. We used the
336 name of this variable even after statistical analysis. However, the value displayed no longer
337 matches the name. Thus, the total duration of phloem salivation for each insect becomes a mean
338 when these totals are averaged across insects. An elegant naming system was proposed to solve
339 this issue for non-sequential variables (Backus et al. 2007), but the naming conventions become
340 less user-friendly when applied to many of the variables used for aphids: see variable names in
341 (Tjallingii 1995, Sarria et al. 2009, Tjallingii 2019).

342 Ebert 2.0 (<http://www.crec.ifas.ufl.edu/extension/epg/sas.shtml>) was used to analyze the
343 data (Ebert et al. 2015, Ebert and Rogers 2016, Ebert et al. 2018b). All treatments are binary
344 (male-female or green-other) therefore significance is tested by model F-test or parameter t-test
345 as implemented in proc Glimmix in SAS (SASInstitute 1988). The use of mixed-model ANOVA
346 results in improved power of statistical tests compared with non-parametric ANOVA (Gbur et al.
347 2012). In general, counts were square-root transformed, percentages were logit transformed, and
348 everything else was log(variable + 0.1) transformed. These transformations were done with the
349 sole purpose of improving the statistical models based on a graphical analysis of the residuals
350 conforming to model assumptions of normality and homoscedasticity.

351 Estimates of sample size were done in Rstudio (version 1.1.456) running R (version
352 3.5.1) using the “pwr” package and the syntax `pwr.t.test(d = (mean1-mean2)/pooled standard`
353 `deviation, sig.level = 0.05, power = 0.80, type = 'two.sample')`. This sample size is an estimate
354 of the required sample size assuming that the observed mean and standard deviation in the
355 existing data are the correct values for the population.

356 The EPG recordings are published in DataVerse along with subsequent steps in the
357 analysis. The programs are also included, though they only modifications from the originals

Running head: Ebert and Rogers: Sex differences in *Diaphorina*

358 involved identifying where to read and save files along with code specific to analyzing the data.
359 The code for calculating the EPG variables is unchanged from previously published code
360 (<https://crec.ifas.ufl.edu/extension/epg/>).

361 **Results**

362 **Sex only:** There were four variables that showed a significant difference between males
363 and females: the percent of probing time spent in pathway ($df\ 1, 86, F=4.21, P>F\ 0.0432$), the
364 standard deviation of the mean duration of xylem ingestion ($df\ 1, 70, F=4.72, P>F\ 0.0333$), the
365 number of probes after the first xylem ingestion event ($df\ 1, 86, F=4.01, P>F\ 0.0483$), and the
366 total duration of both phloem salivation and phloem ingestion for each insect ($df\ 1, 64, F=4.4, P>F\ 0.0398$). In 89 tries, there was a 0.46 probability of finding five or more significant
367 outcomes. The p-value for all models was close to the 0.05 cut-off for significance, and no model
368 was significant after applying a Bonferroni correction ($0.05/89=0.000562$).

370 **Sex and Color:** There were three significant models with both sex and color. The mean
371 duration of pathway ($df\ 2, 85, F=5.48, P>F\ 0.0058$, sex $P>F=0.44$, color $P>F=0.002$), The
372 standard deviation of the mean duration of pathway ($df\ 2, 85, F=3.72, P>F\ 0.0282$, sex
373 $P>F=0.26$, color $P>F=0.019$), and the number of probes after the first xylem ingestion event ($df\ 2, 85, F=3.29, P>F\ 0.042$, sex $P>F=0.036$, color $P>F=0.12$). Sex was only a significant factor
374 in one model. This outcome was not an improvement over the attempt using sex alone, and no
375 model was significant after the Bonferroni correction.

377 **Replication:** With 89 variables there needs to be at least eight significant outcomes for
378 the probability of more significant outcomes to drop below 0.05. The eight variables that
379 required the fewest replicates to be significant are listed in Table 1. The maximum value in each

Running head: Ebert and Rogers: Sex differences in *Diaphorina*

380 column was the estimated sample size necessary for all eight variables to achieve significance.
381 Only considering sex, 82 replicates are needed, while for brown psyllids 40 replicates and green
382 psyllids would need 42. Alternatively, if significance was set at 0.000562 rather than 0.05, then
383 the percentage phloem ingestion spent in ingestion events lasting more than 10 minutes will
384 achieve significance first at 97 replicates per sex. If color is included in the model, then with
385 brown psyllids one needs 26 replicates per sex to detect a difference in the percentage of phloem
386 ingestion spent in ingestion events lasting more than ten minutes. For green psyllids, one needs
387 55 replicates per sex to find a significant difference in the total duration of phloem salivation
388 when followed by phloem ingestion. Additional replication would be advised if EPG was the
389 only data because it would be difficult to build a convincing biological narrative with a single
390 significant outcome.

391 **Size:** We took two measures of insect size, namely head capsule width and length of
392 metathoracic femur. Head capsule width was significantly influenced by sex (p-value=0.0086)
393 and color (p-value=0.0144), but the interaction was not significant (p-value=0.2737) (Table 2).
394 In contrast, the model for femur showed no significant difference for sex (p-value=0.5236), color
395 (p-value=0.0659), or the interaction (p-value=0.2323). As expected $\ln(\text{head})$ and $\ln(\text{femur})$ are
396 related ($df\ 1,82, F=7.49\ P>F = 0.0076$) as $\text{head}=4.3\ (0.76) + 0.35\ (0.13)*\text{femur\ length\ (numbers)}$
397 in parentheses are standard errors), but the correlation was $r^2=0.08$.

398 To examine the effect of size, we started with the full model: EPG-variable=head capsule
399 + metathoracic femur length + an interaction term. The R^2 values in resulting models were small
400 (<0.18) (Table 3), but there was a consistent pattern indicative of an underlying biological
401 process. All the significant models (at the 0.05 level) have something to do with phloem
402 ingestion. Most of them involved the time it takes to reach or begin ingesting phloem and larger

Running head: Ebert and Rogers: Sex differences in *Diaphorina*

403 individuals took longer. The exception in this trend was the time to first sustained E2 (>10
404 minutes) from the start of the probe with the first sustained E2. While the sign of the coefficient
405 was negative for head capsule and was smaller than for femur length, the head capsule measure
406 was larger than the femur and the net effect for all insects was that larger individuals take less
407 time to reach phloem once they have found the ideal spot to ingest phloem. There was one
408 anomaly, namely the total duration of the non-phloematic phase which was reduced with
409 increasing size. If larger psyllids spend less time in the pathway (waveform C), xylem ingestion
410 (waveform G), and phloem contact (waveform D) behaviors within probes and take a longer time
411 to reach phloem ingestion one might expect that larger individuals are spending more time in
412 non-probing because that is the only behavioral choice left. However, this was not apparent in
413 these data. There was only one significant variable involving nutrient ingestion and it indicated
414 that larger individuals spent more time ingesting phloem.

415 **Published Data:** The raw data and the steps for processing the data are available in the Harvard
416 Dataverse repository. The EPG recordings were compressed before submission
417 (<https://doi.org/10.7910/DVN/FR5M53>). These are processed manually to acquire quantitative data
418 (<https://doi.org/10.7910/DVN/9JLWAW>). There is one data file for each insect, and these need to be
419 combined into a single file. That file also needs to be checked for errors and modified if needed
420 (<https://doi.org/10.7910/DVN/PCIS0B>). This file is used to calculate the EPG variables and to this file
421 were added the data for sex, color, and measures of size (<https://doi.org/10.7910/DVN/GYH8YW>).
422 This file is subjected to statistical analyses (<https://doi.org/10.7910/DVN/ULHZSG>) that are then
423 interpreted and summarized. The SAS and R programs for doing this are included.

424 **Discussion**

Running head: Ebert and Rogers: Sex differences in *Diaphorina*

425 It is generally reasonable to assume that there are differences between males and females.
426 In some cases, these differences play key roles in the ability of the vector to spread the pathogen.
427 However, for *D. citri* the difference between the sexes in their probing behavior was small or
428 non-existent. While we cannot prove that such differences do not exist, we did show that sample
429 sizes would have to greatly increase to detect such the effect. An experiment with two treatments
430 consisting of a treated group and a control group that now includes sex will need 82 replicates
431 for each sex in both treated and control groups. If the psyllid color is included, then each
432 treatment will have 40 of each sex for brown psyllids plus 42 of each sex for green. To put these
433 numbers in perspective we examined 127 published manuscripts that used EPG data to get an
434 estimate of acceptable sample sizes. The papers were all published between 1977 and 2015
435 inclusive. Roughly 1/3 of the published manuscripts used 10 replicates per treatment, 1/3 used 15
436 replicates, and 1/3 used 20 replicates per treatment. The actual number of replicates was often
437 less than this because not all individuals perform all behaviors.

438 Overall, we conclude that including sex or size as an explicit part of an experimental
439 design with this insect is not worth the additional effort necessary to reliably detect the effect.
440 Within current sample size limitations, we expect that additional studies will occasionally find
441 sex-associated differences but that the results will be inconsistent between studies. We suggest
442 that the issue be revisited when dealing with pathogens because they can have a differential
443 effect on the sexes as shown for *Bemisia tabaci* (Lu et al. 2017). While there is a risk that sex has
444 influenced the outcome in experiments that ignore sex, experiments using only one sex describe
445 the behavior of only half the population. Typically females are selected, but sometimes the males
446 are more important in disease transmission (van de Wetering et al. 1998). While sex was not
447 important there was an effect due to body size wherein larger individuals took longer to reach

Running head: Ebert and Rogers: Sex differences in *Diaphorina*

448 phloem but once there they tended to remain longer. The effect of body size was not considered
449 in previous work looking at sex differences in this psyllid, and this effect should be considered
450 when dealing with organisms where the sexes are of different sizes. This outcome suggests that
451 small differences in size could have biological consequences, but the low correlation coefficients
452 in these models suggest that the effect was minor for this insect.

453

454 **Acknowledgement**

455 We thank Gauping Liu for technical assistance that consisted of maintaining all the
456 plants, wiring the insects, making the recordings, and converting the recordings into data. We
457 thank Daniel Stanton (Citrus Research and Education Center microscopy core) for assistance
458 with the equipment and software. This research was conducted through funding received from
459 the Citrus Research and Development Foundation.

460

461 **Literature Cited**

462 **Alves, G. R., A. J. F. Diniz, and J. R. P. Parra. 2014.** Biology of the Huanglongbing vector *Diaphorina citri*
463 (Hemiptera: Liviidae) on different host plants. *J. Econ. Entomol.* 107: 691-696.

464 **Ammar, E.-D., R. G. Shatters, Jr., and D. G. Hall. 2011a.** Localization of *Candidatus Liberibacter asiaticus*,
465 associated with citrus Huanglongbing disease, in its psyllid vector using fluorescence in situ
466 hybridization. *J. Phytopathol.* 159: 726-734.

467 **Ammar, E.-D., R. G. Shatters, Jr., C. Lynch, and D. G. Hall. 2011b.** Detection and relative titer of
468 *Candidatus Liberibacter asiaticus* in the salivary glands and alimentary canal of *Diaphorina citri*
469 (Hemiptera: Psyllidae) vector of citrus Huanglongbing disease. *Ann. Entomol. Soc. Am.* 104: 526-
470 533.

471 **Ammar el, D., R. Alessandro, R. G. Shatters, Jr., and D. G. Hall. 2013.** Behavioral, ultrastructural and
472 chemical studies on the honeydew and waxy secretions by nymphs and adults of the Asian citrus
473 psyllid *Diaphorina citri* (Hemiptera: Psyllidae). *Plos One* 8: e64938.

474 **Arakawa, K., and K. Miyamoto. 2007.** Flight ability of Asiatic Citrus Psyllid, *Diaphorina citri* Kuwayama
475 (Homoptera: Psyllidae), measured by a flight mill. *Research Bulletin of the Plant Protection*
476 *Service, Japan:* 23-26.

Running head: Ebert and Rogers: Sex differences in *Diaphorina*

477 **Arp, A. 2017.** Characterizing the innate immune system of the Asian citrus psyllid, *Diaphorina citri*. Ph.D.
478 Ph.D., University of Florida Gainesville.

479 **Arp, A. P., X. Martini, and K. S. Pelz-Stelinski. 2017.** Innate immune system capabilities of the Asian
480 citrus psyllid, *Diaphorina citri*. J. Invertebr. Pathol. 148: 94-101.

481 **Backus, E. A., A. R. Cline, M. R. Ellerseick, and M. S. Serrano. 2007.** *Lygus hesperus* (Hemiptera: Miridae)
482 feeding on cotton: new methods and parameters for analysis of nonsequential electrical
483 penetration graph data. Ann. Entomol. Soc. Am. 100: 296-310.

484 **Beanland, L., C. W. Hoy, S. A. Miller, and L. R. Nault. 1999.** Leafhopper (Homoptera: Cicadellidae)
485 transmission of aster yellows phytoplasma: does gender matter? Environ. Entomol. 28: 1101-
486 1106.

487 **Beloti, V. H., F. Santos, G. R. Alves, J. M. S. Bento, and P. T. Yamamoto. 2017.** Curry leaf smells better
488 than citrus to females of *Diaphorina citri* (Hemiptera: Liviidae). Arthropod-Plant Interactions 11:
489 709-716.

490 **Boina, D. R., Y. Youn, S. Folimonova, and L. L. Stelinski. 2011.** Effects of pymetrozine, an antifeedant of
491 Hemiptera, on Asian citrus psyllid, *Diaphorina citri*, feeding behavior, survival and transmission
492 of *Candidatus Liberibacter asiaticus*. Pest Man. Sci. 67: 146-155.

493 **Bonani, J. P., A. Fereres, E. Garzo, M. P. Miranda, B. Appenzato-Da-Gloria, and J. R. S. Lopes. 2010.**
494 Characterization of electrical penetration graphs of the Asian citrus psyllid, *Diaphorina citri*, in
495 sweet orange seedlings. Entomol. Exp. Appl. 134: 35-49.

496 **Calvo, D., and J. M. Molina. 2005.** Fecundity-Body Size Relationship and Other Reproductive Aspects of
497 *Streblote panda* (Lepidoptera: Lasiocampidae). Ann. Entomol. Soc. Am. 98: 191-196.

498 **Catling, H. D. 1970.** Distribution of the Psyllid vectors of Citrus greening disease, with notes on the
499 biology and bionomics of *Diaphorina citri*. F.A.O. Plant Protection Bulletin 18: 8-15.

500 **Cen, Y., C. Yang, P. Holford, G. A. C. Beattie, R. N. Spooner-Hart, G. Liang, and X. Deng. 2012.** Feeding
501 behaviour of the Asiatic citrus psyllid, *Diaphorina citri*, on healthy and huanglongbing-infected
502 citrus. Entomol. Exp. Appl. 143: 13-22.

503 **Centorame, M., D. Angelino, R. Bonanni, and A. Fanfani. 2019.** Static and evolutionary allometry in the
504 Italian endemic ant species *Cataglyphis italicica* (Emery 1906). Ethol. Ecol. Evol.

505 **Chakravarthi, V. P., P. Savithri, P. R. Prasad, and N. V. Rao. 1998.** Biology and seasonal abundance of
506 citrus psylla, *Diaphorina citri* Kuwayama (Homoptera: Psyllidae). Advances in IPM for
507 horticultural crops. Proceedings of the First National Symposium on Pest Management in
508 Horticultural Crops: environmental implications and thrusts, Bangalore, India, 15-17 October
509 1997.: 26-29.

510 **Chuche, J., N. Sauvion, and D. Thiery. 2017.** Mixed xylem and phloem sap ingestion in sheath-feeders as
511 normal dietary behavior: Evidence from the leafhopper *Scaphoideus titanus*. J Insect Physiol
512 102: 62-72.

513 **Cifuentes-Arenas, J. C., A. de Goes, M. P. de Miranda, G. A. C. Beattie, and S. A. Lopes. 2018.** Citrus
514 flush shoot ontogeny modulates biotic potential of *Diaphorina citri*. Plos One 13: e0190563.

515 **Ebert, T. A., and M. E. Rogers. 2016.** Effect of substrate voltage on EPG recordings of ingestion and
516 probing behavior in *Diaphorina citri* (Hemiptera: Liviidae). Fla. Entomol. 99: 528-534.

517 **Ebert, T. A., E. A. Backus, and M. E. Rogers. 2018a.** Handling Artificially Terminated Events in
518 Electropenetrography Data. J. Econ. Entomol. 111: 1987-1990.

519 **Ebert, T. A., E. A. Backus, H. J. Shugart, and M. E. Rogers. 2018b.** Behavioral plasticity in probing by
520 *Diaphorina citri* (Hemiptera, Liviidae): Ingestion from phloem versus xylem is influenced by leaf
521 age and surface. J. Insect Behav. 31: 119-137.

522 **Ebert, T. A., E. Backus, M. Cid, A. Fereres, and M. Rogers. 2015.** A new SAS program for behavioral
523 analysis of electrical penetration graph data. Comput. Electron. Agric. 116: 80-87.

Running head: Ebert and Rogers: Sex differences in *Diaphorina*

524 **Garcia-Perez, F., L. D. Ortega-Arenas, J. I. Lopez-Arroyo, A. Gonzalez-Hernandez, J. R. Lomeli-Flores,**
525 **and J. Romero-Napoles. 2013.** Morphometry of *Diaphorina citri* (Hemiptera: Liviidae) on six
526 Rutaceae from Veracruz, Mexico. *Fla. Entomol.* 96: 529-537.

527 **Gbur, E. E., W. W. Stroup, K. S. McCarter, S. Durham, L. J. Young, M. Christman, M. West, and M.**
528 **Kramer. 2012.** Analysis of generalized linear mixed models in the agricultural and natural
529 resources sciences, American Society of Agronomy, Crop Science Society of America, and Soil
530 Science Society of America.

531 **George, J., E.-D. Ammar, D. G. Hall, and S. L. Lapointe. 2017.** Sclerenchymatous ring as a barrier to
532 phloem feeding by Asian citrus psyllid: Evidence from electrical penetration graph and
533 visualization of stylet pathways. *Plos One* 12: doi: 10.1371/journal.pone.0173520.

534 **Gharaei, A. M., M. Ziaaddini, M. A. Jalali, and J. P. Michaud. 2014.** Sex-specific responses of Asian citrus
535 psyllid to volatiles of conspecific and host-plant origin. *J. Appl. Entomol.* 138: 500-509.

536 **Grafton-Cardwell, E. E., L. L. Stelinski, and P. A. Stansly. 2013.** Biology and management of Asian citrus
537 psyllid, vector of the huanglongbing pathogens. *Annu. Rev. Entomol.* 58: 413-432.

538 **Halbert, S. 2005.** The discovery of Huanglongbing in Florida, pp. H-3. *In*, 2nd International Citrus Canker
539 and Huanglongbing Research Workshop, 2005, Orlando, Florida, USA. Florida Citrus Mutual.

540 **Halbert, S. E., and K. L. Manjunath. 2004.** Asian citrus psyllids (*Sternorrhyncha* : Psyllidae) and greening
541 disease of citrus: A literature review and assessment of risk in Florida. *Fla. Entomol.* 87: 330-353.

542 **Hall, D. G. 2018.** Incidence of “*Candidatus Liberibacter asiaticus*” in a Florida population of Asian citrus
543 psyllid. *J. Appl. Entomol.* 142: 97-832.

544 **Hall, D. G., and M. G. Hentz. 2011.** Seasonal flight activity by the Asian citrus psyllid in east central
545 Florida. *Entomol. Exp. Appl.* 139: 75-85.

546 **Hall, D. G., and M. G. Hentz. 2016.** An evaluation of plant genotypes for rearing Asian citrus psyllid
547 (Hemiptera: Liviidae). *Fla. Entomol.* 99: 471-480.

548 **Hall, D. G., M. G. Hentz, and R. C. Adair. 2008.** Population ecology and phenology of *Diaphorina citri*
549 (Hemiptera : Psyllidae) in two Florida citrus groves. *Environ. Entomol.* 37: 914-924.

550 **Hall, D. G., M. L. Richardson, E.-D. Ammar, and S. E. Halbert. 2013.** Asian citrus psyllid, *Diaphorina citri*,
551 vector of citrus huanglongbing disease. *Entomol. Exp. Appl.* 146: 207-223.

552 **Husain, M. A., and D. Nath. 1927.** The Citrus Psylla (*Diaphorina citri*, Kuw) Psyllidae: Homoptera. Mem.
553 Dept. Agric. Ind. Ent. 10: 1-27 pp.

554 **Hussain, M., K. S. Akutse, K. Ravindran, Y. W. Lin, B. S. Bamisile, M. Qasim, C. K. Dash, and L. D. Wang.**
555 **2017.** Effects of different temperature regimes on survival of *Diaphorina citri* and its
556 endosymbiotic bacterial communities. *Environ. Microbiol.* 19: 3439-3449.

557 **Ibanez, F., K. Racine, A. Hoyte, and L. L. Stelinski. 2019.** Reproductive performance among color morphs
558 of *Diaphorina citri* Kuwayama, vector of citrus greening pathogens. *J. Insect Physiol.* 117:
559 103904.

560 **Killiny, N., F. Hijaz, T. A. Ebert, and M. E. Rogers. 2017.** A Plant Bacterial Pathogen Manipulates Its
561 Insect Vector's Energy Metabolism. *Appl. Environ. Microbiol.* 85.

562 **Kim, K. D. 2013.** Integrated management of Asian citrus psyllid, *Diaphorina citri* Kuwayama, for
563 protecting young citrus trees from Huanglongbing. Ph.D., University of Florida Gainesville,
564 Florida, USA.

565 **Kumagai, L. B., C. S. LeVasque, C. L. Bloomquist, K. Madishetty, Y. Y. Guo, P. W. Woods, S. Rooney-**
566 **Latham, J. Rascoe, T. Gallindo, D. Schnabel, and M. Polek. 2013.** First report of *Candidatus*
567 *Liberibacter asiaticus* associated with citrus Huanglongbing in California. *Plant Dis.* 97: 283.

568 **Kunta, M., M. Setamou, E. S. Louzada, J. da Graca, and D. W. Bartels. 2014.** Citrus Huanglongbing
569 incidence, spread, and current situation in Texas. *Phytopathol.* 104 (Suppl. 3): S3.64.

Running head: Ebert and Rogers: Sex differences in *Diaphorina*

570 **Li, W. B., J. S. Hartung, and L. Levy. 2006.** Quantitative real-time PCR for detection and identification of
571 *Candidatus Liberibacter* species associated with citrus Huanglongbing. *J. Microbiol. Methods* 66:
572 104-115.

573 **Liu, Y. H., and J. H. Tsai. 2000.** Effects of temperature on biology and life table parameters of the Asian
574 citrus psyllid, *Diaphorina citri* Kuwayama (Homoptera : Psyllidae). *Ann. Appl. Biol.* 137: 201-206.

575 **Lu, S. H., J. J. Li, X. L. Wang, D. Y. Song, R. N. Bai, Y. Shi, Q. S. Gu, Y. W. Kuo, B. W. Falk, and F. M. Yan.**
576 2017. A Semipersistent Plant Virus Differentially Manipulates Feeding Behaviors of Different
577 Sexes and Biotypes of Its Whitefly Vector. *Viruses-Basel* 9.

578 **Luo, X., A. L. Yen, K. S. Powell, F. Wu, Y. Wang, L. Zeng, Y. Yang, and Y. Cen. 2015.** Feeding behavior of
579 *Diaphorina citri* (Hemiptera: Liviidae) and its acquisition of '*Candidatus Liberibacter asiaticus*', on
580 huanglongbing-infected *Citrus reticulata* leaves of several maturity stages. *Fla. Entomol.* 98: 186-
581 192.

582 **Mann, R. S., R. L. Rouseff, J. Smoot, N. Rao, W. L. Meyer, S. L. Lapointe, P. S. Robbins, D. Cha, C. E.**
583 **Linn, F. X. Webster, S. Tiwari, and L. L. Stelinski. 2013.** Chemical and behavioral analysis of the
584 cuticular hydrocarbons from Asian citrus psyllid, *Diaphorina citri*. *Insect Sci.* 20: 367-378.

585 **Mansfield, J., S. Genin, S. Magori, V. Citovsky, M. Sriariyanum, P. Ronald, M. Dow, V. Verdier, S. V.**
586 **Beer, M. A. Machado, I. Toth, G. Salmond, and G. D. Foster. 2012.** Top 10 plant pathogenic
587 bacteria in molecular plant pathology. *Mol. Plant Pathol.* 13: 614-629.

588 **Martini, X., A. Hoyte, and L. L. Stelinski. 2014a.** Abdominal color of the asian citrus psyllid (Hemiptera:
589 Liviidae) is associated with flight capabilities. *Ann. Entomol. Soc. Am.* 107: 842-847.

590 **Martini, X., K. S. Pelz-Stelinski, and L. L. Stelinski. 2016.** Factors affecting the overwintering abundance
591 of the Asian citrus psyllid (Hemiptera: Liviidae) in Florida citrus (Sapindales: Rutaceae) orchards.
592 *Fla. Entomol.* 99: 178-186.

593 **Martini, X., E. H. Kuhns, A. Hoyte, and L. L. Stelinski. 2014b.** Plant volatiles and density-dependent
594 conspecific female odors are used by Asian citrus psyllid to evaluate host suitability on a spatial
595 scale. *Arthropod-Plant Interactions* 8: 453-460.

596 **Martini, X., M. Hoffmann, M. R. Coy, L. L. Stelinski, and K. S. Pelz-Stelinski. 2015.** Infection of an Insect
597 vector with a bacterial plant pathogen increases Its propensity for dispersal. *Plos One* 10:
598 e0129373.

599 **McFarland, C. D., and M. A. Hoy. 2001.** Survival of *Diaphorina citri* (Homoptera: Psyllidae), and its two
600 parasitoids, *Tamarixia radiata* (Hymenoptera: Eulophidae) and *Diaphorencyrtus aligarhensis*
601 (Hymenoptera: Encyrtidae), under different relative humidities and temperature regimes. *Fla.*
602 *Entomol.* 84: 227-233.

603 **Nava, D. E., M. L. G. Torres, M. D. L. Rodrigues, J. M. S. Bento, and J. R. P. Parra. 2007.** Biology of
604 *Diaphorina citri* (Hem , Psyllidae) on different hosts and at different temperatures. *J. Appl.*
605 *Entomol.* 131: 709-715.

606 **Nava, D. E., M. L. Gomez-Torres, M. D. Rodrigues, J. M. S. Bento, M. L. Haddad, and J. R. P. Parra. 2010.**
607 The Effects of Host, Geographic Origin, and Gender on the Thermal Requirements of *Diaphorina*
608 *citri* (Hemiptera: Psyllidae). *Environ. Entomol.* 39: 678-684.

609 **Ning, W., X. Shi, B. Liu, H. Pan, W. Wei, Y. Zeng, X. Sun, W. Xie, S. Wang, Q. Wu, J. Cheng, Z. Peng, and**
610 **Y. Zhang. 2015.** Transmission of Tomato Yellow Leaf Curl Virus by *Bemisia tabaci* as Affected by
611 Whitefly Sex and Biotype. *Sci. Rep.* 5: 10744.

612 **Onagbola, E. O., W. L. Meyer, D. R. Boina, and L. L. Stelinski. 2008.** Morphological characterization of
613 the antennal sensilla of the citrus psyllid, *Diaphorina citri* Kuwayama (Hemiptera: Psyllidae) with
614 reference to their probable functions. *Micron* 39: 1184-1191.

615 **Pande, Y. D. 1971.** Biology of citrus psylla, *Diaphorina citri* Kuw (Hemiptera: Psyllidae). *Isr. J. Entomol.* 6:
616 307-311.

Running head: Ebert and Rogers: Sex differences in *Diaphorina*

617 **Paris, T. M., S. A. Allan, B. J. Udell, and P. A. Stansly. 2017.** Evidence of behavior-based utilization by the
618 Asian citrus psyllid of a combination of UV and green or yellow wavelengths. *Plos One* 12.

619 **Patel, A. J., and T. Matheson. 2019.** Aimed limb movements in a hemimetabolous insect are intrinsically
620 compensated for allometric wing growth by developmental mechanisms. *J. Exp. Biol.* 222.

621 **Patti, J. M., and M. Setamou. 2010.** Responses of the Asian Citrus Psyllid to Volatiles Emitted by the
622 Flushing Shoots of Its Rutaceous Host Plants. *Environ. Entomol.* 39: 618-624.

623 **Pekkala, N., J. S. Kotiaho, and M. Puurtinen. 2011.** Laboratory relationships between adult lifetime
624 reproductive success and fitness surrogates in a *Drosophila littoralis* population. *Plos One* 6:
625 e24560.

626 **Rice, W. R. 1989.** Analyzing tables of statistical tests. *Evolution* 43: 223-225.

627 **Rohde, B., T. M. Paris, E. M. Heatherington, D. G. Hall, and R. W. Mankin. 2013.** Responses of
628 *Diaphorina citri* (Hemiptera: Psyllidae) to Conspecific Vibrational Signals and Synthetic Mimics.
629 *Ann. Entomol. Soc. Am.* 106: 392-399.

630 **Sarria, E. V., M. Cid, E. Garzo, and A. Fereres. 2009.** Excel workbook for automatic parameter
631 calculation of EPG data. *Comput. Electron. Agric.* 67: 35-42.

632 **SASInstitute. 1988.** SAS/STAT user's guide, release 6.03 edition, SAS Institute Inc., Cary, NC.

633 **Serikawa, R. H. 2011.** Electrical penetration graph investigations of Asian citrus psyllid (*Diaphorina citri*
634 Kuwayama) feeding behavior: Effects of insecticides on the potential transmission of *Candidatus*
635 *Liberibacter asiaticus* Ph.D. dissertation, University of Florida Gainsville.

636 **Serikawa, R. H., E. Backus, and M. Rogers. 2012.** Effects of soil-applied imidacloprid on Asian Citrus
637 Psyllid (Hemiptera: Psyllidae) feeding behavior. *J. Econ. Entomol.* 105: 1492-1502.

638 **Serikawa, R. H., E. A. Backus, and M. E. Rogers. 2013.** Probing behaviors of adult Asian Citrus Psyllid
639 (Hemiptera Liviidae) are not appreciably affected by soil application of field rate aldicarb to
640 citrus. *Fla. Entomol.* 96: 1334-1342.

641 **Shugart, H., T. Ebert, F. Gmitter, and M. Rogers. 2019.** The power of electropenetrography in enhancing
642 our understanding of host plant-vector interactions. *Insects* 10, 407.

643 **Sober, V., S. L. Sandre, T. Esperk, T. Teder, and T. Tammaru. 2019.** Ontogeny of sexual size dimorphism
644 revisited: Females grow for a longer time and also faster. *Plos One* 14.

645 **Stelinski, L. L. 2019.** Ecological Aspects of the Vector-Borne Bacterial Disease, Citrus Greening
646 (Huanglongbing): Dispersal and Host Use by Asian Citrus Psyllid, *Diaphorina Citri* Kuwayama.
647 *Insects* 10.

648 **Stockton, D. G., X. Martini, and L. L. Stelinski. 2017a.** Male Psyllids Differentially Learn in the Context of
649 Copulation. *Insects* 8.

650 **Stockton, D. G., L. E. Pescitelli, X. Martini, and L. L. Stelinski. 2017b.** Female mate preference in an
651 invasive phytopathogen vector: how learning may influence mate choice and fecundity in
652 *Diaphorina citri*. *Entomol. Exp. Appl.* 164: 16-26.

653 **Stockton, D. G., L. E. Pescitelli, T. A. Ebert, X. Martini, and L. L. Stelinski. 2017c.** Induced Preference
654 Improves Offspring Fitness in a Phytopathogen Vector. *Environ Entomol* 46: 1090-1097.

655 **Tiwari, S., L. L. Stelinski, and M. E. Rogers. 2012.** Biochemical Basis of Organophosphate and Carbamate
656 Resistance in Asian Citrus Psyllid. *J. Econ. Entomol.* 105: 540-548.

657 **Tiwari, S., K. Pelz-Stelinski, R. S. Mann, and L. L. Stelinski. 2011.** Glutathione Transferase and
658 Cytochrome P-450 (General Oxidase) Activity Levels in *Candidatus Liberibacter Asiaticus*-
659 Infected and Uninfected Asian Citrus Psyllid (Hemiptera: Psyllidae). *Ann. Entomol. Soc. Am.* 104:
660 297-305.

661 **Tiwari, S., N. Killiny, R. S. Mann, E. J. Wenninger, and L. L. Stelinski. 2013.** Abdominal color of the Asian
662 citrus psyllid, *Diaphorina citri*, is associated with susceptibility to various insecticides. *Pest Man.*
663 *Sci.* 69: 535-541.

Running head: Ebert and Rogers: Sex differences in *Diaphorina*

664 **Tjallingii, W. F. 1995.** Aphid-plant interactions: What goes on in the depths of the tissues? Proceedings
665 of Experimental and Applied Entomology 6: 163-169.

666 **Tjallingii, W. F. 2019.** EPG Systems. <http://www.epgsystems.eu/>.

667 **Tsai, J. H., and Y. H. Liu. 2000.** Biology of *Diaphorina citri* (Homoptera: Psyllidae) on four host plants. J.
668 Econ. Entomol. 93: 1721-1725.

669 **van de Wetering, F., J. Hulshof, K. Posthuma, P. Harrewijn, R. Goldbach, and D. Peters. 1998.** Distinct
670 feeding behavior between sexes of *Frankliniella occidentalis* results in higher scar production
671 and lower tospovirus transmission by females. Entomol. Exp. Appl. 88: 9-15.

672 **Wenninger, E. J., and D. G. Hall. 2007.** Daily timing of mating and age at reproductive maturity in
673 *Diaphorina citri* (Hemiptera: Psyllidae). Fla. Entomol. 90: 715-722.

674 **Wenninger, E. J., and D. G. Hall. 2008.** Daily and seasonal patterns in abdominal color in *Diaphorina citri*
675 (Hemiptera: Psyllidae). Ann. Entomol. Soc. Am. 101: 585-592.

676 **Wenninger, E. J., D. G. Hall, and R. W. Mankin. 2009a.** Vibrational Communication Between the Sexes in
677 *Diaphorina citri* (Hemiptera: Psyllidae). Ann. Entomol. Soc. Am. 102: 547-555.

678 **Wenninger, E. J., L. L. Stelinski, and D. G. Hall. 2009b.** Roles of olfactory cues, visual cues, and mating
679 status in orientation of *Diaphorina citri* Kuwayama (Hemiptera: Psyllidae) to four different host
680 plants. Environ. Entomol. 38: 225-234.

681 **Wenninger, E. J., L. L. Stelinski, and D. G. Hall. 2009c.** Relationships between adult abdominal color and
682 reproductive potential in *Diaphorina citri* (Hemiptera: Psyllidae). Ann. Entomol. Soc. Am. 102:
683 476-483.

684 **West, G. B., J. H. Brown, and B. J. Enquist. 1997.** A general model for the origin of allometric scaling
685 laws in biology. Science 276: 122-126.

686 **Wu, F. N., J. Q. Huang, M. R. Xu, E. G. P. Fox, G. A. C. Beattie, P. Holford, Y. J. Cen, and X. L. Deng.**
687 **2018a.** Host and environmental factors influencing 'Candidatus Liberibacter asiaticus' acquisition
688 in *Diaphorina citri*. Pest Man. Sci. 74: 2738-2746.

689 **Wu, F. N., J. A. Qureshi, J. Q. Huang, E. G. P. Fox, X. L. Deng, F. H. Wan, G. W. Liang, and Y. J. Cen.**
690 **2018b.** Host Plant-Mediated Interactions Between 'Candidatus Liberibacter asiaticus' and Its
691 Vector *Diaphorina citri* Kuwayama (Hemiptera: Liviidae). J. Econ. Entomol. 111: 2038-2045.

692 **Wu, T. Y., X. Z. Luo, C. B. Xu, F. N. Wu, J. A. Qureshi, and Y. J. Cen. 2016a.** Feeding behavior of
693 *Diaphorina citri* and its transmission of "Candidatus Liberibacter asiaticus" to citrus. Entomol.
694 Exp. Appl. 161: 104-111.

695 **Wu, Z. Z., H. Zhang, S. Y. Bin, L. Chen, Q. X. Han, and J. T. Lin. 2016b.** Antennal and Abdominal
696 Transcriptomes Reveal Chemosensory Genes in the Asian Citrus Psyllid, *Diaphorina citri*. Plos
697 One 11.

698 **Xu, C. F., Y. H. Xia, and C. Ke. 1994.** A study on the biology and control of the citrus psylla. Acta
699 Phytotaxacica Sinica 21: 53-56.

700 **Yang, C.-I., Y.-j. Cen, G.-w. Liang, and H.-y. Chen. 2011.** Study on the electrical penetration graph of
701 *Diaphorina citri*. Journal of South China Agricultural University 32: 49-56.

702 **Yang, Y. P., M. D. Huang, G. A. C. Beattie, Y. L. Xia, G. C. Ouyang, and J. J. Xiong. 2006.** Distribution,
703 biology, ecology and control of the psyllid *Diaphorina citri* Kuwayama, a major pest of citrus: A
704 status report for China. Int. J. Pest. Manage. 52: 343-352.

705 **Youn, Y., E. A. Backus, R. H. Serikawa, and L. L. Stelinski. 2011.** Correlation of an electrical penetration
706 graph waveform with walking by Asian citrus psyllid, *Diaphorina citri* (Hemiptera: Psyllidae). Fla.
707 Entomol. 94: 1084-1087.

708 **Zhu, H. M., X. N. Zeng, S. M. Zaka, and Y. J. Cen. 2010.** Influence of the essential oil of guava leaves on
709 the feeding behavior of the Asian citrus psyllid. Huan Jing Kun Chong Xue Bao 32: 483-487.

710

Running head: Ebert and Rogers: Sex differences in *Diaphorina*

711

Running head: Ebert and Rogers: Sex differences in *Diaphorina*

712 **Table 1.** The estimated number of replicates to achieve statistical significance between males
713 and females for the eight EPG variables requiring the fewest number of replicates. Color blind
714 assumes that color does not matter. Waveforms are xylem ingestion (G), phloem contact (D),
715 phloem salivation (E1), and phloem sap ingestion (E2). The maximum value within each column
716 is at the end of the table.

Waveform	Variable Name	Color		
		Blind	Brown	Green
G	Standard deviation of mean duration of G	61	28	
D	Time to first sustained D from first probe	66	11	
	Number of probes after first D			39
E1	Total duration of E1	82	26	
	Mean duration of E1	73	25	
	Total duration of E1 not followed by E2			36
	Duration of E1 event followed by first E2 lasting over 10 minutes			42
	Duration of E1 event followed by first E2			31
	Total duration of E1 when followed by E2			23
	Number of probes after first E1			39
E2	Total duration of E2	82	40	
	Mean duration of E2			33
	Total duration of E1 when followed by E2 plus the E2 event	82	40	
	Total duration of E1 and E2	59	35	
	Percentage of probe duration spent in E2			30
	Percent E2 spent in E2 lasting over 10 minutes	41	11	
	PotE2Indx			39
	Maximum	82	40	42

717

Running head: Ebert and Rogers: Sex differences in *Diaphorina*

718

Running head: Ebert and Rogers: Sex differences in *Diaphorina*

719 **Table 2.** Size in micrometers of psyllids based on abdominal color and sex. Means followed by
720 different letters are significantly different by t-test. Untransformed means are shown, but analysis
721 was done on log transformed data. We did not compare head versus femur, nor did we compare
722 green male versus brown female or green female versus brown male. Upper case letters are
723 differences in size of sexes while lower case are differences in size based on color.

Color=brown				Color=green			
		n	Mean (SE)		n	Mean (SE)	
Head	Female	24	585.3 (4.3)	Aa	20	593.3 (6.2)	Ab
	Male	26	593.5 (5.1)	Ba	14	614.9 (7.3)	Bb
Femur	Female	24	366.2 (2.3)	Aa	20	368.1 (3.2)	Ab
	Male	26	363.3 (3.1)	Aa	16	373.5 (1.6)	Ab

724

725

Running head: Ebert and Rogers: Sex differences in *Diaphorina*

726 **Table 3.** Modeling EPG variables based on head capsule size and length of metathoracic femur
727 showing the degrees of freedom, model F value, probability of greater F, the probability of a
728 greater F for the independent variables and interaction term (Inter), and the coefficients for the
729 independent variables along with the interaction term (inter_coef).

Variable	F	P>F	R2	Head	Femur	Inter	Head_coef	Femur_coef	inter_coef
DurNnprbBfrFrstE1 (2, 81)	7.59	0.001	0.16	0.014	0.038		6.25	6.38	
DurNnprbBfrFrstD (2, 61)	6.86	0.002	0.18	0.126	0.006		4.27	9.52	
TmFrmFrstPrbFrstD (2, 61)	5.92	0.005	0.16	0.042	0.039		5.36	6.64	
TmFrmFrstPrbFrstE (2, 81)	4.37	0.016	0.1	0.027	0.242		5.7	3.64	
TmFrstSusE2FrstPrb (2, 81)	4.32	0.016	0.1	0.024	0.283		5.74	3.28	
TmFrstSusE2StrtPrb (2, 59)	4.18	0.02	0.12	0.047	0.015		-6.04	8.73	
TmFrstE2StrtEPG (2, 81)	4.68	0.012	0.1	0.03	0.169		4.27	3.28	
MnDurE2 (3, 59)	2.81	0.047	0.12	0.017	0.017	0.017	1120.67	1218.5	-190.89
TmFrstE2FrmFrstPrb (2, 81)	4.16	0.019	0.09	0.029	0.27		5.41	3.29	
TmFrstE2FrmPrbStrt (2, 60)	4.26	0.019	0.12	0.026	0.022		-6.62	7.99	
TotDurNnPhlPhs (3, 60)	2.94	0.04	0.13	0.024	0.025	0.024	-361.6	-391.9	61.54
TmFrstSusE2 (2, 81)	4.78	0.011	0.11	0.033	0.142		4.23	3.52	

730 The acronyms are contractions of long names mostly consisting of words abbreviated as follows:
731 dur=duration nnprb=non-probing, bfr=before, first=first, frm=from, prb=probe, sus=sustained,
732 strt=start, mn=mean, tot=total, nnphlphs=non-phloematic phase (waveforms C, G and D, though
733 one could argue that D should be included)

734