

1

2 **Parental effects via glyphosate-based herbicides in a bird model?**

3

4 Sivi Ruuskanen^{*a}, Miia Rainio^a, Maiju Uusitalo^a, Kari Saikkonen^b, Marjo Helander^a

5

6 ^aDepartment of Biology, University of Turku, Vesilinnantie 5, 20500, Turku, Finland;

7 ^cBiodiversity Unit, University of Turku, Vesilinnantie 5, 20500, Turku, Finland:

8 *corresponding author email address: skruus@utu.fi; Miia Rainio (miikoi@utu.fi), Maiju

9 Uusitalo (uusitalo.ms@gmail.com), Marjo Helander (helander@utu.fi); Kari Saikkonen

10 (kari.saikkonen@utu.fi)

11

12

13

14

15 **Abstract**

16

17 Controversial glyphosate-based herbicides (GBHs) are the most frequently used herbicides
18 across the globe. In an increasing number of studies, researchers have identified GBH residues
19 in soil, water, crops, and food products exposing non-target organisms to health risks; these
20 organisms include wildlife, livestock, and humans. However, GBH-related parental effects are
21 poorly understood. In the case of birds, GBHs may be transferred directly from mother to
22 developing offspring (i.e. direct effects) via eggs, or they may indirectly influence offspring
23 performance by altered maternal condition or resource allocation to eggs, for example. We
24 experimentally exposed a parental generation of Japanese quails (*Coturnix japonica*) to GBHs
25 or respective controls, recorded egg quality and glyphosate residues in eggs, and studied
26 embryonic development and oxidative biomarkers. Glyphosate accumulated in eggs (ca 0.76
27 kg/mg). Embryonic development tended to be lower in eggs of GBH-exposed parents
28 compared to control parents. Embryonic brain tissue from GBH-exposed parents tended to
29 express more lipid damage. Given that we detected no differences in egg quality (egg, yolk, or
30 shell mass, or egg hormone concentration) across the treatment groups, our results suggest
31 these are likely direct effects of GBHs on offspring rather than indirect effects via altered
32 maternal allocation of resources or hormonal signals.

33

34 Capsule: Experimental, long-term parental exposure to GBHs tends to hinder offspring
35 embryonic development and increase embryonic oxidative damage to lipids in a bird model.

36 Keywords: herbicide, glyphosate, maternal effect, oxidative status

37

38 **Introduction**

39 Glyphosate (N-[Phosphonomethyl]glycine)-based herbicides (GBHs) are the most frequently
40 used herbicides globally and one of the most controversial agrochemicals (Benbrook, 2016).
41 Evidence is accumulating with regard to the potentially negative effects of glyphosate on the
42 development, phenotype, and fitness of virtually all non-target animal taxa from invertebrates
43 to vertebrates (Gill et al., 2018; Szekacs & Darvas, 2018; Van Bruggen et al., 2018). Non-target
44 organisms are commonly exposed to GBH residues in the food chain because residues can
45 persist in soil, water, and plants (Bai & Ogbourne, 2016; Helander et al., 2012). Consequently,
46 different regulatory authorities heatedly debate the effects of GBH in our ecosystems.

47 Organisms in early developmental stages are generally more susceptible to external
48 stress compared to adults. In the case of environmental toxins, this may be related to disturbed
49 ontogeny or undeveloped detoxification metabolism in juveniles. In aquatic animals, embryos
50 can be directly exposed to GBHs via the surrounding water. Glyphosate and commercial
51 products (e.g. Roundup®) made with glyphosate have been repeatedly reported to cause
52 embryo mortality and deformations in fish (summarized e.g. in Burella et al., 2018; Schweizer
53 et al., 2019; Webster et al., 2014) and aquatic amphibians (Babalola et al., 2019; Paganelli, et
54 al., 2010). In contrast, mammal and bird embryos and fetuses are exposed to glyphosate
55 residues only via maternal transfer of the chemicals, which results in malformations, altered
56 sex ratios, and low sperm quality in rodent models (Dallegrave et al., 2003; Dallegrave et al.,
57 2007; Ren et al., 2018). Such effects are referred as (transmissive) maternal effects (Marshall
58 & Uller, 2007). Furthermore, recent studies suggest that effects of GBHs on the next generation
59 can be mediated via epigenetic paternal effects, for example via alternations of paternal sperm
60 (Kubsad et al., 2019; Mesnage et al., 2015).

61 However, the true maternal and paternal effects of GBH are poorly understood because
62 the majority of the studies are those involving direct embryo manipulations with high doses of
63 GBHs. The authors of future studies should take into account that GBHs may influence the
64 quality of the resources allocated to eggs/embryos and thus offspring development, phenotype,
65 and fitness *indirectly*. Prenatal environmental conditions, and for example hormonal signals
66 from the mother are known to have crucial importance for offspring development and even
67 lasting effects into adulthood (Ruuskanen, 2015; Ruuskanen and Hsu, 2018; Moore et al., 2019,
68 Yin et al., 2019).

69 In this study we used birds as a model to study the parental and developmental effects
70 of GBHs. Birds are highly underrepresented in studies testing the adverse effects of GBH
71 residues on non-target taxa (Gill et al., 2018), although they have recently been suggested as a
72 key group for biomonitoring with regard to the effects of GBHs (Kissane & Shephard, 2017).
73 The importance of poultry in food production also calls for more attention on the effects of
74 GBHs in birds. In the two available studies of poultry and GBH-related maternal effects, a
75 direct injection of a relatively high concentration of Roundup (10 mg/kg glyphosate) was found
76 to decrease hatchability, induce oxidative stress and cause damage to lipids in the exposed
77 chicks, as compared to the control group (Fathi et al., 2019), potentially via the disruption of
78 retinoid acid signaling (Paganelli et al., 2010).

79 To understand the potential for GBH-induced parental effects, we studied parental
80 exposure of GBHs on embryo development and key physiological biomarkers—embryonic
81 brain oxidative status in a bird model. To our knowledge, this is the first long-term study on
82 parental effects of GBHs in bird taxa. Oxidative stress refers to the imbalance between reactive
83 oxygen species (ROS) and antioxidants: If antioxidants are not able to neutralize ROS,
84 oxidative damage to cell components (proteins, lipids, and DNA) will occur, which then has

85 negative consequences on cell functions (Halliwell & Gutteridge, 2015). GBHs have been
86 previously found to induce oxidative stress and damage in a variety of organisms and tissues,
87 including embryos (reviewed in Gill et al., 2018). We quantified glyphosate residues in eggs,
88 but also maternal allocation to eggs (egg, yolk, and shell mass and yolk thyroid hormone
89 concentration) to account for potential indirect GBH effects. Prenatal thyroid hormones (THs)
90 (thyroxine, T4 and triiodothyronine, T3) play a key role in coordinating embryo development
91 (e.g. Ruuskanen and Hsu, 2018; Ruuskanen et al., 2016), especially brain development (Darras
92 et al., 2009). Embryo THs have been reported to vary with maternal GBH exposure in rats (de
93 Souza et al., 2017), but generally the effects of GBHs on THs are poorly understood. Japanese
94 quails were selected as the model species because the results can be applied to both wild birds
95 feeding on GBH-contaminated food in the field and to poultry farming. We experimentally
96 exposed parental bird generation to GBHs or respective controls from 10 days of age to 12
97 months. The egg samples were collected at 4 and 12 months to examine the potential
98 cumulative effects of long-term exposure. We predicted (1) negative effects on egg quality
99 (egg, yolk, and shell mass as well as egg thyroid hormones); (2) negative effects on embryo
100 development; and (3) higher oxidative stress and damage in the embryos from GBH-exposed
101 parents compared to controls.

102

103 **Material and methods**

104 We performed an experiment in which a parental generation of Japanese quails were fed with
105 either GBH-contaminated food (N = 13 breeding pairs) or control food (N = 13 breeding pairs)
106 from the age of 10 days to 12 months. Eggs from the parental generation were artificially
107 incubated and analyzed for embryo traits.

108 *GBH treatments to the parental generation*

109 Details of the experimental design and parental exposures are described in the work of
110 Ruuskanen et al. (2019). The grandparental birds originated from local breeders in Finland.
111 The chicks of the parental generation were randomly and evenly divided into two groups from
112 all parents and sexes. Due to unknown reasons, the sex ratio of hatchlings was biased toward
113 males; however, all hatched chicks were included in the experiment. The samples sizes were:
114 15 (GBH, female), 23 (GBH, male), 14 (control, female), and 24 (control, male), from which
115 13 breeding pairs for each treatment were formed.

116 The GBH-exposed group was fed organic food (Organic food for laying poultry,
117 “Luonnon Punaheltta” Danish Agro, Denmark) with added commercial GBH (Roundup Flex®
118 480g/l glyphosate, present as 588g/l [43.8% w.w] of potassium salt of glyphosate, with
119 surfactants alkylpolyglycoside (5% of weight) and nitrotryl (1% of weight) (AXGD42311
120 5/7/2017, Monsanto, 2002). The control group was fed the same organic food in which water
121 was added without GBH. A GBH product was selected over pure glyphosate to mimic the
122 exposures in natural environments including exposure to adjuvants, as adjuvants may increase
123 the toxicity of glyphosate (Gill et al., 2018; Mesnage & Antoniou, 2018). However, with this
124 experimental design we could not distinguish the potential effects of adjuvants themselves, or
125 whether they altered the effects of the active ingredient, glyphosate. The concentration of
126 glyphosate in the GBH food was aimed at ca 200 mg/kg food, which is ca ½ of that calculated
127 in grains (available to granivorous birds) after GBHs are spread on a grain field (Eason &
128 Scanlon, 2002). This concentration in the food corresponds to a dose of 12-20 mg
129 glyphosate/kg body mass/day in full-grown Japanese quails. The European Food Safety
130 Authority (EFSA) reports a NOAEL (No Adverse Effects Level) of 100 mg/kg body mass/day
131 for poultry (EFSA, 2018); therefore, our experiment tests a rather moderate concentration well

132 below this threshold. Furthermore, a dose of 347 mg/kg did not negatively influence adult body
133 mass in Japanese quails in a short-term experiment (Eason & Scanlon, 2002). According to the
134 manufacturer, acute toxicity (LC50) (via food) of Roundup Flex® is >4640 mg/kg food for
135 mallards (*Anas platyrhynchos*) and bobwhite quail (*Colinus virginianus*).

136 To verify the treatment levels, glyphosate concentration was measured in 6 batches of
137 food and residue levels were measured in excreta (feces and urine) samples after 12 months of
138 exposure. Excreta of 4 to 6 randomly chosen individuals per treatment and sex were pooled.
139 We analyzed glyphosate residues from 2 control pools (one female and one male pool) and 3
140 glyphosate pools (1 female and 2 male pools). Glyphosate residues were measured via LC-
141 MS/MS (certified laboratory, Groen Agro Control, Delft, The Netherlands). The extraction was
142 performed with a mixture of water and acidified methanol. The analyses were performed with
143 a liquid chromatography coupled to a tandem quadrupole mass spectrometer (LC-MS/MS). The
144 separation was performed with a mixed mode column using a gradient based on a mixture of
145 water and acetonitrile. A specific MRM (multiple reaction monitoring) was used to identify the
146 component and standard addition to quantify the concentration. The detection limit was 0.01
147 mg/kg. The average glyphosate concentration of 6 batches of food was 164 mg/kg (S.E. \pm 55
148 mg/kg). The average glyphosate concentration in 3 pools of excreta samples (urine and fecal
149 matter combined) was 199 mg/kg (S.E. \pm 10.5 mg/kg). The control feed and control pools of
150 excreta were free of glyphosate residues (<0.01 mg/kg).

151 GBH food was prepared every week to avoid potential changes in concentration caused
152 by degradation. Diluted Roundup Flex® was mixed with the organic food in a cement mill
153 (Euro-Mix 125, Lescha, Germany). The food was air-dried and further crushed with a food
154 crusher (Model ETM, Vercella Giuseppe, Italy) to a grain size suitable for the birds considering
155 their age. The control food was prepared using a similar method, but only water was added to

156 the food and a separate cement mill was used (ABM P135 L, Lescha, Germany). After
157 crushing, the dry food was stored in closed containers at 20° C in dry conditions. Separate
158 pieces of equipment for food preparation and storage were used for GBH and control food to
159 avoid contamination.

160 *Egg collection: Egg mass and egg thyroid hormones*

161 Parental generation was reared in same-sex groups for the first 12 weeks and thereafter in
162 randomly allocated female-male pairs of the same treatment. Eggs were collected when the
163 birds were 4 and 12 months old. Eggs from each cage were collected eggs daily (quails
164 generally lay one egg per day), marked individually, and weighed. A total of 221 and 96 eggs
165 were collected at 4 and 12 months, respectively.

166 *Egg quality: Yolk and shell mass and thyroid hormones*

167 Yolk and shell mass and yolk thyroid hormones were measured from 12 eggs in the GBH
168 treatment group and 12 eggs in control group, collected after 4 months of exposure. Eggs were
169 thawed and the yolk and shell were separated and weighed (accuracy 1 mg). Yolk was
170 homogenized in MilliQ water (1:1) and a small sample (ca 10 mg) was used for further analysis.
171 Samples were analyzed at the University of Turku for T3 and T4. LCMS/MS was conducted
172 at the facilities of the Turku Center for Biotechnology. T3 and T4 were extracted from yolk and
173 plasma following previously published methods (Ruuskanen et al., 2018). T3 and T4 were
174 quantified using a nanoflow liquid chromatography-mass spectrometry (nano-LC-MS/MS)
175 method, developed and validated in the work of Ruuskanen et al. (2018). On-column
176 quantification limits were 10.6 amol for T4 and 17.9 amol for T3. MS data were acquired
177 automatically using Thermo Xcalibur software (Thermo Fisher Scientific) and analyzed using
178 Skyline (MacLean et al., 2010). For the analyses, peak area ratios of sample to internal standard

179 were calculated. TH concentrations, corrected for extraction efficiency, were expressed as
180 pg/mg yolk.

181

182 *Glyphosate residue analysis*

183 Details of egg sampling and analysis are presented in detail in the work of Ruuskanen et al.
184 (2019). Fresh eggs collected at 10 months of exposure were frozen at -20° C for glyphosate
185 residue analysis. Prior to analysis, the eggs were thawed and the shells were carefully removed.
186 To avoid contamination, all eggs were processed in a lab that had never been in contact with
187 glyphosate, using clean materials (gloves, petri dishes, and tubes) for each egg. When removing
188 content from each eggshell, the egg content was never in touch with the outer eggshell.
189 Contents of 5 eggs (5 different females) from the control treatment were pooled for glyphosate
190 residue analysis. Contents of 5 eggs (5 different females) from the GBH treatment were
191 individually analyzed for glyphosate residues.

192 *Egg collection: Development and tissue sampling*

193 Embryo development was assessed after 4 and 12 months of parental exposure to GBHs. At 4
194 months, 108 GBH and 112 control eggs were collected and artificially incubated for 3 days at
195 36.8° C and 55% humidity (Rcom Maru Max, Standard CT-190, Autoalex CO. LTD, South-
196 Korea). Eggs were thereafter chilled and assessed for the presence of a normally developed
197 embryo (coded 1) or no embryo/a very small embryo (coded 0).

198 After parental exposure for 10 months, eggs were collected and artificially incubated
199 for 10 days (i.e. 55% of the normal embryonic developmental period, 17 to 18 days) to detect
200 major developmental defects via histology. A total of 57 embryos were collected, chilled, and

201 washed with 0.9% NaCl and fixed in formalin at +8° C for 16 to 19 days. Thereafter they
202 were dehydrated and fixed in paraffin overnight. Tissue samples were hematoxylin-eosin
203 stained according to standard protocols. Three high quality, randomly selected embryos were
204 photographed using NIS-Elements AR 5.02.00 software. Examples of embryo photographs
205 from parental GBH and control treatments are shown as Supplemental Figures 1a and 1b.

206 After parental exposure for 12 months, 44 GBH and 52 control eggs were collected
207 fresh and incubated for 10 days as above to assess general development. Thereafter, the brain
208 tissue of the embryo was studied for oxidative status assessment. Embryos were chilled,
209 whole brain tissues were collected, then they were snap frozen in liquid nitrogen and later
210 stored at -80° C.

211 The experiments were conducted under licenses from the Animal Experiment Board
212 of the Administrative Agency of South Finland (ESAVI/7225/04.10.07/2017).

213 *Brain mass and oxidative status biomarkers*

214 We aimed to analyze 2 randomly selected embryo samples per breeding pair (N = 13
215 pairs/treatment). However, as not all females were producing eggs, or did not produce eggs
216 with (viable) embryos, the final sample size was 19 control embryos (from 10 females) and 16
217 GBH embryos (from 10 females). Brain homogenates were used to measure oxidative status
218 biomarkers, antioxidant enzymes glutathione-S-transferase (GST), glutathione peroxidases
219 (GPx), catalase (CAT), and oxidative damage to lipids (malonaldehyde, MDA as a proxy, using
220 TBARS assay). Whole brains were weighed (~0.1mg) and homogenized (TissueLyser, Qiagen,
221 Austin, USA) with 200-400 µl KF buffer (0.1 M K₂HPO₄ + 0.15 M KCl, pH 7.4). All
222 biomarkers were measured in triplicate (intra-assay coefficient of variability [CV] < 15% in all
223 cases) using an EnVision microplate reader (PerkinElmer, Finland) and calibrated to the protein

224 concentration in the sample. The protein concentration (mg/ml) was measured with a
225 bicinchoninic acid (BCA) protein assay (Smith et al., 1985) using bovine serum albumin (BSA)
226 as a standard (Sigma Chemicals, USA) with the EnVision microplate reader at an absorbance
227 of 570 nm. The GPx-assay (Sigma CGP1) was adjusted from a cuvette to a 384-well plate. GPx
228 was measured following kit instructions but instead of t-Bu-OOH, we used 2 mM H₂O₂, which
229 is a substrate for GPx and CAT. To block CAT, 1 mM NaN₃ was added and the pH was adjusted
230 to 7.0 with the HCl in the buffer provided with the kit (Deisseroth & Dounce, 1970). The
231 change in absorbance was measured at 340 nm. GST-assay (Sigma CS0410) was likewise
232 adjusted from a 96- to a 384-well plate using our own reagents: Dulbecco's Phosphate Buffered
233 Saline-buffer (DPBS), 200 mM GSH (Sigma G4251), and 100 mM 1-Chloro-2,4-
234 dinitrobenzene (CDNB) (Sigma C6396) in ethanol. The more detailed assay description can be
235 found in the work of Habig et al. (1974). The change in absorbance was measured at 340 nm.
236 The CAT-assay (Sigma CAT100) was adjusted from a cuvette to a 96-well plate. We used a
237 0.3 mg/ml sample dilution and made our own reagents: 10 × CAT assay buffer (500 mM KF,
238 pH 7.0), CAT dilution buffer (50 mM KF + 0.1% TritonX, pH 7.0), chromogen reagent (0.25
239 mM 4-aminoantipyrine + 2 mM 3,5-dicloro-2-hydroxybenzenesulfonic acid in 150 mM
240 potassium phosphate buffer, pH 7.0), peroxidase solutions (from horseradish), stop solution
241 (15 mM NaN₃, Sigma), and 200 mM and 10 mM H₂O₂ according to information provided in
242 the technical bulletin (Deisseroth & Dounce, 1970; Fossati et al., 1980). The change in
243 absorbance was measured at 520 nm. The lipid peroxidation was analyzed using a 384-plate
244 modification of a TBARS-assay as described by Espin et al. (2018). In brief, 50 µl of samples
245 diluted in 0.9% NaCl were mixed with 100 µl of TBARS-BHT reagent (15% Trichloroacetic
246 acid, TCA; 0.375% 2-Thiobarbituric acid, TBA and 0.25 N hydrochloric acid, HCl + 2%
247 Butylated hydroxytoluene, BHT) and incubated in a thermoblock at 90° C for 30 min. Samples
248 were then cooled in ice water for 10 min to stop the reaction; they were then centrifuged for 15

249 min at 2100 g in +6° C. The standard (7 standard points) was prepared from MDA (Sigma
250 Chemicals, USA). The samples were analyzed in black 384-well plates and fluorescence
251 intensity was measured at an excitation/emission wavelength of 530/550 nm.

252 *Statistical analysis*

253 Egg mass was analyzed using linear mixed models with treatment (GBH or control), exposure
254 duration (4 or 12 months) and their interaction as predictors, female mass as a covariate, and
255 breeding pair ID as a random effect to control for non-independence of eggs from the same
256 pair. Differences between the GBH and control groups in yolk and eggshell mass and egg
257 thyroid hormone levels were analyzed with two-sample t-tests. The likelihood of embryo
258 development was analyzed using generalized linear mixed models (binomial distribution, logit
259 link) with similar predictors. Embryo brain mass, GST, GP, CAT, and MDA were analyzed
260 using linear mixed models with treatment as a predictor and female ID and assay ID (if
261 applicable) as random effects. The Kenward-Rogers method was used to estimate the degrees
262 of freedom. Residuals of the models were visually inspected to confirm normality and
263 heteroscedasticity. All statistical analyses were conducted with SAS Enterprise Guide 7.1. All
264 data are available as Supplementary datafiles (1-3).

265

266 **Results**

267 We detected 0.76 mg/kg (S.D. \pm 0.16) of glyphosate residue in eggs (see also Ruuskanen et al.,
268 2019), which is above the levels reported in the previous literature (FAO, 2005). Egg mass
269 from GBH and control parents did not differ after 4 or 12 months of exposure (treatment $F_{1, 17,1}$
270 $= 0.12$, $p = 0.73$, treatment*period $F_{1, 270} = 0.02$, $p = 0.89$, Table 1) but was generally larger at

271 12 months of age ($F_{1,271} = 8.8$, $p = 0.003$). No differences between GBH exposed and control
272 females in yolk mass, shell mass, or egg T3 and T4 concentrations were detected (Table 1).

273 Embryo development was normal in 89% of control eggs while 76% of GBH eggs had
274 normally developed embryos. This difference tended to be statistically significant (treatment
275 $F_{1,22} = 3.08$, $p = 0.09$) and the trend was similar at both 4 and 12 months of exposure
276 (treatment*period $F_{1,312} = 0.6$, $p = 0.43$, Figure 1). The un/underdeveloped eggs were
277 distributed across pairs and for none of the pairs were all eggs classified as undeveloped. We
278 detected no major developmental deformities by visual screening of the 10-d embryos and
279 histological samples (see Supplementary Figures 1a, b). Brain mass did not differ between
280 embryos from GBH-exposed and control parents (mean \pm SD in mg; GBH: 67.1 ± 12.5 , control
281 68.1 ± 15.5 ; $F_{1,31} = 0.04$, $p = 0.84$). Brain oxidative status at 12 months of parental exposure was
282 measured from 19 control and 16 GBH embryos. We measured ca 20% higher lipid damage in
283 the GBH embryos than controls. This difference tended to be statistically significant ($F_{1,16.8} =$
284 3.2 , $p = 0.088$, Table 2), yet there were no differences in the activity of antioxidant enzymes
285 GST, GP, or CAT between the two groups (Table 2).

286

287 **Discussion**

288 Our results indicate that parental exposure to GBHs may lead to negative effects on embryo
289 development and physiology. Because we detected no changes in egg quality (egg, yolk, shell
290 mass, or egg hormone concentration), our results suggest that poorer embryo development and
291 increased brain tissue lipid damage are likely to be explained by the direct effects of GBHs
292 rather than by indirect effects via the altered allocation of resources or hormonal signals to
293 offspring.

294 The tendency for poorer embryo development in eggs of GBH-exposed parents may be
295 explained by GBH-related effects via either a paternal or maternal route, or both. The eggs with
296 no development visible to the naked eye could have been completely infertile or showing
297 developmental arrest at an early stage. We selected embryonic development as an estimate of
298 reproductive success because it is relevant for the poultry industry and for assessing GBH
299 effects on population growth in wild species. Thus, our methodology could not distinguish
300 between the alternative (paternal versus maternal) underlying mechanisms. Potential infertility
301 may result from GBH-related problems in semen quality or altered reproductive behavior in
302 males as suggested previously in other vertebrates (Cai et al., 2017; Gill et al., 2018; Johansson
303 et al., 2018; Romano et al., 2012). Egg quality was not affected by GBHs and thus the negative
304 effects of GBHs on female folliculogenesis and ovary development, detected in previous
305 studies (Alarcon et al., 2019; Hamdaoui et al., 2018; Schimpf et al., 2017) are unlikely. The
306 fact that non/underdeveloped eggs were scattered across the breeding pairs likely also points
307 to developmental problems of individual embryos mediated via maternally transferred
308 glyphosate to eggs.

309 Our results support those of previous studies of poultry suggesting that maternal
310 transfer of GBHs to offspring substantially influences offspring via the altering of cell oxidative
311 status. Studies with chicken embryos experimentally exposed to GBHs have shown teratogenic
312 effects on early embryonic development, lower hatchability, and altered serum chemistry (Fathi
313 et al., 2019; Paganelli et al., 2010). Recently, decreased antioxidant enzymes activities (GP,
314 SOD, and CAT) and increased damage to lipids, liver tissue, and kidney tissue post-hatching
315 have been detected (Fathi et al., 2019). In parallel, we observed increased lipid damage in brain
316 tissue, yet antioxidant enzyme activities were not altered. However, it must be noted that the
317 abovementioned experimental studies using *in ovo* injections, researchers applied larger GBH
318 doses compared to those in our experiment (Fathi et al., 2019 ca 10mg/kg, >10x higher than in

319 our study; Paganelli et al., 2010 ca 50mg/kg, i.e. >50x our study), which may explain the
320 different responses. The embryonic brain can be particularly susceptible to ROS because the
321 detoxification system via antioxidants is underdeveloped and polyunsaturated fatty acids are
322 abundant in brain tissue. Indeed, the absence of an effect of GBHs on antioxidants in our
323 experiment may be due to the incapability of the underdeveloped embryonic antioxidant system
324 to respond to GBHs. Oxidative damage to lipids may have serious consequences on brain
325 development (Roy et al., 2016); it is also linked to aging and the onset of many diseases
326 (Simonian & Coyle, 1996). Indeed, GBHs have been shown to have neurotoxic effects on
327 animals such as rodents (Bali et al., 2017; Szekacs & Darvas, 2018).

328 *Conclusions*

329 In short, our results suggest altered embryonic development and increased embryonic oxidative
330 stress in response to parental GBH exposure in a bird model. Similar results have been found
331 with other vertebrates in previous studies. In a natural ecosystem, transmissive and
332 transgenerational effects may lead to delayed and cascading impacts of agrochemicals; this
333 may potentially explain why some non-target animal populations recover slowly after being
334 exposed to environmental contamination. Thus, recurrent changes in wild populations or in
335 production animals often remain unexplained and may be rarely linked to GBH exposure.
336 While we did not detect any GBH-related changes in maternal allocation, to our knowledge,
337 this is the first long-term study demonstrating transgenerational effects of GBHs with birds.
338 More studies are needed for characterizing GBH-associated changes in maternal allocation and
339 epigenetic programming.

340

341 **Acknowledgements**

342 We thank Ida Palmroos, Lyydia Laine, Nicolaus Steinmetz, and Lauri Heikkonen for their help
343 during the data collection, and Tiina Henttinen for the help in histology. The study was funded
344 by the Academy of Finland (grant no. 311077 to MH).

345

346 **Data availability statement**

347 The datasets generated and analyzed during this study are available as Supplementary datafiles
348 (1-3).

349

350 **Conflict of interest**

351 The authors declare no conflict of interest.

352

353 **Author contributions**

354 SR, MR, MU, and MH designed the study. SR, MU, and MR conducted the data collection.
355 SR conducted the analyses and drafted the first version. All authors contributed to manuscript
356 preparation.

357

358 References

359 Alarcon, R., Ingaramo, P. I., Rivera, O. E., Dioguardi, G. H., Repetti, M. R., Demonte, L. D., et al.
360 (2019). Neonatal exposure to a glyphosate-based herbicide alters the histofunctional
361 differentiation of the ovaries and uterus in lambs. [Article]. *Molecular and Cellular
362 Endocrinology*, 482, 45-56.

363
364 Babalola, O. O., Truter, J. C., & van Wyk, J. H. (2019). Mortality, teratogenicity and growth inhibition
365 of three glyphosate formulations using Frog Embryo Teratogenesis Assay-Xenopus. [Article].
366 *Journal of Applied Toxicology*, 39(9), 1257-1266.

367
368 Bai, S. H., & Ogbourne, S. M. (2016). Glyphosate: Environmental contamination, toxicity and
369 potential risks to human health via food contamination. *Environmental Science and Pollution
370 Research*, 23(19), 18988-19001.

371
372 Bali, Y. A., Ba-Mhamed, S., & Bennis, M. (2017). Behavioral and immunohistochemical study of the
373 effects of subchronic and chronic exposure to glyphosate in mice. [Article]. *Frontiers in
374 Behavioral Neuroscience*, 11, 13.

375
376 Benbrook, C. M. (2016). Trends in glyphosate herbicide use in the United States and globally.
377 *Environmental Sciences Europe*, 28.

378
379 Burella, P. M., Odetti, L. M., Simoniello, M. F., & Poletta, G. L. (2018). Oxidative damage and
380 antioxidant defense in Caiman latirostris (Broad-snouted caiman) exposed in ovo to
381 pesticide formulations. [Article]. *Ecotoxicology and Environmental Safety*, 161, 437-443.

382
383 Cai, W. Y., Ji, Y., Song, X. P., Guo, H. R., Han, L., Zhang, F., et al. (2017). Effects of glyphosate exposure
384 on sperm concentration in rodents: A systematic review and meta-analysis. [Review].
385 *Environmental Toxicology and Pharmacology*, 55, 148-155.

386
387 Dallegrave, E., Mantese, F. D., Coelho, R. S., Pereira, J. D., Dalsenter, P. R., & Langeloh, A. (2003). The
388 teratogenic potential of the herbicide glyphosate-Roundup (R) in Wistar rats. [Article].
389 *Toxicology Letters*, 142(1-2), 45-52.

390
391 Dallegrave, E., Mantese, F. D., Oliveira, R. T., Andrade, A. J. M., Dalsenter, P. R., & Langeloh, A.
392 (2007). Pre- and postnatal toxicity of the commercial glyphosate formulation in Wistar rats.
393 [Article]. *Archives of Toxicology*, 81(9), 665-673.

394 Darras, V.M., van Herck, S.L.J., Geysens, S., & Reijns, G.S. (2009). Involvement of thyroid hormones in
395 chicken embryonic brain development. *General and Comparative Endocrinology*, 163, 58-62

396 Deisseroth, A., & Dounce, A. L. (1970). Catalase: Physical and chemical properties, mechanism of
397 catalysis, and physiological role. *Physiological Reviews*, 50(3), 319-375.

398 de Souza, J. S., Kizys, M. M. L., da Conceicao, R. R., Glebocki, G., Romano, R. M., Ortiga-Carvalho, T.
399 et al. (2017). Perinatal exposure to glyphosate-based herbicide alters the thyrotrophic

400 axis and causes thyroid hormone homeostasis imbalance in male rats. [Article]. *Toxicology*,
401 377, 25-37.

402

403 Eason, T. H., & Scanlon, P. F. (2002). Effects of atrazine and glyphosate ingestion on body weight and
404 nutritional well-being of *Coturnix* quail. *Zeitschrift Fur Jagdwissenschaft*, 48, 281-285.

405

406 The European Food Safety Authority (EFSA). (2018). Evaluation of the impact of glyphosate and its
407 residues in feed on animal health. *EFSA Journal*, 16(5).

408

409 Espin, S., Sanzches-Virosta, P., Garcia-Fernandez, A., Eeva, T. (2018). A microplate adaptation of the
410 thiobarbituric acid reactive substances assay to determine lipid peroxidation fluorometrically
411 in small sample volumes. *Revista de Toxicologia* 34(2).

412

413 FAO (2005). "Pesticide residues in food," Report.

414

415 Fathi, M. A., Abdelghani, E., Shen, D., Ren, X., Dai, P. Y., Li, Z. J., et al. (2019). Effect of in ovo
416 glyphosate injection on embryonic development, serum biochemistry, antioxidant status and
417 histopathological changes in newly hatched chicks. [Article]. *Journal of Animal Physiology*
418 and *Animal Nutrition*, 103(6), 1776-1784.

419

420 Fossati, P., Prencipe, L., & Berti, G. (1980). Use of 3,5-dichloro-2-hydroxybenzenesulfonic acid/ 4-
421 aminophenazone chromogenic system in direct enzymic assay of uric-acid in serum and
422 urine. *Clinical Chemistry*, 26(2), 227-231.

423

424 Gill, J. P. K., Sethi, N., Mohan, A., Datta, S., & Girdhar, M. (2018). Glyphosate toxicity for animals.
425 *Environmental Chemistry Letters*, 16(2), 401-426.

426

427 Habig, W. H., Pabst, M. J., & Jakoby, W. B. (1974). Glutathione-s-transferases - first enzymatic step in
428 mercapturic acid formation. *Journal of Biological Chemistry*, 249(22), 7130-7139.

429

430 Halliwell, B., & Gutteridge, J. M. C. (2015). *Free Radicals in Biology and Medicine*. New York: Oxford
431 University Press.

432

433 Hamdaoui, L., Naifar, M., Rahmouni, F., Harrabi, B., Ayadi, F., Sahnoun, Z., et al. (2018). Subchronic
434 exposure to kalach 360 SL-induced endocrine disruption and ovary damage in female rats.
435 [Article]. *Archives of Physiology and Biochemistry*, 124(1), 27-34.

436

437 Helander, M., Saloniemi, I., & Saikkonen, K. (2012). Glyphosate in northern ecosystems. *Trends in
438 Plant Science*, 17(10), 569-574.

439

440 Johansson, H. K. L., Schwartz, C. L., Nielsen, L. N., Boberg, J., Vinggaard, A. M., Bahl, M. I., et al.
441 (2018). Exposure to a glyphosate-based herbicide formulation, but not glyphosate alone, has
442 only minor effects on adult rat testis. [Article]. *Reproductive Toxicology*, 82, 25-31.

443
444 Kissane, Z., & Shephard, J. M. (2017). The rise of glyphosate and new opportunities for biosentinel
445 early-warning studies. *Conservation Biology*, 31(6), 1293-1300.

446
447 Kubsad, D., Nilsson, E. E., King, S. E., Sadler-Riggleman, I., Beck, D., & Skinner, M. K. (2019).
448 Assessment of glyphosate induced epigenetic transgenerational inheritance of pathologies
449 and sperm epimutations: Generational toxicology. [Article]. *Scientific Reports*, 9, 17.

450
451 MacLean, B., Tomazela, D. M., Shulman, N., Chambers, M., Finney, G. L., Frewen, B., et al. (2010).
452 Skyline: An open source document editor for creating and analyzing targeted proteomics
453 experiments. [Article]. *Bioinformatics*, 26(7), 966-968.

454
455 Marshall, D. J., & Uller, T. (2007). When is a maternal effect adaptive? *Oikos*, 116(12), 1957-1963.

456
457 Mesnage, R., & Antoniou, M. N. (2018). Ignoring adjuvant toxicity falsifies the safety profile of
458 commercial pesticides. [Review]. *Frontiers in Public Health*, 5, 8.

459
460 Mesnage, R., Defarge, N., de Vendomois, J. S., & Seralini, G. E. (2015). Potential toxic effects of
461 glyphosate and its commercial formulations below regulatory limits. [Review]. *Food and
462 Chemical Toxicology*, 84, 133-153.

463 Moore M.P., H.H. Whiteman, and R.A. Martin. 2019. A mother's legacy: the strength of maternal
464 effects in animal populations. (S. Nakagawa, ed.) *Ecol Lett* ele.13351.

465
466 Paganelli, A., Gnazzo, V., Acosta, H., Lopez, S. L., & Carrasco, A. E. (2010). Glyphosate-based
467 herbicides produce teratogenic effects on vertebrates by impairing retinoic acid signaling.
468 [Article]. *Chemical Research in Toxicology*, 23(10), 1586-1595.

469
470 Ren, X., Li, R. N., Liu, J. Z., Huang, K., Wu, S., Li, Y. S., et al. (2018). Effects of glyphosate on the
471 ovarian function of pregnant mice, the secretion of hormones and the sex ratio of their
472 fetuses. *Environmental Pollution*, 243, 833-841.

473
474 Romano, M. A., Romano, R. M., Santos, L. D., Wisniewski, P., Campos, D. A., de Souza, P. B., et al.
475 (2012). Glyphosate impairs male offspring reproductive development by disrupting
476 gonadotropin expression. [Article]. *Archives of Toxicology*, 86(4), 663-673.

477
478 Roy, N. M., Carneiro, B., & Ochs, J. (2016). Glyphosate induces neurotoxicity in zebrafish. [Article].
479 *Environmental Toxicology and Pharmacology*, 42, 45-54.

480
481 Ruuskanen, S., Hsu, B. Y., Heinonen, A., Vainio, M., Darras, V. M., Sarraude, T., et al. (2018). A new
482 method for measuring thyroid hormones using nano-LC-MS/MS. *Journal of Chromatography
483 B-Analytical Technologies in the Biomedical and Life Sciences*, 1093, 24-30.

484 Ruuskanen, S. (2015). Hormonally-mediated maternal effects in birds: lessons from the flycatcher
485 model system. *General and Comparative Endocrinology*, 244, 283-293.

486 Ruuskanen, S. & Hsu, B-Y. (2018). Maternal thyroid hormones – an unexplored mechanism
487 underlying maternal effects in an ecological framework. *Physiological and Biochemical*
488 *Zoology*, 91(3), 904-916.

489 Ruuskanen, S., Darras, V.M., Visser, M.E., & Groothuis TGG. (2016). Effects of experimentally
490 manipulated yolk thyroid hormone levels on offspring development in a wild bird. *Hormones*
491 and *Behavior* 81, 38-44.

492 Ruuskanen, S., Rainio, M., Kuosmanen, V., Laihonen, M., Saikkonen, K., Saloniemi, I. & Helander, M.
493 (2019). Female preference and adverse developmental effects of glyphosate-based
494 herbicides on ecologically relevant traits in Japanese quail. *Environmental Science and*
495 *Technology*, accepted.

496

497 Schimpf, M. G., Milesi, M. M., Ingaramo, P. I., Luque, E. H., & Varayoud, J. (2017). Neonatal exposure
498 to a glyphosate based herbicide alters the development of the rat uterus. *Toxicology*, 376, 2-
499 14.

500

501 Schweizer, M., Brilisauer, K., Triebskorn, R., Forchhammer, K., & Kohler, H. R. (2019). How glyphosate
502 and its associated acidity affect early development in zebrafish (*Danio rerio*). [Article]. *PeerJ*,
503 7, 25.

504

505 Simonian, N. A., & Coyle, J. T. (1996). Oxidative stress in neurodegenerative diseases. [Review].
506 *Annual Review of Pharmacology and Toxicology*, 36, 83-106.

507

508 Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., et al.
509 (1985). Measurement of protein using bicinchoninic acid. *Analytical Biochemistry*, 150(1),
510 76-85.

511

512 Szekacs, A., & Darvas, B. (2018). Re-registration challenges of glyphosate in the European Union.
513 [Review]. *Frontiers in Environmental Science*, 6, 35.

514

515 Van Bruggen, A. H. C., He, M. M., Shin, K., Mai, V., Jeong, K. C., Finckh, M. R., et al. (2018).
516 Environmental and health effects of the herbicide glyphosate. [Review]. *Science of the Total*
517 *Environment*, 616, 255-268.

518

519 Webster, T. M. U., Laing, L. V., Florance, H., & Santos, E. M. (2014). Effects of glyphosate and its
520 formulation, Roundup, on reproduction in zebrafish (*Danio rerio*). [Article]. *Environmental*
521 *Science & Technology*, 48(2), 1271-1279.

522 Yin J., M. Zhou, Z. Lin, Q.Q. Li, and Y. Zhang. 2019. Transgenerational effects benefit offspring across
523 diverse environments: a meta-analysis in plants and animals. *Ecol Lett* 22:1976-1986.

524

525

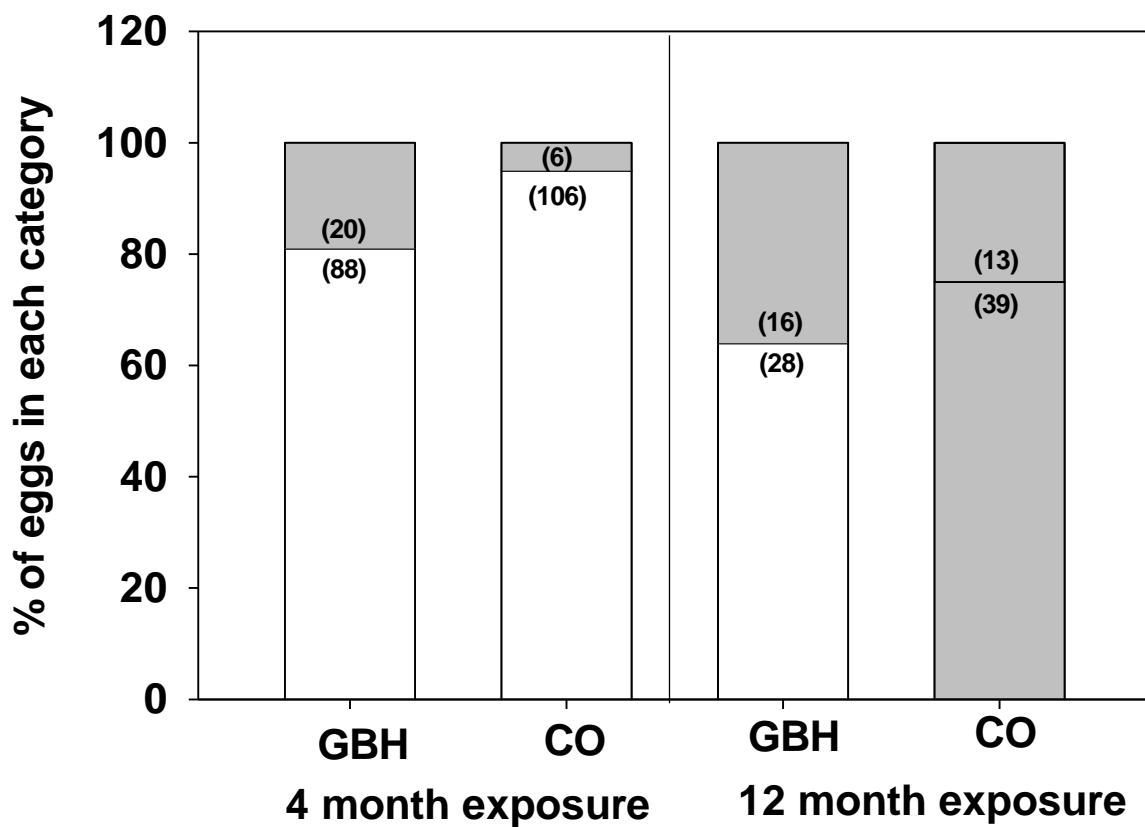
527 Table 1. Quality of the eggs (egg, yolk, and shell mass; thyroid hormones concentrations: T3
528 = triiodothyronine, T4 = thyroxine) from GBH (glyphosate based herbicide)-exposed and
529 control females. The egg mass was averaged over all eggs (4 and 12 months of exposure). The
530 other parameters were measured after 4 months of exposure.

Treatment	GBH	N (GBH)	Control	N (Control)	t _{df}	p
Egg mass (g)	10.4 (0.8)	142	10.7 (0.9)	155		see text
Yolk mass (g)	3.045 (0.296)	12	3.216 (0.254)	12	1.52 ₂₂	0.14
Shell mass (g)	1.186 (0.122)	12	1.156 (0.147)	12	0.53 ₂₂	0.59
T4 (pg/mg)	6.56 (0.96)	12	6.00 (1.66)	11	1.05 ₂₁	0.30
T3 (pg/mg)	5.80(2.18)	11	4.6(1.6)	11	1.45 ₂₀	0.16

531

532

533 Table 2. Average (\pm SD) of glutathione-S-transferase (GST), glutathione peroxidase (GP),
534 catalase (CAT) activity, and damage to lipids (MDA) in 10-day-old Japanese quail embryos
535 exposed to maternally-derived glyphosate-based herbicide (GBH) or unexposed embryos
536 (control). Associate statistics from linear mixed models (LMMs) are reported below.


Treatment	GP GST (μ mol/mg) (nmol/min/mg)	CAT (μ mol/min/mg)	MDA (μ mol/mg)	N
GBH	0.0154 (0.004)	21.73 (4.91)	6.56 (2.96)	0.062 (0.016)
Control	0.0146 (0.003)	22.08 (4.28)	6.62 (2.29)	0.051 (0.018)
LMM	$F_{1, 15.8} = 0.32$	$F_{1, 33} = 0.05$	$F_{1, 33} = 0.01$	$F_{1, 16.8} = 3.2$
Statistics	$p = 0.57$	$p = 0.82$	$p = 0.92$	$p = 0.088$

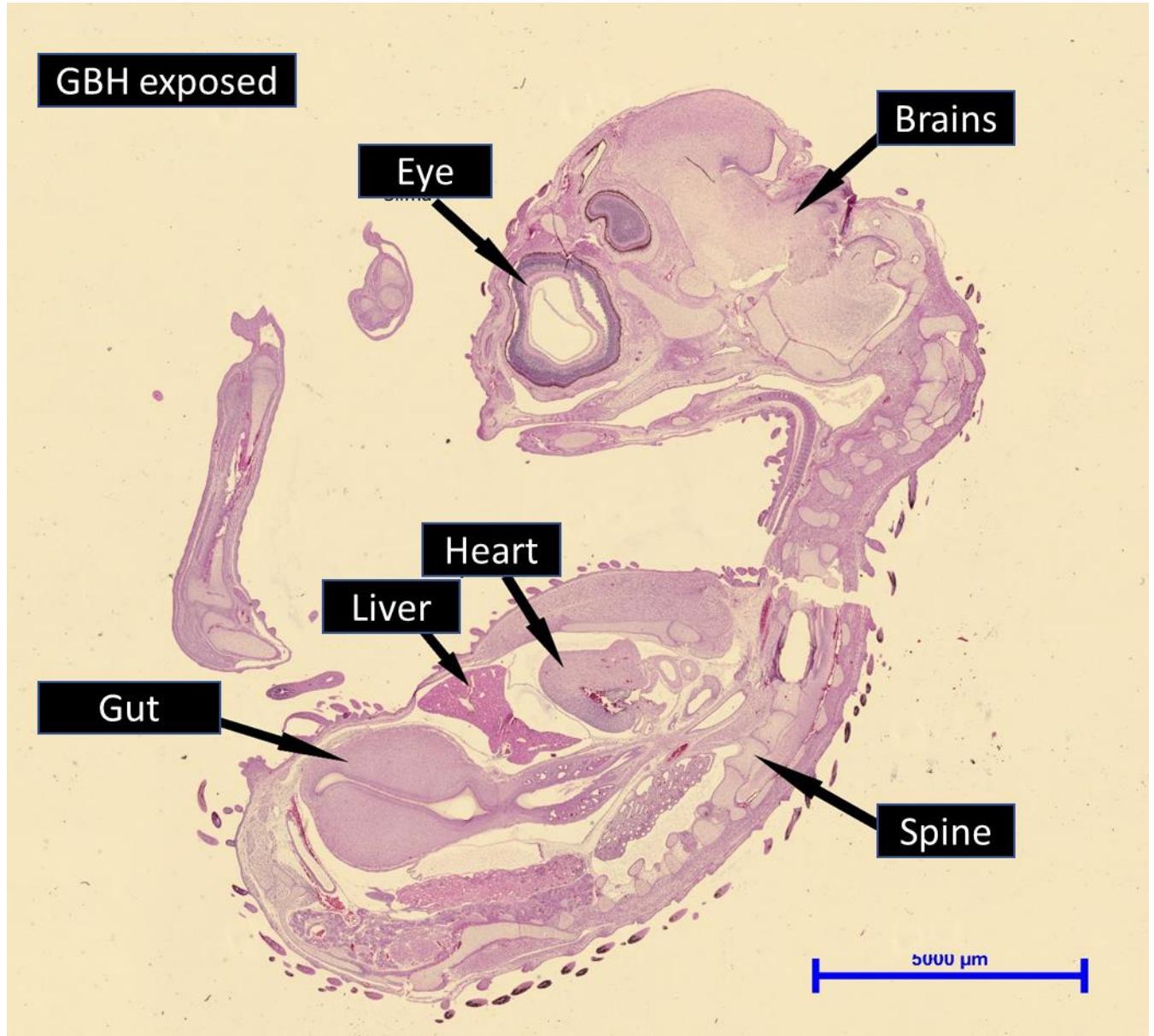
537

538

539

540 Figure 1. Embryonic status in relation to glyphosate-based herbicide exposure and duration of
541 the exposure. GBH = glyphosate exposed, CO = controls. The percentages refer to percentages
542 of eggs classified in two categories: grey bars = no/little development, white bars = normal
543 development. The bars are drawn separately for GBH and control eggs and after 4 and 12
544 months of exposure. Sample sizes are indicated in parentheses.

545


546

547

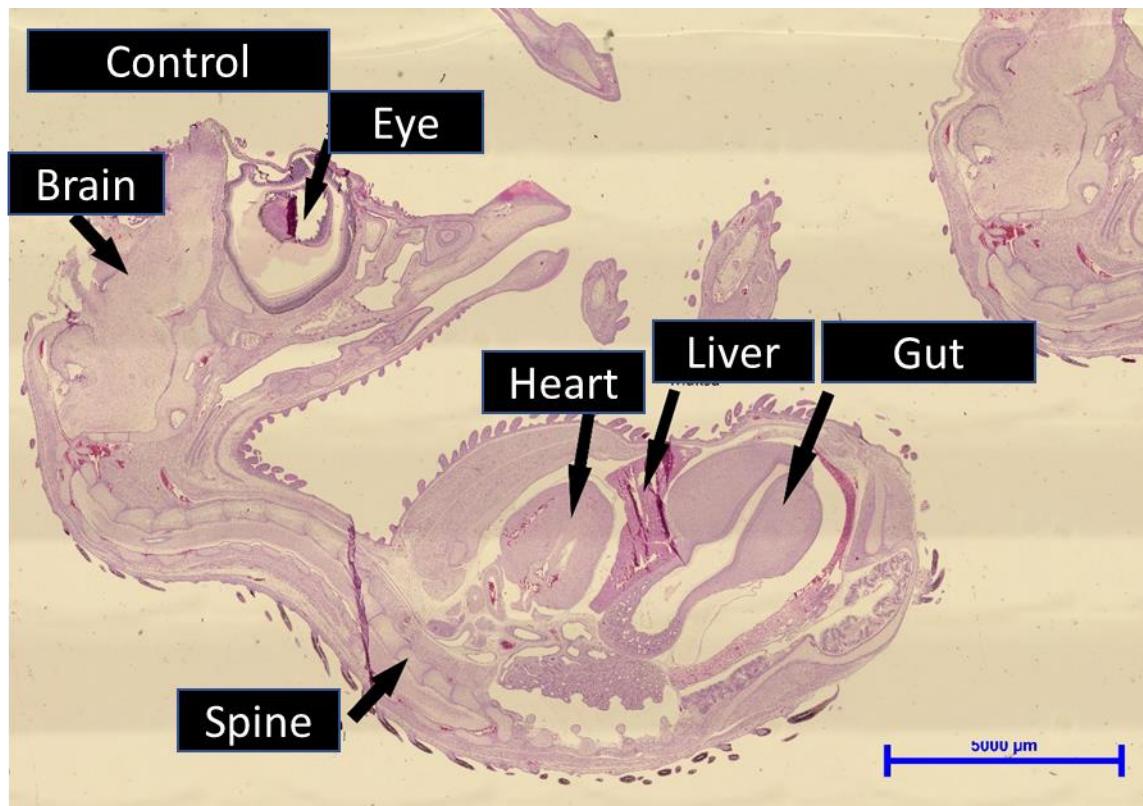
548 Supplements

549 Supplementary Figure 1. 10-day-old Japanese quail embryo (a) from parental generation
550 exposed to glyphosate-based herbicide (GBH) for 10 months; (b) control parents.

551 (a)

552

553


554

555

556

557

558 (B)

559