

1 **Taxonomic description**

2 *Sporaefaciens musculi* gen. nov., sp. nov., a novel bacterium 3 isolated from the caecum of an obese mouse

4 Torben Sølbeck Rasmussen^{1*}, Theresa Streidl², Thomas C.A. Hitch², Esther Wortmann²,
5 Paulina Deptula¹, Michael Hansen⁴, Dennis Sandris Nielsen¹, Thomas Clavel^{2,3}, Finn Kvist
6 Vogensen^{1*}

7 ¹ Section of Microbiology and Fermentation, Dept. of Food Science, Faculty of Science, University of
8 Copenhagen, Denmark

9 ² Functional Microbiome Research Group, Institute of Medical Microbiology, RWTH University Hospital,
10 Aachen, Germany

11 ³ ZIEL Core Facility Microbiome, Technical University of Munich, Freising, Germany

12 ⁴ Center for Advanced Bioimaging, Department of Plant and Environmental Sciences, University of
13 Copenhagen, Frederiksberg, Denmark

14 **Keywords:** *Firmicutes*, *Lachnospiraceae*, mouse faeces, diet-induced obesity, spore-forming,
15 succinate, acetate

16 ***Correspondence:** Torben S. Rasmussen – torben@food.ku.dk & Finn K. Vogensen -
17 fkv@food.ku.dk

18 **Abbreviations:** WCA, Wilkens-Chalgren-Anaerobe; GAM, Gifu Anaerobic Medium; RT, Room
19 Temperature; ONT, Oxford Nanopore Technologies; ANI, Average Nucleotide Identity; SEM,
20 Scanning Electron Microscopy; SIM, Sulphide Indole Motility; HPLC-RI, High Performance Liquid
21 Chromatography – Refractive Index; SCFA, Short Chain Fatty Acid; CRISPR, Clustered Regularly
22 Interspaced Short Palindromic Repeats; VLPs, virus-like-particles; TUM, Technical University of
23 Munich; UCPH, University of Copenhagen; POCP, Percentage of conserved proteins.

24 **Repositories:** The GenBank accession number for the 16S rRNA gene sequence of strain WCA-
25 9-b2^T is MN756014, and the accession number for the genome assembly is PRJNA592877. Raw
26 sequencing Illumina NextSeq (PRJEB35655) and ONT MinION (PRJEB35656) data can be
27 accessed at EMBL-EBI.

28 Four supplementary figures are available with the online version of this article.

29 **Abstract**

30 A bacterial strain, designated WCA-9-b2, was isolated from the caecal content of an 18-week-old
31 obese C57BL/6NTac male mouse. According to phenotypic analyses, the isolate is rod-shaped,
32 Gram-positive, strictly anaerobic, spore-forming and non-motile under the conditions tested.
33 Bacterial colonies were irregular and non-pigmented. Analysis of the 16S rRNA gene indicated that
34 the isolate belonged to the family *Lachnospiraceae* with *Clostridium scindens* ATTC 35704 (94.9%
35 sequence identity) and *Dorea formicigenerans* ATCC 27755 (94.8%) being the closest relatives.
36 Whole genome sequencing showed average nucleotide identity (ANI) ranging from 69.80–74.23%
37 and percentage of conserved proteins (POCP) values < 50% against the nine closest relatives. The
38 genome-based G+C content of genomic DNA was 44.4%. The predominant metabolic end products
39 of glucose fermentation were acetate and succinate. Based on these data, we propose that strain
40 WCA-9-b2 represents a novel species within a novel genus, for which the name *Sporaefaciens*
41 *musculi* gen. nov., sp. nov. is proposed. The type strain is WCA-9-b2^T (=DSM 106039^T = CCUG
42 pending ID^T).

43

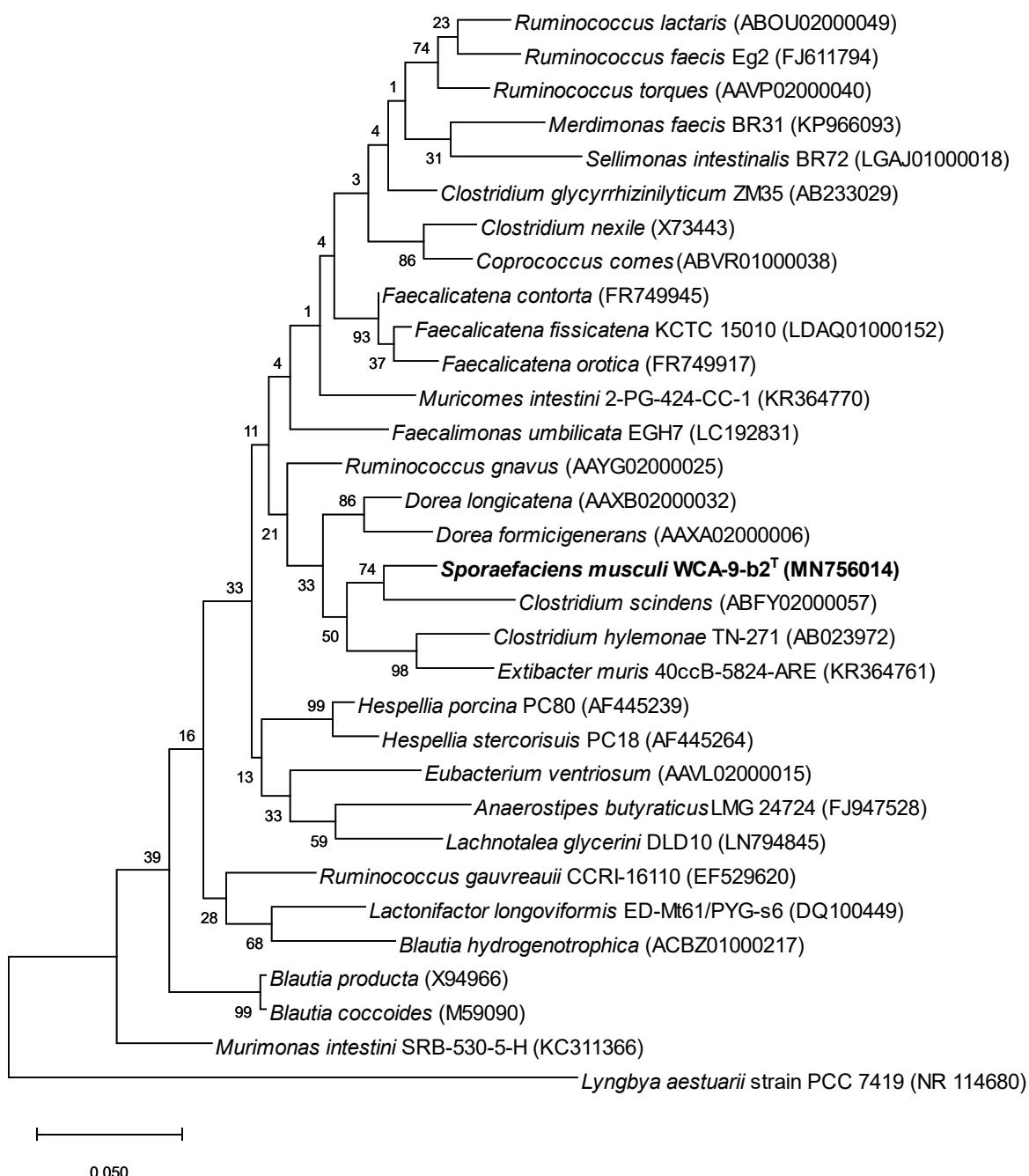
44 Introduction

45 The mammalian gut is inhabited by a high diversity of strictly anaerobic bacteria predominated by
46 Gram-positive species from the phylum *Firmicutes* [1], of which many have not yet been cultured.
47 Metagenome sequencing has been an efficient tool to perform *in silico* characterisation of the
48 unculturable gut bacteria [2], although metagenome sequencing often misses spore-forming
49 bacteria due to the difficulty of DNA extraction from the robust structure of the spores [3]. As the
50 mammalian gut microbiota (GM) influences host health [4–6], combining *in silico* characterisation
51 of gut bacteria with culturing novel isolates *in vitro* opens new research avenues by investigating
52 their functional properties. A large diversity of bacteria belonging to the class *Clostridia* contribute
53 in maintaining gut health, amongst other through the production of short chain fatty acids (SCFAs)
54 [7, 8]. Especially, butyrate has been associated with beneficial health effects [7], even though
55 many butyrate producers are dependent on cross-feeding from other bacteria producing
56 intermediate products such as acetate or lactate [9]. Whereas succinate, an intermediate product
57 of propionate, is a double-edge sword that in some conditions sustain the stability of the GM
58 component by cross-feeding, whilst in other conditions elevates the pathogenic potential of
59 infectious bacteria such as *Clostridioides difficile* or *Clostridium rodentium*. In the current study we
60 report the cultivation and detailed characterisation of a spore-forming, succinate and acetate
61 producing bacterial strain WCA-9-b2^T isolated from the gut of an obese male mouse, which we
62 propose represents a novel genus within family *Lachnospiraceae*, phylum *Firmicutes*.

63 Isolation and ecology

64 Strain WCA-9-b2^T originated from the caecum of a C57BL/6NTac mouse fed a high-fat diet (HF,
65 Research Diets D12492, USA) *ad libitum* for 13 weeks as part of a previously published study [10].
66 The initial isolation of strain WCA-9-b2 took place at the ZIEL Core Facility Microbiome of the
67 Technical University of Munich (TUM), Germany. Downstream analyses were conducted at the
68 University of Copenhagen (UCPH), Denmark. Anaerobic handling and agar plate incubation during
69 isolation at TUM was performed in an anaerobic chamber (VA500 workstation, Don Whitley
70 Scientific) containing an atmosphere of 90 % (v/v) N₂ and 10 % H₂ a at a temperature of 37°C and
71 a humidity of 75 %. All materials were brought into the anaerobic chamber at least 24 hours before
72 use to ensure anaerobic conditions. Liquid and solid media were autoclaved and contained 0.02%
73 1,4-Dithiothreitol (Sigma, cat. No. DTT-RO) and 0.05% L-cysteine (Sigma, cat. no. 168149) as
74 reducing agents and 1 mg/L resazurin as a redox potential indicator. Broth media were heated
75 prior to flushing with 100% N₂ by an anaerobic gassing unit (AGU, QCAL Messtechnik GmbH) for

76 at least 3 min. pr. 10 mL. Agar media in Petri dishes contained 1.5% agar (Oxoid™, cat. no.
77 LP0011). Incubations took place at 37°C unless otherwise stated.


78 Strain WCA-9-b2^T was isolated on Wilkens-Chalgren-Anaerobe agar (WCA, Sigma, cat. no.
79 W1886) supplemented with 0.1% bile salt (WCA-BS) (sodium taurocholate hydrate, Sigma, cat. no.
80 86339) to enhance spore germination. Approx. ~20 mg thawed caecum content was transferred to
81 a 0.20 µm sterile filtered 1:1 mixture of PBS (NaCl 137mM, KCl 2.7 mM, Na₂HPO₄ 10 mM, KH₂PO₄
82 1.8mM) and 70% ethanol to kill vegetative cells. The suspension was incubated at RT (room
83 temperature) under aerobic conditions for four hours and vortexed every 30 min., followed by 3x
84 centrifugation (11000 x g, 5 min.) and resuspension in aerobic PBS. Ten-fold serial dilutions were
85 prepared with anoxic PBS containing 0.02 % peptone (Sigma, cat. no. 91249). Each dilution (10 µl)
86 was deposited on WCA-BS agar and immediately tilted for vertical migration on the plate, followed
87 by incubation at 37°C for 4 days. Bacterial colonies from a representative area were picked and
88 further re-streaked on WCA agar 3x to obtain pure cultures. WCA-9-b2^T was deposited at the
89 Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH (DSM 106039) and the Culture
90 Collection University of Gothenburg (CCUG pending ID^T). Liquid nitrogen was used to snap-freeze
91 cryo-aliquots (pivotal for survival of the strain), i.e., cultures diluted 1:1 in 50% glycerol, and then
92 stored at -80°C.

93 Gifu Anaerobic Medium (GAM, HyServe, cat. no. 5422) was used for downstream analyses, since
94 strain WCA-9-b2^T showed improved growth in GAM vs. WCA. GAM agar was supplemented with 2
95 mL/L titanium(III) chloride (GAM-TC) (Sigma, cat. no. 1107890001) solution [11, 12] as an
96 additional oxygen scavenger to obtain clear colonies on Petri dishes. The anaerobic handling of
97 downstream analyses at UCPH was performed in another anaerobic chamber (Model AALC, Coy
98 Laboratory Products) containing ~93% (v/v) N₂, ~2% H₂, ~5% CO₂ and an atmosphere kept at RT.
99 Agar plates were incubated at 37°C in an anaerobic jar (Cat. No. HP0011A, Thermo Scientific)
100 containing an anaerobic sachet (Cat. No. AN0035A AnaeroGen™, Thermo Scientific) outside the
101 anaerobic chamber.

102 16S rRNA gene phylogeny

103 Genomic DNA used for 16S rRNA analysis was extracted using the Bead-Beat Micro AX Gravity kit
104 (A&A Biotechnology, cat. no. #106-100 mod.1) following the protocol of the manufacturer. Primers
105 for 16S rRNA gene amplification were 27F 5'-AGA GTT TGA TCC TGG CTC AG-3' and 1492R 5'-
106 GGT TAC CTT GTT ACG ACT T-3'[13]. Annealing temperature was 54°C and DreamTaq Green
107 was used as DNA polymerase (Thermo Scientific, cat. no. K1081). The nearly complete 16S rRNA
108 gene PCR product was purified and sequenced with Sanger-technology by Macrogen Europe BV

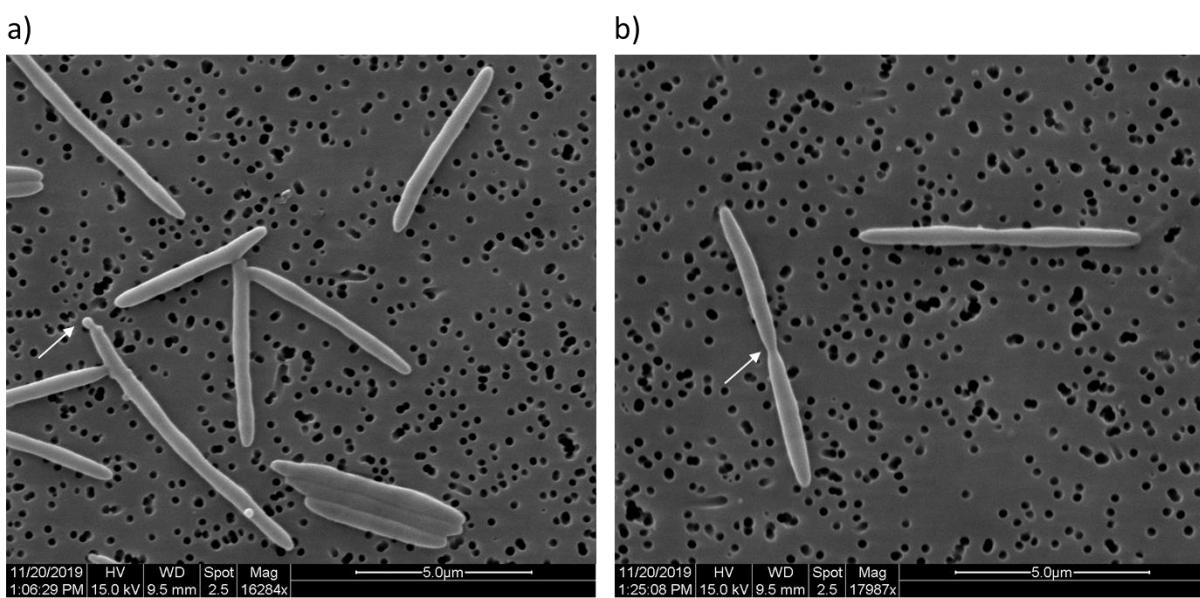
109 by using the two primers aforementioned with the addition of 785F 5'-GGA TTA GAT ACC CTG
110 GTA-3' and 907R 5'-CCG TCA ATT CMT TTR AGT TT-3' to ensure sequencing overlap. Low
111 quality nucleotides were removed from the Sanger-sequenced 16S rRNA gene in MEGAX v.
112 10.0.5 followed by taxonomic identification with EZBioCloud (Update 2019.08.06) [14]. A
113 phylogenetic maximum likelihood tree (bootstrap = 1000) was created to compare against the 30
114 closest species based on 16S rRNA gene similarity retrieved from EZBioCloud and aligned with
115 ClustalW2 [15]. The 16S rRNA gene from the cyanobacterium *Lyngbya aestuarii* PC 7419
116 (NR_114680.1) was included as root. Phylogenetic analysis based on a nearly complete 16S rRNA
117 gene sequencing (1481 bp; accession no. MN756014) showed that strain WCA-9-b2^T was a
118 member of the family *Lachnospiraceae*, order *Clostridiales*. *Clostridium scindens* (ATCC 35704)
119 was the closest phylogenetic related bacteria (Fig. 1), but the confidence of branching was low (<
120 50). WCA-9-b2^T was distantly related to genera belonging to family *Lachnospiraceae* (*Dorea*,
121 *Faecalicitena*, *Blautia*, *Coprococcus*), *Ruminococcaceae* (*Ruminococcus*), and *Eubacteriaceae*
122 (*Eubacterium*). The 16S rRNA gene sequence of WCA-9-b2^T was ≥ 98% similar to already
123 published sequences of uncultured bacteria isolated from the caecum of both lean (DQ815562[16],
124 JQ084505[17] and EF602954[18]) and obese (EF098864[19]) laboratory mice. All the closest
125 relatives with a validly published taxonomy at EZBioCloud belonged to the order *Clostridiales* as
126 follows: *Dorea longicatena* (AAXB02000032, 94.9% sequence identity), *Ruminococcus gnavus*
127 (AAYG02000025, 94.8%), *Clostridium scindens* (ABFY02000057, 94.3%), *Dorea formicigenerans*
128 (AAXA02000006, 94.2%) *Ruminococcus lactaris* (ABOU02000049, 93.8%), *Clostridium hylemonae*
129 (AB023972, 93.7%), *Merdimonas faecis* (KP966093, 93.7%), *Faecalicitena contorta* (FR749945,
130 93.5%), *Faecalicitena fissicatena* (LDAQ01000152, 92.9%).

131

132 *Fig. 1: Phylogenetic tree showing the position of Sporaefaciens musculi WCA-9-b2^T among the top-30 hits (highest 16S*
133 *rRNA gene sequence identities) in the EZBioCloud database. 1472 bp (out of 1481 bp) were considered of WCA-9-b2^T in*
134 *the final phylogenetic tree. The GenBank accession numbers of 16S rRNA gene sequences applied to construct the*
135 *phylogenetic tree are indicated in parentheses. The rooted tree was constructed using the maximum likelihood method*
136 *and the 16S rRNA gene sequences were aligned with ClustalW2. Cyanobacterium Lyngbya aestuarii was used as an*
137 *outgroup to root the tree.*

138 Genomic characterisation of strain WCA-9-b2^T

139 For generation of the chromosomal genome, library was constructed and sequenced as previously
140 described [20] with the Illumina NextSeq v2 MID output 2x150 cycles chemistry generating short
141 DNA reads. Additionally, whole-genome sequencing was performed with the MinION platform from
142 Oxford Nanopore Technologies (ONT) to obtain long DNA reads. Genomic DNA was extracted
143 using the MagAttract HMW DNA Kit (QIAGEN, cat. no. 67563) according to the manufacturer's
144 instructions for Gram-positive bacteria. DNA was quantified using a Qubit fluorometer (Thermo
145 Fisher Scientific, Waltham, MA, USA) and the genomic library prepared with the Rapid Barcoding
146 Sequencing kit (SKQ-RBK004) from ONT according to manufacturer's instructions. Sequencing
147 was performed on a FLO-MIN106D R9 flowcell using the MinKNOW software over 72h run (48+24
148 h). ONT raw FAST5 reads were base called and demultiplexed with Guppy basecaller v.3.3.2 [21]
149 resulting in 2.0 GB of read data. A complete genome was generated by hybrid assembly of the
150 short Illumina and long ONT DNA read sequencing data using the ONT assembly and Illumina
151 polishing pipeline run with Canu v1.8 [22], Racon v1.4.10 [23] and Pillon v1.20 [24]. Raw
152 sequencing Illumina NextSeq (PRJEB35655) and ONT MinION (PRJEB35656) data can be
153 accessed at EMBL-EBI and the ensuing genome assembly at NCBI (PRJNA592877). The genome
154 assembly resulted in three contigs of a total length of 5,763,728 bp: the chromosomal contig
155 spanning 5,426,837 bp; a short contig of 49,487 bp partially overlapping with the chromosomal
156 contig; a putative plasmid (circular) of 287,404 bp. Spore forming bacteria usually exhibits a larger
157 genome size than non-spore formers [3], which would be in accordance with the genome size of
158 strain WCA-9-b2^T. The chromosomal genome (5,426,837 bp) showed a G+C content at 44.4 %
159 which differed from the phylogenetic related bacteria listed in Table 1. Alignment of the complete
160 genome and the nearly complete 16S rRNA gene suggested that strain WCA-9-b2^T contains three
161 rRNA operons. Draft or complete genomes of the nine closest related strains in Table 1 were
162 retrieved from NCBI [25] and included in calculation of the percentage of conserved proteins
163 (POCP) and average nucleotide identity (ANI). POCP values were calculated by following the
164 method described in Qin *et al.* [26] using a genus delineation threshold of 50%. BLASTP (v2.9.0+)
165 [27] was used for protein-protein annotation. POCP analysis of included species (listed in Table 1)
166 provided values < 50%, clearly suggesting that strain WCA-9-b2^T represents a novel genus. ANI
167 analysis was additionally performed with OrthoANI [28] and showed ANI values ranging from 69.80
168 – 74.23% (Table 1), thus supporting that strain WCA-9-b2^T represents a novel taxon considering
169 the species-level threshold of 95.0% [29].


170 Genome annotation was conducted using PROKKA (v1.13.3) [30] and converted into KEGG
171 annotations using PROKKA2KEGG (<https://github.com/SilentGene/Bio->

172 py/tree/master/prokka2kegg) for comparison against the KEGG database. CAZy annotation was
173 conducted using diamond blastp [31] considering 40.0% subject and query coverage and a
174 minimum bitscore of 100 against the CAZy database (dbCAN2, v07312019). The genome of WCA-
175 9-b2^T contained 5,844 coding sequences, of which 111 were transporters, 16 secretion genes and
176 662 unique enzymes. Based on KEGG functions, only starch (and thereby glucose) can be utilised
177 as a carbon source which is one of the main components in GAM broth. However, sulphide and L-
178 serine were identified as potential substrates to produce L-cysteine and acetate, which may act as
179 a carbon source (EC:2.3.1.30, 2.5.1.47). The ability to convert acetate to acetyl-CoA may support
180 this energy route (EC:2.3.1.8, 2.7.2.1). Additionally, propionate production was identified from
181 propanoyl-CoA (EC:2.3.1.8, 2.7.2.1). L-glutamate production from ammonia was identified via L-
182 glutamine (EC:6.3.1.2, 1.4.1.) and folate (vitamin B9) biosynthesis from 7,8-dihydrofolate
183 (EC:1.5.1.3). In total, 337 CAZymes were encoded in the genome, including members from 37
184 glycoside hydrolase families and 11 glycoside transferase families, the largest of which included 92
185 genes (GT2). A large repertoire of carbohydrate-binding modules was also present, which may
186 suggest this species is specialised to degrade complex carbohydrates. Up to six genes involved in
187 sporulation, including SpmA, SpmB, and GerAA derivatives, as well as 24 genes encoding flagella-
188 related proteins were identified. Antibiotic resistance genes and virulence factors were detected
189 with TrueBac™ ID [32]. The antibiotic resistance gene *patA* (ARO ID: 3000024) coding for an efflux
190 pump was detected as well as several virulence genes involved in antiphagocytosis (VF0361,
191 VF003, and VF0144), adherence (VF0323), secretion systems (VF0344), and stress protein
192 (VF0074). CRISPRDetect [33] v. 2.1 was applied to predict functional CRISPR-cas systems and
193 classification was based on Makarova *et al.* [34]. A CRISPR-Cas system of strain WCA-9-b2^T was
194 suggested to belong to Class II type II-A, based on the composition and ordering of cas-genes
195 (cas9-cas1-cas2-csn2) [34]. BLAST searches demonstrated that none of the 21 spacer sequences
196 matched bacteriophage (phage) DNA available at the NCBI databases or the host genome of
197 WCA-9-b2^T. It is not yet certain if the detected CRISPR-Cas type II-A system in strain WCA-9-b2^T
198 is active. The phage prediction algorithm PHASTER[35] revealed three intact (score > 110)
199 prophages with genome sizes of 22.8 kbp, 30.8 kbp, and 30.3 kbp and phage proteins
200 representing genes encoding terminase, integrase, DNA-packaging, transposase, coat protein, and
201 phage-like proteins with unknown function. Fluctuations in growth curves measured by optical
202 density (OD₆₀₀) indicated potential prophage induction (Fig. S1) and was further supported by a
203 high number of virus-like-particles (VLPs) observed with epifluorescence microscopy (Fig. S2) that
204 was performed as previously described [36].

205 Phenotypic characterisation of strain WCA-9-b2^T

206 Growth of strain WCA-9-b2^T was evaluated by measuring OD₆₀₀ at different pH (5.5, 6.0, 6.5, 7.3, 207 8.0, 8.5, 9.0, 9.2, 9.5, 10.0) and temperatures (20°C, 30°C, 37°C, 40°C, 42°C, 45°C) in triplicates. 208 Cell morphology and motility of liquid cultures, incubated for 24 hours and 48 hours, were 209 evaluated by phase-contrast microscopy (Olympus BX40 microscope and UPlanFI 100x/1.30 oil 210 immersion objective) and motility was further accessed with incubation in Sulphide Indole Motility 211 [37] (SIM) medium that contained GAM broth powder. Indole production was tested with Kovac's 212 indole reagent (VWR, cat. no 1.09293.0100). The optimal temperature was 37°C and the optimal 213 pH 7.3; growth was nevertheless observed in the range of 30-40°C and pH 6.5-8.5. Both Gram 214 staining [38] and the potassium hydroxide test (3% (w/v) KOH) [39] showed that the strain is Gram- 215 positive (Fig. S3), which is consistent with most bacteria belonging to the order of *Clostridia*. Strain 216 WCA-9-b2^T formed long rods with pointy ends and cell length varies between 1.8 µm – 9.9 µm 217 (average 4.8 µm ± 1.5 µm) and cell width varies between 0.4 µm – 0.8 µm (average 0.6 µm ± 0.1 218 µm) depending on time of incubation (24-48 hours). Motility of strain WCA-9-b2^T was not observed 219 under the conditions tested, despite the presence of numerous flagella genes in the genome. The 220 SIM test was also negative for sulphide and indole production. Two weeks-old liquid cultures were 221 subjected to endospore staining following the Schaeffer-Fulton protocol [40] and observed in 222 bright-field with 1000x magnification. Although it was a rare event, Schaeffer-Fulton staining 223 revealed endospore and spore formation (Fig. S4). For scanning electron microscopy (SEM), the 224 strain was grown in GAM medium until the exponential phase was reached after 30 hours with 225 bacterial density nearing McFarland standard 4. Bacteria were placed at a 0.2 µm polycarbonate 226 filter as follows. A small amount of sterile water was added to a vacuum slot. On the meniscus of 227 the water a filter paper (Whatman, cat. no. 1822 025) and a polycarbonate filter (Osmonics, cat. 228 no. 11013) were placed. By applying vacuum excess water was removed and the two filters were 229 brought in close contact. Vacuum was released and 10 µl of bacterial culture was placed in the 230 middle of the polycarbonate filter. The suction from the underlying Whatmann filter gently removed 231 the water. Immediately when the drop of water had disappeared the polycarbonate filter was 232 transferred to Karnovsky's fixative. In the following fixation and dehydration procedure the filters 233 were placed floating on the surface of the liquids with bacteria on the upper side. Further fixation 234 was obtained with osmium tetroxide, followed by a graded series of ethanol, and final drying with 235 hexamethyldisilazane. The cells were subsequently mounted to an aluminium stub, coated with 236 gold-palladium and observed in a Quanta 200 SEM at 15kV. No flagella-like elements were 237 observed by SEM (Fig. 2), supporting the findings above. In contrary, SEM imaging identified 238 spore-like formation (Fig. 2a). The SEM imaging was in line with the Schaeffer-Fulton staining,

239 annotated genes involved in sporulation and the initial spore selecting procedure of the caecal
240 content, which overall confirmed the spore forming ability of strain WCA-9-b2^T.

241
242 *Fig. 2: Scanning electron microscopy (SEM) images of strain WCA-9-b2^T. Flagella were not observed. a) Spore*
243 *formation was observed at a low frequency (white arrow). b) one cell is at the final stage of division.*

244 Enzymatic activities were determined in triplicates using API® Rapid ID 32A strips following the
245 manufacturer's instructions (Biomérieux, cat. no. 32300, 70700, 70640, 70542, 70442, 70562,
246 70100, and 70900). The enzymatic assay demonstrated that the strain WCA-9-b2^T was positive for
247 α- and β-galactosidase, α-glucosidase, α-arabinosidase, N-acetyl-β-glucosaminidase, and proline
248 arylamidase. The enzymatic profile of WCA-9-b2^T had no match with the identification table of
249 Rapid ID32 A v3.2.

250 The concentration of SCFAs (acetate, propionate, butyrate, valerate), branched SCFAs (isobutyrate,
251 isovalerate), and intermediate metabolites (lactate, succinate, formate) were determined using high-
252 performance liquid chromatography refractive index (HPLC-RI). Bacteria were grown in modified
253 YCFA broth (DSMZ medium 1611) supplemented with 0.02 % DTT in Hungate tubes for 48h at 37
254 °C under anaerobic conditions (89.3% N₂, 6% CO₂, 4.7% H₂) and with shaking (200 rpm). The strain
255 was grown in triplicates and the negative control consisted of medium without bacteria. After
256 incubation, samples were centrifuged (10,000 g, 10 min, RT) and supernatants were collected and
257 stored at -20 °C until analysis. Before HPLC-RI analysis, samples were filtered into 2 ml short thread
258 vials with screw caps (VWR International GmbH, Germany) using non-sterile 0.2 μm regenerated
259 cellulose membrane filters (Phenomenex, Germany). Vials were then placed in the refrigerated
260 autosampler of the HPLC system, a Hitachi Chromaster 5450 (VWR International GmbH, Germany)
261 fitted with a Refractive Index detector and a Shodex SUGAR SH1011 column (300 x 8.0 mm) (Showa

262 Denko Europe, Germany). A Shodex SUGAR SH-G (6.0 x 50 mm) was used as guard column. The
263 injection volume was 40 μ l. The oven temperature was 40 °C. The eluent was 10 mM H₂SO₄ with a
264 constant flow of 0.6 ml/min. Concentrations were determined using external standards via
265 comparison of the retention time (all compounds were purchased from Sigma-Aldrich). Peaks were
266 integrated using the Chromaster System Manager software (Version 2.0, Hitachi High-Tech Science
267 Corporation). For each of the tested strains, only SCFA concentrations >0.8 mM (limit of detection
268 for succinate, lactate, and acetate) or >0.5 mM (LOD for glucose and all other SCFAs) in at least
269 one of the triplicates were considered for calculation.

270 HPLC-RI analysis showed that WCA-9-b2^T metabolised glucose (~4.4 mM), which agrees with the
271 α -glucosidase activity measured by enzymatic tests. Succinate (5.7 mM) and acetate (12.9 mM)
272 were produced under the experimental conditions tested. The production of succinate and acetate
273 suggest that strain WCA-9-b2^T is involved in cross-feeding other bacteria in the gut which are able
274 to convert succinate and acetate into the SCFAs butyrate or propionate [41].

275 The IMNGS platform[42] was used to screen for the relative abundance of WCA-9-b2^T (> 97%
276 similarity) in 4721 samples from various studies investigating the bacterial GM component of mice.
277 The relative abundance of bacteria sharing more than > 97% rRNA gene identity with WCA-9-b2^T
278 was below 0.08% (representing > 500 sequencing read counts), and was found in both lean
279 (SRR1698289, ERR1173727), obese (SRR2073437, SRR1959789) and antibiotic treated
280 (SRR1960027) mice. Although strain WCA-9-b2^T was isolated from an obese mouse, there is
281 currently no evidence that its occurrence is associated with the host phenotype.

282 Based on all the aforementioned genotypic and phenotypic characteristics, we suggest that strain
283 WCA-9-b2^T should be designated the type strain of a novel bacterial genus and species within the
284 family *Lachnospiraceae*, order *Clostridiales*, for which the name *Sporaefaciens musculi* is
285 proposed. Parameters that help distinguishing *S. musculi* WCA-9-b2^T from phylogenetically most
286 closely related bacteria are listed in Table 1:

287

288 Table 1: Parameters that differentiate strain WCA-9-b2^T from phylogenetically neighbouring taxa. 1 = *Sporaefaciens*
289 *musculi* WCA-9-b2^T, 2 = *Dorea longicatena* DSM 13814[43], 3 = *Ruminococcus gnavus* ATCC 29149[44], 4 =
290 *Clostridium scindens* ATCC 35704[45–47], 5 = *Dorea formicigenerans* ATCC 27755[43], 6 = *Ruminococcus lactaris*
291 ATCC 29176[44], 7 = *Clostridium hylemonae* DSM 15053[46], 8 = *Merdimonas faecis* strain BR31[48], 9 = *Faecalicatena*
292 *contorta* strain 2789S TDY58347876[49], 10 = *Faecalicatena fissicatena* KCTC 15010[49]. n.r. = not reported, “+” =
293 positive, “-” = negative.

	1	2	3	4	5	6	7	8	9	10
Cell shape	Rod	Rod	Cocci	Rod	Rod	Cocci	Rod	Rod	Rod	Rod
Spore formation	+	-	+	+	-	-	+	-	-	-
α-galactosidase	+	n.r.	+	-	n.r.	n.r.	+	-	+	+
β-galactosidase	+	n.r.	n.r.	+	n.r.	n.r.	-	+	+	-
α-glucosidase	+	n.r.	n.r.	-	n.r.	n.r.	+	-	+	+
α-arabinosidase	+	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	-	-	-
N-acetyl-β-glucosaminidase	+	n.r.	n.r.	-	n.r.	n.r.	-	-	-	-
Proline arylamidase	+	n.r.	n.r.	n.r.	n.r.	n.r.	n.r.	-	-	+
Sulphide production	-	n.r.	+	+	n.r.	-	n.r.	-	+	+
Acetate production	+	+	n.r.	+	+	n.r.	n.r.	+	n.r.	n.r.
Succinate production	+	-	n.r.	-	-	n.r.	n.r.	-	n.r.	n.r.
ANI (%)	N/A	72.17	70.52	74.23	72.06	69.80	71.87	72.50	69.98	69.52
16S rRNA gene similarity (%)	N/A	94.91	94.77	94.28	94.15	93.81	93.70	93.69	93.53	92.91
G+C (mol %)	44.44	41.40	42.70	46.90	40.70	42.50	48.80	47.00	46.90	45.50

294

295 Description of *Sporaefaciens* gen. nov.

296 *Sporaefaciens* (Spo.rae.fa'ci.ens. NL. N. *sporae*, spore; L. masc. n. *faciens*, making; N.L. masc. n.

297 *Sporaefaciens*, spore-maker)

298 Bacteria of the genus *Sporaefaciens* are strictly anaerobic, spore-forming, Gram-positive rods.

299 Motility has not yet been observed. Based on 16S rRNA gene and genome analysis, the genus

300 *Sporaefaciens* belongs to family *Lachnospiraceae* (phylum *Firmicutes*, order *Clostridiales*) is

301 distantly related ($\leq 95\%$ identity between 16S rRNA gene sequences; POCP values $<50\%$) to other

302 genera members belonging to the such as *Clostridium*, *Dorea*, *Ruminococcus*, *Merdimonas*,

303 *Extibacter*, and *Faecalimonas*. The type species is *Sporaefaciens musculi*.

304 Description of *Sporaefaciens musculi* gen. nov., sp. nov.

305 *Sporaefaciens musculi* (mus'cu.li. L. gen. n. *musculi*, of a common mouse)

306 The species possesses all the features of the genus. Cultures in the stationary phase appear with

307 turbidity resembling McFarland standard 4. Cell length varies between 1.8 μm – 9.9 μm (average

308 4.8 $\mu\text{m} \pm 1.5 \mu\text{m}$) and cell width varies between 0.4 $\mu\text{m} – 0.8 \mu\text{m}$ (average 0.6 $\mu\text{m} \pm 0.1 \mu\text{m}$). Cells
309 appear as single cells or in pairs. After 72 hours on GAM-TC agar, colonies are transparent with
310 irregular shape and a diameter of 1-2 mm. Optimal growth occurs at 37°C and pH 7.3. In modified
311 YCFA, the species was able to use glucose and produced succinate and acetate. Using the API®
312 Rapid ID 32A test, strain WCA-9-b2^T is positive for α - and β -galactosidase, α -glucosidase, α -
313 arabinosidase, N-acetyl- β -glucosaminidase, and proline arylamidase. It is negative for urease,
314 arginine dihydrolase, β -galactosidase 6 phosphate, β -glucosidase, β -glucuronidase, glutamic acid
315 decarboxylase, α -fucosidase, alkaline phosphatase, arginine arylamidase, leucyl glycine
316 arylamidase, phenylalanine arylamidase, leucine arylamidase, pyroglutamic acid arylamidase,
317 tyrosine arylamidase, alanine arylamidase, glycine arylamidase, histidine arylamidase, glutamyl
318 glutamic acid arylamidase, serine arylamidase, indole production, as well as mannose and
319 raffinose fermentation and reduction of nitrates. Its G+C content of the genomic DNA is 44.4%.
320 The type strain is WCA-9-b2^T (=DSM 106039^T = CCUG (pending ID^T). It was isolated from the
321 caecal content of an 18-week-old male C57BL/6NTac mouse fed a high-fat diet for 13 weeks.

322 **Acknowledgement**

323 We thank Andreas Czempiel (ZIEL Core Facility Microbiome, Technical University of Munich) for
324 training and technical assistance during bacterial isolation.

325

326 **Funding**

327 Funding was provided by the Danish Council for Independent Research with grant ID: DFF-6111-
328 00316. TC received financial support from the DFG within the Priority Program SPP1656.

329

330 **Ethical statement**

331 Experimental work with mice was carried out in accordance with the Directive 2010/63/EU and the
332 Danish Animal Experimentation Act (licence ID: 2012-15-2934-00256).

333

334 **Conflicts of interest**

335 The authors declare that there is no conflict of interest.

336 **References**

- 337 1. Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, et al. Evolution of
338 Mammals and Their Gut Microbes. *Science* (80-) 2008;320:1647–1652.
- 339 2. Schloss PD, Handelsman J. Metagenomics for studying unculturable microorganisms:
340 Cutting the Gordian knot. *Genome Biol* 2005;6:6–9.

341 3. **Tetz G, Tetz V.** Introducing the sporobiota and sporobiome. *Gut Pathog* 2017;9:1–6.

342 4. **Makki K, Deehan EC, Walter J, Bäckhed F.** The Impact of Dietary Fiber on Gut Microbiota
343 in Host Health and Disease. *Cell Host Microbe* 2018;23:705–715.

344 5. **Xu X, Xu P, Ma C, Tang J, Zhang X.** Gut microbiota, host health, and polysaccharides.
345 *Biotechnol Adv* 2013;31:318–337.

346 6. **Marchesi JR, Adams DH, Fava F, Hermes GDA a, Hirschfield GM, et al.** The gut
347 microbiota and host health: A new clinical frontier. *Gut* 2016;65:330–339.

348 7. **Parada Venegas D, De la Fuente MK, Landskron G, González MJ, Quera R, et al.** Short
349 Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its
350 Relevance for Inflammatory Bowel Diseases. *Front Immunol* 2019;10:277.

351 8. **Lopetuso LR, Scaldaferri F, Petito V, Gasbarrini A.** Commensal Clostridia: Leading
352 players in the maintenance of gut homeostasis. *Gut Pathog* 2013;5:1.

353 9. **Baxter NT, Schmidt AW, Venkataraman A, Kim KS, Waldron C, et al.** Dynamics of
354 Human Gut Microbiota and Short-Chain Fatty Acids in Response to Dietary Interventions
355 with Three Fermentable Fibers. *MBio* 2019;10:1–13.

356 10. **Rasmussen TS, de Vries L, Kot W, Hansen LH, Castro-Mejía JL, et al.** Mouse Vendor
357 Influence on the Bacterial and Viral Gut Composition Exceeds the Effect of Diet. *Viruses*
358 2019;11:435.

359 11. **Zehnder AJ, Wuhrmann K.** Titanium (III) citrate as a nontoxic oxidation-reduction buffering
360 system for the culture of obligate anaerobes. *Science* 1976;194:1165–6.

361 12. **Jones GA, Pickard MD.** Effect of titanium (III) citrate as reducing agent on growth of rumen
362 bacteria. *Appl Environ Microbiol* 1980;39:1144–1147.

363 13. **Kageyama A, Benno Y, Nakase T.** Eubacterium lenthum to the genus Eggerthella. *Int J Syst
364 Bacteriol.*

365 14. **Yoon S-HH, Ha S-MM, Kwon S, Lim J, Kim Y, et al.** Introducing EzBioCloud: A
366 taxonomically united database of 16S rRNA gene sequences and whole-genome
367 assemblies. *Int J Syst Evol Microbiol* 2017;67:1613–1617.

368 15. **Larkin MA, Blackshields G, Brown NP, Chenna R, Mcgettigan PA, et al.** Clustal W and
369 Clustal X version 2.0. *Bioinformatics* 2007;23:2947–2948.

370 16. **Rawls JF, Mahowald MA, Ley RE, Gordon JI.** Reciprocal Gut Microbiota Transplants from
371 Zebrafish and Mice to Germ-free Recipients Reveal Host Habitat Selection. *Cell*
372 2006;127:423–433.

373 17. **Smith P, Siddharth J, Pearson R, Holway N, Shaxted M, et al.** Host genetics and
374 environmental factors regulate ecological succession of the mouse colon tissue-associated
375 microbiota. *PLoS One* 2012;7:e30273.

376 18. **Stecher B, Robbiani R, Walker AW, Westendorf AM, Barthel M, et al.** *Salmonella*
377 enterica serovar typhimurium exploits inflammation to compete with the intestinal microbiota.
378 *PLoS Biol* 2007;5:2177–2189.

379 19. **Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, et al.** An obesity-
380 associated gut microbiome with increased capacity for energy harvest. *Nature*
381 2006;444:1027–131.

382 20. **Krych Ł, Kot W, Bendtsen KMB, Hansen AK, Vogensen FK, et al.** Have you tried
383 spermine ? A rapid and cost-effective method to eliminate dextran sodium sulfate inhibition
384 of PCR and RT-PCR. *J Microbiol Methods* 2018;144:1–7.

385 21. **Wick RR, Judd LM, Holt KE.** Performance of neural network basecalling tools for Oxford
386 Nanopore sequencing. *Genome Biol* 2019;20:1–10.

387 22. **Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, et al.** Canu: scalable and
388 accurate long-read assembly via adaptive k-mer weighting and repeat separation. *Genome*
389 *Res* 2017;27:722–736.

390 23. **Nagarajan N, Mile Š, Vaser R, Sovic I, Sović I, et al.** Fast and accurate de novo genome
391 assembly from long uncorrected reads. *Genome Res* 2017;27:1–10.

392 24. **Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, et al.** Pilon: an integrated tool for
393 comprehensive microbial variant detection and genome assembly improvement. *PLoS One*
394 2014;9:e112963.

395 25. **Geer LY, Marchler-Bauer A, Geer RC, Han L, He J, et al.** The NCBI BioSystems
396 database. *Nucleic Acids Res* 2009;38:492–496.

397 26. **Qin QL, Xie B Bin, Zhang XY, Chen XL, Zhou BC, et al.** A proposed genus boundary for
398 the prokaryotes based on genomic insights. *J Bacteriol* 2014;196:2210–2215.

399 27. **Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, et al.** Gapped BLAST and PSI-

400 BLAST: A new generation of protein database search programs. *Nucleic Acids Res*
401 1997;25:3389–3402.

402 28. **Lee I, Kim YO, Park SC, Chun J.** OrthoANI: An improved algorithm and software for
403 calculating average nucleotide identity. *Int J Syst Evol Microbiol* 2016;66:1100–1103.

404 29. **Kim M, Oh HS, Park SC, Chun J.** Towards a taxonomic coherence between average
405 nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of
406 prokaryotes. *Int J Syst Evol Microbiol* 2014;64:346–351.

407 30. **Seemann T.** Prokka: Rapid prokaryotic genome annotation. *Bioinformatics* 2014;30:2068–
408 2069.

409 31. **Buchfink B, Xie C, Huson DH.** Fast and sensitive protein alignment using DIAMOND. *Nat*
410 *Methods* 2014;12:59–60.

411 32. **Ha SM, Kim CK, Roh J, Byun JH, Yang SJ, et al.** Application of the Whole Genome-Based
412 Bacterial Identification System, TrueBac ID, Using Clinical Isolates That Were Not Identified
413 With Three Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry
414 (MALDI-TOF MS) Systems. *Ann Lab Med* 2019;39:530–536.

415 33. **Biswas A, Staals RHJ, Morales SE, Fineran PC, Brown CM.** CRISPRDetect: A flexible
416 algorithm to define CRISPR arrays. *BMC Genomics* 2016;17:1–14.

417 34. **Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, et al.** An updated evolutionary
418 classification of CRISPR-Cas systems. *Nat Rev Microbiol* 2015;13:722–736.

419 35. **Arndt D, Grant JR, Marcu A, Sajed T, Pon A, et al.** PHASTER: a better, faster version of
420 the PHAST phage search tool. *Nucleic Acids Res* 2016;44:1–6.

421 36. **Castro-Mejía JL, Muhammed MK, Kot W, Neve H, Franz CMAP, et al.** Optimizing
422 protocols for extraction of bacteriophages prior to metagenomic analyses of phage
423 communities in the human gut. *Microbiome* 2015;3:64.

424 37. **Ederer GM, Lund ME, Blazevic DJ, Reller LB, Mirrett S.** Motility-indole-lysine-sulfide
425 medium. *J Clin Microbiol* 1975;2:266–7.

426 38. **Cornell U.** Gram stain protocols. *Am Soc Microbiol* 2005;14852.

427 39. **Buck JD.** Nonstaining (KOH) method for determination of gram reactions of marine
428 bacteria. *Appl Environ Microbiol* 1982;44:992–993.

429 40. **Schaeffer AB, Fulton MD.** A simplified method of staining endospores. *Science*
430 1933;77:194.

431 41. **Louis P, Hold GL, Flint HJ.** The gut microbiota, bacterial metabolites and colorectal
432 cancer. *Nat Rev Microbiol* 2014;12:661–672.

433 42. **Lagkouvardos I, Joseph D, Kapfhammer M, Giritli S, Horn M, et al.** IMNGS: A
434 comprehensive open resource of processed 16S rRNA microbial profiles for ecology and
435 diversity studies. *Sci Rep* 2016;6:1–9.

436 43. **Taras D, Simmering R, Collins MD, Lawson PA, Blaut M.** Reclassification of *Eubacterium*
437 *formicigenerans* Holdeman and Moore 1974 as *Dorea formicigenerans* gen. nov., comb.
438 nov., and description of *Dorea longicatena* sp. nov., isolated from human faeces. *Int J Syst*
439 *Evol Microbiol* 2002;52:423–428.

440 44. **Moore WEC, Johnson JL, Holdeman L V.** Emendation of *Bacteroidaceae* and *Butyrivibrio*
441 and Descriptions of *Desulfomonas* gen. nov. and Ten New Species in the Genera
442 *Desulfomonas*, *Butyrivibrio*, *Eubacterium*, *Clostridium*, and *Ruminococcus*. *Int J Syst*
443 *Bacteriol* 1976;26:238–252.

444 45. **Morris GN, Winter J, Cato EP.** *Clostridium scindens* sp. nov., a human intestinal bacterium
445 with desmolytic activity on corticoids. *Int J Syst Bacteriol* 1985;35:478–481.

446 46. **Kitahara M, Takamine F, Imamura T, Benno Y.** Assignment of *Eubacterium* sp. VPI 12708
447 and related strains with high bile acid 7 α -dehydroxylating activity to *Clostridium scindens*
448 and proposal of *Clostridium hylemonae* sp. nov., isolated from human faeces. *Int J Syst Evol*
449 *Microbiol* 2000;50:971–978.

450 47. **Devendran S, Shrestha R, Alves JMP, Wolf PG, Ly L, et al.** *Clostridium scindens* ATCC
451 35704: Integration of Nutritional Requirements, the Complete Genome Sequence, and
452 Global Transcriptional Responses to Bile Acids. *Appl Environ Microbiol* 2019;85:1–22.

453 48. **Seo B, Yoo JE, Lee YM, Ko GP.** *Merdimonas faecis* gen. Nov., sp. nov., isolated from
454 human faeces. *Int J Syst Evol Microbiol* 2017;67:2430–2435.

455 49. **Sakamoto M, Iino T, Ohkuma M.** *Faecalimonas umbilicata* gen. nov., sp. nov., isolated
456 from human faeces, and reclassification of *Eubacterium contortum*, *Eubacterium fissicatena*
457 and *Clostridium oroticum* as *faecalicitena contorta* gen. nov., comb. nov., *Faecalicitena*
458 *fissicatena* comb. nov. *Int J Syst Evol Microbiol* 2017;67:1219–1227.

459