

1 Innovation in solitary bees is driven by exploration, shyness and 2 activity levels

3

4 Miguel Á. Collado^{1,2}, Randolph Menzel³, Daniel Sol^{2,4}, Ignasi Bartomeus¹

5

6 ¹Estación Biológica de Doñana (EBD-CSIC), Avd. Americo Vespucio 26, 41092 Sevilla, Spain

7 ²CREAF (Centre for Ecological Research and Applied Foreストries)

8 Cerdanyola del Vallès, Catalonia E-08193, Spain

9 ³Freire Universität Berlin, Institut für Biologie – Neurobiologie, Königin-Luise-Str. 28/30,

10 14195 Berlin, Germany

11 ⁴CSIC (Consejo Superior de Investigaciones Científicas),

12 Cerdanyola del Vallès, Catalonia E-08193, Spain

13

14

15 xmiguelangelcolladox@gmail.com

16 menzel@neurobiologie.fu-berlin.de

17 d.sol@creaf.uab.cat

18 nacho.bartomeus@gmail.com

19

20 Correspondence author information:

21 Miguel Ángel Collado Aliaño

22 e-mail: xmiguelangelcolladox@gmail.com

23 telephone number: +34 692 77 57 74

24 **ABSTRACT**

25 Behavioural innovation is widely considered an important mechanism by which animals
26 respond to novel environmental challenges, including those induced by human activities.
27 Despite its functional and ecological relevance, much of our current understanding of the
28 innovation process comes from studies in vertebrates. Understanding innovation processes in
29 insects has lagged behind partly because they are not perceived to have the cognitive machinery
30 required to innovate. This perception is however challenged by recent evidence demonstrating
31 sophisticated cognitive capabilities in insects despite their small brains. Here, we study the
32 innovation capacity of a solitary bee (*Osmia cornuta*) in the laboratory by exposing naïve
33 individuals to an obstacle removal task. We also studied the underlying cognitive and non-
34 cognitive mechanisms through a battery of experimental tests designed to measure learning,
35 exploration, shyness and activity levels. We found that solitary bees can innovate, with 11 of 29
36 individuals (38%) being able to solve a new task consisting in lifting a lid to reach a reward.
37 The propensity to innovate was uncorrelated with learning capacities, but increased with
38 exploration, boldness and activity. These results provide solid evidence that non-social insects
39 can innovate, and highlight the importance of interpreting innovation in the light of non-
40 cognitive processes.

41

42 **KEYWORDS**

43 Behavioral plasticity, Innovation, Learning, *Osmia cornuta*

44 INTRODUCTION

45 Animals exhibit an extraordinary wide repertoire of behaviours. Bees, for example, have
46 developed a broad repertoire of sophisticated behaviours that facilitate foraging, nesting,
47 navigation, and communication (Roulston & Goodell, 2011) Although the ecological and
48 evolutionary importance of behaviour is widely recognised, our current understanding of how
49 new behaviours emerge is insufficiently understood. Some simple behaviours have a clear
50 genetic basis, and hence may have been acquired through mutation and natural selection.
51 Studies in *Drosophila* show, for example, that a mutation in a single neuropeptide caused
52 several abnormalities on their behavioural circadian rhythms (i.e. biological clocks, Renn *et al.*,
53 1999). However, the accumulation of mutations seems insufficient to understand the emergence
54 of complex behaviours. Rather, the emergence of novel behaviours from more simple cognitive
55 processes require the processing of new knowledge by means of experience to guide decision-
56 making (Dukas, 2008). The emergence of new learnt behaviours is a process known as
57 behavioural innovation (Ramsey *et al.*, 2007, Lefebvre *et al.*, 2004, Reader *et al.*, 2003, Sol
58 2003).

59

60 The concept of innovation has attracted considerable interest of researchers for its broad
61 implications for ecology and evolution (Ramsey *et al.*, 2007; Lefebvre *et al.*, 2004; Reader,
62 2003; Sol, 2003). Innovating designates the possibility of constructing plastic behavioural
63 responses to novel ecological challenges, thereby potentially enhancing the fitness of the
64 individual animals when exposed to unusual or novel situations. For instance, evidence is
65 accumulating that innovation abilities enhances the success of animals when introduced to novel
66 environments (Sol *et al.*, 2005). By changing the relationship of individuals with the
67 environment, innovative behaviours also have a great potential to influence the evolutionary
68 responses of the population to selective pressures (Lefebvre *et al.*, 2004; Reader *et al.*, 2016).
69 Hence, in a context of global change, innovative behaviours are considered central to
70 understand how animals will respond to rapid changes induced by human activities.

71

72 While innovation is considered one of the main processes behind the emergence of novel
73 behaviours in vertebrates (Reader, 2003; Ramsey *et al.*, 2007), the relevance of innovation is

74 currently insufficiently understood in insects. The traditional notion holds that insect behaviour
75 tends to be relatively inflexible and stereotypical, a perception that partially arises from their
76 small brains and less number of neurons than more studied taxa like mammals or birds (Dukas,
77 2008). Such a belief is however changing as evidence accumulates of unsuspected sophisticated
78 capabilities that transcend basic forms of cognition, including rule learning (Gil et al., 2007),
79 numerosity (Chittka et al., 1995, Dacke & Srinivasan, 2008), development of novel routes and
80 shortcuts while navigating (Menzel et al., 2005) or exploratory learning (Menzel & Giurfa,
81 2001; Degen et al., 2016). The fact that insects exhibits sophisticated cognition suggests that
82 new behaviours may also be commonly acquired through the process of innovation.

83

84 Here, we address the critical questions of whether insects are capable of innovate and how they
85 achieve it. We used a solitary common bee —*Osmia cornuta* (Megachilidae)— as a model
86 system to address these questions. While our current understanding of cognition in solitary bees
87 is limited in comparison to that of eusocial species (e.g. Chittka & Thompson, 2009), they are
88 also easy to rear and manipulate in captivity (Jin et al. 2014). An advantage of solitary bees is
89 that they can be tested individually for innovative propensity without having to consider the
90 pitfall of separating individuals from the social group. Importantly, solitary bees compose most
91 of the bee fauna and are suffering worldwide population declines associated with rapid human-
92 induced environmental changes (Goulson et al., 2015), posing at risk the essential pollination
93 services that they provide for cultivated crops and wild plants (Ollerton, J, Tarrant, S &
94 Winfree, R 2011). Thus, there is an urgent need to assess whether and how they are capable of
95 innovate to cope with new environmental challenges.

96

97 The capacity to innovate is difficult to measure directly (Lefebvre et al., 2004), but one widely
98 adopted approach is the use of problem-solving experiments motivated by a food reward
99 (Bouchard et al., 2007, Griffin et al., 2014). In our experiments, we exposed naïve *O. cornuta*
100 bees to a novel task consisting in lifting a lid to reach a food reward, an assay that mimics the
101 encounter of a new complex flower. Whether or not individuals solve the task and the latency in
102 doing so can be used as measures of innovation performance (Sol et al., 2011). Because some
103 bees were capable to innovate, we investigated the underlying mechanisms. We first explored
104 whether the propensity to innovate reflects a domain-general ability to learn. Hence, we related

105 our measures of innovation performance to measures of performance in an associative learning
106 test. Next, we tested the effect of a number of emotional and state-dependent intrinsic features
107 that are suspected to either facilitate or inhibit innovation (Reader *et al.*, 2003, Houston &
108 McNamara, 1999; Sol *et al.*, 2012), including exploration, shyness and activity levels. We
109 finally considered whether problem-solving ability might be explained by sex, an additional
110 intrinsic parameter (Houston & McNamara 1999). In *O. cornuta*, females are more involved in
111 parental activities (e.g. are in charge of all nest provisioning activities) and are typically larger
112 than males (Bosch, 1994). These fundamental differences in the biology and ecology between
113 sexes are expected to affect how they deal with novel challenges, potentially affecting their
114 problem-solving ability.

115

116 MATERIAL AND METHODS

117 Study subjects

118 *Osmia cornuta* cocoons were bought from the company WAB-Mauerbienenzucht (Konstanz,
119 Deutschland) and kept cold at 4C°. Before and during the experiments, cocoons were put in 15
120 ml falcon tubes in a pitch black environment and kept in an incubator at 26°C for 24-48 hours
121 until the emergence of offspring. In total, 101 females and 42 males were born, and used in the
122 experiments. In order to force bees to walk instead of fly, we anesthetized them with a cold
123 shock treatment and cut their right wings (Crook, 2013).

124

125 Experimental device

126 We conducted the experiments in a controlled environment laboratory at the Institut für
127 Biologie–Neurobiologie (Freie Universität Berlin) from February to April 2017. Behavioural
128 assays were conducted in a composed experimental device with two parts, the “arena” (Fig. 1a)
129 and the “dome” (Fig. 1b). The arena was a 30 x 30 x 10 cm empty methacrylate rectangular
130 prism with no roof, containing a grey cardboard as floor and sustained over a wood structure.
131 The dome was a dark brown upside-down plastic flowerpot, illuminated homogeneously with
132 attached LED lamps. The dome covered the arena to create a controlled environment for the
133 experiments. We attached different geometrical figures patterns in the inside walls to facilitate
134 the orientation of the bees during the tests (Jin *et al.* 2014). The dome had a hole in the roof to
135 attach a video camera to record the tests. Citral odour was perfused evenly and restored

136 regularly, as it is known to stimulate bumblebees, and probably other bees, during foraging

137 (Lunau, 1991; Shearer & Boch, 1966).

138

139 **Experimental protocol**

140 Along 3 days, each individual passed a sequence of 5 behavioural assays (Fig. 1 c, d, e, f) of 15

141 minutes each designed to measure five different behaviours: exploration, shyness, activity,

142 learning and innovation (see Table 1). Because the mechanisms behind innovation are complex

143 and we do not know what may be driving innovation, we controlled this other related

144 behaviours. We waited four hours between trials if the next trial was done the same day and

145 around 16 if the next trial needed to be done the next day (Fig. 1 c, d, e, f). Activity, measured

146 as the proportion of time in movement, was measured for every trial. Individuals did not show

147 any correlation in their activity levels along the trials (Figure S1) and therefore, we did not

148 estimate a single average activity value for each individual. Activity levels did not decrease

149 along the trials (Linear model Activity ~ Trial, Estimate \pm SE = 0.003 ± 0.008 , $p = 0.718$). Note

150 that not every bee survived to perform all the assays; only 45% of the individuals that started the

151 experiment reached the final assay. Although individuals were not fed during the experimental

152 process other than during the trials, the lack of correlation between the number of feeding

153 events and activity rates during the leaning test (Pearson correlation = -0.09) or the innovation

154 test (Pearson correlation = -0.01) suggests that this high mortality is not attributable to starving.

155

156 The first assay aimed at measuring exploration and shyness. The arena included four coloured

157 cardboard cues (2 blue and 2 yellow, Fig. 1c). The bee was placed in a little cardboard refuge

158 and was kept inside for 5 minutes to allow habituation. Next, the refuge was opened and the

159 individual was allowed to explore the arena. To quantify exploration, we recorded whether the

160 bee explored all the cardboards during the assay and the time it took to do so. Shyness was

161 measured as the initial time spent inside the refuge (Table 1). Re-entering the refuge was

162 originally thought to be a descriptor of shyness, however the analysis of the videos showed that

163 bees did not re-enter the refuge to stay inside and hide, but rather did it as part of their arena

164 exploration

165

166 The second and third assays were the learning assays, where we trained bees to associate a
167 colour with a reward (Fig. 1d). The individuals started all tests inside a black opaque box cover
168 that was lifted at the start of the experiment. We displayed 2 cardboards cues with sprues on it,
169 one rewarded with 50% sucrose solution and the other empty. Blue and yellow cardboards are
170 well discriminated by bees (Vorobyev *et al.*, 1999; Hempel de Ibarra *et al.*, 2014). Hence, the
171 reward for each individual was randomly assigned to one of these two colours for both trials and
172 we let the individuals explore the sprues and eat *ad libitum* during 15 minutes. The position (left
173 or right) of the reward was randomly assigned for each individual in each trial.

174

175 In the fourth assay, the learning test, we tested if individuals had learned to associate colours
176 with rewards as trained. The test consisted of both cues displayed as in the second and third
177 assays, but this time with both sprues empty (Fig. 1e). We measured if the individuals
178 approached the formerly rewarded coloured cue and quantified the time spent until checking the
179 right feeder. To ensure that bees had learned to associate colour and reward, we switched the
180 colour of the rewarded sprue for some bees between the two learning assays in 36 randomly
181 selected individuals (control group, hereafter).

182

183 In the final assay, we measured the propensity for innovation by using the same coloured cue
184 and reward combination as in assays 2 and 3, but this time the sprue containing the reward was
185 covered with a cardboard lid (Fig. 1f). Bees had thus to innovate -i.e. lift the cardboard- to reach
186 the reward. Innovation propensity was measured in terms of innovation success and latency to
187 succeed (Table 1). Control bees used in the learning assays were not tested for innovation.

188

189 **Data analysis**

190 We modelled problem solving performance in the innovation assay as a function of learning,
191 shyness, exploration and activity (see Table 1 for definitions). We modelled the success or
192 failure in solving the task using a Bayesian generalized linear model with a Bernoulli family and
193 a logit link (Package brms; Bürkner, 2017). To model the latency to solve the task, we instead
194 used survival analyses based on cox proportional hazards regressions for continuous predictors

195 (Cox, 2018, Table 2). Survival analysis allow us to add censored data for those

196 individuals that did not passed the test.

197

198 In order to avoid model over-parametrization, we used only the quantitative proxies of shyness,
199 exploration and learning (i.e. latencies; Table 1). In addition, as activity levels were variable
200 across trials (Fig. S1), we only included activity levels during the test evaluated. Sex was not
201 added as co-variable because of the limited sample size and skewed proportion of females (6
202 males, 23 females). Learning success and latency was modelled in a similar way as innovation,
203 that is, as a function of shyness, exploration, activity during the learning test, but this time
204 including sex (9 males, 34 females). For individuals not solving a particular task (e.g.
205 exploration or learning), we assigned to them a maximum latency of 15 minutes.

206

207 In summary, for innovation we built multivariate models with latency to exit the refuge (i.e.
208 shyness), latency to explore the full arena (i.e. exploration), latency to perform the learning test
209 (i.e learning) and activity as predictors. For learning we built multivariate models with latency
210 to exit the refuge (i.e. shyness), latency to explore the full arena (i.e. exploration), activity and
211 sex.

212

213 **RESULTS**

214 Our experiments showed that *Osmia cornuta* bees were able to innovate. Eleven out of the 29
215 bees we tested for innovation solved the innovation task, lifting the lid to reach the reward
216 within the 15 minutes of the assay. *Osmia cornuta* bees were also able to learn, with 63% of
217 individuals succeeding in the learning test ($n = 48$, chi-squared = 3, $df = 1$, p -value = 0.08)
218 while control bees had a success rate close to that expected by random ($n = 36$, 52% success,
219 chi-squared = 0.11, $df = 1$, $p = 0.74$). Males tended to learn better than females, showing
220 slightly higher success rates (Table 2c) and learning faster (Table 2d). However, latency to
221 innovate showed no relationship with learning (Table 2b, Figure 2b).

222

223 Instead, innovation success and latency were better explained by individual differences in
224 shyness, exploration and activity (Figure 2, Table 2). First, shier individuals were worst
225 innovators. The probability of innovating dropped from 0.80 for bees that spent 2 seconds inside

226 the refuge to 0.01 for bees that did not leave the refuge in the first assay (Table 2a, Fig. 2a).
227 Shier individuals were also slower at resolving the innovation test (Table 2b). In fact, from all
228 bees that did not leave the refuge in the first test (our proxy of shyness) and reached the
229 innovation test, none of them passed the innovation test in subsequent assays.

230
231 Second, slower explorers were also better at the innovation test. Bees that spent more time
232 solving the exploration test had more chances to succeed in the innovation test (Table 2a, Figure
233 2c). These individuals also solved the innovation test faster (Table 2b). Finally, active bees
234 during the innovation test had better chances of solving the innovation test (Table 2a, Figure
235 2d), indicating that the velocity at solving the test correlated positively with the proportion of
236 time active during the test (Table 2b). Unlike innovation, learning was not affected by shyness,
237 exploration and activity (Table 2b, c; figure 3).

238

239 **DISCUSSION**

240 Innovation-like behaviours have been previously observed in wild solitary bees. These include
241 the use of new materials for nesting (Allasino *et al.*, 2019) and anecdotal examples of bees
242 nesting in new places, such as cardboard, wooden blocks (Bosch & Kemp, 2001) or Styrofoam
243 blocks (MacIvor & Moore, 2013). However, the innovative ability of solitary bees had never
244 been demonstrated before in controlled laboratory experiments. Ours is the first experimental
245 demonstration that *Osmia cornuta* can develop innovative behaviours to solve novel problems.

246

247 Although innovation is generally believed to be a dimension of domain-general cognition
248 (Lefebvre *et al.*, 2004), we did not find evidence that individuals the were better at associative
249 learning solved the innovation task faster. The failure to relate innovation and associative
250 learning does not simply reflect that we studied learning over shorter training periods as success
251 in the learning test was comparable to those found in previous similar experiments using more
252 training days (e.g. Jin *et al.*, 2014; Jin *et al.*, 2015).

253

254 A more likely explanation is that other factors are more relevant to innovate and can have
255 masked the effect of learning. Indeed, we found consistent differences between fast and slow
256 innovators in their tendency to approach and explore the experimental apparatus. Specifically,

257 individuals that were able to lift the lid to access the food reward tended to be bolder and to
258 explore slower than those that failed to solve the task. As suggested for other taxa, there may be
259 a trade-off between exploration speed and accuracy which can translate into how information is
260 processed. For example, in great tits (*Parus major*), fast explorers return more quickly to
261 previously experienced foraging patches whereas slow explorers prefer to seek new information
262 or update old information close to the feeders (Matthysen et al., 2010). Boldness and
263 exploration have been previously identified as important determinants of innovation propensity
264 in vertebrates and highlight that innovation propensity may largely reflect particular
265 motivational states or emotional responses of individuals to novel situations rather than
266 cognitive differences (Sol et al., 2013). In line with this conclusion, successful innovators also
267 exhibited higher activity levels. Activity may reflect motivation to feed, which in other animals
268 has been found to be a major determinant of innovation propensity (e.g. Sol et al., 2013).
269 However, it may also increase the chances to solve the task accidentally by trial and error.
270 Closed environmental spaces can also be stressful and what we defined as “fast exploring” can
271 be a by-product of stereotyped stress behaviours.

272
273 The lack of evidence for domain-general cognition does not mean that innovation does not
274 require learning. Learning is not only necessary to fix the new behaviour in the individual
275 repertoire (Ramsey et al., 2007, Lefebvre et al., 2004, Reader et al., 2003, Sol 2003), but it is
276 also important to solve the task itself. Indeed, we found that bees that succeeded in the
277 innovation test went directly towards the lid covering the reward, probably reflecting that they
278 had learnt the rewarding colour during training assays. In our assays, most individuals were able
279 to rapidly associate colours and rewards — after only two training trials— regardless of their
280 differences in shyness, exploration and activity. Thus, the lack of effect of learning ability on
281 innovation might reflect that most individuals were similarly proficient in associative learning.

282
283 Learning is widely-held to have important advantages in the wild. In bees, learning is critically
284 important for vital tasks such as foraging, identification of high quality foraging sites, finding
285 the right mixtures of nectar and pollen, and navigating back to the nest for brood provisioning
286 (Roulston & Goodell, 2011; Minckley et al., 2013). Surprisingly, we found intriguing sex-

287 related differences in learning. Males showed a tendency to perform better in the associative
288 learning test than females. This is unexpected because females have to deal with more tasks
289 during their lifetime, including foraging and nest provisioning, and may perhaps indicate that
290 the cognitive demands for males to locate females are higher than suspected.

291

292 Our results suggest that solitary bees can also readily accommodate their behaviour to novel
293 context through innovative behaviours, with no need of sophisticated cognitive processes. In a
294 context of global change, the ability to rapidly accommodate behaviour to novel contexts seems
295 highly relevant. In novel environments, bees must for instance learn how to forage on new plant
296 species, which sometimes presents complex flowers with whom bees have not co-evolved
297 (Bartomeus *et al.*, 2010). Therefore, we should abandon the notion that insect behaviour is
298 inflexible and stereotypical, and better appreciate that insects can readily accommodate their
299 behaviour to changing conditions through innovation and learning.

300

301 **ACKNOWLEDGEMENTS**

302 We wanted to thank Nanxiang Jin for his help on setting the experimental device and the FU
303 Berlin Institute of Biology, for sharing their equipment

304

305 **FUNDING**

306 MINISTERIO DE ECONOMÍA Y COMPETITIVIDAD, GOBIERNO DE ESPAÑA,
307 Grant/Award Numbers: CGL2013-47448-P and CGL2017-90033-P.

308

309 **DATA ACCESSIBILITY**

310 The data used for this research will be archived in dryad/figshare upon acceptance. Code used to
311 reproduce the analysis can be consulted at GitHub
312 <https://github.com/MiguelAngelCollado/fuocornuta>

313

314 **AUTHORS' CONTRIBUTION**

315 MAC, IB and RM designed the experiment; MAC carried out the experimental process under
316 RM supervision; MAC watched the recorded videos from the experiment and extracted the data

317 and wrote the initial draft; MAC and IB did the data analysis with help from DS; All authors

318 contributed to the final version of the article.

319 REFERENCES

- 320 1. Allasino ML, Marrero HJ, Dorado J, Torretta JP. Scientific note: first global report of a bee nest built
321 only with plastic. *Apidologie* . 2019 Apr 21;50(2):230–3.
322 <http://link.springer.com/10.1007/s13592-019-00635-6>
- 323 2. Bartomeus I, Vilà M, Steffan-Dewenter I. Combined effects of *Impatiens glandulifera* invasion and
324 landscape structure on native plant pollination. *J Ecol* . 2010 Mar;98(2):440–50.
325 <http://doi.wiley.com/10.1111/j.1365-2745.2009.01629.x>
- 326 3. Bosch J. *Osmia cornuta* Latr. (Hym., Megachilidae) as a potential pollinator in almond orchards. *J
327 Appl Entomol* . 1994 Jan 12;117(1–5):151–7. <http://doi.wiley.com/10.1111/j.1439-0418.1994.tb00720.x>
- 329 4. Bosch J, Kemp W. How to Manage the Blue Orchard Bee As an Orchard Pollinator. *Systematics*. 2001.
330 98 p.
- 331 5. Bouchard J, Goodyer W, Lefebvre L. Social learning and innovation are positively correlated in
332 pigeons (*Columba livia*). *Anim Cogn* . 2007 Mar 14;10(2):259–66.
333 <http://link.springer.com/10.1007/s10071-006-0064-1>
- 334 6. Bürkner PC. brms: An R package for Bayesian multilevel models using Stan. *J Stat Softw* . 2017;80(1).
335 <http://www.jstatsoft.org/v80/i01/>
- 336 7. Chittka L, Geiger K. Can honey bees count landmarks? *Anim Behav* . 1995 Jan 1;49(1):159–64.
337 <https://www.sciencedirect.com/science/article/pii/0003347295801634>
- 338 8. Chittka L, Thomson JD, editors. *Cognitive Ecology of Pollination* . Cognitive Ecology of Pollination.
339 Cambridge: Cambridge University Press; 2009.
340 <http://ebooks.cambridge.org/ref/id/CBO9780511542268>
- 341 9. Cox DR, Oakes D. *Analysis of Survival Data* . Routledge; 2018.
342 <https://www.taylorfrancis.com/books/9781351466615>
- 343 10. Crook RJ. The welfare of invertebrate animals in research: Can science's next generation improve
344 their lot? *Postdoc J* . 2013;(February 2013).
- 345 11. Dacke M, Srinivasan M V. Evidence for counting in insects. *Anim Cogn* . 2008 Oct 27;11(4):683–9.
346 <http://link.springer.com/10.1007/s10071-008-0159-y>
- 347 12. Degen J, Kirbach A, Reiter L, Lehmann K, Norton P, Storms M, et al. Honeybees Learn Landscape
348 Features during Exploratory Orientation Flights. *Curr Biol* . 2016 Oct;26(20):2800–4.
349 <https://linkinghub.elsevier.com/retrieve/pii/S0960982216309253>
- 350 13. Dukas R. Evolutionary Biology of Insect Learning. *Annu Rev Entomol* . 2008 Jan;53(1):145–60.
351 <http://www.annualreviews.org/doi/10.1146/annurev.ento.53.103106.093343>
- 352 14. Gil M, De Marco RJ, Menzel R. Learning reward expectations in honeybees. *Learn & Mem* .
353 2007 Jul 12;14(7):491–6. <http://www.learnmem.org/cgi/doi/10.1101/lm.618907>
- 354 15. Giurfa M. Behavioral and neural analysis of associative learning in the honeybee: A taste from the
355 magic well. *J Comp Physiol A Neuroethol Sensory, Neural, Behav Physiol* . 2007 Jul
356 25;193(8):801–24. <http://link.springer.com/10.1007/s00359-007-0235-9>
- 357 16. Giurfa M, Núñez J. Colour signals and choice behaviour of the honeybee (*Apis mellifera ligustica*). *J
358 Insect Physiol* . 1989 Jan;35(12):907–10.
359 <https://linkinghub.elsevier.com/retrieve/pii/0022191089900127>
- 360 17. Goulson D, Nicholls E, Botías C, Rotheray EL. Bee declines driven by combined Stress from
361 parasites, pesticides, and lack of flowers. *Science (80-)* . 2015 Mar 27;347(6229):1255957–
362 1255957. <http://www.sciencemag.org/cgi/doi/10.1126/science.1255957>
- 363 18. Griffin AS, Diquelou M, Perea M. Innovative problem solving in birds: a key role of motor diversity.
364 *Anim Behav* . 2014 Jun;92:221–7.
365 <https://linkinghub.elsevier.com/retrieve/pii/S0003347214001705>
- 366 19. Hempel de Ibarra N, Vorobyev M, Menzel R. Mechanisms, functions and ecology of colour vision in
367 the honeybee. *J Comp Physiol A Neuroethol Sensory, Neural, Behav Physiol* . 2014 Jun
368 15;200(6):411–33. <http://link.springer.com/10.1007/s00359-014-0915-1>
- 369 20. Houston AI, McNamara JM. Models of adaptive behaviour: an approach based on state. Cambridge
370 University Press; 1999 Aug 19.
- 371 21. Jin N, Klein S, Leimig F, Bischoff G, Menzel R. The neonicotinoid clothianidin interferes with
372 navigation of the solitary bee *Osmia cornuta* in a laboratory test. *J Exp Biol* . 2015 Sep
373 1;218(18):2821–5. <http://jeb.biologists.org/cgi/doi/10.1242/jeb.123612>

374 22. Jin N, Landgraf T, Klein S, Menzel R. Walking bumblebees memorize panorama and local cues in a
375 laboratory test of navigation. *Anim Behav* . 2014 Nov;97:13–23.
376 <https://linkinghub.elsevier.com/retrieve/pii/S0003347214003273>

377 23. Lefebvre L, Reader SM, Sol D. Brains, innovations and evolution in birds and primates. *Brain Behav*
378 *Evol* . 2004;63(4):233–46. <https://www.karger.com/Article/FullText/76784>

379 24. Lefebvre L, Whittle P, Lascaris E, Finkelstein A. Feeding innovations and forebrain size in birds. *Anim*
380 *Behav* . 1997 Mar 1; 53(3):549–60.
381 <https://www.sciencedirect.com/science/article/pii/S0003347296903309>

382 25. Lunau K. Innate Flower Recognition in Bumblebees (*Bombus terrestris*, B. *lucorum*; Apidae): Optical
383 Signals from Stamens as Landing Reaction Releasers. *Ethology* . 1991 Apr 26;88(3):203–14.
384 <http://doi.wiley.com/10.1111/j.1439-0310.1991.tb00275.x>

385 26. MacIvor JS, Moore AE. Bees collect polyurethane and polyethylene plastics as novel nest materials.
386 *Ecosphere* . 2013 Dec;4(12):art155. <http://doi.wiley.com/10.1890/ES13-00308.1>

387 27. Matthysen E, Van Overveld T, Van de Castele T, Adriaensen F. Family movements before
388 independence influence natal dispersal in a territorial songbird. *Oecologia* . 2010 Mar
389 4;162(3):591–7. <http://link.springer.com/10.1007/s00442-009-1483-x>

390 28. Menzel R, Greggers U, Smith A, Berger S, Brandt R, Brunke S, et al. Honey bees navigate according
391 to a map-like spatial memory. *Proc Natl Acad Sci* . 2005 Feb 22;102(8):3040–5.
392 <http://www.pnas.org/cgi/doi/10.1073/pnas.0408550102>

393 29. Menzel R, Giurfa M. Cognitive architecture of a mini-brain: The honeybee. *Trends Cogn Sci* . 2001
394 Feb 1;5(2):62–71. <https://www.sciencedirect.com/science/article/abs/pii/S1364661300016016>

395 30. Minckley RL, Roulston TH, Williams NM. Resource assurance predicts specialist and generalist bee
396 activity in drought. *Proc R Soc B Biol Sci* . 2013;280(1759).

397 31. Nityananda V, Chittka L. Modality-specific attention in foraging bumblebees. *R Soc Open Sci* .
398 2015;2(10):150324. <http://rsos.royalsocietypublishing.org/content/2/10/150324.abstract>

399 32. Ollerton J, Winfree R, Tarrant S. How many flowering plants are pollinated by animals? *Oikos* . 2011
400 Mar;120(3):321–6. <http://doi.wiley.com/10.1111/j.1600-0706.2010.18644.x>

401 33. Ramsey G, Bastian ML, van Schaik C. Animal innovation defined and operationalized. *Behav Brain*
402 *Sci* . 2007 Aug 17;30(4):393–407.
403 https://www.cambridge.org/core/product/identifier/S0140525X07002373/type/journal_article

404 34. Reader S. Innovation and social learning: individual variation and brain evolution. *Anim Biol* .
405 2003;53(2):147–58. https://brill.com/view/journals/ab/53/2/article-p147_6.xml

406 35. Reader SM, Morand-Ferron J, Flynn E. Animal and human innovation: novel problems and novel
407 solutions. *Philos Trans R Soc B Biol Sci* . 2016 Mar 19;371(1690):20150182.
408 <http://rstb.royalsocietypublishing.org/lookup/doi/10.1098/rstb.2015.0182>

409 36. Renn SC., Park JH, Rosbash M, Hall JC, Taghert PH. A pdf Neuropeptide Gene Mutation and
410 Ablation of PDF Neurons Each Cause Severe Abnormalities of Behavioral Circadian Rhythms in
411 *Drosophila*. *Cell* . 1999 Dec 23; 99(7):791–802.
412 <https://www.sciencedirect.com/science/article/pii/S0092867400816761>

413 37. Roulston TH, Goodell K. The Role of Resources and Risks in Regulating Wild Bee Populations.
414 *Annu Rev Entomol* . 2011 Jan 7;56(1):293–312.
415 <http://www.annualreviews.org/doi/10.1146/annurev-ento-120709-144802>

416 38. Shearer DA, Boch R. Citral in the Nassanoff pheromone of the honey bee. *J Insect Physiol*.
417 1966;12(12):1513–21.

418 39. Sol D, Duncan RP, Blackburn TM, Cassey P, Lefebvre L. Big brains, enhanced cognition, and
419 response of birds to novel environments. *Proc Natl Acad Sci* . 2005 Apr 12;102(15):5460–5.
420 <http://www.pnas.org/cgi/doi/10.1073/pnas.0408145102>

421 40. Sol D. Behavioural flexibility: a neglected issue in the ecological and evolutionary literature. *Anim*
422 *Innov* . 2003;63–82.

423 41. Sol D, Griffin AS, Bartomeus I, Boyce H. Exploring or Avoiding Novel Food Resources? The
424 Novelty Conflict in an Invasive Bird. Iwaniuk A, editor. *PLoS One* . 2011 May 18;6(5):e19535.
425 <http://dx.plos.org/10.1371/journal.pone.0019535>

426 42. Sol D, Lapiedra O, González-Lagos C. Behavioural adjustments for a life in the city. *Anim Behav* .
427 2013 May;85(5):1101–12. <https://linkinghub.elsevier.com/retrieve/pii/S0003347213000511>

428 43. Vorobyev M, Menzel R. Flower advertisement for insects: bees, a case study. In Adaptive
429 mechanisms in the ecology of vision 1999 (pp. 537-553). Springer, Dordrecht

430

431 TABLES AND FIGURES

432

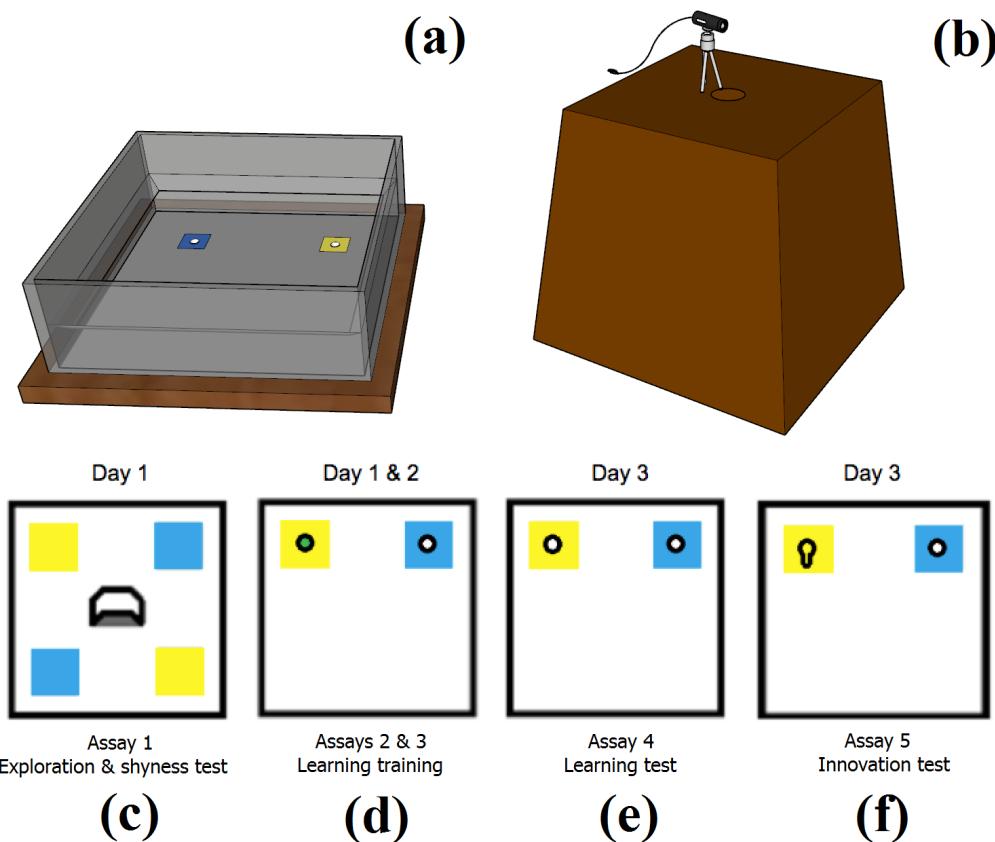
433 Table 1

434 This table contains all variables measured during the tests, with those selected for the

435 innovation analyses as predictors in bold.

Behavioural component	Behavioural variable	Assay	Description
Shyness	Latency to exit the refuge	1	Initial time spent inside the cardboard refuge once the assay started
Exploration	Exploration success	1	Touching the four cardboards during the 15-min of the assay
	Latency to explore the full arena	1	Time spent to touch all four cardboards in assay 1. Bees that did not do explore the four cardboards were assigned the maximum time possible (15 min).
	Re-exploring the refuge	1	Re-entering the refuge after exploring the arena, coded as yes or no. Correlated with latency to explore.
Activity	Activity time	1-5	Time spent moving measured as the proportion of the time being active (from 0 to 1)
Learning	Learning success	4	Choice of the correct cue (yes/no).
	Latency to learn	4	Time spent to make the correct choice. Bees that failed the test were assigned the maximum time possible (15 min).
Innovation	Innovation success	5	Success to lift the lid and reach the reward
	Latency to innovate.	5	Latency to open the lid and reach the reward. Bees that did not solved the problem were assigned the maximum time possible.

436

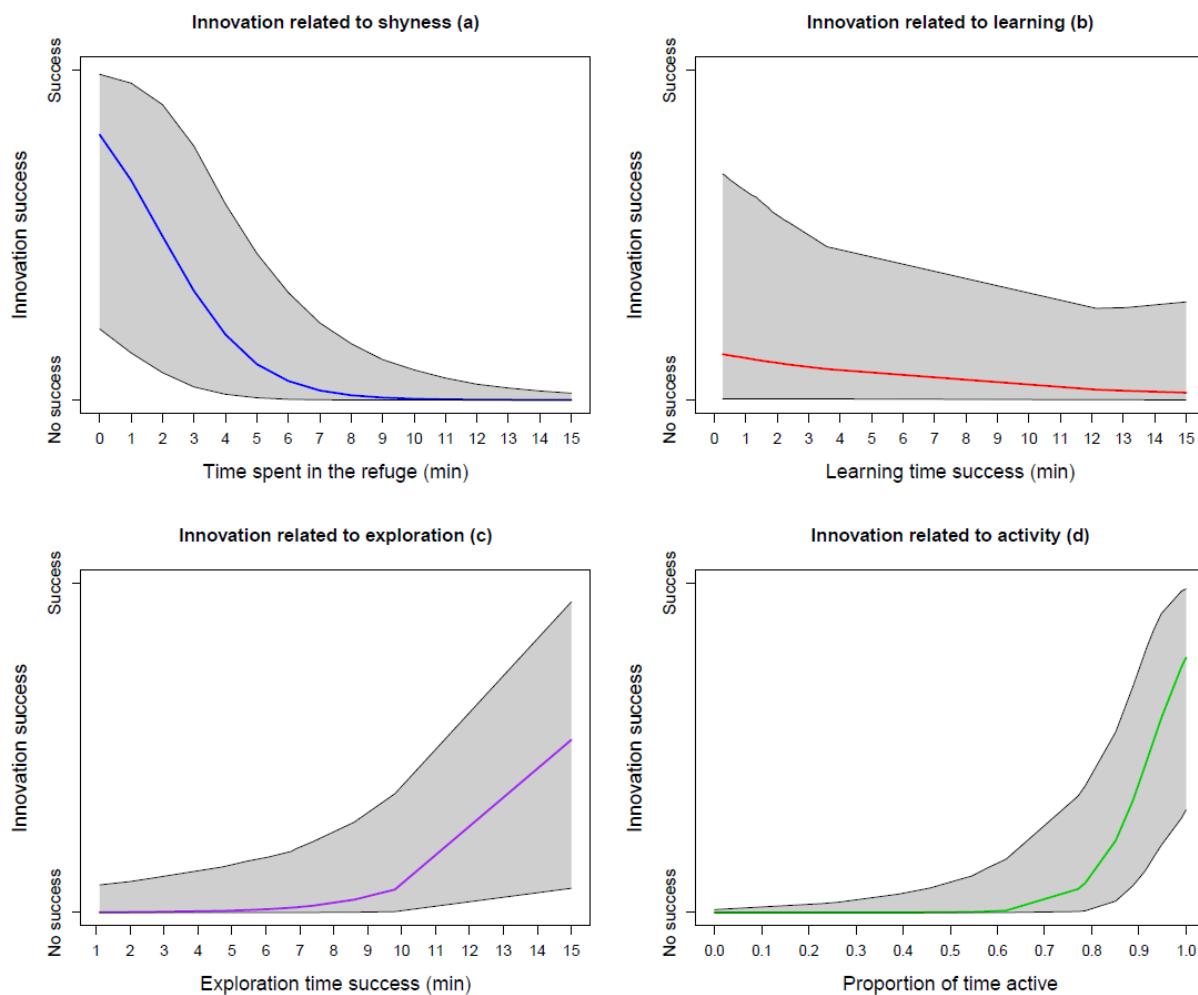

437 **Table 2**

438 Multivariate model coefficients (beta \pm standard deviation) for innovation success and learning
439 as a function of latency learning, shyness, exploration and activity. We ran parallel models for
440 innovation and learning success (Bayesian GLM), and for latency to innovate and learn (Cox).
441 Abbreviations: CI = Confidence interval, Rhat is the potential scale reduction factor on split
442 chains (all our models are at convergence, Rhat = 1).

443

(a) Innovation success (Bayesian GLM), n = 29				
Variables	β	CI		
Latency to exit the refuge	-0.74 \pm 0.29	-1.41 – -0.26		
Latency to explore	0.55 \pm 0.27	0.11 – 1.15		
Activity in innovation test	17.70 \pm 8.51	4.65 – 37.44		
Latency to learn	-0.14 \pm 0.15	-0.44 – 0.13		
(b) Latency to innovate (Cox), n = 29				
Variables	Coefficients	SE	z-value	p-value
Latency to exit the refuge	-0.15	0.07	-2.15	0.03
Latency to explore	0.10	0.06	1.63	0.10
Activity in innovation test	5.71	3.10	1.84	0.06
Latency to learn	-0.05	0.06	-0.07	0.93
(c) Learning success (Bayesian GLM), n=45				
Variables	β	CI		
Latency to exit the refuge	0.07 \pm 0.09	-0.12 – 0.25		
Latency to explore	-0.13 \pm 0.11	-0.35 – 0.08		
Activity in learning test	0.71 \pm 1.66	-2.61 – 3.91		
Sex (Male)	2.86 \pm 1.50	0.37 – 6.22		
(d) Latency to learn (Cox), n = 45				
Variables	Coefficients	SE	z-value	p-value
Latency to exit the refuge	-0.03	0.04	-0.76	0.44
Latency to explore	-0.01	0.06	-0.26	0.80
Activity in learning test	-0.11	0.77	-0.14	0.88
Sex (Male)	0.98	0.43	2.26	0.02

444

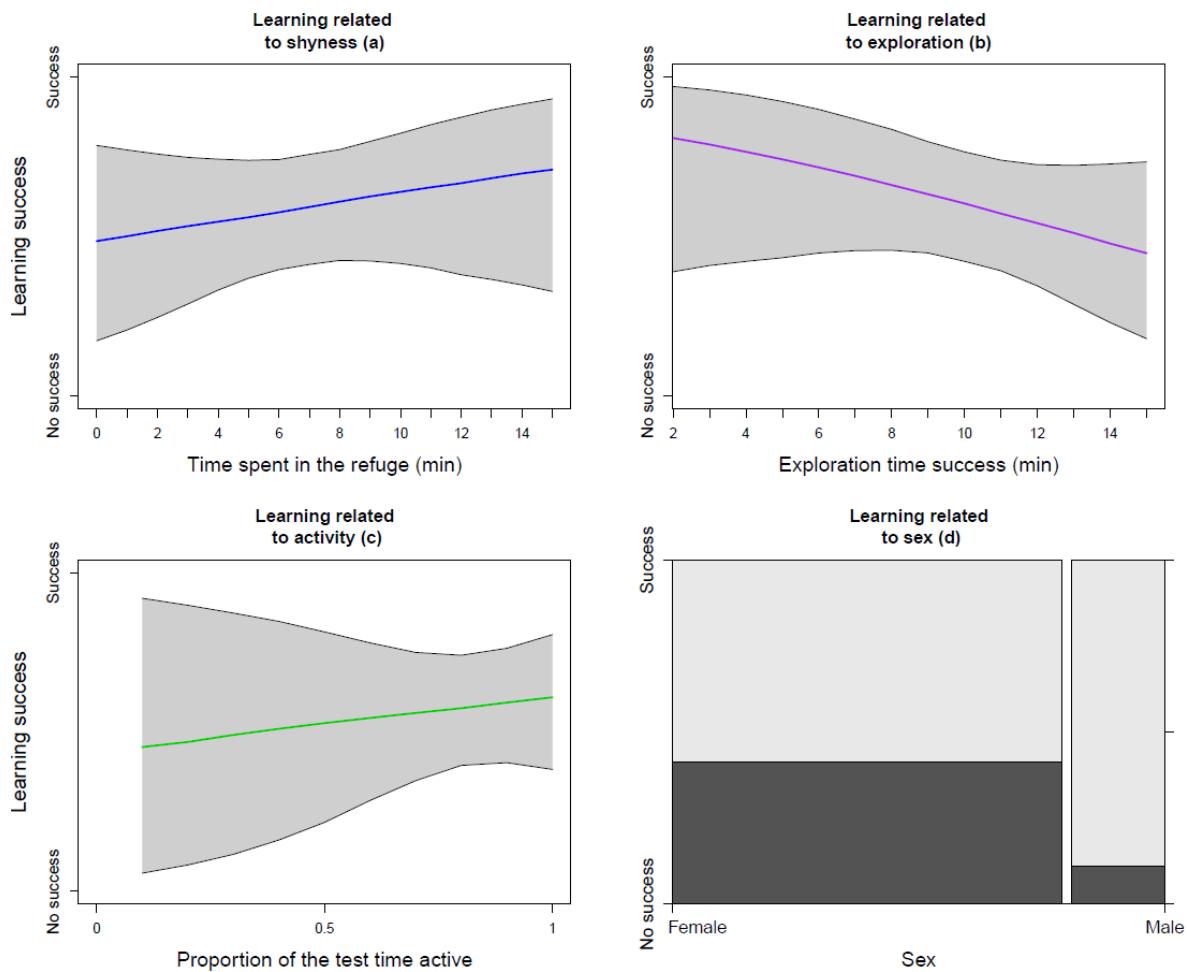

446

447 **Figure 1**

448 The experimental arena (a) laying in a neutral grey ground, surrounded by plastic walls with
449 plastic cornices attached to avoid that bees can escape. It was covered by the dome (b) with a
450 landscape pattern displayed inside and a webcam placed in the ceiling to record all the
451 experiments. The experiment had four different displays. In assay 1 (c) the bee started inside a
452 refuge. The aim of the assay was to see whether the bee stayed in the refuge (as shyness proxy),
453 and/or explored the colour cues around. In assays 2 and 3 (d), the bee was exposed to two
454 sprues, one rewarded and the other was empty. The colour was randomly selected but
455 maintained along the assays. In assay 4, the learning test (e), the display was the same as in
456 assay 2 and 3, but this time we removed the reward and both sprues were empty. In assay 5, the
457 innovation test (f), the display was the same than in assay 2 and 3 as well, but this time we
458 covered the reward with a lid, forcing the bee to innovate to lift the lid to access the reward.

459

460



462 **Figure 2**

463 Innovation related to each measured behaviour. These graphs plot the estimates extracted from
464 the multivariate model described in Table 2a measuring the success or failure in the innovation
465 test.

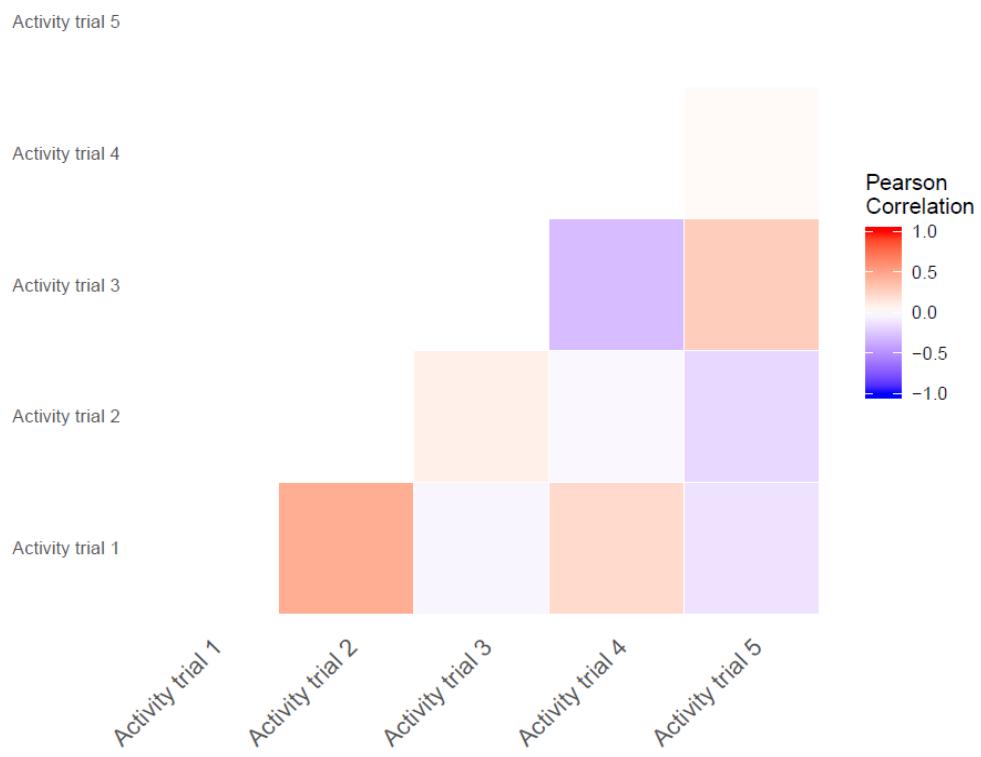
466

467

469 **Figure 3**

470

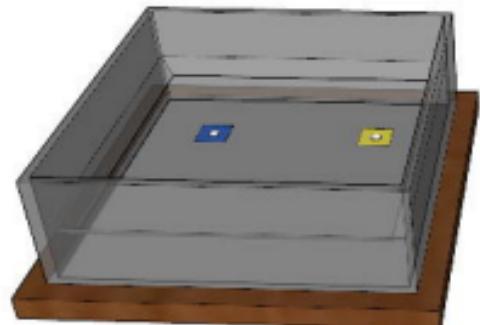
471 Learning related to each measured behaviour. These graphs are extracted from the multivariate
472 model described in Table 2c measuring the success or failure in the learning test. The width of
473 the bars in (d) is proportional to the number of individuals tested.

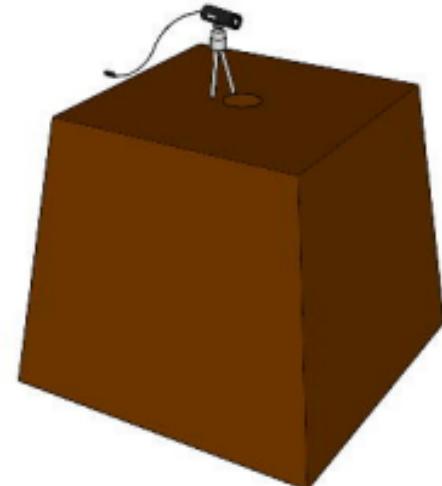

474

475

476

477 **SUPPLEMENTARY MATERIAL**

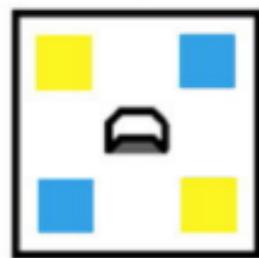

478


479 **Figure S1.** Activity levels across trials, measured as time active, were not correlated (mean

480 Pearson $r = 0.23$).

(a)

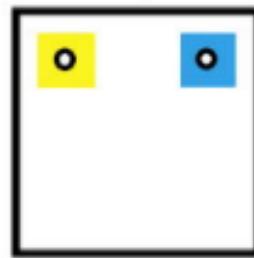
(b)

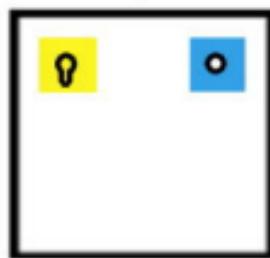


Day 1

Day 1 & 2

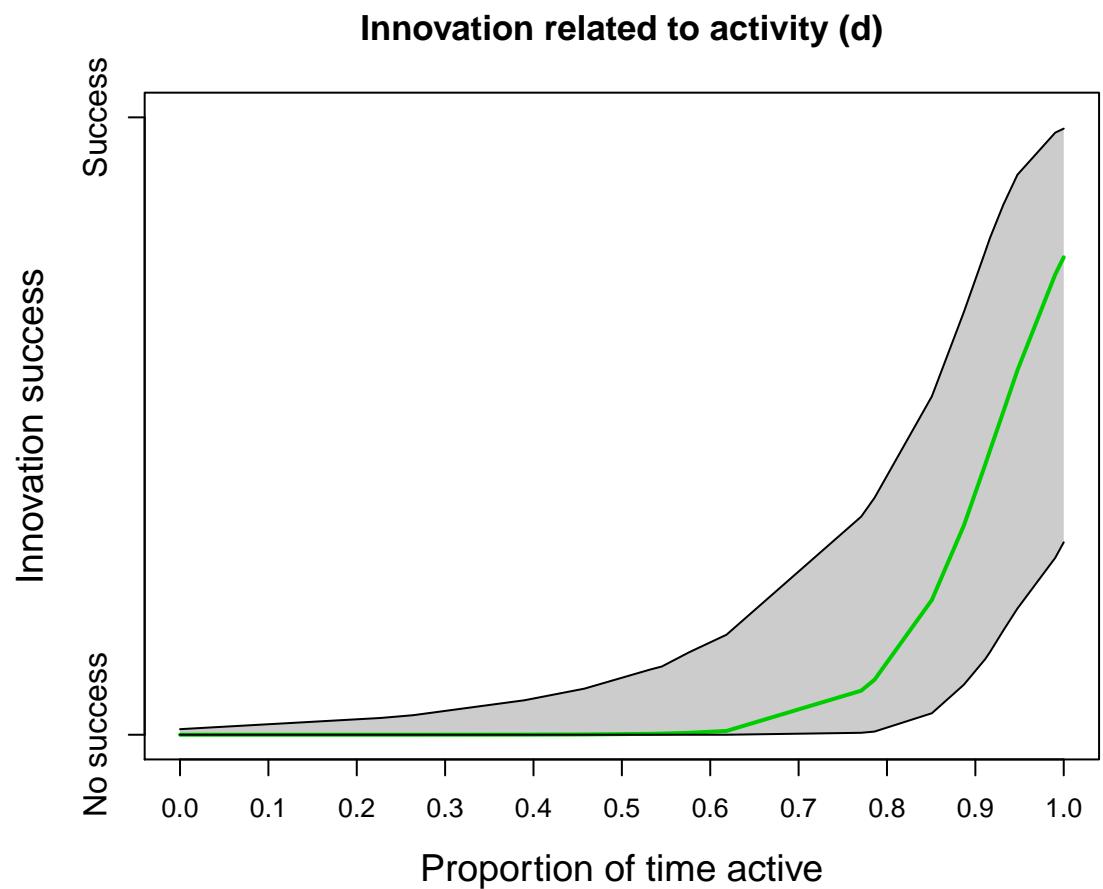
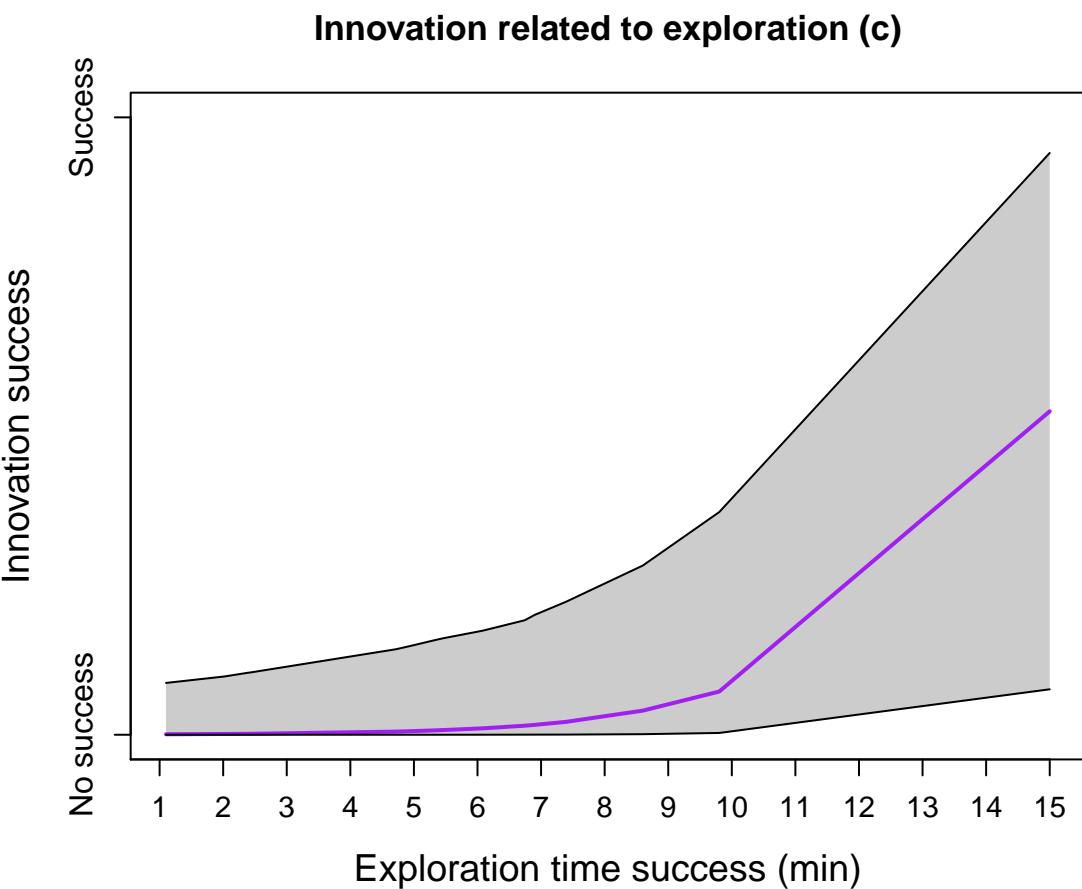
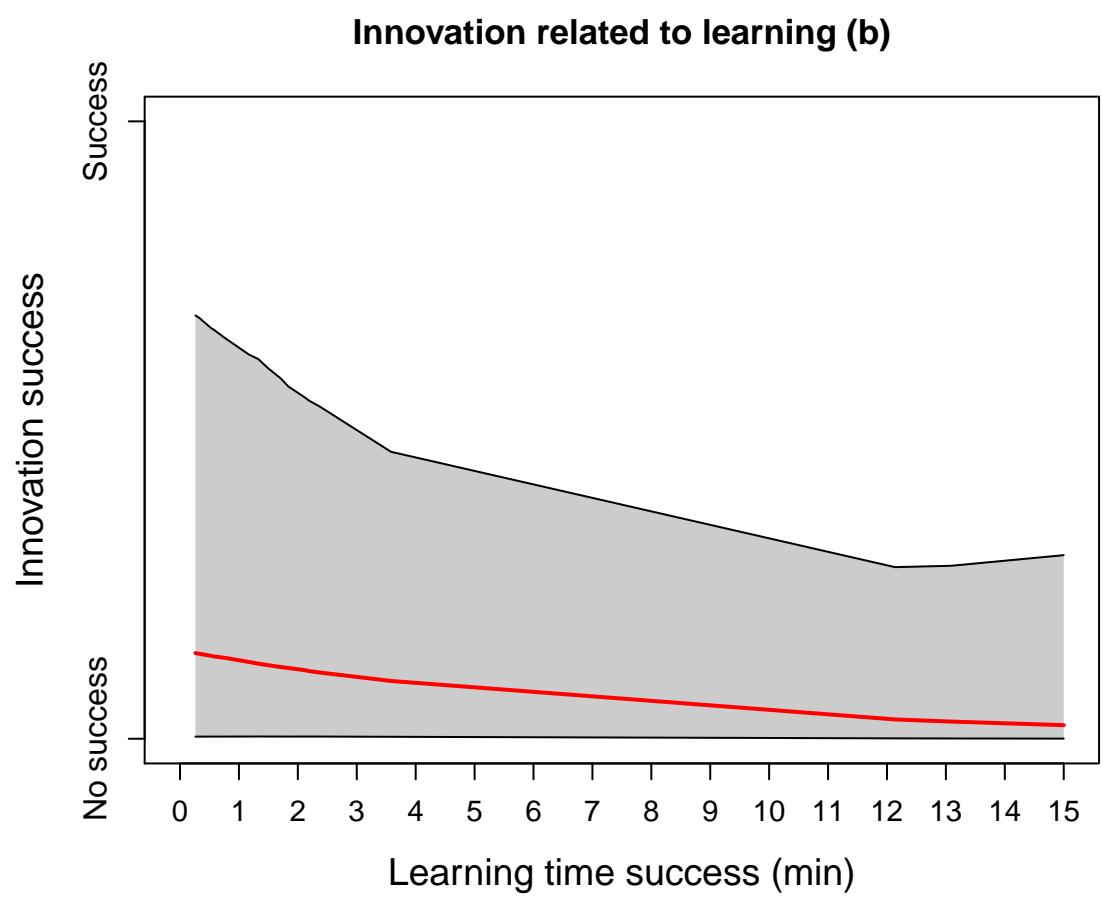
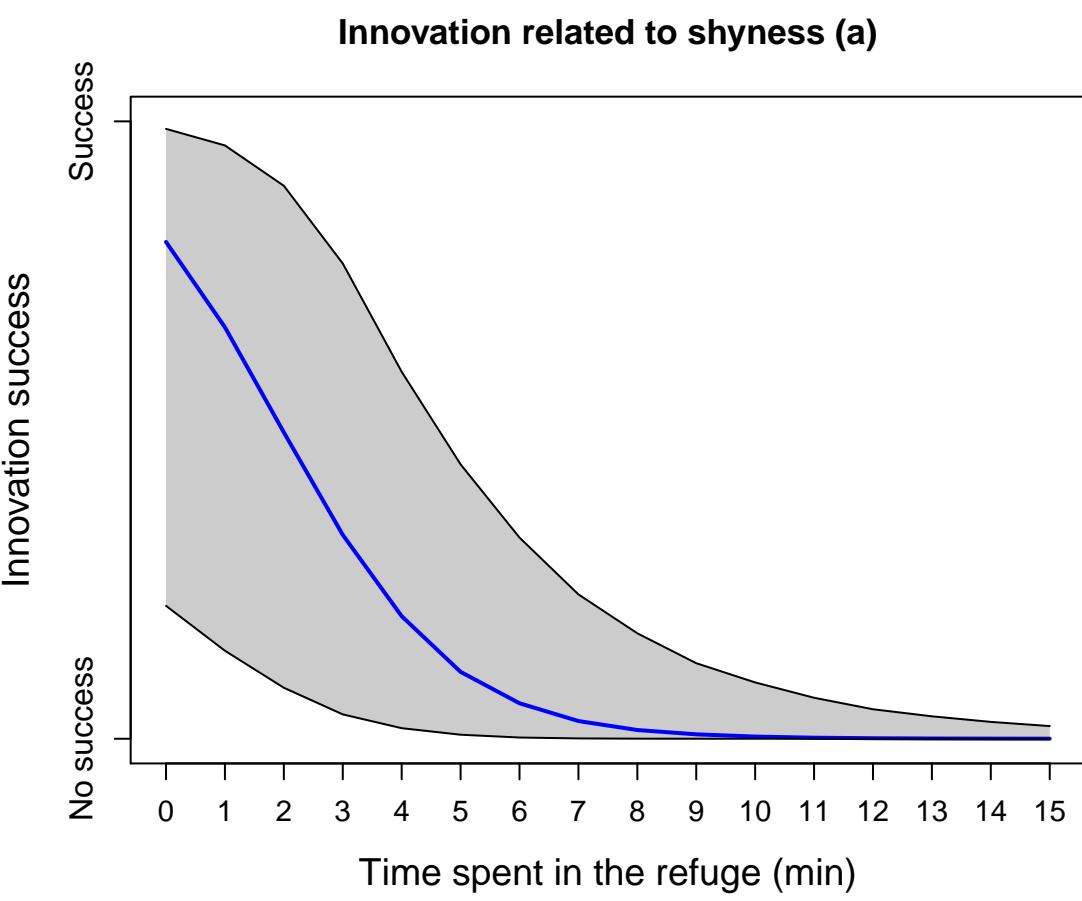
Day 3

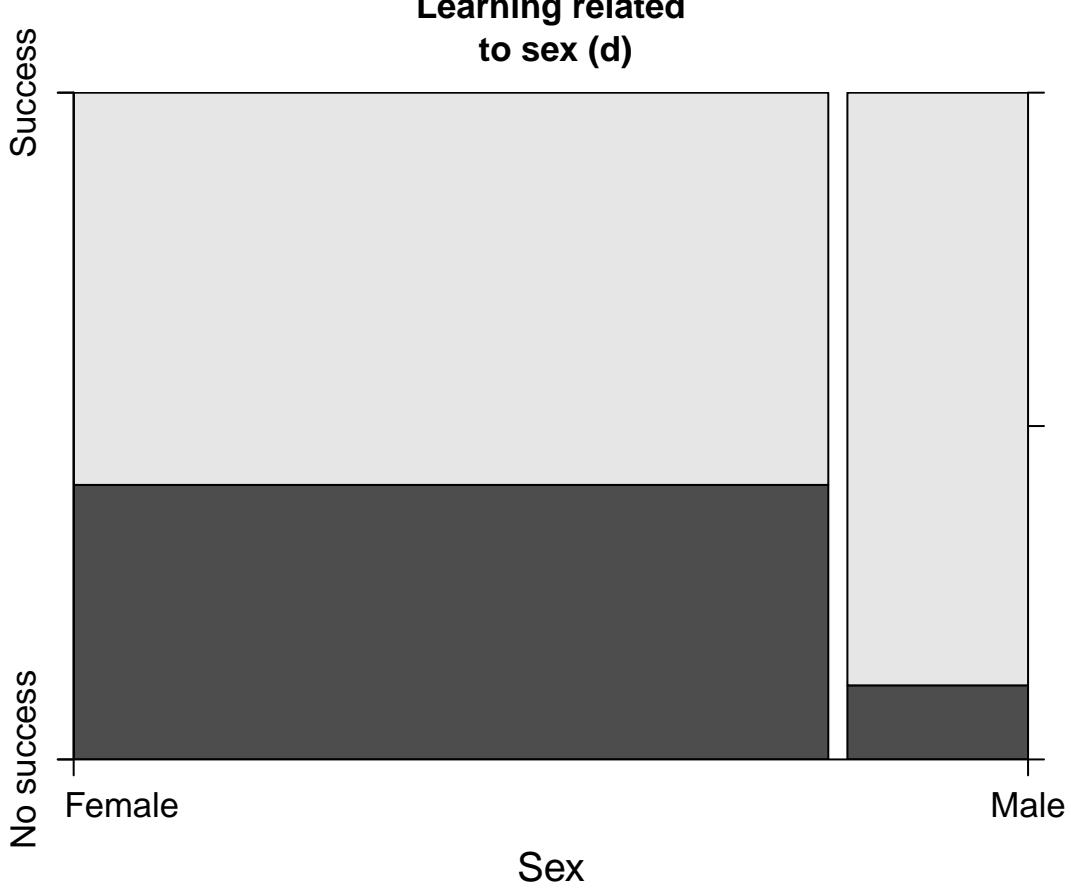
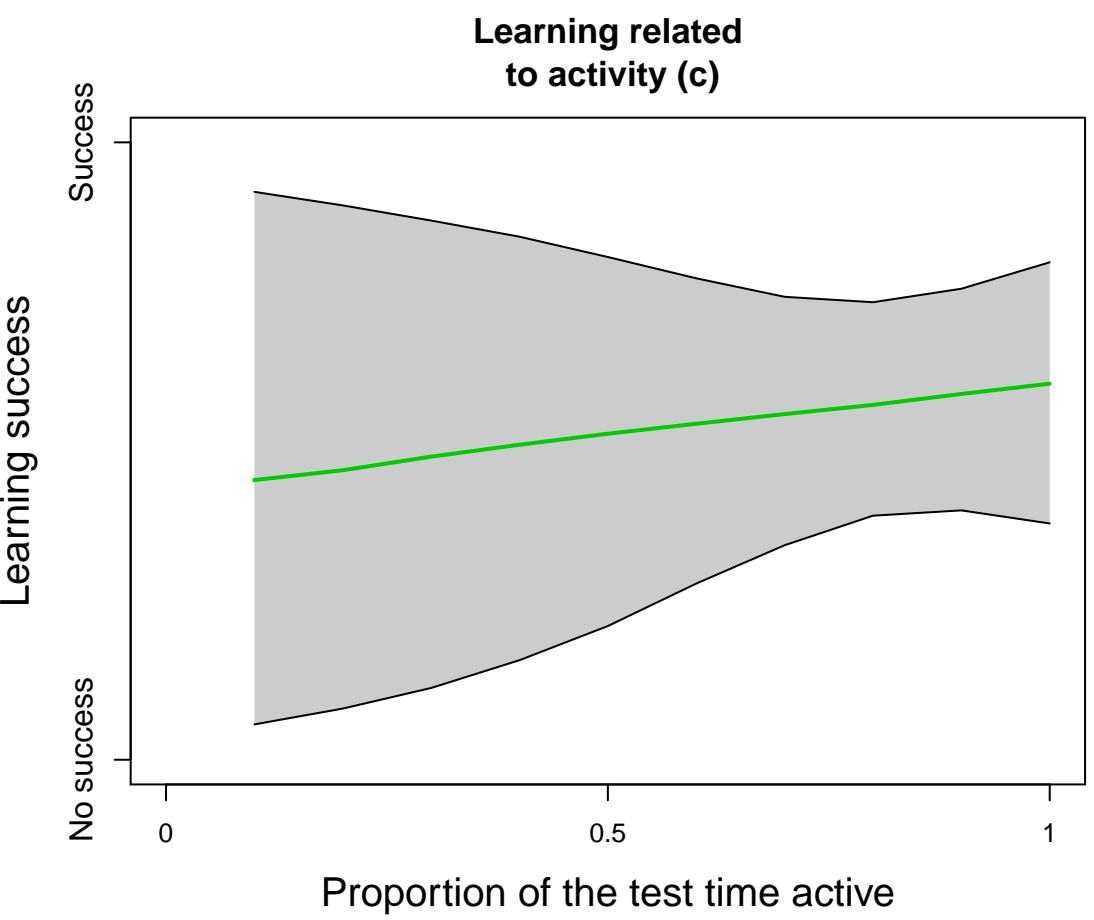
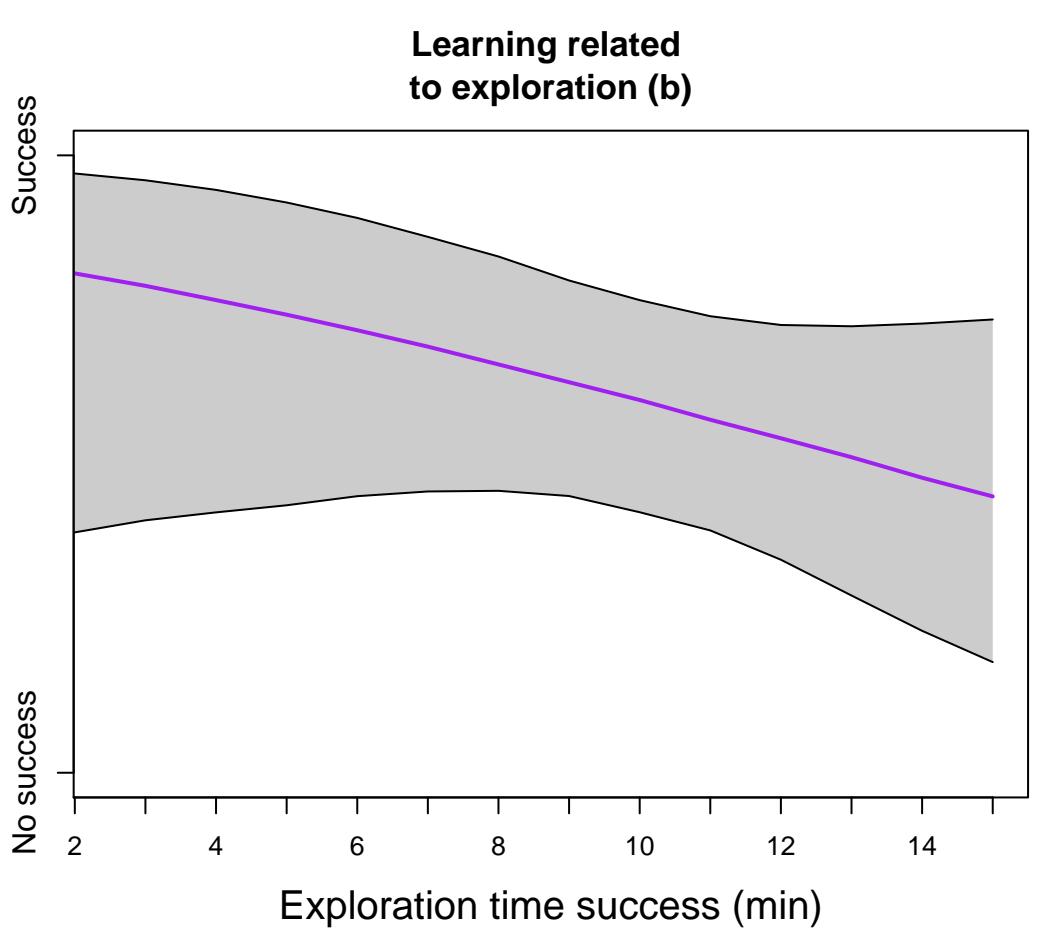
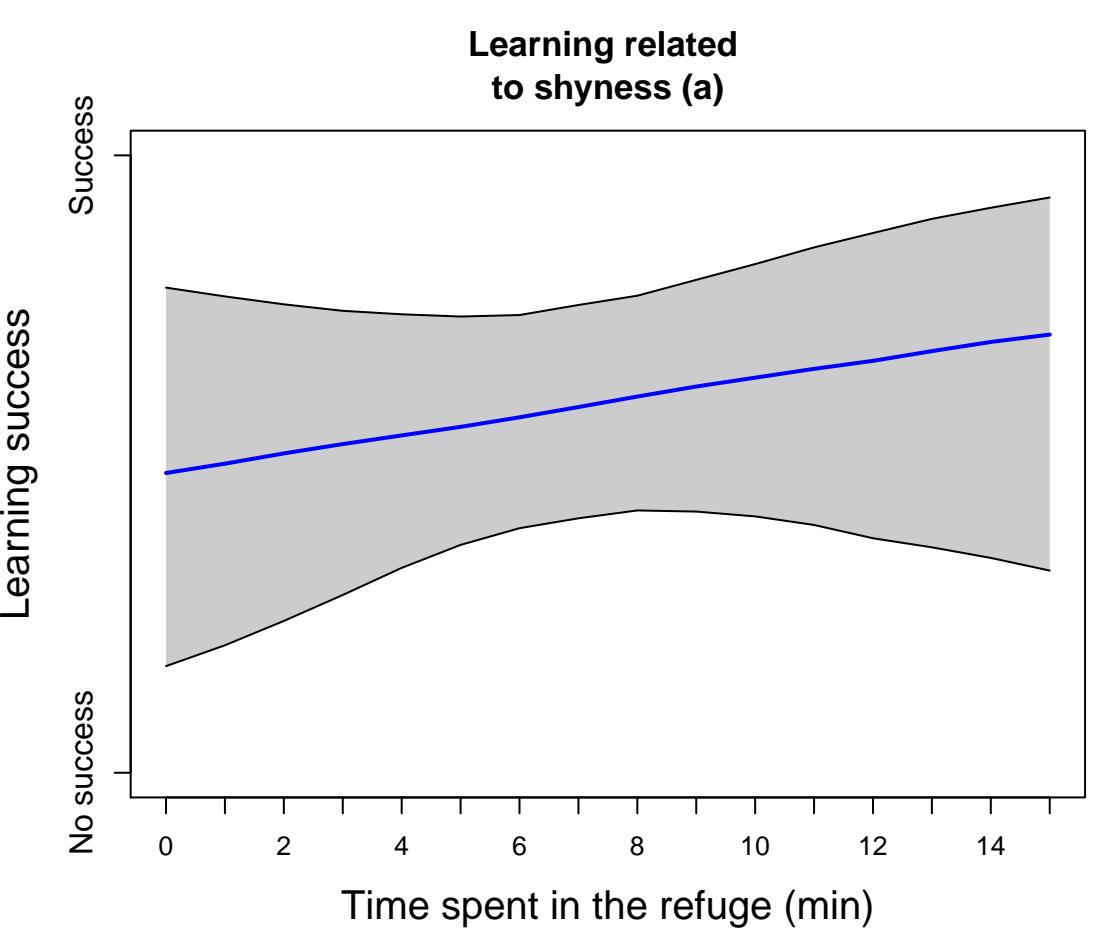

Day 3


Assay 1
Exploration & shyness test

Assays 2 & 3
Learning training

Assay 4
Learning test





Assay 5
Innovation test





(c)

(d)

(e)

(f)

