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SUMMARY 

 

The mammalian genome contains several million cis-regulatory elements, whose 

differential activity marked by open chromatin determines organogenesis and 

differentiation. This activity is itself embedded in the DNA sequence, decoded by 

sequence-specific transcription factors. Leveraging a granular ATAC-seq atlas of 

chromatin activity across 81 immune cell-types we show that a convolutional neural 

network (“AI-TAC”) can learn to infer cell-type-specific chromatin activity solely from the 

DNA sequence. AI-TAC does so by rediscovering, with astonishing precision, binding 

motifs for known regulators, and some unknown ones, mapping them with high 

concordance to positions validated by ChIP-seq data. AI-TAC also uncovers 

combinatorial influences, establishing a hierarchy of transcription factors (TFs) and their 

interactions involved in immunocyte specification, with intriguingly different strategies 

between lineages. Mouse-trained AI-TAC can parse human DNA, revealing a strikingly 

similar ranking of influential TFs. Thus, Deep Learning can reveal the regulatory syntax 

that drives the full differentiative complexity of the immune system. 
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INTRODUCTION 

 

The immune system has a wide array of physiological functions, which range from 

surveillance of the homeostasis of body systems to defenses against a diversity of 

pathogens. Accordingly, it includes a wide array of cell-types, from large polynuclear 

neutrophils with innate ability to phagocytose bacteria, to antibody-producing B cells, to 

spore-like naïve T cells whose effector potential becomes manifest upon antigenic 

challenge. With the exception of rearranged receptors, all immunocytes share the same 

genome, and this phenotypic diversity must thus unfold from the genome blueprint, 

each cell-type having its own interpretation of the DNA code. This differential usage is 

driven by the interplay of constitutive and cell-type specific transcription factors (TFs) 

and regulatory RNA molecules, and possibly yet unknown sequence-parsing molecular 

entities. 

Cell-specific recognition and effector potential are anchored in the cell’s 

transcriptome, itself a reflection of the conformation of DNA within chromatin which 

enables the expression of accessible genes, directly or as modulated by triggers from 

cell receptors and sensors. Recent technical advances reveal chromatin accessibility 

with high precision and across the entire genome 1, providing reliable charts of 

chromatin structure through immune cell-types 2-5. In these, Open Chromatin Regions 

(OCRs) reflected quite closely gene expression in the corresponding cells. The 

question, then, is to move from these descriptive charts to an understanding of how 

these chromatin patterns are determined. Analyzing the representation of TF-binding 

motifs (TFBS) in these differentially active OCRs provided some clues as to the TFs 
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potentially responsible for cell-specificity, especially by using the cell-type specific 

expression of the TFs themselves as a correlative prior 2. Although motif analysis is a 

mature tool, it relies on imperfect TFBS tables assembled from different sources of data, 

with unavoidable noise, and more importantly does not provide insights into functional 

and cellular relevance of sequence patterns.  

Artificial neural networks present a powerful approach that can learn complex and 

non-linear relationships between large sets of variables, and can recognize patterns 

whose combinations are predictive of multifaceted outcomes. Convolutional neural 

networks (CNNs) in particular can learn the combinatorial patterns embedded within 

input examples without the need for alignment of examples.  Recent studies have 

begun to take advantage of CNNs to tackle aspects of gene regulation 6, including 

models that predict chromatin state 7-9, TF binding 10,11, polyadenylation 12, or gene 

expression 7,13 solely on the basis of DNA (100bp-1Mb) or RNA sequences, with the 

potential to ferret out relevant motifs. 

The ImmGen consortium has recently applied ATAC-seq to generate an 

exhaustive chart (532,000 OCRs) of chromatin accessibility across the entire immune 

system of the mouse (81 primary cell-types and -states) 2. The data encompass the 

innate and adaptive immune systems, differentiation cascades of B and T lymphocyte 

lineages, detailed splits of myeloid subsets at baseline or after activation. We reasoned 

that it might provide the power to push the boundaries of what CNNs can learn, in terms 

of: (i) learning, solely from the DNA sequence of the OCRs, their pattern of activity 

across the immune system; (ii) extracting the sequence motifs, and their combination, 

that result in these predictions. The results showed that CNN model we derived 
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(referred to as “AI-TAC”) can accurately predict the fine specificity of cell-type specific 

OCRs. The position of the uncovered motifs that are influential in silico recapitulated the 

binding sites of their molecular counterparts in “real” ChIP-seq data, and the motifs 

learned by AI-TAC are also a highly accurate match to known TF motifs, revealing novel 

aspects of the regulatory strategies used by different immune cells.  
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RESULTS 

 

AI-TAC can predict enhancer activity from sequence alone 

We developed and trained a deep convolutional neural network (CNN), hereafter 

AI-TAC, to predict the chromatin accessibility profiles across 81 immune cell-types on 

the basis of DNA sequences alone. In this way, AI-TAC learns the relationship between 

the combination of sequence motifs embedded within an OCR and its accessibility 

profile across immune cell-types. Fig. 1a illustrates the steps of training, interpretation 

and biochemical validation followed to ask whether a CNN model could effectively 

decipher, starting from DNA sequence, the motifs that drive the cell-specificity of 

immune gene expression. 

In practice, the model was trained by using as input 90% of 327,927 sequences, 

each 251bp long, of the OCRs defined by our recent ATAC-seq effort 2, to predict as 

output the profiles of ATAC-seq of each OCR across all measured cell-types using a 

multi-tasking strategy. The ability of the CNN to learn an accurate mapping between 

inputs and outputs depends on several hyperparameters, including the number of 

hidden layers, filters and their length. Bayesian optimization 14 showed that an 

architecture with three convolutional layers followed by two fully connected layers, with 

19 bp sequence detected by the first layer filters, resulted in lowest achieved error on 

the validation data (Fig. S1a-b). We also found that the form of the loss function 

resulted in differential ability to predict cell-type specific activity profiles: using Pearson 

correlation as the loss function metric enhanced the ability of the model to accurately 

predict sequences whose activity varies across cell-types (p=10-89; Fig. S1 c,d). On a 
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subset of held-back OCRs, the trained AI-TAC model showed impressive performance 

on precisely predicting granularly variable accessibility across all populations, as shown 

for one example Fig. 1b.  Overall, 61% of test OCRs were predicted with a statistically 

significant correlation coefficient (at FDR 0.05, Fig. 1c). We observed largely monotonic 

relationship between the predictability of an OCR and its variation between immune cell-

types, as OCRs with low prediction performance typically had small coefficients of 

variation (Fig. 1d). This relationship was expected given the mathematical implication of 

the loss function utilized, but this graph also indicates that the model is not missing out 

on particular classes of OCRs beyond that are ubiquitously active (as confirmed in the 

heatmap of Fig. 1 f,g).  

We assessed the robustness of these predictions by performing several 

randomization experiments to create three different null models (Fig. 1c, S2a), as well 

as performing chromosome leave-out experiments with 19 different models (Fig. S2b). 

In addition, we performed 10 independent trials of 10-fold cross-validation (i.e., 100 

trained models) so that each of the 327,927 OCRs was considered as part of ten 

different test sets (Fig. S2c,d). These data allowed us to confirm that well predicted 

OCRs were generally well predicted across different models trained on different subsets 

of the data, suggesting that regulatory logic captured by the model was generalizable. 

 

Learned motifs are associated with known pioneer factors and their lineage 

specificity 

To understand the regulatory syntax learned by the AI-TAC model, we started by 

interpreting the first layer filters. Each filter in the first convolutional layer is “activated” 
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by a short sequence, the sequence motif that activates each of these first layer filters 

being optimized during training. We first defined operational parameters of robustness 

for each of the 300 first-layer filters: reproducibility (how often its motif recurs in 

independently trained models), influence (how much it contributes to the prediction 

accuracy, measured by iterative nullification of each filter), and frequency (how many 

OCRs in the dataset activate it) (Methods, Table S1). We computed influence values on 

the set of well-predicted OCRs (with prediction correlation greater than 0.75), but 

confirmed that the results were similar when using only the test OCRs (Fig. S2f). 

Following the strategy of 7, we reconstructed the motif learned by each filter by finding 

the 19bp sequences (the filter length determined by Bayesian Optimization) within 

OCRs that are activated by each filter, determining their consensus (represented as a 

position weight matrix - PWM) and computing the information content (IC) in these 

motifs (Table S1).  For a baseline comparator, we applied the DeepLIFT framework 15 

to these data and cross-matched AI-TAC results. DeepLIFT did not yield more 

determining motifs, once redundancy was accounted for, if anything less (Fig. S3).  

Combining these parameters revealed two major groups among these trained first-

layer filters (Fig. 2a): filters in the first group (e.g. 133, 167, etc.) were re-discovered 

repeatedly in every or almost every independent training run, had high influence (>10-4) 

and IC, with typically short (8-12 bp) consensus motifs reminiscent of typical TF binding 

sites. The second group (e.g. 259, 37, 249, 241) had far less reproducibility, influence 

and IC, with motifs that only included a few scattered bases or where less focused (~15 

bp long). Some of these low-influence and non-reproducible filters may represent noise 

in the neural network 16, or yet unknown regulatory motifs whose similarity structure may 
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escape conventional alignment algorithms.  We focused the rest of the analysis on the 

99 reproducible filters, as a model retrained using these had only a small drop in 

performance as compared to the full model (Fig S2e, 99 altogether). As illustrated in 

Fig. 2b, reproducible filters partitioned between filters with restricted distribution 

(activating 103 to 104 OCRs) and generally higher influence, and a group of more 

frequently activated filters with overall lower influence and IC. To identify known motifs 

associated with the learned PWMs, we searched the Cis-BP database of TF motifs 17 

using the TomTom algorithm 18. 101 of the 300 learned PWMs corresponded to at least 

one known TF motif at q-value < 0.05 (Table S2), and interestingly majority of these 

annotated PWMs belonged to the set of reproducible filters: 76 of 99 reproducible filters 

correspond closely to known TF motifs, many with astonishing similarity (as illustrated 

for Runx, Ets, and Ctcf in Fig. 2c). In 10 cases, the model also discovered exact 

reverse complements of the same motif (e.g. CTCF in Fig. 2c). 

The regulatory landscape of chromatin opening throughout immune cell 

differentiation, as learned de novo by AI-TAC, can thus be summarized by the 99 motifs 

displayed in Fig. 2d (given the known complexities of TF motif assignments, that can 

reflect promiscuity and variation with cofactors or post-translational modifications, we 

opted for caution when several alternative TFs were candidates, annotating several 

filters at the family level only). We further refined the annotation of the most likely TF to 

each motif by combining Cis-BP scores with the correlation between activity of the OCR 

and expression of the TF across cell-types (illustrated for Pax5 in Fig. S4a); these 

correlations were comparable for filters annotated to the same TF (Fig. S4b; Table S3). 

The resulting set re-discovered several canonical regulators of lineage differentiation: 
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Pax5, Ebf1, Spi1 (aka PU.1), Gata3. Other TFs were perhaps less expected in the 

context of cell-specific expression such as CTCF, a ubiquitous TF better known for its 

structural role in nuclear architecture 19, suggesting a cooperative role of CTCF as an 

adjunct to lineage-specific factors. A few influential TFs were represented by several 

filters, usually with slightly different motifs for the same TF (Fig. S4c). These nuances 

may correspond in part to technical noise from model over-parametrization 16, but they 

are also expected from known degeneracy in TF binding specificity, which is further 

influenced by interactions within dimers, as exemplified by the NF-kb family 20. AI-TAC 

filters indeed distinguished the canonical NF-kb hetero-dimer (filter231) and homodimer 

(filter247) motifs. For a broader perspective on how AI-TAC understands NF-kb family 

binding sites, we clustered the PWMs of all filters annotated to NF-kb through ten 

independent training runs. Interestingly, the hetero-dimer motif resurfaced regularly, 

while other motifs were less frequently discovered or allowed more sequence variation, 

suggesting gradations in their functional importance (Fig. S4d). Finally, several filters 

corresponded to motifs with no significant matches in Cis-BP or similar databases (Fig. 

S5). Some were short, and plausibly corresponded to half-sites, but others were longer 

and more complex, and may correspond to unrecognized TF binding motifs. 

 

Learned motifs associated with cell-type profiles 

In addition to the overall influences, we next computed a per cell-type influence 

profile, quantifying the predictive importance of each filter in each of the 81 immune 

populations, as the difference between prediction values with and without each filter on 

a per cell-type basis (Fig. 3a). Interestingly, this analysis revealed both positive and 
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negative influences (Table S1). Several of these positive influences (where the filter is 

needed for the full activation in the predicted profiles) were highly consistent with known 

roles of the corresponding TFs: Pax5 and Ebf1 essential for B cell differentiation, Spi1 

and Cebp in myeloid cells, and Tbx21/Eomes in NK cells. AI-TAC was able to identify 

granular specificity of TFs beyond lineage-level importance: for instance, in the B 

lineage (top left of Fig. 3a), Pax5 showed pronounced influence early in proB stages, 

and late in germinal center B cells, while Pou2f2 (Oct2) was influential only in the latter. 

In myeloid cells, CEBP seems particularly influential in neutrophils, monocytes and 

tissue macrophages, but less so in dendritic cells (consistent with 2) and perhaps more 

surprisingly in central nervous system (CNS) microglia, an interesting notion given that 

microglia have a distinct origin from most other macrophage populations. No filter had 

the same degree of influence for T cells as Cebp/Spi1 or Pax5/Ebf1 had for myeloid and 

B cells.   

More paradoxical were the negative influences (where the predicted activity of 

OCRs is over-estimated in its absence). These occurred most prominently for the 

myeloid-specifying motifs recognized by Spi1 or Cebp, but not for every strong filter (i.e. 

not for Pax5 or Tbx21 motifs). Thus, the neural network uses the presence of a Spi1 

motif in an OCR to enforce its inactivity in T cells, beyond the neutrality that might be 

expected from a missing TF, a concept possibly connected to the need for Spi1 shut-

down for T cell differentiation 21. 

AI-TAC appears to learn stage-specific influences within lineages. To go deeper in 

identifying motifs and TFs that have predictive influence within a lineage, we used a 

“fine-tuning” strategy 22: the AI-TAC model (trained for 10 epochs initially) was further 
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retrained for one epoch to predict chromatin accessibility in only the T, or B or myeloid 

datasets (Table S4). Such a fine-tuned model should reconfigure its learned parameters 

to enhance its ability to predict the cell-type-specific accessibility profile within a given 

lineage.  When comparing the filters in these fine-tuned models to the initial AI-TAC 

model, we observed that the CNN selectively down-weighted (“forgot”) filters in a very 

logical manner, e.g. decreased influence of B-specific Pax5/Pou2f/Ebf1 filters in T or 

myeloid models, or of Cepb filters in non-myeloid models (Fig. 3b-d). Conversely, 

several filters gained influence in all three (Tcf3 (aka E2A), NFkB, Zkscan1, Maf, bZIP). 

This is consistent with the notion that E2A or NF-kb are more involved in modulating 

differentiation or activation states within all immune lineages, rather than specifying 

them. Because the dataset included 22 distinct T lineage cells, providing sufficient 

training data, we also trained an AI-TACT model solely on T cells (Fig. S6a). Many of the 

same filters reappeared, but with a slightly different emphasis (e.g. the influence of NF-

kb is high during pre/pro-T stages but wanes in resting mature T cells, but returns in 

Tregs and activated/memory CD8+ T cells).  

If AI-TAC accurately predicts cell-specificity of OCRs activity, it should also 

correctly assign differences in chromatin accessibility between cells. This was clearly 

the case for the OCRs that differ between T cells and macrophages (Fig. S6b). We also 

tested predictions for OCRs whose activity is induced by innate receptor triggering (NKT 

cells, 3 hrs after LPS injection in vivo, Fig. S6c). There was again a very good fit 

between predicted and observed OCR activity, in particular for OCRs influenced by NF-

kb filter231 (NF-kb-het) and whose accessibility is upregulated by LPS, in vivo and in 
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silico (Fig. S6c). Thus, AI-TAC can faithfully map differences between cell-types, for 

large inter-lineage distances as well as more focused responses to cell activation. 

 

Biochemical validation of predicted TF binding 

While the identity of the motifs learned in silico were striking, and the distribution of 

their influence across cell-types made sense, it was important to validate the 

significance of these observations. We first selected the 500 OCRs most influenced by 

filter167 (Pax5), which aligned on the Pax5 consensus motif (Fig. 4a). In accordance 

with expectations, these OCRs were active in B cells, but not in thymic DPs (Fig. 4a, 

right panels). We then examined the fit between the in silico learned filters and the 

actual position of the corresponding TFs in the genome, deduced from chromatin 

immuno-precipitation (ChIP-seq).  Overall, we observed a very strong concordance 

between AI-TAC’s predictions and ChIP-seq data. As one example, OCRs predicted to 

be influenced by filter 255 (Spi1) recapitulated the two main binding sites of Spi1 in the 

Il1b locus (Fig. 4b). More generally, the top OCRs influenced by filters 167 (Pax5), 260 

(Ebf1) or 166 (Lef1/Tcf7) strikingly overlapped with binding sites defined by ChIP-seq 

for those factors, relative to control OCRs (0.006 to 0.09) (p<0.003, Fig. 4c).  

Finally, we analyzed deep ATAC-seq traces in B lymphocytes at nucleotide-level 

resolution, where one can discern a “footprint” where the binding of a TF prevents or 

favors accessibility by the Tn5 transposase 23. We superimposed deep (>200M reads) 

ATAC-seq traces at positions predicted to activate Pax5 or CTCF filters in AI-TAC over 

true binding sites independently determined known from ChIP-seq and motif 

identification. Here again, AI-TAC driven predictions accurately coincided with true TF 
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binding, showing the same fine details of accessibility (Fig. 4d). Thus, whether in 

matching the distribution of TF binding or the nucleotide-level traces to biochemically 

determined ones, AI-TAC in silico predictions are strongly validated by in vivo data. 

 

Dissecting the combinatorial logic of chromatin opening 

That enhancer elements tend to occur as repeats has long been a theme, either 

because those first discovered in viral genomes occurred as tandem repeats, or 

because synthetically engineered enhancers were more effective as strings of the same 

motif. It was thus of interest to ask whether repeats of the same motif were enriched 

among active OCRs. This was not the case (Fig. 5a): there was no greater frequency of 

recurrence of activating filters within an OCR than would be expected by chance, with 

two interesting exceptions: filter231 (NF-kb-het), consistent with the demonstration that 

NF-kb uses clustered binding sites non-cooperatively to incrementally tune transcription 

24; and two GC-rich motifs recognized by Sp (242, 154), consistent with reports that SP1 

functions best in the context of repeated GC-rich blocs 25. Interestingly, the relative 

positioning of these repeats was not random, e.g. maxima at 90 and 140 bp 

(nucleosome length?) for NF-kb (Fig. 5b). On the other hand, activation of the same 

filter by OCRs likely to control the same gene, as evidenced by regression 2 showed a 

significant enrichment compared to chance (Fig. 5c). Thus, shortly spaced repeats of 

controlling motifs are not a regulatory strategy commonly employed to control 

mammalian immune cell differentiation, motif repetition being provided by spaced 

elements connected by DNA loops. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 23, 2019. ; https://doi.org/10.1101/2019.12.21.885814doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.21.885814
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

   
 

Given the size of the vertebrate genomes, combinations of transcriptional 

regulators are the only practicable solution to encode the complexity of development 

and cell-type differentiation 26. Pervasive interactions between TFs within multimolecular 

complexes have been observed in genomic and functional experiments, but an overall 

perspective on the combinatorial interactions that actually influence transcription 

remains incomplete. It was thus of interest here to ask which combinations of motifs are 

co-influential in AI-TAC’s predictions, and hence suggest co-operation between TFs.  

Because the higher order relationships between first layer motifs are encoded in the 

deeper layers of the network, an obvious first attempt at identifying important filter 

combinations is to look for combinations of motifs assembled by the second layer 

convolutional filters 12.  Due to the maxpooling applied to the first layer output, 

constructing clear motifs from second layer activations was not possible and we instead 

examined the second layer filter weights directly.  We found that in a large number of 

cases the second layer filters recognized similar (or reverse complement) first layer 

motifs, indicating that the second layer is perhaps assembling cleaner versions of first 

layer motifs rather than learning combinatorial logic (Fig S7).  

As an alternative, we identified for each OCR the set of filters that impact the 

accuracy of its prediction (i.e., influence) by 5% or more. Of the set of OCRs that were 

influenced by at least one filter at this threshold, many (N=23,910, 56%) were influenced 

by 2 to 6 filters, and a few (N=1,514, 4%) were even impacted by 10 or more filters (Fig 

5d). This large set of OCRs impacted by multiple filters provided a rich base to identify 

common co-influential motifs. To identify influential combinations between different TFs, 

we computed for each filter pair the number of OCRs that they both impact, and 
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compared it to expected co-influence based on each filter’s prevalence. This analysis 

yielded 493 co-influential filter pairs (adjusted p<0.05, and number of co-

occurrences>100) (Fig. 5e, Table S5).  Interestingly, filters that are broadly influential 

tended to be significantly co-influential with each other (e.g., Ebf1 and Pax5, n=193, 

p<10e-20; Lef1/Tcf7 and Runx, n=471, p<10e-50).  Among over-represented pairs, 

some TFs were highly recurrent, acting as “hubs” of sorts: Tcf3 (filters 78/8/93), Runx 

(filter10), Ets (filter11), and Nfat (filter40) co-occurred with 40 or more other filters 

(Table S5).  

Some of these inferences in terms of motif co-influence were congruent with 

existing knowledge (e.g. Tbx21/Runx, Spi1/Cebp, etc.), but to provide proof-of-principle 

validation we again turned to ChIP-seq data. Using Pax5 ChIP-seq datasets generated 

in pro B and mature B cells 27, we asked what fraction of the OCRs influenced by each 

AI-TAC filter overlapped with a validated Pax5 binding site. As expected from Fig. 4c, 

OCRs influenced by filters 167, 217 and 257 (all annotated as Pax5) contained a high 

proportion of true Pax5 binding sites in both proB and mature B cells (0.62 to 0.83, Fig. 

5f). Interestingly, OCRs influenced by several other filters also contained a high 

proportion of Pax5-binding sites (in particular filters 260 (Ebf1), 89 (Irf1/Stat2/Prdm1) or 

190 (Pou2f1). Finding Ebf1 associated with Pax5-annotated filters is consistent with the 

known molecular collaboration between Ebf1 and Pax5 in controlling B-cell identity 28-30. 

This conclusion was borne out by displaying Pax5 and Ebf1 ChIP-seq signals in OCRs 

active in B cells, showing that some OCRs preferentially bound one of these two TFs, 

and many both (Fig. 5g).  
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As another validation and to further identify combinatorial signals, we compared 

ChIP-seq signals for Pax5 and Tcf7 (active in T cells) in OCRs predicted to be activated 

by different filters. OCRs influenced by Lef1/Tcf7 filters (166, 50, 80) were again 

strongly enriched in Tcf7 bound sites in DPs 31 but had low Pax5 signals in proB cells, 

while OCRs that activate Pax5 filters and its associated Ebf1 and Pou2f filters were 

enriched in Pax5 ChIP-seq signals in proB cells but low in Tcf7 (Fig 5h). OCRs that 

activated filters annotated to Sp1 (242) or bZip (51) were enriched in Tcf7 ChIP-seq, 

confirming that these TFs interact with Tcf7 (Table S5). Interestingly, AI-TAC 

predictions recovered regulators Tcf3/E2a (112) and Ets (11, 252, 120) with similar 

enrichments in Pax5 and Tcf7 bound sites, consistent with known overlapping 

regulatory function in the specification and maintenance of B and T lineages 32. Thus, 

combining AI-TAC predictions with in vivo ChIP-seq data parsed TF binding patterns 

with regulatory co-influence at different stages of T or B differentiation, and resolved 

novel regulatory motifs represented in Tcf7 bound sites across disparate T cell states.  

 

TF cis-regulatory syntax embedded in AI-TAC’s fully-connected layer 

The last fully-connected layer of a neural network represents the final non-linear 

embedding of the input examples in the derived feature space. To visualize this space, 

we represented each well-predicted OCR by its activation values across the 1000 

neurons of the last layer, and projected these activation vectors in 2-D using the t-SNE 

algorithm (Fig. 6a). When OCRs in this space were colored by their accessibility in 

different lineages, lineage-specific activity mapped to different segments (Fig 6b), 

indicating that this last layer discriminates well between lineages. Next, we analyzed 
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how the influence of individual first-layer filters (and corresponding TFs) projected in this 

space. The influence of Pax5 (filter167) and Ebf1 (filter260) was highest in closely 

related poles of the B cell area, overlapping partially (Fig. 6c), in accordance with Fig. 

5f. Similarly, the influence of Spi1 (255) and Cebp (34) in myeloid lineage OCRs was 

distinguishable, with some OCRs influenced by both (Fig. 6d), consistent with the 

known cooperativity of Spi1 and Cebp across myeloid cell-types 33. 

Among the patterns of OCR activity projected in this embedding space, the 

stratification of OCRs accessible in ILCs was intriguing (Fig. 6b), as it demarcated a 

cluster of OCRs distinct from all others. We cannot formally rule out that this 

demarcation of ILC3-active OCRs results from a technical artefact, although have no 

indication in this sense, but the dichotomy turned out to reflect a partition between 

OCRs active in NK cells vs ILC3 (and to a lesser extent in ILC2, colonic Treg and some 

Tgd cells; Fig. 6e). OCRs active in NK cells were influenced by Tbx21/Eomes-related 

filter106 (Fig. 6f), but ILC3-preferential OCRs were mainly influenced by filters 

annotated to the Nuclear Receptor (NR) family Nr1d1/Rorg (68) and Nr2f6 (220) (Fig. 

6f, see also 3a). The influence of these NRs is consistent with the demonstration of a 

role for Nr1d1 in Ilc3 differentiation 34. Thus, chromatin activity and TF control learned in 

silico appear very different for these groups of ILCs. 

Apart from predicting lineage specific patterns, the last layer also parsed a subset 

of OCRs with widespread activity across all lineages (“Ubq” in Fig 6a). These small 

clusters were characterized by the influence of the ubiquitous TFs Sp/Klf (filter242) and 

CTCF (filter23/275, Fig 6g), suggesting common structural motifs. Interestingly, the 

influence by CTCF filters was also observed in clusters of more cell-type specific OCRs, 
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a disposition consistent with the notion that CTCF partakes in the generic organization 

of DNA topologies in the nucleus, but also cooperates with cell-type specific TFs to form 

specific loop and domain structures 19. Thus, AI-TAC’s final layer embedding of OCRs 

had the ability to refine lineage and cell specificity through TF influence patterns, 

suggesting that marginal influence estimates can serve as a proxy for the biological 

regulatory impact.  

 

Gene regulatory network inference based on predicted TF binding sites 

We next assessed the relationship between chromatin accessibility, cis regulatory 

syntax at genes’ OCRs, and gene expression. Using results of a previous analysis in 

which we assigned cis OCRs to genes by correlating gene expression and chromatin 

accessibility across the 81 cell populations 2, we extrapolated from TFs that are 

influential for a given OCR in the AI-TAC model to sets of TFs predicted to be influential 

for regulation of each gene, generating a network of regulator TF to gene edges for 

4,569 expressed genes (Table S6, also available from www.immgen.org). The 

median number of regulators per gene was three, but 32% of genes were assigned 5 or 

more regulators (Fig. S8). Fittingly, we observed a significant overlap (N=144, hyper-

geometric p<10-20) between edges inferred in this analysis and those previously inferred 

from co-expression within independently generated microarray data 35.  

The main TF hubs in the co-expression based regulatory network also dominated 

the rankings based on influence in the AI-TAC. For instance, Spi1, Ets, Tcf3 emerged 

as regulators of a large number of genes (Fig. 7a). To go beyond general lineage 

differences, we analyzed cell-type specific networks in the B, T, and myeloid lineages, 
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by identifying differentially expressed genes and exploring their regulators.  Clustering 

of genes based on their expression carried over only weakly to their assigned regulators 

(Fig. 7b), with considerable heterogeneity in the inferred networks and scattered 

participation of many other possible regulators. There were also differences in network 

structure between lineages: B and myeloid networks consisted of several interactive 

hubs (Ebf1, Pax5, and Pou2f2 in B; Spi1 and Cebp in myeloid), but the T cell network 

was more distributed, with major hubs not as apparent, consistent with Fig. 3a. In 

summary, this representation departs from the “modular structure” which considers 

gene expression reducible to a set of co-regulated genes. Instead, though each lineage 

is associated with major regulators, these regulators interact with a diverse set of TFs 

depending on the actual target gene. 

 

Cross-species generalization of AI-TAC predictions 

The ultimate test of generalizability of a trained machine learning model requires 

assessing its performance on independent/external datasets. Because the human and 

mouse immune systems share many regulatory nodes 36-38, and TFs and their motifs 

are conserved across far wider evolutionary distance, we used cross-species testing to 

assess AI-TAC predictions on unseen human OCRs defined by a prior ATAC-seq 

analysis in 25 hematopoietic cell-types 5.  We first used the ImmGen pipeline to pre-

process the human dataset, identifying 539,611 OCRs of 251bp length. We then directly 

applied the mouse-trained AI-TAC model on these human sequences, and predicted 

their accessibility across the 8 cell-types from the mouse model that had a counterpart 

in the human dataset (Table S7).  The correlation between predicted and observed 
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accessibility profiles was significant for the majority of these OCRs, and highly skewed 

as compared to shuffled human OCR sequences (Fig. 8a).  

We then explored the degree of conservation of the important AI-TAC TF motifs. 

After fine-tuning the AI-TAC model on human data for four epochs decided by an early 

stopping strategy we obtained influence scores for each filter based on its prediction 

performance on the set of well-predicted human OCRs.  We observed a striking 

correlation in terms of predictive influence of a filter in mouse and human datasets, 

indicating preservation of overall regulatory impact (Fig. 8b). Only a few outliers were 

noted, for example Gata, which in this case may be explained by the addition of 

erythroid cells in the human dataset. 

Finally, to assess whether there exist broad classes of human OCRs that are not 

predictable by the mouse model, we trained a CNN directly on the human dataset and 

compared its prediction performance over the test set of OCRs to the mouse AI-TAC 

model. We observed a strong correlation between prediction performance of the mouse 

and human models on these human OCRs (Fig. 8c), with only a minor shoulder of 

OCRs that were better predicted by the human-trained model. This indicates that the 

regulatory code that is predictive of immune cell chromatin activity is extraordinarily 

conserved between human and mouse species.  

DISCUSSION 

 

Differentiated cell states and functions, deeply encoded in the DNA sequence, 

unfold through the coordinated action of TFs and of the transcriptional modifiers they 

coopt.  We show here that an artificial neural network can emulate these biological 
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decoders and predict, based on sequence alone, cell-specific patterns of chromatin 

accessibility across the entire immune system. It does so with astonishing precision for 

many OCRs, fully matching biochemical validation data, and in the process re-

discovering with extreme fidelity the binding sites for known transcription factors. By 

probing the sequence cues that the CNN detects and integrates, we infer how the 

biological decoders may operate, yielding a broad portrait of the sequence motifs and 

TFs that govern immune cell differentiation, strikingly conserved in human and mouse 

systems.  

There is growing interest in applying deep learning computation to predict 

transcriptional activity and RNA processing from nucleotide sequences 6,39,40.  A major 

breakthrough in using CNNs to accurately predict “activity profile” from sequence, which 

AI-TAC also benefits from, has been the utilization of multi-tasking frameworks that 

model multiple prediction tasks at once (e.g., predictions of accessibility across multiple 

tissues or cell types). The multi-task models can learn generalizable features whose 

combinations are predictive of different but related outcomes; this attribute is especially 

powerful in regulatory biology, where combinations of a finite set of sequence motifs 

underlies cellular differentiation. However, the representation of training data and the 

criteria for providing feedback to the model during the learning phase are of key 

importance, on which AI-TAC differs from previous work. By modeling continuous 

accessibility values across 81 cell populations that represent fine scale differences in 

immunocyte differentiation, and then measuring the model’s prediction error based on 

Pearson correlation, AI-TAC parameters were optimized to identify sequence features 

that are predictive of differences in profiles, rather than ubiquitous activity levels, a 
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feature that proved essential to its performance. Our study also differs from previous 

work by its emphasis in robust extraction of learned motifs and its validation with 

epigenomic data. 

Several elements may contribute to the excellent fit of the predicted profiles and 

motifs. Deep CNNs have outcompeted previous methods for the prediction of TF 

binding because the hierarchical nature of the model allows it to simultaneously learn 

both specific local patterns and long-range interactions in the sequence.  Moreover, 

these models do not require manual curation of the input features enabling the 

identification of new important sequence features by the model. Although several recent 

works have introduced methods for dealing with longer input sequences such as dilated 

convolutions 13,41,42, the relatively short sequences that result from the ATAC-seq 

dataset precisely encapsulate regulatory regions, making the basic deep CNN model 

highly effective here. 

The tight fit between AI-TAC’s “interpretation” and biochemical data gave high 

confidence that they were valid projections of the true regulation of chromatin 

accessibility across immunocytes. Furthermore, the cell-specific influence of these filters 

recapitulated prior knowledge about cell-type specificity for several transcription factors 

(e.g. Pax5 and Ebf1 in B-cells, Eomes/Tbx21 in NK cells, Spi1 and Cebp in myeloid 

cells). Several novel observations are worth highlighting: (1) The results yield a high-

resolution ranked landscape of chromatin regulation across the entire immune system. 

Even if these players were recognized, their dominance (Fig. 3a) was not necessarily 

appreciated: knockouts only identify the stage at which a TF becomes essential for 

further differentiation, potentially distinct from those involved in overall specification of 
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cell-specific chromatin architecture. Less expected was the dominant influence of 

Eomes/Tbx21 filters for NK cells, or of NRs for ILC2/3, which proved quite different from 

T cells (even the most differentiated NKT or effector CD8s), contradicting the over-

simplification that ILCs are basically TCR-less T cells. This unique influence of NRs in 

ILC2/3, partially shared with RORg+ Tregs and some gdT, might prompt the speculation 

that these TFs and OCRs are active in cells at the microbial interface; it is also possible 

that these ILCs are further differentiated than any other cells in the dataset, a stage at 

which the NR family becomes more prominent. (2) T cells as a default pathway? 

Dominantly influential controllers were identified for B, myeloid and ILCs, but no strong 

equivalent emerged for T cells (influenced more weakly by Lef1/Tcf7, Tcf3, Ets, Runx 

and Gata). Unless a dominant T-determining factor was missed by AI-TAC, the 

implication is that T cell differentiation follows a different strategy. One might speculate 

that T cells are a lineage adopted when other avenues are no longer possible (i.e. by 

having terminally extinguished Spi1 and Pax5), or that the plasticity and functional 

diversity of T cells require flexible control, not compatible with a dominant master 

regulator. (3) 21 novel motifs were identified by AI-TAC (Fig. S5). Some of the un-

annotated filters may represent “half-sites”, perhaps mere building blocks used by the 

CNN 43 or perhaps biologically relevant half-sites as reported for NF-kb or NRSF 20,44. 

Others appeared like typical TF binding sites (short and continuous blocks of preferred 

bases), and may represent unrecognized TFs or alternative sites for known TFs (TFBS 

databases are known to be incomplete) and require further investigation. Also intriguing 

were the poorly reproducible filters, which typically recognized scattered conserved 

bases; their low individual influence and non-reproducibility in different training runs 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 23, 2019. ; https://doi.org/10.1101/2019.12.21.885814doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.21.885814
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

   
 

would suggest that they only represent noise, but we cannot rule out that they 

correspond to a different regulatory syntax, perhaps read by non-coding RNAs. (4) The 

repeat structure (no tandem repeats outside of NF-kb and Sp1, but pervasive motif 

repeats in different enhancers connected to the same gene) suggests that eukaryotic 

genes do exploit cooperative multimeric interactions by repeats of the same factor, but 

do so by recruiting several spaced OCRs rather than by locally dense tandems, a 

solution that may provide both transcriptional and evolutionary flexibility. (5) Novel TF 

combinations. Deeper insights of co-occurring TF motifs were gained from combinatorial 

predictions (Fig. 5), again strongly validated by biochemical data. Some associations 

were expected (e.g. Pax5 and Ebf1), and the combination of AI-TAC and ChIP-seq 

validation data revealed patterns of differential association in B cell stages, as well as 

factors with broadly distributed co-influence (Tcf3 and Ets). But AI-TAC also identified 

493 significant interactions, many previously unreported, some encompassing 

annotated filters (e.g. filter9, associated with NF-kb, Runx and Ets).  

The underlying logic in this work is that, by analyzing how a deep neural network 

can decipher the cis-regulatory code of immune cell differentiation, we can infer how the 

biological network in live cells actually does. Some caveats need to be stated, however. 

Choosing correlation to determine the loss function improved predictions for variably-

active loci, but penalized predictions of ubiquitously active OCRs.  Another caveat is 

that CNNs leverage repeated effects, and will fail to identify very specific TF 

combinations that act only on one or two genes that may nevertheless be functionally 

critical (e.g. the l5 enhancer 28 or the fine interplay between Tbx21 and Eomes during 

effector T cell differentiation 45). Transcription factors have varying degrees of 
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dependence on sequence-specific DNA-binding: none for TFs such as Aire 46, variable 

for others such at the estrogen receptor [strictly dependent on a canonical motif at some 

loci, coopted in a looser manner at others 47]. AI-TAC would clearly miss TFs that do not 

rely on specific binding. Similarly, some TFs are “opportunistic”, only binding to 

chromatin already made accessible by other factors; FoxP3 is in this category 48, and it 

is interesting that no TF of the Forkhead family was discovered by AI-TAC, suggesting 

that Forkhead family factors may not be pioneers in hematopoietic lineages cells as 

they are in mesenchymal cells 49. TFs whose binding specificity is very dependent on 

dimer formation or on cofactors might be difficult for AI-TAC to recognize, although it is 

interesting to note that it is able to ferret out motifs for NF-kb, a TF family notorious for 

its combinatorial specificity and tolerance to variation 20. Relatedly, two factors 

competing for the same motifs may be poorly resolved by AI-TAC (e.g. the motif bound 

by Bcl11a and Bcl11b, essential for myeloid and T development respectively 50,51, 

appears mainly influential in myeloid and B cells). Finally, AI-TAC cannot read the 

influence of other means of regulation like specific DNA methylation, and there should 

be potential in integrating multiple data modalities into CNNs to further improve 

performance. 

In conclusion, integrating a comprehensive cis-regulatory atlas of chromatin and 

transcript data with deep learning approaches has revealed modalities and complex 

patterns of immune transcriptional regulators, and how cell and lineage specificity 

across the immune system arise from the DNA sequence and can be encompassed in a 

genetic regulation network. Although some blind spots remain, this draft regulatory 
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roadmap should provide a foundation to graft additional layers of human- or machine-

generated results, and a springboard for experimental exploration. 
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FIGURE LEGENDS 

 

Figure 1. AI-TAC learns to predict cell-specific ATAC-Seq activity from sequence 

composition across the mouse immune system. a, A schematic of the AI-TAC 

model and its validation. AI-TAC is a deep convolutional neural network that takes as 

input OCR sequences and outputs ATAC-seq accessibility profile for 81 mouse immune 

cells.  The sequence features (motifs) that are predictive of chromatin accessibility are 

learned during the training process. By analyzing the first and later layer filters, we 

derive important motifs and their combination that enable the model to make prediction 

for given OCRs. The predictions and motifs derived by AI-TAC are validated based on 

ChIP-seq datasets. b, Observed (top) and predicted (bottom) chromatin states of 81 

immune cell-types for a single test OCR.  c, Histogram of AI-TAC test set predictions 

trained on real data (orange) versus a model trained and tested on samples with 

randomly permuted chromatin accessibility profiles (blue). d, The coefficient of variation 

of the test set OCR chromatin accessibility profile on the x-axis versus the AI-TAC 

prediction correlation for those OCRs on the y-axis. e-f, Observed (left) and predicted 

(right) chromatin accessibility profile for real OCRs with e |corr| < 0.1 and with f corr > 

0.8.  

 

Figure 2. AI-TAC learns a wide range of motifs that together predict immune 

differentiations. a, The reproducibility of each of the 300 AI-TAC first layer filters 

across 10 additional re-trained models.  Each model is trained on a different 90% 

subset of OCRs and initialized with different values.  A filter is defined as “reproduced” 
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in a different model if it matches any filter with a TomTom q-value of 0.05 or less. b, Log 

of filter influence versus log of number of OCRs activated by the filter and colored by 

information content of the filter’s PWM. An OCR is considered activated by the given 

filter if any of the filter activations for that OCR are at least ½ the maximum activation 

value of that filter across all input sequences, indicating the presence of that filter motif 

in the OCR. c, Examples of first layer filter PWMs and their alignment to known mouse 

TF motifs in the CIS-BP database, found using the TomTom alignment algorithm. d, 

Influence versus the number of OCRs with filter influence > 0.0025 for 99 filter motifs 

reproducible in at least 80% of model training iterations.  

 

Figure 3. Cell-type profiles of learned motifs.  a, Cell-type specific influence profile 

for the 99 reproducible filters found in at least 80% of model training iterations. b-d, Log 

of filter influence in original AI-TAC model versus AI-TAC fine-tuned for one additional 

epoch exclusively on the b, T-cell lineage, c, B-cell lineage and d, myeloid cell lineage.  

 

Figure 4. Biochemical validation of AI-TAC learned motifs. a, The top 500 OCRs 

influenced by filter167 (Pax5) were selected, their consensus verified (middle panel) 

and their ATAC signal in B cells or thymic DPs displayed at right. b, Filter 255 

activations indicate the presence of a Spi1 motif within two OCRs with known Spi1 

binding sites in the Il1b locus. c, Validation of predicted Pax5, Ebf1, and Lef1/Tcf7 filters 

with in vivo ChIP-seq. Proportion of TF peak overlap was computed from influential 

OCRs (top 500). TF filter specificity was controlled by cross-comparisons of binding 

enrichments with AI-TAC predicted filters. Left to right; Pax5 bound in filter 167 (Pax5) 
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OCRs pro (0.7) and mature B cells (0.84), cross-compared with filter 166 (Lef1/Tcf7) 

OCRs pro (0.09) and mature B (0.04). Ebf1 bound in filter 260 (Ebf1) OCRs Pro B 

(0.78) and filter 166 (Lef1/Tcf7) OCRs Pro B (0.006). Tcf7 bound in filter 166 (Lef1) 

OCRs T.DP (0.42) and filter 167 (Pax5) OCRs T.DP (0.02). d, AI-TAC predicted ATAC-

seq footprint from Pax5 (167) OCRs, independently derived Pax5 ChIP-seq footprint, 

predicted footprint of CTCF (275) and CTCF motif. 

 

Figure 5. Identifying combinations of motifs that are predictive of immune 

differentiations. a, Each dot represents a filter. Y-axis shows the expected vs observed 

ratio for the number of OCRs that contained more than one instance of a filter’s motif. 

An OCR is defined as containing a filter motif if any of the activations for that OCR 

(across its 251bp length) are above ½ the maximum activation of that filter across all 

input sequences. b, Histograms show the distribution of distances between two 

occurrences of the same motif on a given OCR.  c, For each filter, scatter plot shows 

the expected versus observed ratio for the number of genes whose set of assigned 

OCRs contained multiple instances of the same filter motif (y-axis) against the filter 

motif’s information content (x-axis). d, Histogram shows the number of filters per OCR 

that have an influence value of 0.0025 or more, which corresponds to a 5% impact on 

the correlation of the prediction. e, For each pair of filters, the number of OCRs where 

both filters were deemed influential is shown on the x-axis, and the hypergeometric p-

value for the significance of the number of shared OCRs, as compared to expectation 

based on prevalence alone, is shown on the y-axis.  To eliminate technical artifacts, 

filter pairs whose motifs were similar to each other (PWMEnrich>0.5) were removed. f, 
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Enrichment of OCRs (top 500 influential OCRs per filter, n=49,500 OCRs) bound by 

Pax5 in AI-TAC reproducible filters (n=99) for pro and mature B cells. g, In vivo ChIP-

seq occupancy for Pax5 and Ebf1 in AI-TAC predicted B cell OCRs (n=5,443). Co-

occupancy patterns observed in predicted B OCRs and for non-B predicted OCRs 

(n=5,443). h, Enrichment of OCRs (top 500 influential OCRs per filter, n=49,500 OCRs) 

bound by Tcf7 or Pax5 ChIP-seq in AI-TAC reproducible filters (n=99) for T.DP and pro 

B cells respectively.  

 

Figure 6. Identifying combinatorial regulatory syntax embedded in AI-TAC's fully-

connected layer. a, t-SNE representation and clustering of well-predicted OCRs 

(n=30,875) based on their scores across the last layer (695 nodes) of the trained AI-

TAC model. b, ATAC-seq intensity of OCRs across immune lineages. c, OCRs 

influenced by filters 167 (Pax5), 260 (Ebf1) and co-occurring. d, OCRs influenced by 

filters 34 (Cebp), 255 (Spi1) and co-occurring.  e, ILC lineage OCRs parsed by ATAC-

seq mean intensities of ILC2/3 and NK subsets. f, OCRs influenced by filters 68 

(Nr1d1/Rorg, 220 (Nr2f6), and 106 (Tbx21/Eomes). g, OCRs influenced by filter 23 and 

275 (Ctcf). 

 

Figure 7. Combinations of RNA-seq expression data and OCR-motif predictions 

enables construction of gene regulatory networks. a, Histogram of the number of 

gene targets for each TF. b, For each lineage, RNA-seq based gene expression values 

for differentially expressed gene across cell populations is shown on the right and 
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inference of TF assigned to each target gene is shown on the left. For each lineage, the 

ordering of genes (rows) is preserved between the two heatmaps.  

 

Figure 8. AI-TAC model is predictive of human OCR accessibility profiles. a, The 

trained AI-TAC model was directly applied to predict accessibility profile of human 

sequences underlying OCRs across eight cell-types that overlapped between mouse 

and human datasets. Figure shows histogram of AI-TAC predictions (measured by 

Pearson correlation between observed and the model’s predictions) on “real” human 

251bp sequences underlying 539,611 OCRs (orange) versus randomly permuted 

human OCR sequences. b, Log influence of AI-TAC’s filters in mouse (x-axis) and 

human (y-axis), on the basis of nullification of each filter at a time. c, Prediction 

performance (measured by Pearson correlation) for each human OCR based on AI-TAC 

trained on mouse data (x-axis) and a model directly trained on human ATAC-seq data 

(y-axis). The human-based model was trained on 50% of human OCRs. The scatter plot 

only shows the performance of 50% of human OCRs that were considered part of the 

test set.  
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Figure 8
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