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ABSTRACT

Behavioural innovation is widely considered an important mechanism by which animals
respond to novel environmental challenges, including those induced by human activities.
Despite its functional and ecological relevance, much of our current understanding of the
innovation process comes from studies in vertebrates. Understanding innovation processes in
insects has lagged behind partly because they are not perceived to have the cognitive machinery
required to innovate. This perception is however challenged by recent evidence demonstrating
sophisticated cognitive capabilities in insects despite their small brains. Here, we study the
innovation capacity of a solitary bee (Osmia cornuta) in the laboratory by exposing naive
individuals to an obstacle removal task. We also studied the underlying cognitive and non-
cognitive mechanisms through a battery of experimental tests designed to measure learning,
exploration, shyness and activity levels. We found that solitary bees can innovate, with 11 of 29
individuals (38%) being able to solve a new task consisting in lifting a lid to reach a reward.
The propensity to innovate was uncorrelated with learning capacities, but increased with
exploration, boldness and activity. These results provide solid evidence that non-social insects
can innovate, and highlight the importance of interpreting innovation in the light of non-

cognitive processes.
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INTRODUCTION

Animals exhibit an extraordinary wide repertoire of behaviours. Bees, for example, have
developed a broad repertoire of sophisticated behaviours that facilitate foraging, nesting,
navigation, and communication (Roulston & Goodell, 2011) Although the ecological and
evolutionary importance of behaviour is widely recognised, our current understanding of how
new behaviours emerge is insufficiently understood. Some simple behaviours have a clear
genetic basis, and hence may have been acquired through mutation and natural selection.
Studies in Drosophila show, for example, that a mutation in a single neuropeptide caused
several abnormalities on their behavioural circadian rhythms (i.e. biological clocks, Renn et al.,
1999). However, the accumulation of mutations seems insufficient to understand the emergence
of complex behaviours. Rather, the emergence of novel behaviours from more simple cognitive
processes require the processing of new knowledge by means of experience to guide decision-
making (Dukas, 2008). The emergence of new learnt behaviours is a process known as
behavioural innovation (Ramsey et al., 2007, Lefebvre et al., 2004, Reader et al., 2003, Sol

2003).

The concept of innovation has attracted considerable interest of researchers for its broad
implications for ecology and evolution (Ramsey et al., 2007; Lefebvre et al., 2004; Reader,
2003; Sol, 2003). Innovating designates the possibility of constructing plastic behavioural
responses to novel ecological challenges, thereby potentially enhancing the fitness of the
individual animals when exposed to unusual or novel situations. For instance, evidence is
accumulating that innovation abilities enhances the success of animals when introduced to novel
environments (Sol et a/., 2005). By changing the relationship of individuals with the
environment, innovative behaviours also have a great potential to influence the evolutionary
responses of the population to selective pressures (Lefebvre et al., 2004; Reader et al., 2016).
Hence, in a context of global change, innovative behaviours are considered central to

understand how animals will respond to rapid changes induced by human activities.

While innovation is considered one of the main processes behind the emergence of novel

behaviours in vertebrates (Reader, 2003; Ramsey et al., 2007), the relevance of innovation is


https://doi.org/10.1101/2019.12.23.884619
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.23.884619; this version posted December 23, 2019. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in

74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

96

97
98
99
100
101
102
103

104

perpetuity. It is made available under aCC-BY 4.0 International license.

currently insufficiently understood in insects. The traditional notion holds that insect behaviour
tends to be relatively inflexible and stereotypical, a perception that partially arises from their
small brains and less number of neurons than more studied taxa like mammals or birds (Dukas,
2008). Such a belief is however changing as evidence accumulates of unsuspected sophisticated
capabilities that transcend basic forms of cognition, including rule learning (Gil et al., 2007),
numerosity (Chittka et al., 1995, Dacke & Srinivasan, 2008), development of novel routes and
shortcuts while navigating (Menzel et al., 2005) or exploratory learning (Menzel & Giurfa,
2001; Degen et al., 2016). The fact that insects exhibits sophisticated cognition suggests that

new behaviours may also be commonly acquired through the process of innovation.

Here, we address the critical questions of whether insects are capable of innovate and how they
achieve it. We used a solitary common bee —Osmia cornuta (Megachilidae)— as a model
system to address these questions. While our current understanding of cognition in solitary bees
is limited in comparison to that of eusocial species (e.g. Chittka & Thompson, 2009), they are
also easy to rear and manipulate in captivity (Jin et al. 2014). An advantage of solitary bees is
that they can be tested individually for innovative propensity without having to consider the
pitfall of separating individuals from the social group. Importantly, solitary bees compose most
of the bee fauna and are suffering worldwide population declines associated with rapid human-
induced environmental changes (Goulson et al., 2015), posing at risk the essential pollination
services that they provide for cultivated crops and wild plants (Ollerton, J, Tarrant, S &
Winfree, R 2011). Thus, there is an urgent need to assess whether and how they are capable of

innovate to cope with new environmental challenges.

The capacity to innovate is difficult to measure directly (Lefebvre et al., 2004), but one widely
adopted approach is the use of problem-solving experiments motivated by a food reward
(Bouchard et al., 2007, Griffin et al., 2014). In our experiments, we exposed naive O. cornuta
bees to a novel task consisting in lifting a lid to reach a food reward, an assay that mimics the
encounter of a new complex flower. Whether or not individuals solve the task and the latency in
doing so can be used as measures of innovation performance (Sol et al., 2011). Because some
bees were capable to innovate, we investigated the underlying mechanisms. We first explored

whether the propensity to innovate reflects a domain-general ability to learn. Hence, we related
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our measures of innovation performance to measures of performance in an associative learning
test. Next, we tested the effect of a number of emotional and state-dependent intrinsic features
that are suspected to either facilitate or inhibit innovation (Reader et al., 2003, Houston &
McNamara, 1999; Sol et al., 2012), including exploration, shyness and activity levels. We
finally considered whether problem-solving ability might be explained by sex, an additional
intrinsic parameter (Houston & McNamara 1999). In O. cornuta, females are more involved in
parental activities (e.g. are in charge of all nest provisioning activities) and are typically larger
than males (Bosch, 1994). These fundamental differences in the biology and ecology between
sexes are expected to affect how they deal with novel challenges, potentially affecting their

problem-solving ability.

MATERIAL AND METHODS

Study subjects

Osmia cornuta cocoons were bought from the company WAB-Mauerbienenzucht (Konstanz,
Deutschland) and kept cold at 4C°. Before and during the experiments, cocoons were put in 15
ml falcon tubes in a pitch black environment and kept in an incubator at 26°C for 24-48 hours
until the emergence of offspring. In total, 101 females and 42 males were born, and used in the
experiments. In order to force bees to walk instead of fly, we anesthetized them with a cold

shock treatment and cut their right wings (Crook, 2013).

Experimental device

We conducted the experiments in a controlled environment laboratory at the Institut fiir
Biologie—Neurobiologie (Freire Universitét Berlin) from February to April 2017. Behavioural
assays were conducted in a composed experimental device with two parts, the “arena” (Fig. 1a)
and the “dome” (Fig. 1b). The arena was a 30 x 30 x 10 cm empty methacrylate rectangular
prism with no roof, containing a grey cardboard as floor and sustained over a wood structure.
The dome was a dark brown upside-down plastic flowerpot, illuminated homogeneously with
attached LED lamps. The dome covered the arena to create a controlled environment for the
experiments. We attached different geometrical figures patterns in the inside walls to facilitate
the orientation of the bees during the tests (Jin et a/. 2014). The dome had a hole in the roof to

attach a video camera to record the tests. Citral odour was perfused evenly and restored
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136  regularly, as it is known to stimulate bumblebees, and probably other bees, during foraging
137 (Lunau, 1991; Shearer & Boch, 1966).
138
139  Experimental protocol
140  Along 3 days, each individual passed a sequence of 5 behavioural assays (Fig.1 ¢, d, e, f) of 15
141  minutes each designed to measure five different behaviours: exploration, shyness, activity,
142 learning and innovation (see Table 1). Because the mechanisms behind innovation are complex
143 and we do not know what may be driving innovation, we controlled this other related
144  behaviours. We waited four hours between trials if the next trial was done the same day and
145  around 16 if the next trial needed to be done the next day (Fig. 1 ¢, d, e, ). Activity, measured
146  as the proportion of time in movement, was measured for every trial. Individuals did not show
147  any correlation in their activity levels along the trials (Figure S1) and therefore, we did not
148  estimate a single average activity value for each individual. Activity levels did not decrease
149  along the trials (Linear model Activity ~ Trial, Estimate = SE = 0.003 + 0.008, p = 0.718). Note
150 that not every bee survived to perform all the assays; only 45% of the individuals that started the
151  experiment reached the final assay. Although individuals were not fed during the experimental

152  process other than during the trials, the lack of correlation between the number of feeding

153  events and activity rates during the leaning test (Pearson correlation = -0.09) or the innovation
154  test (Pearson correlation = -0.01) suggests that this high mortality is not attributable to starving.
155

156  The first assay aimed at measuring exploration and shyness. The arena included four coloured
157  cardboard cues (2 blue and 2 yellow, Fig. 1c). The bee was placed in a little cardboard refuge
158 and was kept inside for 5 minutes to allow habituation. Next, the refuge was opened and the
159 individual was allowed to explore the arena. To quantify exploration, we recorded whether the
160  bee explored all the cardboards during the assay and the time it took to do so. Shyness was

161  measured as the initial time spent inside the refuge (Table 1). Re-entering the refuge was

162  originally thought to be a descriptor of shyness, however the analysis of the videos showed that
163  bees did not re-enter the refuge to stay inside and hide, but rather did it as part of their arena
164  exploration

165
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166  The second and third assays were the learning assays, where we trained bees to associate a
167  colour with a reward (Fig. 1d). The individuals started all tests inside a black opaque box cover
168  that was lifted at the start of the experiment. We displayed 2 cardboards cues with sprues on it,
169  one rewarded with 50% sucrose solution and the other empty. Blue and yellow cardboards are
170  well discriminated by bees (Vorobyev et al., 1999; Hempel de Ibarra et al., 2014). Hence, the
171  reward for each individual was randomly assigned to one of this two colours for both trials and
172 we let the individuals explore the sprues and eat ad libitum during 15 minutes. The position (left
173  or right) of the reward was randomly assigned for each individual in each trial.
174
175  In the fourth assay, the learning test, we tested if individuals had learned to associate colours
176  with rewards as trained. The test consisted of both cues displayed as in the second and third
177  assays, but this time with both sprues empty (Fig. 1e). We measured if the individuals
178  approached the formerly rewarded coloured cue and quantified the time spent until checking the
179  right feeder. To ensure that bees had learned to associate colour and reward, we switched the
180  colour of the rewarded sprue for some bees between the two learning assays in 36 randomly
181  selected individuals (control group, hereafter).
182
183  In the final assay, we measured the propensity for innovation by using the same coloured cue
184  and reward combination as in assays 2 and 3, but this time the sprue containing the reward was
185 covered with a cardboard lid (Fig. 1f). Bees had thus to innovate -i.e. lift the cardboard- to reach
186  the reward. Innovation propensity was measured in terms of innovation success and latency to
187  succeed (Table 1). Control bees used in the learning assays were not tested for innovation.
188
189  Data analysis
190  We modelled problem solving performance in the innovation assay as a function of learning,
191  shyness, exploration and activity (see Table 1 for definitions). We modelled the success or
192 failure in solving the task using a Bayesian generalized linear model with a Bernoulli family and
193  alogit link (Package brms; Biirkner, 2017). To model the latency to solve the task, we instead

194  used survival analyses based on cox proportional hazards regressions for continuous predictors
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(Cox, 2018, Table 2). Survival analysis allow usto add censored data for those

individuals that did not passed the test.

In order to avoid model over-parametrization, we used only the quantitative proxies of shyness,
exploration and learning (i.e. latencies; Table 1). In addition, as activity levels were variable
across trials (Fig. S1), we only included activity levels during the test evaluated. Sex was not
added as co-variable because of the limited sample size and skewed proportion of females (6
males, 23 females). Learning success and latency was modelled in a similar way as innovation,
that is, as a function of shyness, exploration, activity during the learning test, but this time
including sex (9 males, 34 females). For individuals not solving a particular task (e.g.

exploration or learning), we assigned to them a maximum latency of 15 minutes.

In summary, for innovation we built multivariate models with latency to exit the refuge (i.e.
shyness), latency to explore the full arena (i.e. exploration), latency to perform the learning test
(i.e learning) and activity as predictors. For learning we built multivariate models with latency
to exit the refuge (i.e. shyness), latency to explore the full arena (i.e. exploration), activity and

SEX.

RESULTS

Our experiments showed that Osmia cornuta bees were able to innovate. Eleven out of the 29
bees we tested for innovation solved the innovation task, lifting the lid to reach the reward
within the 15 minutes of the assay. Osmia cornuta bees were also able to learn, with 63% of
individuals succeeding in the learning test (n = 48, chi-squared = 3, df = 1, p-value = 0.08)
while control bees had a success rate close to that expected by random (n = 36, 52% success,
chi-squared = 0.11, df = 1, p = 0.74). Males tended to learn better than females, showing
slightly higher success rates (Table 2¢) and learning faster (Table 2d). However, latency to

innovate showed no relationship with learning (Table 2b, Figure 2b).

Instead, innovation success and latency were better explained by individual differences in
shyness, exploration and activity (Figure 2, Table 2). First, shier individuals were worst

innovators. The probability of innovating dropped from 0.80 for bees that spent 2 seconds inside
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226  the refuge to 0.01 for bees that did not leave the refuge in the first assay (Table 2a, Fig. 2a).
227  Shier individuals were also slower at resolving the innovation test (Table 2b). In fact, from all
228  bees that did not leave the refuge in the first test (our proxy of shyness) and reached the

229  innovation test, none of them passed the innovation test in subsequent assays.

230

231  Second, slower explorers were also better at the innovation test. Bees that spent more time
232 solving the exploration test had more chances to succeed in the innovation test (Table 2a, Figure
233 2c). These individuals also solved the innovation test faster (Table 2b). Finally, active bees
234 during the innovation test had better chances of solving the innovation test (Table 2a, Figure
235 2d), indicating that the velocity at solving the test correlated positively with the proportion of
236  time active during the test (Table 2b). Unlike innovation, learning was not affected by shyness,
237  exploration and activity (Table 2b, c; figure 3).

238

239 DISCUSSION

240 Innovation-like behaviours have been previously observed in wild solitary bees. These include
241  the use of new materials for nesting (Allasino et al., 2019) and anecdotal examples of bees
242  nesting in new places, such as cardboard, wooden blocks (Bosch & Kemp, 2001) or Styrofoam
243 blocks (Maclvor & Moore, 2013). However, the innovative ability of solitary bees had never
244 been demonstrated before in controlled laboratory experiments. Ours is the first experimental
245  demonstration that Osmia cornuta can develop innovative behaviours to solve novel problems.
246

247  Although innovation is generally believed to be a dimension of domain-general cognition

248  (Lefebvre et al., 2004), we did not find evidence that individuals the were better at associative
249  learning solved the innovation task faster. The failure to relate innovation and associative

250  learning does not simply reflect that we studied learning over shorter training periods as success
251  in the learning test was comparable to those found in previous similar experiments using more
252  training days (e.g. Jin et al., 2014: Jin et al., 2015).

253

254 A more likely explanation is that other factors are more relevant to innovate and can have
255 masked the effect of learning. Indeed, we found consistent differences between fast and slow

256  innovators in their tendency to approach and explore the experimental apparatus. Specifically,
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individuals that were able to lift the lid to access the food reward tended to be bolder and to
explore slower than those that failed to solve the task. As suggested for other taxa, there may be
a trade-off between exploration speed and accuracy which can translate into how information is
processed. For example, in great tits (Parus major), fast explorers return more quickly to
previously experienced foraging patches whereas slow explorers prefer to seek new information
or update old information close to the feeders (Matthysen et a/., 2010). Boldness and
exploration have been previously identified as important determinants of innovation propensity
in vertebrates and highlight that innovation propensity may largely reflect particular
motivational states or emotional responses of individuals to novel situations rather than
cognitive differences (Sol et al., 2013). In line with this conclusion, successful innovators also
exhibited higher activity levels. Activity may reflect motivation to feed, which in other animals
has been found to be a major determinant of innovation propensity (e.g. Sol et al., 2013.
However, it may also increase the chances to solve the task accidentally by trial and error.
Closed environmental spaces can also be stressful and what we defined as “fast exploring” can

be a by-product of stereotyped stress behaviours.

The lack of evidence for domain-general cognition does not mean that innovation does not
require learning. Learning is not only necessary to fix the new behaviour in the individual
repertoire (Ramsey et al., 2007, Lefebvre et al., 2004, Reader et al., 2003, Sol 2003), but it is
also important to solve the task itself. Indeed, we found that bees that succeeded in the
innovation test went directly towards the lid covering the reward, probably reflecting that they
had learnt the rewarding colour during training assays. In our assays, most individuals were able
to rapidly associate colours and rewards — after only two training trials— regardless of their
differences in shyness, exploration and activity. Thus, the lack of effect of learning ability on

innovation might reflect that most individuals were similarly proficient in associative learning.

Learning is widely-held to have important advantages in the wild. In bees, learning is critically
important for vital tasks such as foraging, identification of high quality foraging sites, finding
the right mixtures of nectar and pollen, and navigating back to the nest for brood provisioning

(Roulston & Goodell, 2011; Minckley et al., 2013). Surprisingly, we found intriguing sex-
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287 related differences in learning. Males showed a tendency to perform better in the associative
288  learning test than females. This is unexpected because females have to deal with more tasks
289  during their lifetime, including foraging and nest provisioning, and may perhaps indicate that
290  the cognitive demands for males to locate females are higher than suspected.
201
292 Our results suggest that solitary bees can also readily accommodate their behaviour to novel
293  context through innovative behaviours, with no need of sophisticated cognitive processes. In a
294 context of global change, the ability to rapidly accommodate behaviour to novel contexts seems
295  highly relevant. In novel environments, bees must for instance learn how to forage on new plant
296  species, which sometimes presents complex flowers with whom bees have not co-evolved
297  (Bartomeus et al., 2010). Therefore, we should abandon the notion that insect behaviour is
298 inflexible and stereotypical, and better appreciate that insects can readily accommodate their
299  behaviour to changing conditions through innovation and learning.
300
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431 TABLES AND FIGURES

432

433  Table 1

434 Thistable contains all variables measured during the tests, with those selected for the

435  innovation analyses as predictors in bold.

Behavioural
component
Shyness

Exploration

Activity

Learning

Innovation

436

Behavioural
variable

Latency to exit |1
the refuge

Exploration 1
success

Latency to 1
explore the full
arena

Re-exploring the |1
refuge

Activity time  |1-5

Learning success 4

Latency to 4
learn

Innovation 5
success

Latency to 5
innovate.

Assay Description

Initial time spent inside the cardboard refuge once the assay started
Touching the four cardboards during the 15-min of the assay

Time spent to touch all four cardboards in assay 1. Bees that did
not do explore the four cardboards were assigned the maximum
time possible (15 min).

Re-entering the refuge after exploring the arena, coded as yes or
no. Correlated with latency to explore.

Time spent moving measured as the proportion of the time being
active (from 0 to 1)

Choice of the correct cue (yes/no).

Time spent to make the correct choice. Bees that failed the test
were assigned the maximum time possible (15 min).

Success to lift the 1id and reach the reward

Latency to open the lid and reach the reward. Bees that did not
solved the problem were assigned the maximum time possible.
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Table 2

Multivariate model coefficients (beta = standard deviation) for innovation success and learning
as a function of latency learning, shyness, exploration and activity. We ran parallel models for
innovation and learning success (Bayesian GLM), and for latency to innovate and learn (Cox).
Abbreviations: CI = Confidence interval, Rhat is the potential scale reduction factor on split

chains (all our models are at convergence, Rhat = 1).

(a) Innovation success (Bayesian GLM), n =29
Variables § CI
Latency to exit the refuge -0.74 £0.29 -1.41 —-0.26
Latency to explore 0.55+0.27 0.11 -1.15
Activity in innovation test 17.70 £ 8.51 4.65—-37.44
Latency to learn -0.14 £0.15 -0.44-0.13
(b) Latency to innovate (Cox), n =29
Variables Coefficients SE z-value p-value
Latency to exit the refuge -0.15 0.07 -2.15 0.03
Latency to explore 0.10 0.06 1.63 0.10
Activity in innovation test 5.71 3.10 1.84 0.06
Latency to learn -0.05 0.06 -0.07 0.93
(c) Learning success (Bayesian GLM), n=45
Variables § CI
Latency to exit the refuge 0.07 £0.09 -0.12-0.25
Latency to explore -0.13+£0.11 -0.35—-0.08
Activity in learning test 0.71 £1.66 -2.61 -3.91
Sex (Male) 2.86+1.50 0.37-6.22
(d) Latency to learn (Cox), n =45
Variables Coefficients SE z-value p-value
Latency to exit the refuge -0.03 0.04 -0.76 0.44
Latency to explore -0.01 0.06 -0.26 0.80
Activity in learning test -0.11 0.77 -0.14 0.88
Sex (Male) 0.98 0.43 2.26 0.02
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(a)

Day 1 Day1&2 Day 3 Day 3

Wlle Bl ®Bl|le &

-~

Assay 1 Assays 2 & 3 Assay 4 Assay 5
Exploration & shyness test Learning training Learning test Innovation test

(c) (d) (e) ()

446

447  Figure 1

448  The experimental arena (a) laying in a neutral grey ground, surrounded by plastic walls with
449  plastic cornices attached to avoid that bees can escape. It was covered by the dome (b) with a
450 landscape pattern displayed inside and a webcam placed in the ceiling to record all the

451 experiments. The experiment had four different displays. In assay 1 (c) the bee started inside a
452  refuge. The aim of the assay was to see whether the bee stayed in the refuge (as shyness proxy),
453  and/or explored the colour cues around. In assays 2 and 3 (d), the bee was exposed to two

454  sprues, one rewarded and the other was empty. The colour was randomly selected but

455 maintained along the assays. In assay 4, the learning test (¢), the display was the same as in
456 assay 2 and 3, but this time we removed the reward and both sprues were empty. In assay 5, the
457  innovation test (f), the display was the same than in assay 2 and 3 as well, but this time we

458  covered the reward with a lid, forcing the bee to innovate to lift the lid to access the reward.

459
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Innovation related to shyness (a) Innovation related to learning (b)
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Figure 2

Innovation related to each measured behaviour. These graphs plot the estimates extracted from
the multivariate model described in Table 2a measuring the success or failure in the innovation

test.
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469 Figure 3

470
471 Learning related to each measured behaviour. These graphs are extracted from the multivariate

472  model described in Table 2¢c measuring the success or failure in the learning test. The width of
473  the bars in (d) is proportional to the number of individuals tested.

474
475
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476

477 SUPPLEMENTARY MATERIAL

478

Activity trial 5

Activity trial 4
Pearson
Correlation

- 1.0

0.5
Activity trial 3

Activity trial 2

Activity trial 1

479  Figure S1. Activity levels across trials, measured as time active, were not correlated (mean

480 Pearsonr=0.23).
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