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SUMMARY

The mammalian genome contains several million cis-regulatory elements, whose
differential activity marked by open chromatin determines organogenesis and
differentiation. This activity is itself embedded in the DNA sequence, decoded by
sequence-specific transcription factors. Leveraging a granular ATAC-seq atlas of
chromatin activity across 81 immune cell-types we show that a convolutional neural
network (“Al-TAC”) can learn to infer cell-type-specific chromatin activity solely from the
DNA sequence. AI-TAC does so by rediscovering, with astonishing precision, binding
motifs for known regulators, and some unknown ones, mapping them with high
concordance to positions validated by ChIP-seq data. AI-TAC also uncovers
combinatorial influences, establishing a hierarchy of transcription factors (TFs) and their
interactions involved in immunocyte specification, with intriguingly different strategies
between lineages. Mouse-trained AI-TAC can parse human DNA, revealing a strikingly
similar ranking of influential TFs. Thus, Deep Learning can reveal the regulatory syntax

that drives the full differentiative complexity of the immune system.
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INTRODUCTION

The immune system has a wide array of physiological functions, which range from
surveillance of the homeostasis of body systems to defenses against a diversity of
pathogens. Accordingly, it includes a wide array of cell-types, from large polynuclear
neutrophils with innate ability to phagocytose bacteria, to antibody-producing B cells, to
spore-like naive T cells whose effector potential becomes manifest upon antigenic
challenge. With the exception of rearranged receptors, all immunocytes share the same
genome, and this phenotypic diversity must thus unfold from the genome blueprint,
each cell-type having its own interpretation of the DNA code. This differential usage is
driven by the interplay of constitutive and cell-type specific transcription factors (TFs)
and regulatory RNA molecules, and possibly yet unknown sequence-parsing molecular
entities.

Cell-specific recognition and effector potential are anchored in the cell's
transcriptome, itself a reflection of the conformation of DNA within chromatin which
enables the expression of accessible genes, directly or as modulated by triggers from
cell receptors and sensors. Recent technical advances reveal chromatin accessibility
with high precision and across the entire genome ', providing reliable charts of
chromatin structure through immune cell-types 2. In these, Open Chromatin Regions
(OCRs) reflected quite closely gene expression in the corresponding cells. The
question, then, is to move from these descriptive charts to an understanding of how
these chromatin patterns are determined. Analyzing the representation of TF-binding

motifs (TFBS) in these differentially active OCRs provided some clues as to the TFs
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potentially responsible for cell-specificity, especially by using the cell-type specific
expression of the TFs themselves as a correlative prior 2. Although motif analysis is a
mature tool, it relies on imperfect TFBS tables assembled from different sources of data,
with unavoidable noise, and more importantly does not provide insights into functional
and cellular relevance of sequence patterns.

Artificial neural networks present a powerful approach that can learn complex and
non-linear relationships between large sets of variables, and can recognize patterns
whose combinations are predictive of multifaceted outcomes. Convolutional neural
networks (CNNSs) in particular can learn the combinatorial patterns embedded within
input examples without the need for alignment of examples. Recent studies have
begun to take advantage of CNNs to tackle aspects of gene regulation 8, including
models that predict chromatin state "-°, TF binding '®'", polyadenylation '2, or gene
expression "3 solely on the basis of DNA (100bp-1Mb) or RNA sequences, with the
potential to ferret out relevant motifs.

The ImmGen consortium has recently applied ATAC-seq to generate an
exhaustive chart (532,000 OCRs) of chromatin accessibility across the entire immune
system of the mouse (81 primary cell-types and -states) 2. The data encompass the
innate and adaptive immune systems, differentiation cascades of B and T lymphocyte
lineages, detailed splits of myeloid subsets at baseline or after activation. We reasoned
that it might provide the power to push the boundaries of what CNNs can learn, in terms
of: (i) learning, solely from the DNA sequence of the OCRs, their pattern of activity
across the immune system; (ii) extracting the sequence motifs, and their combination,

that result in these predictions. The results showed that CNN model we derived
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(referred to as “Al-TAC”) can accurately predict the fine specificity of cell-type specific
OCRs. The position of the uncovered motifs that are influential in silico recapitulated the
binding sites of their molecular counterparts in “real” ChiP-seq data, and the motifs
learned by AI-TAC are also a highly accurate match to known TF motifs, revealing novel

aspects of the regulatory strategies used by different immune cells.
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RESULTS

AI-TAC can predict enhancer activity from sequence alone

We developed and trained a deep convolutional neural network (CNN), hereafter
AI-TAC, to predict the chromatin accessibility profiles across 81 immune cell-types on
the basis of DNA sequences alone. In this way, AI-TAC learns the relationship between
the combination of sequence motifs embedded within an OCR and its accessibility
profile across immune cell-types. Fig. 1a illustrates the steps of training, interpretation
and biochemical validation followed to ask whether a CNN model could effectively
decipher, starting from DNA sequence, the motifs that drive the cell-specificity of
immune gene expression.

In practice, the model was trained by using as input 90% of 327,927 sequences,
each 251bp long, of the OCRs defined by our recent ATAC-seq effort 2, to predict as
output the profiles of ATAC-seq of each OCR across all measured cell-types using a
multi-tasking strategy. The ability of the CNN to learn an accurate mapping between
inputs and outputs depends on several hyperparameters, including the number of
hidden layers, filters and their length. Bayesian optimization '* showed that an
architecture with three convolutional layers followed by two fully connected layers, with
19 bp sequence detected by the first layer filters, resulted in lowest achieved error on
the validation data (Fig. S1a-b). We also found that the form of the loss function
resulted in differential ability to predict cell-type specific activity profiles: using Pearson
correlation as the loss function metric enhanced the ability of the model to accurately

predict sequences whose activity varies across cell-types (p=10%°; Fig. S1 c,d). On a
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subset of held-back OCRs, the trained AI-TAC model showed impressive performance
on precisely predicting granularly variable accessibility across all populations, as shown
for one example Fig. 1b. Overall, 61% of test OCRs were predicted with a statistically
significant correlation coefficient (at FDR 0.05, Fig. 1¢). We observed largely monotonic
relationship between the predictability of an OCR and its variation between immune cell-
types, as OCRs with low prediction performance typically had small coefficients of
variation (Fig. 1d). This relationship was expected given the mathematical implication of
the loss function utilized, but this graph also indicates that the model is not missing out
on particular classes of OCRs beyond that are ubiquitously active (as confirmed in the
heatmap of Fig. 1 f,g).

We assessed the robustness of these predictions by performing several
randomization experiments to create three different null models (Fig. 1¢, S2a), as well
as performing chromosome leave-out experiments with 19 different models (Fig. S2b).
In addition, we performed 10 independent trials of 10-fold cross-validation (i.e., 100
trained models) so that each of the 327,927 OCRs was considered as part of ten
different test sets (Fig. S2c,d). These data allowed us to confirm that well predicted
OCRs were generally well predicted across different models trained on different subsets

of the data, suggesting that regulatory logic captured by the model was generalizable.

Learned motifs are associated with known pioneer factors and their lineage
specificity
To understand the regulatory syntax learned by the AI-TAC model, we started by

interpreting the first layer filters. Each filter in the first convolutional layer is “activated”
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by a short sequence, the sequence motif that activates each of these first layer filters
being optimized during training. We first defined operational parameters of robustness
for each of the 300 first-layer filters: reproducibility (how often its motif recurs in
independently trained models), influence (how much it contributes to the prediction
accuracy, measured by iterative nullification of each filter), and frequency (how many
OCRs in the dataset activate it) (Methods, Table S1). We computed influence values on
the set of well-predicted OCRs (with prediction correlation greater than 0.75), but
confirmed that the results were similar when using only the test OCRs (Fig. S2f).
Following the strategy of 7, we reconstructed the motif learned by each filter by finding
the 19bp sequences (the filter length determined by Bayesian Optimization) within
OCRs that are activated by each filter, determining their consensus (represented as a
position weight matrix - PWM) and computing the information content (IC) in these
motifs (Table S1). For a baseline comparator, we applied the DeepLIFT framework '°
to these data and cross-matched AI-TAC results. DeepLIFT did not yield more
determining motifs, once redundancy was accounted for, if anything less (Fig. S3).
Combining these parameters revealed two major groups among these trained first-
layer filters (Fig. 2a): filters in the first group (e.g. 133, 167, etc.) were re-discovered
repeatedly in every or almost every independent training run, had high influence (>10+%)
and IC, with typically short (8-12 bp) consensus motifs reminiscent of typical TF binding
sites. The second group (e.g. 259, 37, 249, 241) had far less reproducibility, influence
and IC, with motifs that only included a few scattered bases or where less focused (~15
bp long). Some of these low-influence and non-reproducible filters may represent noise

in the neural network ', or yet unknown regulatory motifs whose similarity structure may
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escape conventional alignment algorithms. We focused the rest of the analysis on the
99 reproducible filters, as a model retrained using these had only a small drop in
performance as compared to the full model (Fig S2e, 99 altogether). As illustrated in
Fig. 2b, reproducible filters partitioned between filters with restricted distribution
(activating 10® to 10* OCRs) and generally higher influence, and a group of more
frequently activated filters with overall lower influence and IC. To identify known motifs
associated with the learned PWMs, we searched the Cis-BP database of TF motifs 7
using the TomTom algorithm 8. 101 of the 300 learned PWMs corresponded to at least
one known TF motif at g-value < 0.05 (Table S2), and interestingly majority of these
annotated PWMs belonged to the set of reproducible filters: 76 of 99 reproducible filters
correspond closely to known TF motifs, many with astonishing similarity (as illustrated
for Runx, Ets, and Ctcf in Fig. 2¢). In 10 cases, the model also discovered exact
reverse complements of the same motif (e.g. CTCF in Fig. 2c).

The regulatory landscape of chromatin opening throughout immune cell
differentiation, as learned de novo by AI-TAC, can thus be summarized by the 99 motifs
displayed in Fig. 2d (given the known complexities of TF motif assignments, that can
reflect promiscuity and variation with cofactors or post-translational modifications, we
opted for caution when several alternative TFs were candidates, annotating several
filters at the family level only). We further refined the annotation of the most likely TF to
each motif by combining Cis-BP scores with the correlation between activity of the OCR
and expression of the TF across cell-types (illustrated for Pax5 in Fig. S4a); these
correlations were comparable for filters annotated to the same TF (Fig. S4b; Table S3).

The resulting set re-discovered several canonical regulators of lineage differentiation:
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Pax5, Ebf1, Spi1 (aka PU.1), Gata3. Other TFs were perhaps less expected in the
context of cell-specific expression such as CTCF, a ubiquitous TF better known for its
structural role in nuclear architecture '°, suggesting a cooperative role of CTCF as an
adjunct to lineage-specific factors. A few influential TFs were represented by several
filters, usually with slightly different motifs for the same TF (Fig. S4c). These nuances
may correspond in part to technical noise from model over-parametrization 6, but they
are also expected from known degeneracy in TF binding specificity, which is further
influenced by interactions within dimers, as exemplified by the NF-xb family 2°. AI-TAC
filters indeed distinguished the canonical NF-xb hetero-dimer (filter231) and homodimer
(filter247) motifs. For a broader perspective on how AI-TAC understands NF-xb family
binding sites, we clustered the PWMs of all filters annotated to NF-xb through ten
independent training runs. Interestingly, the hetero-dimer motif resurfaced regularly,
while other motifs were less frequently discovered or allowed more sequence variation,
suggesting gradations in their functional importance (Fig. S4d). Finally, several filters
corresponded to motifs with no significant matches in Cis-BP or similar databases (Fig.
S§5). Some were short, and plausibly corresponded to half-sites, but others were longer

and more complex, and may correspond to unrecognized TF binding motifs.

Learned motifs associated with cell-type profiles

In addition to the overall influences, we next computed a per cell-type influence
profile, quantifying the predictive importance of each filter in each of the 81 immune
populations, as the difference between prediction values with and without each filter on

a per cell-type basis (Fig. 3a). Interestingly, this analysis revealed both positive and
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negative influences (Table S1). Several of these positive influences (where the filter is
needed for the full activation in the predicted profiles) were highly consistent with known
roles of the corresponding TFs: Pax5 and Ebf1 essential for B cell differentiation, Spi1
and Cebp in myeloid cells, and Tbx21/Eomes in NK cells. AI-TAC was able to identify
granular specificity of TFs beyond lineage-level importance: for instance, in the B
lineage (top left of Fig. 3a), Pax5 showed pronounced influence early in proB stages,
and late in germinal center B cells, while Pou2f2 (Oct2) was influential only in the latter.
In myeloid cells, CEBP seems particularly influential in neutrophils, monocytes and
tissue macrophages, but less so in dendritic cells (consistent with ?) and perhaps more
surprisingly in central nervous system (CNS) microglia, an interesting notion given that
microglia have a distinct origin from most other macrophage populations. No filter had
the same degree of influence for T cells as Cebp/Spi1 or Pax5/Ebf1 had for myeloid and
B cells.

More paradoxical were the negative influences (where the predicted activity of
OCRs is over-estimated in its absence). These occurred most prominently for the
myeloid-specifying motifs recognized by Spi1 or Cebp, but not for every strong filter (i.e.
not for Pax5 or Tbx21 motifs). Thus, the neural network uses the presence of a Spi1
motif in an OCR to enforce its inactivity in T cells, beyond the neutrality that might be
expected from a missing TF, a concept possibly connected to the need for Spi1 shut-
down for T cell differentiation 2.

AI-TAC appears to learn stage-specific influences within lineages. To go deeper in
identifying motifs and TFs that have predictive influence within a lineage, we used a

“fine-tuning” strategy 2: the AI-TAC model (trained for 10 epochs initially) was further
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retrained for one epoch to predict chromatin accessibility in only the T, or B or myeloid
datasets (Table S4). Such a fine-tuned model should reconfigure its learned parameters
to enhance its ability to predict the cell-type-specific accessibility profile within a given
lineage. When comparing the filters in these fine-tuned models to the initial AI-TAC
model, we observed that the CNN selectively down-weighted (“forgot”) filters in a very
logical manner, e.g. decreased influence of B-specific Pax5/Pou2f/Ebf1 filters in T or
myeloid models, or of Cepb filters in non-myeloid models (Fig. 3b-d). Conversely,
several filters gained influence in all three (Tcf3 (aka E2A), NFkB, Zkscan1, Maf, bZIP).
This is consistent with the notion that E2A or NF-xb are more involved in modulating
differentiation or activation states within all immune lineages, rather than specifying
them. Because the dataset included 22 distinct T lineage cells, providing sufficient
training data, we also trained an AI-TACT model solely on T cells (Fig. S6a). Many of the
same filters reappeared, but with a slightly different emphasis (e.g. the influence of NF-
kb is high during pre/pro-T stages but wanes in resting mature T cells, but returns in
Tregs and activated/memory CD8+ T cells).

If AI-TAC accurately predicts cell-specificity of OCRs activity, it should also
correctly assign differences in chromatin accessibility between cells. This was clearly
the case for the OCRs that differ between T cells and macrophages (Fig. S6b). We also
tested predictions for OCRs whose activity is induced by innate receptor triggering (NKT
cells, 3 hrs after LPS injection in vivo, Fig. S6c¢). There was again a very good fit
between predicted and observed OCR activity, in particular for OCRs influenced by NF-

kb filter231 (NF-xb-het) and whose accessibility is upregulated by LPS, in vivo and in
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silico (Fig. S6¢). Thus, AI-TAC can faithfully map differences between cell-types, for

large inter-lineage distances as well as more focused responses to cell activation.

Biochemical validation of predicted TF binding

While the identity of the motifs learned in silico were striking, and the distribution of
their influence across cell-types made sense, it was important to validate the
significance of these observations. We first selected the 500 OCRs most influenced by
filter167 (Pax5), which aligned on the Pax5 consensus motif (Fig. 4a). In accordance
with expectations, these OCRs were active in B cells, but not in thymic DPs (Fig. 4a,
right panels). We then examined the fit between the in silico learned filters and the
actual position of the corresponding TFs in the genome, deduced from chromatin
immuno-precipitation (ChlP-seq). Overall, we observed a very strong concordance
between AI-TAC’s predictions and ChiIP-seq data. As one example, OCRs predicted to
be influenced by filter 255 (Spi1) recapitulated the two main binding sites of Spi1 in the
I11b locus (Fig. 4b). More generally, the top OCRs influenced by filters 167 (Pax5), 260
(Ebf1) or 166 (Lef1/Tcf7) strikingly overlapped with binding sites defined by ChIP-seq
for those factors, relative to control OCRs (0.006 to 0.09) (p<0.003, Fig. 4c).

Finally, we analyzed deep ATAC-seq traces in B lymphocytes at nucleotide-level
resolution, where one can discern a “footprint” where the binding of a TF prevents or
favors accessibility by the Tn5 transposase 23. We superimposed deep (>200M reads)
ATAC-seq traces at positions predicted to activate Pax5 or CTCF filters in AI-TAC over
true binding sites independently determined known from ChlP-seq and motif

identification. Here again, AI-TAC driven predictions accurately coincided with true TF
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binding, showing the same fine details of accessibility (Fig. 4d). Thus, whether in
matching the distribution of TF binding or the nucleotide-level traces to biochemically

determined ones, AI-TAC in silico predictions are strongly validated by in vivo data.

Dissecting the combinatorial logic of chromatin opening

That enhancer elements tend to occur as repeats has long been a theme, either
because those first discovered in viral genomes occurred as tandem repeats, or
because synthetically engineered enhancers were more effective as strings of the same
motif. It was thus of interest to ask whether repeats of the same motif were enriched
among active OCRs. This was not the case (Fig. 5a): there was no greater frequency of
recurrence of activating filters within an OCR than would be expected by chance, with
two interesting exceptions: filter231 (NF-kb-het), consistent with the demonstration that
NF-kb uses clustered binding sites non-cooperatively to incrementally tune transcription
24: and two GC-rich motifs recognized by Sp (242, 154), consistent with reports that SP1
functions best in the context of repeated GC-rich blocs 2°. Interestingly, the relative
positioning of these repeats was not random, e.g. maxima at 90 and 140 bp
(nucleosome length?) for NF-xb (Fig. 5b). On the other hand, activation of the same
filter by OCRs likely to control the same gene, as evidenced by regression 2 showed a
significant enrichment compared to chance (Fig. 5¢). Thus, shortly spaced repeats of
controlling motifs are not a regulatory strategy commonly employed to control
mammalian immune cell differentiation, motif repetition being provided by spaced

elements connected by DNA loops.
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Given the size of the vertebrate genomes, combinations of transcriptional
regulators are the only practicable solution to encode the complexity of development
and cell-type differentiation 26. Pervasive interactions between TFs within multimolecular
complexes have been observed in genomic and functional experiments, but an overall
perspective on the combinatorial interactions that actually influence transcription
remains incomplete. It was thus of interest here to ask which combinations of motifs are
co-influential in AI-TAC’s predictions, and hence suggest co-operation between TFs.
Because the higher order relationships between first layer motifs are encoded in the
deeper layers of the network, an obvious first attempt at identifying important filter
combinations is to look for combinations of motifs assembled by the second layer
convolutional filters 2. Due to the maxpooling applied to the first layer output,
constructing clear motifs from second layer activations was not possible and we instead
examined the second layer filter weights directly. We found that in a large number of
cases the second layer filters recognized similar (or reverse complement) first layer
motifs, indicating that the second layer is perhaps assembling cleaner versions of first
layer motifs rather than learning combinatorial logic (Fig S7).

As an alternative, we identified for each OCR the set of filters that impact the
accuracy of its prediction (i.e., influence) by 5% or more. Of the set of OCRs that were
influenced by at least one filter at this threshold, many (N=23,910, 56%) were influenced
by 2 to 6 filters, and a few (N=1,514, 4%) were even impacted by 10 or more filters (Fig
5d). This large set of OCRs impacted by multiple filters provided a rich base to identify
common co-influential motifs. To identify influential combinations between different TFs,

we computed for each filter pair the number of OCRs that they both impact, and
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compared it to expected co-influence based on each filter's prevalence. This analysis
yielded 493 co-influential filter pairs (adjusted p<0.05, and number of co-
occurrences>100) (Fig. 5e, Table S5). Interestingly, filters that are broadly influential
tended to be significantly co-influential with each other (e.g., Ebf1 and Pax5, n=193,
p<10e-20; Lef1/Tcf7 and Runx, n=471, p<10e-50). Among over-represented pairs,
some TFs were highly recurrent, acting as “hubs” of sorts: Tcf3 (filters 78/8/93), Runx
(filter10), Ets (filter11), and Nfat (filter40) co-occurred with 40 or more other filters
(Table S5).

Some of these inferences in terms of motif co-influence were congruent with
existing knowledge (e.g. Tbx21/Runx, Spi1/Cebp, etc.), but to provide proof-of-principle
validation we again turned to ChlP-seq data. Using Pax5 ChIP-seq datasets generated
in pro B and mature B cells 27, we asked what fraction of the OCRs influenced by each
AI-TAC filter overlapped with a validated Pax5 binding site. As expected from Fig. 4c,
OCRs influenced by filters 167, 217 and 257 (all annotated as Pax5) contained a high
proportion of true Pax5 binding sites in both proB and mature B cells (0.62 to 0.83, Fig.
5f). Interestingly, OCRs influenced by several other filters also contained a high
proportion of Pax5-binding sites (in particular filters 260 (Ebf1), 89 (Irf1/Stat2/Prdm1) or
190 (Pou2f1). Finding Ebf1 associated with Pax5-annotated filters is consistent with the
known molecular collaboration between Ebf1 and Pax5 in controlling B-cell identity 28-3°,
This conclusion was borne out by displaying Pax5 and Ebf1 ChlIP-seq signals in OCRs
active in B cells, showing that some OCRs preferentially bound one of these two TFs,

and many both (Fig. 5g).
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As another validation and to further identify combinatorial signals, we compared
ChlIP-seq signals for Pax5 and Tcf7 (active in T cells) in OCRs predicted to be activated
by different filters. OCRs influenced by Lef1/Tcf7 filters (166, 50, 80) were again
strongly enriched in Tcf7 bound sites in DPs 3" but had low Pax5 signals in proB cells,
while OCRs that activate Pax5 filters and its associated Ebf1 and PouZ2f filters were
enriched in Pax5 ChlP-seq signals in proB cells but low in Tcf7 (Fig 5h). OCRs that
activated filters annotated to Sp1 (242) or bZip (51) were enriched in Tcf7 ChlP-seq,
confirming that these TFs interact with Tcf7 (Table S5). Interestingly, AI-TAC
predictions recovered regulators Tcf3/E2a (112) and Ets (11, 252, 120) with similar
enrichments in Pax5 and Tcf7 bound sites, consistent with known overlapping
regulatory function in the specification and maintenance of B and T lineages *. Thus,
combining AI-TAC predictions with in vivo ChlP-seq data parsed TF binding patterns
with regulatory co-influence at different stages of T or B differentiation, and resolved

novel regulatory motifs represented in Tcf7 bound sites across disparate T cell states.

TF cis-regulatory syntax embedded in AI-TAC’s fully-connected layer

The last fully-connected layer of a neural network represents the final non-linear
embedding of the input examples in the derived feature space. To visualize this space,
we represented each well-predicted OCR by its activation values across the 1000
neurons of the last layer, and projected these activation vectors in 2-D using the t-SNE
algorithm (Fig. 6a). When OCRs in this space were colored by their accessibility in
different lineages, lineage-specific activity mapped to different segments (Fig 6b),

indicating that this last layer discriminates well between lineages. Next, we analyzed
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how the influence of individual first-layer filters (and corresponding TFs) projected in this
space. The influence of Pax5 (filter167) and Ebf1 (filter260) was highest in closely
related poles of the B cell area, overlapping partially (Fig. 6¢), in accordance with Fig.
5f. Similarly, the influence of Spi1 (255) and Cebp (34) in myeloid lineage OCRs was
distinguishable, with some OCRs influenced by both (Fig. 6d), consistent with the
known cooperativity of Spi1 and Cebp across myeloid cell-types 3.

Among the patterns of OCR activity projected in this embedding space, the
stratification of OCRs accessible in ILCs was intriguing (Fig. 6b), as it demarcated a
cluster of OCRs distinct from all others. We cannot formally rule out that this
demarcation of ILC3-active OCRs results from a technical artefact, although have no
indication in this sense, but the dichotomy turned out to reflect a partition between
OCRs active in NK cells vs ILC3 (and to a lesser extent in ILC2, colonic Treg and some
Tad cells; Fig. 6e). OCRs active in NK cells were influenced by Tbx21/Eomes-related
filter106 (Fig. 6f), but ILC3-preferential OCRs were mainly influenced by filters
annotated to the Nuclear Receptor (NR) family Nr1d1/Rory (68) and Nr2f6 (220) (Fig.
6f, see also 3a). The influence of these NRs is consistent with the demonstration of a
role for Nr1d1 in lic3 differentiation 34. Thus, chromatin activity and TF control learned in
silico appear very different for these groups of ILCs.

Apart from predicting lineage specific patterns, the last layer also parsed a subset
of OCRs with widespread activity across all lineages (“Ubq” in Fig 6a). These small
clusters were characterized by the influence of the ubiquitous TFs Sp/KIf (filter242) and
CTCF (filter23/275, Fig 6g), suggesting common structural motifs. Interestingly, the

influence by CTCF filters was also observed in clusters of more cell-type specific OCRs,
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a disposition consistent with the notion that CTCF partakes in the generic organization
of DNA topologies in the nucleus, but also cooperates with cell-type specific TFs to form
specific loop and domain structures '°. Thus, AI-TAC’s final layer embedding of OCRs
had the ability to refine lineage and cell specificity through TF influence patterns,
suggesting that marginal influence estimates can serve as a proxy for the biological

regulatory impact.

Gene regulatory network inference based on predicted TF binding sites

We next assessed the relationship between chromatin accessibility, cis regulatory
syntax at genes’ OCRs, and gene expression. Using results of a previous analysis in
which we assigned cis OCRs to genes by correlating gene expression and chromatin
accessibility across the 81 cell populations 2, we extrapolated from TFs that are
influential for a given OCR in the AI-TAC model to sets of TFs predicted to be influential
for regulation of each gene, generating a network of regulator TF to gene edges for
4,569 expressed genes (Table S6, also available from www.immgen.org). The
median number of regulators per gene was three, but 32% of genes were assigned 5 or
more regulators (Fig. S8). Fittingly, we observed a significant overlap (N=144, hyper-
geometric p<10-2%) between edges inferred in this analysis and those previously inferred
from co-expression within independently generated microarray data 3°.

The main TF hubs in the co-expression based regulatory network also dominated
the rankings based on influence in the AI-TAC. For instance, Spi1, Ets, Tcf3 emerged
as regulators of a large number of genes (Fig. 7a). To go beyond general lineage

differences, we analyzed cell-type specific networks in the B, T, and myeloid lineages,
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by identifying differentially expressed genes and exploring their regulators. Clustering
of genes based on their expression carried over only weakly to their assigned regulators
(Fig. 7b), with considerable heterogeneity in the inferred networks and scattered
participation of many other possible regulators. There were also differences in network
structure between lineages: B and myeloid networks consisted of several interactive
hubs (Ebf1, Pax5, and Pou2f2 in B; Spi1 and Cebp in myeloid), but the T cell network
was more distributed, with major hubs not as apparent, consistent with Fig. 3a. In
summary, this representation departs from the “modular structure” which considers
gene expression reducible to a set of co-regulated genes. Instead, though each lineage
is associated with major regulators, these regulators interact with a diverse set of TFs

depending on the actual target gene.

Cross-species generalization of AI-TAC predictions

The ultimate test of generalizability of a trained machine learning model requires
assessing its performance on independent/external datasets. Because the human and
mouse immune systems share many regulatory nodes %638 and TFs and their motifs
are conserved across far wider evolutionary distance, we used cross-species testing to
assess Al-TAC predictions on unseen human OCRs defined by a prior ATAC-seq
analysis in 25 hematopoietic cell-types 5. We first used the ImmGen pipeline to pre-
process the human dataset, identifying 539,611 OCRs of 251bp length. We then directly
applied the mouse-trained AI-TAC model on these human sequences, and predicted
their accessibility across the 8 cell-types from the mouse model that had a counterpart

in the human dataset (Table S7). The correlation between predicted and observed
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accessibility profiles was significant for the majority of these OCRs, and highly skewed
as compared to shuffled human OCR sequences (Fig. 8a).

We then explored the degree of conservation of the important AI-TAC TF motifs.
After fine-tuning the AI-TAC model on human data for four epochs decided by an early
stopping strategy we obtained influence scores for each filter based on its prediction
performance on the set of well-predicted human OCRs. We observed a striking
correlation in terms of predictive influence of a filter in mouse and human datasets,
indicating preservation of overall regulatory impact (Fig. 8b). Only a few outliers were
noted, for example Gata, which in this case may be explained by the addition of
erythroid cells in the human dataset.

Finally, to assess whether there exist broad classes of human OCRs that are not
predictable by the mouse model, we trained a CNN directly on the human dataset and
compared its prediction performance over the test set of OCRs to the mouse AI-TAC
model. We observed a strong correlation between prediction performance of the mouse
and human models on these human OCRs (Fig. 8c), with only a minor shoulder of
OCRs that were better predicted by the human-trained model. This indicates that the
regulatory code that is predictive of immune cell chromatin activity is extraordinarily
conserved between human and mouse species.

DISCUSSION

Differentiated cell states and functions, deeply encoded in the DNA sequence,
unfold through the coordinated action of TFs and of the transcriptional modifiers they

coopt. We show here that an artificial neural network can emulate these biological


https://doi.org/10.1101/2019.12.21.885814
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.21.885814; this version posted December 23, 2019. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

decoders and predict, based on sequence alone, cell-specific patterns of chromatin
accessibility across the entire immune system. It does so with astonishing precision for
many OCRs, fully matching biochemical validation data, and in the process re-
discovering with extreme fidelity the binding sites for known transcription factors. By
probing the sequence cues that the CNN detects and integrates, we infer how the
biological decoders may operate, yielding a broad portrait of the sequence motifs and
TFs that govern immune cell differentiation, strikingly conserved in human and mouse
systems.

There is growing interest in applying deep learning computation to predict
transcriptional activity and RNA processing from nucleotide sequences 63%40, A major
breakthrough in using CNNs to accurately predict “activity profile” from sequence, which
AI-TAC also benefits from, has been the utilization of multi-tasking frameworks that
model multiple prediction tasks at once (e.g., predictions of accessibility across multiple
tissues or cell types). The multi-task models can learn generalizable features whose
combinations are predictive of different but related outcomes; this attribute is especially
powerful in regulatory biology, where combinations of a finite set of sequence motifs
underlies cellular differentiation. However, the representation of training data and the
criteria for providing feedback to the model during the learning phase are of key
importance, on which AI-TAC differs from previous work. By modeling continuous
accessibility values across 81 cell populations that represent fine scale differences in
immunocyte differentiation, and then measuring the model’s prediction error based on
Pearson correlation, Al-TAC parameters were optimized to identify sequence features

that are predictive of differences in profiles, rather than ubiquitous activity levels, a
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feature that proved essential to its performance. Our study also differs from previous
work by its emphasis in robust extraction of learned motifs and its validation with
epigenomic data.

Several elements may contribute to the excellent fit of the predicted profiles and
motifs. Deep CNNs have outcompeted previous methods for the prediction of TF
binding because the hierarchical nature of the model allows it to simultaneously learn
both specific local patterns and long-range interactions in the sequence. Moreover,
these models do not require manual curation of the input features enabling the
identification of new important sequence features by the model. Although several recent
works have introduced methods for dealing with longer input sequences such as dilated
convolutions 34142 the relatively short sequences that result from the ATAC-seq
dataset precisely encapsulate regulatory regions, making the basic deep CNN model
highly effective here.

The tight fit between AI-TAC’s “interpretation” and biochemical data gave high
confidence that they were valid projections of the true regulation of chromatin
accessibility across immunocytes. Furthermore, the cell-specific influence of these filters
recapitulated prior knowledge about cell-type specificity for several transcription factors
(e.g. Pax5 and Ebf1 in B-cells, Eomes/Tbx21 in NK cells, Spi1 and Cebp in myeloid
cells). Several novel observations are worth highlighting: (1) The results yield a high-
resolution ranked landscape of chromatin regulation across the entire immune system.
Even if these players were recognized, their dominance (Fig. 3a) was not necessarily
appreciated: knockouts only identify the stage at which a TF becomes essential for

further differentiation, potentially distinct from those involved in overall specification of
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cell-specific chromatin architecture. Less expected was the dominant influence of
Eomes/Tbx21 filters for NK cells, or of NRs for ILC2/3, which proved quite different from
T cells (even the most differentiated NKT or effector CD8s), contradicting the over-
simplification that ILCs are basically TCR-less T cells. This unique influence of NRs in
ILC2/3, partially shared with RORg+ Tregs and some ydT, might prompt the speculation
that these TFs and OCRs are active in cells at the microbial interface; it is also possible
that these ILCs are further differentiated than any other cells in the dataset, a stage at
which the NR family becomes more prominent. (2) T cells as a default pathway?
Dominantly influential controllers were identified for B, myeloid and ILCs, but no strong
equivalent emerged for T cells (influenced more weakly by Lef1/Tcf7, Tcf3, Ets, Runx
and Gata). Unless a dominant T-determining factor was missed by AI-TAC, the
implication is that T cell differentiation follows a different strategy. One might speculate
that T cells are a lineage adopted when other avenues are no longer possible (i.e. by
having terminally extinguished Spi1 and Pax5), or that the plasticity and functional
diversity of T cells require flexible control, not compatible with a dominant master
regulator. (3) 21 novel motifs were identified by AI-TAC (Fig. S5). Some of the un-
annotated filters may represent “half-sites”, perhaps mere building blocks used by the
CNN 4 or perhaps biologically relevant half-sites as reported for NF-xb or NRSF 2044,
Others appeared like typical TF binding sites (short and continuous blocks of preferred
bases), and may represent unrecognized TFs or alternative sites for known TFs (TFBS
databases are known to be incomplete) and require further investigation. Also intriguing
were the poorly reproducible filters, which typically recognized scattered conserved

bases; their low individual influence and non-reproducibility in different training runs
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would suggest that they only represent noise, but we cannot rule out that they
correspond to a different regulatory syntax, perhaps read by non-coding RNAs. (4) The
repeat structure (no tandem repeats outside of NF-xb and Sp1, but pervasive motif
repeats in different enhancers connected to the same gene) suggests that eukaryotic
genes do exploit cooperative multimeric interactions by repeats of the same factor, but
do so by recruiting several spaced OCRs rather than by locally dense tandems, a
solution that may provide both transcriptional and evolutionary flexibility. (5) Novel TF
combinations. Deeper insights of co-occurring TF motifs were gained from combinatorial
predictions (Fig. 5), again strongly validated by biochemical data. Some associations
were expected (e.g. Pax5 and Ebf1), and the combination of AI-TAC and ChlP-seq
validation data revealed patterns of differential association in B cell stages, as well as
factors with broadly distributed co-influence (Tcf3 and Ets). But AI-TAC also identified
493 significant interactions, many previously unreported, some encompassing
annotated filters (e.g. filter9, associated with NF-xb, Runx and Ets).

The underlying logic in this work is that, by analyzing how a deep neural network
can decipher the cis-regulatory code of immune cell differentiation, we can infer how the
biological network in live cells actually does. Some caveats need to be stated, however.
Choosing correlation to determine the loss function improved predictions for variably-
active loci, but penalized predictions of ubiquitously active OCRs. Another caveat is
that CNNs leverage repeated effects, and will fail to identify very specific TF
combinations that act only on one or two genes that may nevertheless be functionally
critical (e.g. the A5 enhancer 28 or the fine interplay between Tbx21 and Eomes during

effector T cell differentiation #°). Transcription factors have varying degrees of
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dependence on sequence-specific DNA-binding: none for TFs such as Aire 46, variable
for others such at the estrogen receptor [strictly dependent on a canonical motif at some
loci, coopted in a looser manner at others 47]. AI-TAC would clearly miss TFs that do not
rely on specific binding. Similarly, some TFs are “opportunistic’, only binding to
chromatin already made accessible by other factors; FoxP3 is in this category 8, and it
is interesting that no TF of the Forkhead family was discovered by AI-TAC, suggesting
that Forkhead family factors may not be pioneers in hematopoietic lineages cells as
they are in mesenchymal cells 4°. TFs whose binding specificity is very dependent on
dimer formation or on cofactors might be difficult for AI-TAC to recognize, although it is
interesting to note that it is able to ferret out motifs for NF-xb, a TF family notorious for
its combinatorial specificity and tolerance to variation 2°. Relatedly, two factors
competing for the same motifs may be poorly resolved by AI-TAC (e.g. the motif bound
by Bcl11a and Bcl11b, essential for myeloid and T development respectively %057,
appears mainly influential in myeloid and B cells). Finally, AI-TAC cannot read the
influence of other means of regulation like specific DNA methylation, and there should
be potential in integrating multiple data modalities into CNNs to further improve
performance.

In conclusion, integrating a comprehensive cis-regulatory atlas of chromatin and
transcript data with deep learning approaches has revealed modalities and complex
patterns of immune transcriptional regulators, and how cell and lineage specificity
across the immune system arise from the DNA sequence and can be encompassed in a

genetic regulation network. Although some blind spots remain, this draft regulatory
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roadmap should provide a foundation to graft additional layers of human- or machine-

generated results, and a springboard for experimental exploration.
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FIGURE LEGENDS

Figure 1. AI-TAC learns to predict cell-specific ATAC-Seq activity from sequence
composition across the mouse immune system. a, A schematic of the AI-TAC
model and its validation. AI-TAC is a deep convolutional neural network that takes as
input OCR sequences and outputs ATAC-seq accessibility profile for 81 mouse immune
cells. The sequence features (motifs) that are predictive of chromatin accessibility are
learned during the training process. By analyzing the first and later layer filters, we
derive important motifs and their combination that enable the model to make prediction
for given OCRs. The predictions and motifs derived by AI-TAC are validated based on
ChIP-seq datasets. b, Observed (top) and predicted (bottom) chromatin states of 81
immune cell-types for a single test OCR. ¢, Histogram of AI-TAC test set predictions
trained on real data (orange) versus a model trained and tested on samples with
randomly permuted chromatin accessibility profiles (blue). d, The coefficient of variation
of the test set OCR chromatin accessibility profile on the x-axis versus the AI-TAC
prediction correlation for those OCRs on the y-axis. e-f, Observed (left) and predicted
(right) chromatin accessibility profile for real OCRs with e |corr| < 0.1 and with f corr >

0.8.

Figure 2. AI-TAC learns a wide range of motifs that together predict immune
differentiations. a, The reproducibility of each of the 300 AI-TAC first layer filters
across 10 additional re-trained models. Each model is trained on a different 90%

subset of OCRs and initialized with different values. A filter is defined as “reproduced”
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in a different model if it matches any filter with a TomTom g-value of 0.05 or less. b, Log
of filter influence versus log of number of OCRs activated by the filter and colored by
information content of the filter’'s PWM. An OCR is considered activated by the given
filter if any of the filter activations for that OCR are at least 2 the maximum activation
value of that filter across all input sequences, indicating the presence of that filter motif
in the OCR. ¢, Examples of first layer filter PWMs and their alignment to known mouse
TF motifs in the CIS-BP database, found using the TomTom alignment algorithm. d,
Influence versus the number of OCRs with filter influence > 0.0025 for 99 filter motifs

reproducible in at least 80% of model training iterations.

Figure 3. Cell-type profiles of learned motifs. a, Cell-type specific influence profile
for the 99 reproducible filters found in at least 80% of model training iterations. b-d, Log
of filter influence in original AI-TAC model versus AI-TAC fine-tuned for one additional

epoch exclusively on the b, T-cell lineage, ¢, B-cell lineage and d, myeloid cell lineage.

Figure 4. Biochemical validation of AI-TAC learned motifs. a, The top 500 OCRs
influenced by filter167 (Pax5) were selected, their consensus verified (middle panel)
and their ATAC signal in B cells or thymic DPs displayed at right. b, Filter 255
activations indicate the presence of a Spi1 motif within two OCRs with known Spi1
binding sites in the lI1b locus. ¢, Validation of predicted Pax5, Ebf1, and Lef1/Tcf7 filters
with in vivo ChlP-seq. Proportion of TF peak overlap was computed from influential
OCRs (top 500). TF filter specificity was controlled by cross-comparisons of binding

enrichments with AI-TAC predicted filters. Left to right; Pax5 bound in filter 167 (Pax5)
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OCRs pro (0.7) and mature B cells (0.84), cross-compared with filter 166 (Lef1/Tcf7)
OCRs pro (0.09) and mature B (0.04). Ebf1 bound in filter 260 (Ebf1) OCRs Pro B
(0.78) and filter 166 (Lef1/Tcf7) OCRs Pro B (0.006). Tcf7 bound in filter 166 (Lef1)
OCRs T.DP (0.42) and filter 167 (Pax5) OCRs T.DP (0.02). d, AlI-TAC predicted ATAC-
seq footprint from Pax5 (167) OCRs, independently derived Pax5 ChlP-seq footprint,

predicted footprint of CTCF (275) and CTCF motif.

Figure 5. Identifying combinations of motifs that are predictive of immune
differentiations. a, Each dot represents a filter. Y-axis shows the expected vs observed
ratio for the number of OCRs that contained more than one instance of a filter's motif.
An OCR is defined as containing a filter motif if any of the activations for that OCR
(across its 251bp length) are above "2 the maximum activation of that filter across all
input sequences. b, Histograms show the distribution of distances between two
occurrences of the same motif on a given OCR. ¢, For each filter, scatter plot shows
the expected versus observed ratio for the number of genes whose set of assigned
OCRs contained multiple instances of the same filter motif (y-axis) against the filter
motif's information content (x-axis). d, Histogram shows the number of filters per OCR
that have an influence value of 0.0025 or more, which corresponds to a 5% impact on
the correlation of the prediction. e, For each pair of filters, the number of OCRs where
both filters were deemed influential is shown on the x-axis, and the hypergeometric p-
value for the significance of the number of shared OCRs, as compared to expectation
based on prevalence alone, is shown on the y-axis. To eliminate technical artifacts,

filter pairs whose motifs were similar to each other (PWMEnrich>0.5) were removed. f,
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Enrichment of OCRs (top 500 influential OCRs per filter, n=49,500 OCRs) bound by
Pax5 in AI-TAC reproducible filters (n=99) for pro and mature B cells. g, In vivo ChIP-
seq occupancy for Pax5 and Ebf1 in AI-TAC predicted B cell OCRs (n=5,443). Co-
occupancy patterns observed in predicted B OCRs and for non-B predicted OCRs
(n=5,443). h, Enrichment of OCRs (top 500 influential OCRs per filter, n=49,500 OCRs)
bound by Tcf7 or Pax5 ChIP-seq in AI-TAC reproducible filters (n=99) for T.DP and pro

B cells respectively.

Figure 6. Identifying combinatorial regulatory syntax embedded in AI-TAC's fully-
connected layer. a, t-SNE representation and clustering of well-predicted OCRs
(n=30,875) based on their scores across the last layer (695 nodes) of the trained Al-
TAC model. b, ATAC-seq intensity of OCRs across immune lineages. ¢, OCRs
influenced by filters 167 (Pax5), 260 (Ebf1) and co-occurring. d, OCRs influenced by
filters 34 (Cebp), 255 (Spi1) and co-occurring. e, ILC lineage OCRs parsed by ATAC-
seq mean intensities of ILC2/3 and NK subsets. f, OCRs influenced by filters 68
(Nr1d1/Rory, 220 (Nr2f6), and 106 (Tbx21/Eomes). g, OCRs influenced by filter 23 and

275 (Ctcf).

Figure 7. Combinations of RNA-seq expression data and OCR-motif predictions
enables construction of gene regulatory networks. a, Histogram of the number of
gene targets for each TF. b, For each lineage, RNA-seq based gene expression values

for differentially expressed gene across cell populations is shown on the right and
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inference of TF assigned to each target gene is shown on the left. For each lineage, the

ordering of genes (rows) is preserved between the two heatmaps.

Figure 8. AI-TAC model is predictive of human OCR accessibility profiles. a, The
trained AI-TAC model was directly applied to predict accessibility profile of human
sequences underlying OCRs across eight cell-types that overlapped between mouse
and human datasets. Figure shows histogram of AI-TAC predictions (measured by
Pearson correlation between observed and the model’s predictions) on “real” human
251bp sequences underlying 539,611 OCRs (orange) versus randomly permuted
human OCR sequences. b, Log influence of AI-TAC’s filters in mouse (x-axis) and
human (y-axis), on the basis of nullification of each filter at a time. ¢, Prediction
performance (measured by Pearson correlation) for each human OCR based on AI-TAC
trained on mouse data (x-axis) and a model directly trained on human ATAC-seq data
(y-axis). The human-based model was trained on 50% of human OCRs. The scatter plot
only shows the performance of 50% of human OCRs that were considered part of the

test set.
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