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ABSTRACT

Mutualistic interactions are characterized by the positive influence that two species exert on each other. Such mutualism can
lead to bistability. Depending on the initial population size species will either survive or go extinct. Various phenomenological
models have been suggested to describe bistability in mutualistic systems. However, these models do not account for interaction
mediators such as nutrients. In contrast, nutrient-explicit models do not provide an intuitive understanding of what causes
bistability. Here, we reduce a theoretical nutrient-explicit model of two mutualistic cross-feeders in a chemostat, uncovering an
explicit relation to a growth model with an Allee effect. We show that the dilution rate in the chemostat leads to bistability by
turning a weak Allee effect into a strong Allee effect. This happens as long as there is more production than consumption
of cross-fed nutrients. Thanks to the explicit relationship of the reduced model with the underlying experimental parameters,
these results allow to predict the biological conditions that sustain or prevent the survival of mutualistic species.

Introduction
Microbes play a fundamental role in different ecosystems on Earth. For example, they provide nutrients for plants in the
rhizosphere via a symbiotic relationship1, contribute to the formation of planktonic communities in the ocean2, 3 and are used
in the treatment of wastewater4. Even the human body is home to large ecosystems of microbial species, called microbiota,
contributing to our health by providing essential nutrients and protecting us against potential threats or harmful microbial
species5.

To understand the dynamics of microbial ecosystems, the growth of microbes can be studied in vitro under well controlled
environmental conditions6. This way, microbes also provide convenient model systems to study general ecological interactions7.
A particularly suited laboratory device to experimentally study microbial growth is the chemostat8. Such a bioreactor allows to
grow microbes in a chemically constant environment and to explictly monitor the consumption of metabolites. A chemostat
consists of a well-mixed growth tank with a continuous inflow of nutrients and an outflow of the suspension with microbes
and nutrients. It is a simplification of natural systems as the inflow and outflow occur at the same rate and the suspension is
well-mixed so that spatial effects are ignored. Nevertheless, it constitutes an appropriate tool to probe the behavior of natural
systems, which are typically open environments with a flux of energy. For instance, it has been shown that the human intestines
can, to some extent, be modeled by chemostat equations9, which are particularly suitable to assess the correlation between
perturbed microbiomes (dysbiosis) and diseases. Experimental as well as theoretical studies involving a chemostat thus provide
an appropriate framework to predict behavior related to microbial interactions such as competition and mutualism in a natural
environment.

Although mutualism is thought to be less common than competition in microbial ecosystems because it tends to destabilize
the community10, mutualism can arise via bi-directional cross-feeding of metabolites11. It has been shown that microbial
diversity is promoted by cross-feeding, which can prevent competitive exclusion12. Furthermore, cross-feeding can be essential
for different functions. For example, in the intestines metabolites are broken down in smaller components by some species
for their consumption by other species11. This is necessary for the formation of health-promoting short-chain fatty acids13–15.
Mutual cross-feeding has also been shown to reduce the energetic cost by dividing the labor for the utilization of metabolic
pathways, for example for amino acid synthesis16.

Besides the apparent benefits of mutualism, there is a downside: the interdependency increases the possibility of a collapse
of the system due to a density threshold for survival, which has been observed experimentally17, 18. Mutualistic species are
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usually part of a larger ecosystem. Therefore, when mutualists are decreased under the survival threshold, for example in
response to antibiotics, the entire ecosystem can be destabilized10. Such critical effects on ecological interactions are often not
well characterized19. Therefore, in order to predict when such disruptions occur and, if needed, to intervene to prevent the
collapse of the community, a deeper understanding of mutualistic interactions and of the occurrence of thresholds in microbial
communities is necessary.

A density threshold between two different states of the system, in this case survival and extinction, is related to the concept of
bistability. Different models have shown that mutualism can cause bistability via the interdependence between the species20–23.
In some of these models the species are competitive as well as mutualistic, e.g. when mutualists become competitors for a
resource or for available space at high density24–26. One study showed that the type of interaction could be modulated by
varying the resource concentration17.

Mutualism has also been shown to create an Allee effect27–29. The presence of an Allee effect means that the individual
growth rate reaches a maximum at an intermediate density. At low population densities, the microbial fitness thus benefits
from an increased density. This effect arises in many cooperative systems and is in contrast with the prediction of the classical
logistic growth which predicts that an increased population density limits the growth30. There is a distinction between a weak
and a strong Allee effect1. Whereas a weak Allee effect leads to a single stable state (the species always survives), a strong
Allee effect is characterized by bistability, whereby a density threshold for survival is present. A currently unresolved problem
is that phenomenological models where interaction mediators, like nutrients, are neglected can behave differently than models
where these are explicitly incorporated31. One approach, based on Mac-Arthur’s consumer-resource models, describes the
occurrence of bistability by the saturation of mutualism at high densities32. Nevertheless, it remains unclear how the occurrence
of bistability in a mutualistic cross-feeding community is related to nutrient concentrations and to their consumption and
production kinetics. This is essential to quantify the effects of prebiotics or biological parameters on the survival of the species.

In this theoretical work, we use a nutrient-explicit model for the growth of mutualistic species in a chemostat reactor and
show how biological parameters of this system are related to an Allee effect. This allows to predict when bistability is created
and to estimate the density threshold for survival. Nutrient-explicit models of a single species in the chemostat can be reduced
to the logistic growth equation8, 33, 34. Using a similar approach, we reduce chemostat equations of a mutualistic system to
an appropriate mechanistic model which only involves the species densities. This allows to relate the obtained equations to a
generic growth model with an Allee effect. By establishing this analogy, we show that mutualism causes a weak Allee effect,
which can be turned into a strong Allee effect under the influence of the dilution in the chemostat. Critical chemostat parameters
such as the dilution rate and the influx of nutrients thus allow to manipulate the strength of the Allee effect and therefore of the
survival threshold. As a consequence, it is possible to switch between regions of bistability, monostable survival, or monostable
extinction. We also show that the production of cross-feeding nutrients needs to be larger than the consumption for an Allee
effect to exist. This explicit relationship between experimental parameters and the Allee effect provides a way to bridge the gap
between biological experiments and theoretical models.

Results

Bistability in mutualistic systems creates a survival threshold

We study a theoretical system of two mutualistic species with densities ρ1 and ρ2. Mutualism is mediated by cross-feeding:
each species consumes a nutrient, with resp. concentrations P1 and P2, produced by the other species (Fig 1A). We also assume
that each species requires an additional nutrient which we refer to as the substrate, with resp. concentrations S1 and S2. The
substrate consumption is necessary to avoid a violation of biomass conservation when production of the cross-fed nutrients is
higher than the consumption. The mutualistic relationship creates a positive feedback loop which can lead to bistability. This
phenomenon becomes apparent if we simulate the behavior of the species when cultured in a chemostat reactor (Fig 1). A
chemostat consists of a well-mixed growth vessel with an inflow of nutrients, at concentrations S̃i and P̃i (i = 1,2), and an
outflow of the suspension, which occurs with a dilution rate d. The consumption of nutrients is considered proportional to the
growth of the species, which corresponds to the conservation of biomass when d = 0 (Supplementary Material S1). In the same
way, we also assume the production of nutrients to be proportional to the growth of the species. The equations that describe the
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Figure 1. Bistability in mutualistic systems creates a survival threshold. (A) The microbial system we study consists of two
species, characterized by their densities ρ1 and ρ2. Besides consumption of a substrate, resp. S1 and S2, the species engage in a
mutualistic cross-feeding relationship via the production of nutrients resp. P1 and P2, which are consumed by the other species.
We theoretically investigate the growth of these species in a chemostat reactor. This is a well-mixed growth vessel with an
inflow of nutrients with concentrations S̃i, P̃i (i = 1,2) and an outflow of the suspension, occuring at an equal rate: the dilution
rate d. These parameters can be adjusted to control or manipulate the dynamics. (B) The behavior of the system is simulated
with Eqs (1) using the growth rate Eq (2), where we increase the dilution gradually from d = 0 to d = 0.24 with steps of 0.08.
For clarity, we used a logarithmic scale for the species density. The equilibrium densities of the species decrease with the
dilution. For d = 0.24, a threshold is reached and the species will be washed-out if the dilution remains unchanged. Trying to
prevent wash-out by decreasing the dilution to its previous rate does not lead to the recovery of the initial abundances of the
species, instead the dilution needs to be further decreased to d = 0.08 the make the population growing again. This is a
phenomenon called hysteresis: the system has memory of the previous state. It is a consequence of bistability between survival
and extinction at intermediate dilution, so that a density threshold for survival exists. (Parameters values: µ1 = 2 , µ2 = 2, Ks1 = 2,
Ks2 = 2, Kp1 = 1, Kp2 = 1, S̃1 = 1.1, S̃2 = 0.9, P̃1 = 0.2, P̃2 = 0.2, νs1 = 1, νs2 = 1, νp1 = 1, νp2 = 1, a1 = 2 , a2 = 2)
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Table 1. Definition of the variables and parameters of nutrient-explicit chemostat equations of the mutualistic cross-feeding
system, Eq (1), for i = 1,2 and i 6= j.

Variable Biological meaning
ρi microbial density of species i
Si substrate of species i (concentration)
Pi cross-fed nutrient, produced by species i (concentration)

Parameter Biological meaning
d dilution rate
S̃i inflow concentration of Si
P̃i inflow concentration of Pi
νsi consumption rate of Si by species i
νpi consumption rate of Pi by species i
ai j production rate of Pi by species j
µi Maximal growth rate of species i
Ksi Monod constant for Si (consumption by species i)
Kpi Monod constant for Pi (consumption by species i)

mutualistic chemostat system, with variables and parameters as defined in Table 1, are then:

dρ1

dt
= F1(S1,P1)ρ1−dρ1,

dρ2

dt
= F2(S2,P2)ρ2−dρ2,

dS1

dt
= dS̃1−dS1−νs1F1(S1,P1)ρ1,

dS2

dt
= dS̃2−dS2−νs2F2(S2,P2)ρ2,

dP1

dt
= dP̃1−dP1−νp1F1(S1,P1)ρ1 +a12F2(S2,P2)ρ2,

dP2

dt
= dP̃2−dP2−νp2F2(S2,P2)ρ2 +a21F1(S1,P1)ρ1.

(1)

We focus on obligate cross-feeding. Therefore, we assume obligatory dependence of the nutrients which means that the
growth rate of the species (Fi(Si,Pi), with i, j = 1,2) needs to satisfy the following condition: Fi(0,Pi) = Fi(Si,0) = 0. An
example of such a growth rate is the following extension of the Monod function for two nutrients35:

Fi(Si,Pj) = µi
Si

Ksi +Si

Pi

Kpi +Pi
. (2)

To gain some intuition about the system, we can simulate its behavior and consider what happens if the dilution is varied
(Fig 1B). The growth rate becomes constant when equilibrium substrate concentrations are reached. In this state, the growth
rate of each species equals the dilution rate d, allowing to manipulate the equilibrium. Increasing the dilution by one step
(d = 0.08), the equilibrium density of a species decreases accordingly. However, a survival threshold exists: if the density drops
below some critical values the species are washed-out. This is an irreversible collapse of the system, in the sense that reversing
the dilution rate does not immediately lead to a return of the surviving state. Instead the species density continuous to drop.
Only by a sufficient decrease of the dilution survival is restored. This concept is often called hysteresis: the state of the system
is dependent on its history. It is an effect related to bistability, meaning that there are two distinct equilibrium states for the
same environmental parameters. In this case there is bistability between survival and extinction of the two species. Even though
this simulation provides some intuition, it is not straightforward to predict how the different parameters of the system affect
bistability. This is essential to determine when the threshold for survival is crossed. To provide an answer, we show how these
parameters affect the dynamics by revealing a close connection to the widely studied growth equation with an Allee effect.

Dilution allows to switch between a weak and a strong Allee effect
Mutualistic cross-feeding is a form of cooperative behavior and causes a positive feedback loop between the two species. As a
consequence, at small densities an Allee effect is created. The per capita growth rate of a species, a proxy for their fitness,
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Table 2. Definition of the parameters for the reduced equations for the mutualistic cross-feeding system, Eq (4), as a function
of chemostat parameters, for i = 1,2 and i 6= j.

Parameter Biological meaning Relation to chemostat system

d dilution rate d

ri growth rate νsiνpi
∂ 2Fi

∂Si∂Pi
(0,0)

Csi Carrying capacity on the limiting substrate S̃i
νsi

Cpi Carrying capacity by a cross-fed nutrient P̃i
νpi

bi Growth stimulation through cross-feeding ai j
νpi

increases with the density at small densities and it reaches a maximum at an intermediate density. This is in contrast with the
logistic growth, where the per capita growth rate is maximal at zero density. There is an important distinction between a weak
Allee effect, associated to monostable dynamics, and a strong Allee effect, associated to bistability. Here, we show that the
mutualistic cross-feeding creates a weak Allee effect and that increasing dilution in the chemostat is able to turn this into a
strong Allee effect. Dilution can thus promote bistability: the two species coexist via cooperation or both die (community
collapses). The separation between the two types of behavior is determined by a threshold of the population size.

Based on the reduction of nutrient-explicit equations for the growth of one species in the chemostat to the logistic
equation8, 33, 34(see Supplementary Material, section S1), we can reduce the explicit chemostat equations to a two-variable
mutualistic system (Fig 2A). The calculations are detailed in the Supplementary Material (section S2). In brief, this reduction
relies on the following assumptions (i = 1,2 and i 6= j):

1. Conservation of biomass for t� 1/d:

νsiρi +Si = S̃i,

νpiρi−ai jρ j +Pi = P̃i.
(3)

2. A Taylor approximation of the growth rate at low nutrient concentrations: Fi(Si,Pi)≈ ∂ 2Fi
∂Si∂Pi

(0,0)SiPi +O(3).

The second assumption only holds in the case of obligatory dependence of the nutrients (Fi(0,Pi) = Fi(Si,0) = 0), such as the
given example of the adapted Monod growth rate (Eq (2)).

Using a newly defined reduced set of parameters (see Table 2), we find that the two-species system can be described by the
following equations:

dρ1

dt
= r1(Cs1−ρ1)(Cp1 +b1ρ2−ρ1)ρ1−dρ1,

dρ2

dt
= r2(Cs2−ρ2)(Cp2 +b2ρ1−ρ2)ρ2−dρ2.

(4)

These equations can be interpreted as follows. Each species (with density ρi) grows with a growth rate ri, which can be
increased via mutualistic interactions (bi). The available nutrients increase with the other species population. As this is the case
for both species, this results in positive feedback: the growth of each species is positively influenced by its own density. Such
growth is limited by two carrying capacities, one related to the available substrate (Csi) and one determined by the available
cross-fed nutrients (Cpi). The exact biological mechanism behind the limitation through these carrying capacities is not critical
for the dynamics, which remain qualitatively similar even when species compete for the same substrate (see Supplementary
Material, section S2). Additionally growth is further limited by the dilution in the chemostat (d).

In order to analyze the dynamics of this reduced equation (4), we first study the symmetric case where all parameters of
both species are the same (e.g.: r1 = r2 = r). In this situation the dynamics maps to the subspace where the densities of the
species are equal: ρ1 = ρ2 = ρ . The reduced mutualistic system is then found to be described by the following generic equation
including cubic growth and an Allee effect36:

dρ

dt
= ra(Ca−ρ)(a+ρ)ρ−dρ. (5)
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Figure 2. Dilution allows to switch between a weak and a strong Allee effect. (A) The nutrient-explicit chemostat equations,
Eq (1), are reduced (wavy arrow) to equations which only involve the species densities, Eq (4), allowing to explain bistability
in terms of an Allee effect. The mutualism causes an Allee effect via a positive feedback loop, which promotes bistability under
the influence of the dilution rate. (B) Simulating the dynamics of Eq (5) shows the effect of bistability: depending on initial
abundances, the species may coexist or become extinct. A threshold for survival separates the two outcomes. (C) The dilution
rate is crucial for bistability. Without a dilution term, the system is monostable: there is only one stable equilibrium,
corresponding to the survival of the species. Under the influence of the dilution, bistability occurs when there are three
intersections of the growth and the dilution term: two stable fixed points corresponding to extinction and survival and an
unstable steady state (saddle point) that separates both regions. (D) An Allee effect is present when the per capita growth
increases with the density, which is the case for small densities and is the result of the positive feedback between the
mutualistic species. For small dilution, the per capita growth does not become negative for small densities, corresponding to a
weak Allee effect. When dilution is increased, the per capita growth rate becomes negative for small densities. This is a strong
Allee effect and creates bistability between survival and extinction. Parameter values: ra = 1, a = 0.1, Ca = 1, d = 0.2, see
Supplementary Material, Table S7

.
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Here, the growth rate ra, carrying capacity Ca, Allee parameter a, and loss term caused by the dilution (parameter d) are
defined in table 3. The Allee effect is introduced by the factor (a+ρ) and is a consequence of the positive feedback between
the species so that at low densities the per capita growth increases. Without dilution (d = 0) this equation takes the usual form
of a growth equation with an Allee effect36. Based on the parameter a, the following distinction is made:

• a < 0: strong Allee effect (bistable)

• a > 0: weak Allee effect (monostable)

A weak Allee effect corresponds to monostable growth towards an equilibrium, while a strong Allee effect is associated to
bistability between survival and extinction so that a densitiy threshold for survival is generated (Fig 2B). As the Allee parameter
is determined by the inflow of the cross-feeding nutrients and is therefore strictly positive, the mutualistic cross-feeding causes
a weak Allee effect. The equilibria of the system are determined by the points where the growth is zero, which happens at
ρ = 0 and ρ =Ca when d = 0 (Fig 2C). The extinction state ρ = 0 is unstable, while the coexisting state ρ =Ca is stable. For
the chemostat case, the dilution is switched on (d > 0), the per capita growth is reduced by d and a new steady state may arise
(Fig 2D). The new steady state is unstable forming the threshold for survival between the two stable equilibria (survival and
extinction). This way, the dilution rate can turn a weak Allee effect into a strong Allee effect.

Table 3. Definition of the parameters for growth equation with Allee effect, Eq (5).

Parameters Biological meaning Relation to reduced system
ra growth rate r(b−1)
Ca carrying capacity Cs

a Allee parameter Cp
b−1

d dilution rate d

Bifurcation analysis reveals regions of bistability
Before analyzing the biological consequences of the Allee effect in mutualistic interactions, it is useful to illustrate how the
different parameters in Eq (5) affect the behavior. This can be done via a bifurcation analysis, showing the stability of the
different equilibria as a function of the parameters.

The equilibria of the system correspond to the intersections of the growth term and the dilution term, where dρ/dt = 0, and
are given by:

ρe = 0,

ρs =
Ca−a−

√
(Ca +a)2−4 d

ra

2
,

ρc =
Ca−a+

√
(Ca +a)2−4 d

ra

2
.

(6)

Here, ρe is the extinction state, ρc the coexisting state and ρs the separating state between the two equilibria in the case of
bistability. The equilibria are determined geometrically by calculating how many times the per capita growth intersects with the
dilution term (Fig 3 D,E). When there is only one intersection, the only stable equilibrium is ρc (ρs is negative and thus not
physical). When there are two intersections, i.e. when ρs and ρc are both positive, the system is bistable: both the extinction
state ρe and the coexisting state ρc are stable, and ρs is a so-called saddle point that separates the two stable equilibria. When
the dilution rate is too large, there are no intersection and the net growth is always negative so that the only equilibrium is ρe,
corresponding to extinction of the species. In this manner, it is straightforward to calculate the values of the dilution rate where
the behavior changes, leading to the following condition for bistability:

raCaa < d <
ra(Ca +a)2

4
. (7)

For lower values of the dilution rate there is only survival and for higher values there is only extinction (Fig 3 A,B,D), thereby
explaining the observed hysteresis in Fig 1. The same analysis shows that the Allee parameter a has a counter-acting effect on
the dynamics in comparison to d (Fig 3 A,C,E): when the dilution rate is too large for survival, increasing a causes the per
capita growth to intersect with the dilution, thereby allowing survival of the community. The complete behavior is summarized
in Fig 3 A: for large values of a and low values of d there is always survival via cooperation (regime I), for intermediate
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Figure 3. Bifurcation analysis reveals regions of bistability. (A) heatmap showing the equilibrium density ρ of Eq (5) as a
function of the Allee parameter a and the dilution rate d. The different regimes correspond to survival (I), bistability between
survival and extinction (II), and extinction (III). (B) Influence of the dilution d, for a = 0.2 kept constant. (C) Influence of the
Allee parameter a, for d = 0.3 kept constant. (D) Visual interpretation of the equilibrium states, corresponding to the
intersection of the per capita growth rate and the dilution, showing how increasing the dilution shifts regime I into regime II,
into regime III. (E) The Allee parameter a has the opposite effect than the dilution d: increasing a allows for survival by
shifting regime III into regime II into regime I. Parameter values: ra = 1, Ca = 1.
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Figure 4. Original chemostat equations (1) confirm findings in the reduced equations (5). (A) The first-order Taylor
approximation of the growth rate (Eq (2)) causes the wash-out limit to be reached for lower dilution rates. (B) By constructing
the bifurcation diagram as a function of d, using chemostat equations (1) and the Monod-like growth rates, we can estimate the
error by considering the point at which the saddle-node bifurcation (SN) occurs (T: transcritical bifurcation). A fold change F
of the Monod constants is used to quantify the deviation from the simplified bifurcation curve. At F = 1 the error is large as Ks
and Kp are of the order of S and P (Table S5). (C) Using F = 1, The calculated regions of survival, bistability and extinction in
the reduced system (dashed curves) map on the simulated regions of the chemostat equations (solid curves) so that the
qualitative behavior is conserved. (D) The error of the simplification is visualized by mapping the critical dilution rate at which
the saddle node bifurcation (SN) occurs. For F = 1 the critical value of the dilution (d∗) is about 50% lower than the estimated
value using the simplified model (Parameter values listed in Table S5).

values of a and d there is bistability (regime II) and for low values of a and large values of d there is always extinction of the
community (regime III).

In order to check the validity of the used simplification of the growth rates, we simulated the original chemostat equations,
Eqs (1), with extended Monod growth rates, Eq (2) (Fig 4). The used Taylor approximation of the Monod growth rates in the
simplified model yields a higher value for the growth rate. Therefore, we expect extinction to occur at lower dilution than
predicted with the simplified model (Fig 4A) . We quantified the differences in the locations of the critical dilution rate d∗

where the saddle-node bifurcations (SN) occurs for both the full model and the reduced model (Fig 4 B). We performed the
same calculation for different values of the Monod constants, whereby we multiplied the Monod constants by a factor F and
the maximal growth rate µ by F2 so that the Taylor approximation of the growth rate remains the same. The same qualitative
behavior was obtained when the Monod constants are of the order of the nutrients (F=1), but as expected a significant deviation
was observed (Fig 4 C). Estimation of the error by considering the critical dilution rate d∗ for different values of F , shows
that multiplying the Monod constants by a factor 10 yields a negligible error, i.e. a good quantitative match of the bifurcation
diagrams was obtained with the explicit model and the reduced model (Fig 4 D).
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Bistability requires a sufficient production of cross-feeding nutrients
Bistability results from the mutualistic relationship between the two species. Having a dilution rate d in the correct parameter
range is, by itself, not sufficient to guarantee bistability. Another necessary condition for bistability is obtained by considering
the effect of the mutualistic interaction strength b, defined as the ratio of the production to the consumption of cross-fed
nutrients (bi =

ai j
νpi

, i = 1,2). This parameter affects the growth rate ra as well as the Allee parameter a (Table 3), so that its
overall effect on the dynamics is not straightforward to predict intuitively. Therefore, we simulated the mutualistic system
(Eq.(4)) with symmetric parameters, for different values of b and of dilution rate d (Fig 5 A). This analysis shows that the
region of bistability is limited to b > 1. This means that bistability only occurs when the production of cross-fed nutrients is
higher than the consumption. When b < 1, the production of cross-fed nutrients is insufficient. The growth is limited by these
cross-fed nutrients, and the dynamics becomes similar as in the case of logistic growth, so that there is only one equilibrium
state. The carrying capacity is then determined by the inflow of cross-feeding nutrients, via Cp, and not by the inflow of
substrate, via Cs. Thus, for b < 1 there is no Allee effect.

The difference between the logistic growth at b < 1 and the Allee effect at b > 1 is visually interpreted by representing the
physical growth (i.e. feasible) regions in the phase plane for b < 1 (Fig 5 B) and for b > 1 (Fig 5 C). These feasible regions
originate from the biomass conservation laws (Eq (3)), as the nutrient concentrations need to be positive. For each species, the
limitation by the substrate causes the growth region to be bounded by the following function (i = 1,2):

ρi ≤Cs. (8)

Similarly for the cross-feeding nutrients the following limitation functions are obtained (i = 1,2 and i 6= j):

bρ j ≤ ρi +Cp. (9)

The interaction strength b determines the slope of Eq (9), so that for b < 1, the growth is entirely limited by Eq (9) and
thus by the availability of cross-feeding nutrients (Fig 5 B). The species cannot grow sufficiently to become limited by the
substrate. In contrast, for b > 1, the species can grow sufficiently. In this case, the feasible region is limited at high densities by
the availability of the substrate, Eq (8) (Fig 5 C).

The overall influence of the parameters is understood by looking at the nullclines: the functions where dρi/dt = 0 (i = 1,2).
The intersections of the nullclines define the equilibria of the system. The nullclines are hyperbolic functions, with the limiting
functions (Eq (8) and Eq (9)) as asymptotes. For bistability, the slopes need to be such that the nullclines can intersect twice
(Fig 5 C), thereby forming a stable equilibrium corresponding to coexistence of the species and a saddle point which creates the
threshold between coexistence and survival. This only occurs when b > 1, so that in this region we observe the same dynamics
as described in last section: survival when the hyperbola intersect once at low dilution, bistability when the nullclines intersect
twice for intermediate dilution ( rCsCp < d < 0.25r(b−1)(Cs +

Cp
b−1 )

2) and extinction for high dilution (for the phase plane
analysis, see Supplementary Material, Fig S3).

Bistability is created in the same way when asymmetric parameters are used. A similar analysis was performed for
asymmetric values of the mutualistic interaction strength b (Supplementary Material, Fig S5 and Section S3), resulting in the
general necessary condition for bistability: b1b2 > 1. Finally, the same result holds when the two mutualistic species compete
for a substrate (Supplementary Material, Fig S4)). The competition reduces the physical growth region so that the species
survive at lower densities, but the qualitative effect of the dilution rate and the mutualistic strength remains the same. Returning
to the chemostat parameters, the obtained condition for bistability b1b2 > 1 corresponds to a1a2 > νp1νp2, which means that
the overall production of cross-fed nutrients needs to be larger than their consumption.

Discussion
Microbial interaction networks are characterized by multiple positive and negative interactions. Species enter in competition for
limited resources, but they can also display mutualistic relationships through cross-feeding. Through mutualistic interactions,
both species benefit of each others presence. This may be seen as a stabilizing factor. However, mutualism carries the seed of
its own instability: under the influence of dilution bistability may occur, causing a critical density threshold for the species to
survive. Once the abundances of the species drop below this threshold, the community eventually collapses and the species
become extinct.

How biological parameters affect the survival threshold is often unclear. To provide an understanding of the effect of
different parameters, we showed how nutrient-explicit equations for two mutualistic cross-feeding species can be reduced to a
set of equations which only involve the densities of the species. These could then be related to a growth equation with an Allee
effect, which can be analyzed to obtain a deeper understanding of the impact of the different biological parameters. We obtained
quantitative results for the case where both species have symmetric parameter values, but showed that this framework still
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Figure 5. Bistability requires a sufficient production of cross-feeding nutrients. (A) Different regimes are distinguished as a
function of the parameter values, using Eq (4). For b < 1, the growth is limited by the cross-feeding nutrient, leading to
monostable dynamics similar to logistic growth. There is survival for small dilution (d < raCaa) and extinction for large
dilution. For b > 1, the growth only becomes limited by the substrate, allowing for bistability. There is a weak Allee effect,
corresponding to monostable survival, for small dilution, a strong Allee effect for intermediate dilution
(rCsCp < d < 0.25r(b−1)(Cs +

Cp
b−1 )

2) and monostable extinction for large dilution. (B) For b < 1, the growth is limited by
the cross-feeding nutrients (Eq 9), so that the physical growth region is small and does not allow bistability. For small dilution
the dynamics is similar to logistic growth as the population monotonically grows towards its equilibrium. (C) For b > 1, high
population densities are possible, whereby the growth is limited by the substrate S (Eq 8). Increased values of b lead to a larger
growth region, allowing for bistability when b > 1. Increasing the dilution rate d causes the nullclines to bend into hyperbola
with the linear functions at d = 0 as asymptotes. Bistability is obtained when the hyperbolic nullclines intersect twice
parameter values as listed in Table S6).
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applies to the case of asymmetric parameter values. Our results showed that the overall production rate of cross-fed nutrients
needs to be larger than the overall consumption rate to create an Allee effect. The production and consumption rates can
experimentally be altered by making use of synthetic cross-feeding systems17, 37, 38, which can be designed to display bistability,
or on the contrary, to prevent bistability and thereby the risk of an abrupt collapse of the community. We also showed that the
dilution rate and the influx of nutrients are experimental parameters which can be tuned to manipulate the behavior. The effect
of prebiotics can be simulated via the influx of nutrients (S̃ and P̃), in order to determine the effect of these growth-promoting
nutrients on the survival of the species. Furthermore, if antibiotics are used, then determining whether a survival threshold
exists would be essential to predict the survival or extinction of the species.

Density thresholds for survival have previously been observed in mutualistic systems. For example, a survival threshold was
found in a spatially cooperating microbial community18 and in a cross-feeding system which could switch to other interactions
like competition and parasitism, depending on the availability of nutrients17. Besides cross-feeding, mutualism can also arise
via the protection of another species towards antibiotics. In such a cross-protection system it was found that periodic dilution
drives oscillatory dynamics, potentially leading to extinction if the survival threshold was crossed39. Recently, we were capable
to fit a growth model on an experimental system of 3 species involving mutualistic cross-feeding in a batch reactor40, but as
these species were shown to be facultative cross-feeders, bistability is not expected in this system. Nevertheless, the same fitting
procedure could be used for obligate cross-feeding systems, in which case the theoretical predictions can be experimentally
verified.

Another disadvantage of the existence of a survival threshold is that it creates susceptibility to cheaters23. A cheater is an
individual of the species which does not cooperate in the creation of cross-feeding nutrients, thereby creating an energetic
advantage over the cooperators and potentially increasing the risk of a collapse of the system41. On the other hand, by using a
phenomenological model it has been shown that addition of a third species can create global stability of the coexistence state if
it is a facultative mutualist, in which case there is no longer a survival threshold42.

Furthermore, when the spatial expansion of a species is considered, an Allee effect counteracts genetic drift of a species as
it creates a pushed wave rather than a pulled wave corresponding to logistic growth43, 44. This has been observed experimentally
in a system of two cross-feeding species whereby the mutualistic strength was modulated by the inflow of nutrients45.

Our model involved the presence of a substrate due to biomass conservation, which limits the growth so that divergences
are not possible. We modeled the substrate as a nutrient, but it can also be interpreted as the limited availability of space26. In
fact, the obtained phase plane and the nullclines, describing the dynamics of the species, are observed in different mutualistic
models20–23, 46, so that we can state this is a general phenomenon. Therefore, our results give insights into necessary conditions
for obligate mutualistic models: there needs to be an Allee effect as well as a limiting function. Lotka-Volterra models for
mutualism do not incorporate these conditions47, as these involve the addition of fitness effects31, 48. Therefore, our results
hint at the use of nonlinear growth rates in generalized Lotka-Volterra models to study the survival of species in ecosystems
involving obligate mutualism.
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