bioRxiv preprint doi: https://doi.org/10.1101/2019.12.21.885491; this version posted December 23, 2019. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

A Primer on Modeling and Measurement of Signaling Outcomes Affecting
Decision Making in Cells: Methods for Determining Optimal and Incorrect
Outcomes in Noisy Biochemical Dynamics

Mustafa Ozen!, Tomasz Lipniacki?, Andre Levchenko?®, Effat S. Emamian*, and Ali Abdi*®”

Mustafa Ozen

! Center for Wireless Information Processing
Department of Electrical and Computer Engineering
New Jersey Institute of Technology, 323 King Blvd, Newark, NJ 07102, USA
Email: mo292@njit.edu

Tomasz Lipniacki, PhD

2 Institute of Fundamental Technological Research
Polish Academy of Sciences, Pawinskiego 5B, 02-106 Warsaw, Poland
Email: tlipnia@ippt.pan.pl

Andre Levchenko, PhD

3 Yale Systems Biology Institute and Department of Biomedical Engineering
Yale University, P.O. Box 208260, New Haven, CT 06520, USA
Email: andre.levchenko@yale.edu

Effat S. Emamian, MD

* Advanced Technologies for Novel Therapeutics
Enterprise Development Center
New Jersey Institute of Technology, 211 Warren St., Newark, NJ 07103, USA
Email: emame@atnt-usa.com

Ali Abdi, PhD

! Center for Wireless Information Processing
Department of Electrical and Computer Engineering

® Department of Biological Sciences
New Jersey Institute of Technology, 323 King Blvd, Newark, NJ 07102, USA
Email: ali.abdi@njit.edu

* Corresponding Author: Ali Abdi (ali.abdi@njit.edu)



mailto:tlipnia@ippt.pan.pl
mailto:andre.levchenko@yale.edu
mailto:emame@atnt-usa.com
mailto:ali.abdi@njit.edu
mailto:ali.abdi@njit.edu
https://doi.org/10.1101/2019.12.21.885491
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.21.885491; this version posted December 23, 2019. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Abstract: Characterization of decision makings in a cell in response to received signals is of high
importance for understanding how cell fate is determined. The problem becomes multi-faceted and complex
when we consider cellular heterogeneity and dynamics of biochemical processes. In this paper, we present
a unified set of decision-theoretic and statistical signal processing methods and metrics to model the
precision of signaling decisions, given uncertainty, using single cell data. First, we introduce erroneous
decisions that may result from signaling processes, and identify false alarm and miss event that are
associated with such decisions. Then, we present an optimal decision strategy which minimizes the total
decision error probability. The optimal decision threshold or boundary is determined using the maximum
likelihood principle that chooses the hypothesis under which the data are most probable. Additionally, we
demonstrate how graphing receiver operating characteristic curve conveniently reveals the trade-off
between false alarm and miss probabilities associated with different cell responses. Furthermore, we extend
the introduced signaling outcome modeling framework to incorporate the dynamics of biochemical
processes and reactions in a cell, using multi-time point measurements and multi-dimensional outcome
analysis and decision making algorithms. The introduced multivariate signaling outcome modeling
framework can be used to analyze several molecular species measured at the same or different time instants.
We also show how the developed binary outcome analysis and decision making approach can be extended
to include more than two possible outcomes. To show how the overall set of introduced models and methods
can be used in practice and as an example, we apply them to single cell data of an intracellular regulatory
molecule called Phosphatase and Tensin homolog (PTEN) in a p53 system, in wild-type and abnormal, e.g.,
mutant cells. These molecules are involved in tumor suppression, cell cycle regulation and apoptosis. The
unified signaling outcome modeling framework presented here can be applied to various organisms ranging
from simple ones such as viruses, bacteria, yeast, and lower metazoans, to more complex organisms such
as mammalian cells. Ultimately, this signaling outcome modeling approach can be useful for better
understanding of transition from physiological to pathological conditions such as inflammation, various
cancers and autoimmune diseases.

Brief Summary

Cells are supposed to make correct decisions, i.e., respond properly to various signals and initiate
certain cellular functions, based on the signals they receive from the surrounding environment. Due to signal
transduction noise, signaling malfunctions or other factors, cells may respond differently to the same input
signals, which may result in incorrect cell decisions. Modeling and quantification of decision making
processes and signaling outcomes in cells have emerged as important research areas in recent years. Here
we present univariate and multivariate data-driven statistical models and methods for analyzing dynamic
decision making processes and signaling outcomes. Furthermore, we exemplify the methods using single
cell data generated by a p53 system, in wild-type and abnormal cells.
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Introduction

Understanding how cells make decisions in response to input signals is an important challenge in
molecular and cell biology. Depending on the signals they receive, cells can adopt different fates.
Emergence of single cell data and methods [1-3] has made it possible to study and model the behavior of
each cell individually. An important factor that affects cell decisions is biological noise in various
organisms [4], which can cause cells to exhibit different behaviors, when receiving the same input signal.
For example, under the same stimuli, some cells may decide to survive, whereas others may undergo
apoptosis. Signaling outcomes can be affected by genetic and epigenetic regulation and misregulation,
leading to errors in signaling outcomes and ensuing cell decisions.

Given the probabilistic nature of cellular decisions [1, 3], it is of interest to have a unified set of
statistical metrics and methods to systematically study and characterize the signaling outcomes that may
inform them, and determine probabilities associated with different outcomes. Using statistical signal
processing and decision theory concepts, recently a framework was introduced by Habibi et al. [1], to
compute optimal decision thresholds and probabilities for incorrect cell decisions using single cell data.
More specifically, in the transcription factor Nuclear Factor kB (NF-xB) pathway regulated by the tumor
necrosis factor (TNF) [3], the optimal decision threshold which minimized the decision probability to
distinguish between two different TNF levels was computed from data [1]. Probabilities of incorrect cell
decisions were computed from data as well.

One goal of this paper is to show how the statistical decision theoretic framework [1] can be used to
study other molecular systems and signaling outcomes. The other goal is to extend the decision modeling
framework such that one can model and analyze multi-dimensional signaling outcome processes using
multi-time point measurements. This allows to incorporate signaling dynamics into decision making
analysis. Application of receiver operating characteristic curve as a graphical tool to visualize decisions and
outcomes under normal and abnormal conditions is introduced here as well. In this paper, we use the tumor
suppressor p53 system, as an example, to present the concepts, metrics and algorithms related to decision
making and outcome analysis.

The tumor suppressor p53 is an important transcription factor that is responsible for DNA repair, cell
cycle suppression, cell growth control and initiation of apoptosis [5-8]. When a healthy cell is exposed to
ionizing radiation (IR), DNA damage occurs [9]. Due to the DNA damage, p53 becomes activated [5, 10,
11] and the cell takes one of two possible actions: it can either survive by repairing the DNA or it can trigger
apoptosis [8, 12, 13]. Our focus here is to demonstrate how such outcomes can be systematically modeled.
We accomplish this by introducing metrics and methods to evaluate success and failure rates of the signaling
outcomes and actions, in response to the DNA damage caused by different IR doses and under various
conditions. In order to do this, we collected data using the simulator of Hat et al. [9], to obtain single cell
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data of healthy cells, when different IR doses are applied. Moreover, we collected single cell data of
abnormal cells exposed to different IR doses, to measure how the decision making is affected when there
is an anomaly in the system, in addition to the DNA damage.

The rest of the paper is organized as follows. First, we briefly explain the p53 system and its response
to DNA damage. Then we present decision making and outcome analysis as a hypothesis testing problem
on the IR level, define probabilities associated with various decisions, introduce the optimal decision maker,
and describe the single cell data used to determine the decision probabilities in the presence of noise and
under normal and abnormal conditions. Methods for computing optimal decision thresholds and the
associated decision error rates are presented afterwards, using either single, double or multiple time point
measurements in individual cells. The latter is particularly useful to understand the effect of temporal
variations and dynamical changes. Additionally, receiver operating characteristic curves are computed and
presented as useful tools to visualize the tradeoff between decision error rates and how they are affected by
decision thresholds and other factors. A comparison between binary and ternary decision making and
outcome analysis and their error rates is provided as well. The paper concludes with a summary of the
highlights of the methods and their biological implications for understanding signaling outcomes and
decisions in the exemplary p53 system, and extensions to other systems.

Signaling outcomes and decisions in the p53 system when DNA damage occurs: A case
study

The transcription factor p53 has a significant role in DNA repair, cell cycle suppression, regulation of
cell growth, and initiation of apoptosis [5-8]. It becomes active in response to DNA damage that may occur
when the cell is exposed to ionizing radiation (IR), ultraviolet (UV) radiation, heat shock, etc. [5, 10, 11].
In particular, exposure to IR results in DNA double strand breaks (DSBs), which are the most serious DNA
lesion. When DSB is not repaired, it can cause cell death or DNA mutations which can propagate to new
cell generations [12, 14, 15]. When DNA damage occurs, p53 can assume two phosphorylation states:
P53armester aNd P53kirer. Afterwards, the p53 system can take two actions: it either suppresses cell cycle until
DNA is repaired, if the damage is low and repair is possible; or it can trigger apoptosis if the damage is
high and repair is not possible [8, 12, 13]. Herein, we intend to compute decision thresholds and incorrect
decision rates when the DNA damages caused by various IR doses occur in a cell. With this goal in mind,
we conduct stochastic simulations of cells exposed to different IR doses [9], to obtain in silico single cell
data.

Consider the p53 system model [9] shown in Fig 1. The p53 system is activated due to a DNA damage
induced by IR. Initially the protein kinase ataxia-telangiectasia mutated (ATM) is activated by the DNA
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Apoptotic Module

Fig 1: A p53 system model [9]. Arrow-headed dashed lines represent positive transcriptional regulations,
arrow-headed solid lines stand for protein transformations, circle-headed solid lines are activatory
regulations, and hammer-headed solid lines represent inhibitory regulations. All the molecules and the
interactions between them are described in the main body of the paper.

damage [16, 17]. The active ATM phosphorylates Mdm2, which is a p53 inhibitor [18]. The ATM also
activates p53 by phosphorylating it to one of its active phosphoforms: p53amester Which further
phosphorylates p53 to the p53kiier form [19-21]. Moreover, the p53arester activates the Mdm2 [22] and wild-
type p53-induced phosphatase 1 (Wipl) [23, 24]. The active Wipl inhibits the ATM [25] and
dephosphorylates the p53ciier t0 the p53amester form [26]. The p53kiner regulates another phosphatase,
phosphatase and tensin homolog (PTEN), which initiates a slow positive feedback loop stabilizing the level
of p53 [27]. If DNA damage is large and its repair takes longer time, PTEN accumulates to high levels and
inhibits AKT, which may no longer phosphorylate Mdm2. Unphosphorylated Mdm2 remains in cytoplasm
and may not target nuclear p53 for degradation. Thus, accumulation of PTEN results in disconnection of
negative feedback loop between p53 and Mdm2. The slow positive feedback loop acts as a clock giving
cells time to repair DNA, and initiating apoptosis if DNA repair takes too long. The apoptotic module,
where transcription of pro-apoptotic proteins is induced, is controlled by p53kiner and Akt that suppresses
the apoptosis. When Akt is inhibited by increased level of PTEN, it will no longer suppress the apoptotic
module. Thus, the p53kirer Will initiate activation of cysteine-aspartic proteases (Caspases), enzymes having
essential role in cell death (Fig 1). Since we are interested in the analysis of the signaling outcomes which
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affect whether the cell survives or triggers apoptosis, we do not consider the cell cycle arrest module
(regulated by p53arester), and focus on the apoptotic module. Simulation files can be found in Hat et al. [9]
and more detailed information about the p53 system and each component and interaction there can be found
in Hat et al. [9] and Bogdal et al. [29]. More specifically, interested readers can refer to the Supporting
Information S1 Text of [9], which includes a summary of mathematical models of the p53 system, a detailed
description of the model, a notation guide, and lists of parameters and reactions.

Decision making and outcome analysis: Hypothesis testing on input signals and optimal
decisions with minimum errors

When cells are exposed to radiation, each cell may respond differently due to noise or some other
factors. One may decide to survive, whereas another may trigger apoptosis, both under the same IR dose.
Given the probabilistic nature of such decisions [1], we can formulate p53-based decision making as a
binary hypothesis testing problem, where the decision making system is going to test which of the following
two hypotheses is true regarding the applied IR dose, to trigger an action accordingly:

H,: IR dose is low,
. 1)
H, : IR dose is high.

Binary hypothesis testing is observed in other systems, e.g., the TNF/NF-«B system [1].

In response to an IR dose, two types of incorrect decisions can be made. One is deciding that the input
IR level is high, whereas in fact it is low (deciding H; when Hy is true), which may falsely trigger apoptosis.
The other one is deciding that the input IR level is low, whereas in fact it is high (deciding Ho when Hy is
true), which may result in missing apoptosis. These two erroneous decisions can be called as false alarm
and miss event, respectively, and their probabilities can be defined as:

P., = P(deciding H, |H,),

- ()
P, = P(deciding H, |H,).
The overall error probability P. of making decisions is a combination of P., and B, :
P =P(Hy)P:, + P(H)Ry, (3)

where P(H,) and P(H,) are prior probabilities of Ho and Hs, respectively. Note that as mentioned in the
Introduction section, IR causes DNA damage. Therefore, one can instead formulate the p53-based decision
making process as a binary hypothesis testing on DNA damage being low or high, and define the associated
false alarm and miss events probabilities accordingly.
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The optimal decision making system which minimizes the above P. is the one that compares
probabilities of observed data under the hypotheses Ho and H: [30]. More precisely, suppose that x is the
observationand p(x|H,) and p(x|H,) are the conditional probability density functions (PDFs) of x under
Ho and Hi, respectively. Also consider equi-probable hypotheses, i.e., P(H,)=P(H,)=0.5, which is a
reasonable assumption in the absence of prior information on the possibilities of Ho and Hi. Then, the
optimal system decides Hz if p(x|H,) > p(x|H,), otherwise, it decides Ho. This means that the hypothesis
with the highest likelihood is decided. This decision is called the maximum likelihood decision [30].

Single cell data of the p53 system exposed to ionizing radiation

To calculate the error probabilities in Equation (2), we use PTEN level as the decision variable because
when unrepairable DNA damage occurs, the activated p53 triggers pro-apoptotic phosphatase PTEN [27],
and PTEN initiates apoptosis [28]. It has also been shown by Hat et al. [9] that PTEN is a decent predictor
of cell fate. After specifying the decision variable, we use the stochastic simulator of Hat et al. [9] to
generate 5000 cells for each IR dose. The stochastic simulation has three phases. The first phase is the
“equilibrium phase” where we simulate 2 weeks of cell behavior when no IR dose is applied. The second
phase is called “irradiation phase” in which 10 minutes of IR dose is applied. The last phase is called
“relaxation phase” in which we simulate 72 hours of cell behavior after it is exposed to 10 minutes of IR.
When IR dose increases, apoptotic cell percentage increases as well [9] (Fig 2). For more details on the
simulation phases, see supporting files of Hat et al. [9]. In order to decide whether a cell is apoptotic or not,
we check active caspase level in 72 hours after the irradiation phase, and compare it with the threshold of
0.5x10° suggested in Hat et al. [9]. Cells with the level of active caspase higher (or lower) than the threshold
of 0.5x10° are considered to be apoptotic (or surviving).

The data of normal cells includes eight sets of PTEN levels in 5000 cells, which correspond to eight
dosesof IR=1, 2, 3, 4,5, 6, 7 and 8 Gy. Here Gy stands for Gray, the unit of radiation dose, and 1 Gy is 1
Joule of energy absorbed by 1 kg of tissue. We focus our analysis on low IR versus high IR hypothesis
testing, to see how accurately it can be decided whether the applied radiation level is low or high. We
consider IR = 1 Gy as the low dose, whereas the higher dose can be IR =2, 3, 4, 5, 6, 7 or 8 Gy. More
specifically, scenarios in which signaling outcomes are analyzed are 1 vs. 2 Gy, 1 vs. 3 Gy, 1 vs. 4 Gy, 1
vs. 5 Gy, 1vs. 6 Gy, 1 vs. 7 Gy, and 1 vs. 8 Gy. We quantitatively study in which of these scenarios more
erroneous decisions are made. We also determine to what extent decision between responses to low and
high IR levels depends on the input IR separation. We conduct these studies by computing the optimal
decision threshold in each scenario using the PTEN data, following the maximum likelihood principle that
provides the best decisions, i.e., smallest decision error probabilities. We also compute numerical values of
the decision error probabilities using the PTEN data.
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In addition to the analysis of erroneous decision making and incorrect signaling outcomes in normal
cells mentioned above, we analyze them in abnormal cells as well, where there is a dysfunctional molecule
in the p53 system. Wip1 is one of the key regulatory pro-survival phosphatases [23] in the p53 system (Fig
1). If the DNA damage can be repaired, then Wip1 expression returns the cell to the pre-stress state from
cell-cycle arrest [23, 32]. It has been observed that elevated Wip1 level exists in multiple human cancer
types such as breast, lung, pancreas, bladder, and liver cancer [33-38]. Therefore, to obtain abnormal cells,
we generate cells with increased Wip1 synthesis rate. In normal cells, Wip1 synthesis rate is about 0.1 [9],
and here we increase it to 0.15, a 50% increase, to reproduce abnormality. This increase in the Wipl
synthesis rate causes a significant decrease in the cell death percentage (Fig 2), which can be considered as
an abnormal cell state. In addition to Wipl, we analyze abnormal cellular state caused by PTEN
abnormalities. It has been observed that attenuated PTEN levels exist in MCF-7, a non-invasive form of
human breast cancer cells [39]. Therefore, it is of interest to see how the abnormal PTEN level affects
signaling outcomes in the p53 system. To study this, we generate abnormal cells by decreasing PTEN
synthesis rate. In healthy cells, the PTEN synthesis rate is about 0.03 [9]. Here we decrease it to 0.015, a
50% decrease, to reproduce abnormality. We observe a considerable decrease in the cell death percentage
(Fig 2), representing an abnormal cellular state.
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Fig 2: Cell death percentage versus ionizing radiation (IR) dose in both normal and abnormal p53
systems. The dark green curve at the top represents a normal p53 system with no perturbation, whereas the
other two curves correspond to p53 systems behaving abnormally due to Wipl or PTEN perturbations.
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Univariate analysis: Methods for computing decision thresholds and decision error rates
using single time point measurements in individual cells

In this section, we analyze PTEN levels of 5000 cells measured in 72 hours after the irradiation phase.
It has been observed that PTEN levels of both apoptotic and surviving cells become very distinct in 72
hours after 10 minutes of IR application [9] (decision analysis based on PTEN levels at other time instants,
as well as multiple time instants are presented in other sections).
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Fig 3: Univariate decision making and signaling outcome analysis in the normal p53 system based on
PTEN response distributions. (A) Histograms of PTEN levels of cells under IR =1 Gy and IR = 2 Gy
doses. (B) Gaussian probability density functions (PDFs) for PTEN levels of cells under IR =1 Gy and IR
= 2 Gy doses, together with the optimal maximum likelihood decision threshold which minimizes the total
decision error probability. (C) Histograms of PTEN levels of cells under IR =1 Gy and IR = 8 Gy doses.
(D) Gaussian PDFs for PTEN levels of cells under IR =1 Gy and IR = 8 Gy doses, together with the optimal
maximum likelihood decision threshold which minimizes the total decision error probability.
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Histograms of natural logarithm, In, of PTEN levels for IR = 1, 2 Gy data sets and IR = 1, 8 Gy data
sets are shown in Fig 3A and Fig 3C, respectively. As presented in Fig 3B and Fig 3D, Gaussian PDFs
whose means and variances are estimated from the data, reasonably represent the histograms. This indicates
that the PTEN data can be reasonably approximated by lognormal PDF. Due to the mathematical
convenience of working with Gaussian PDFs and variables, especially for multivariate analysis of multiple
time point data discussed later, we continue working with the logarithm of the PTEN data. Let
x =In(PTEN) be the Gaussian variable of interest with mean 4 and variance &°, i.e., X~ .4 (u,c°)
where .# stands for the following normal or Gaussian PDF:

p(X) = (270°) ** exp| ~(x - )" 1 (20%) |

The Gaussian PDFs shown in Fig 3 are indeed the conditional PDFs p(x|H,) and p(x|H,) under the
hypotheses Ho and H; defined earlier in Equation (1). For example, in Fig 3B, Ho and H; correspond to IR
=1 Gy and IR = 2 Gy doses, respectively, and the red and black curves in there are the conditional PDFs
p(x|H,) and p(x|H,), respectively.

The optimal maximum likelihood decision making system: Recall our two hypotheses previously
defined in (1). The optimal decision maker, which minimizes the overall error probability P. in (3),
compares the conditional likelihood ratio L(x) = p(x|H,)/ p(x|H,) with the ratio y =P(H,)/P(H,) [1].
The system decides Hy if L(x) > y. If the hypotheses are equi-probable, i.e., P(H,) =P(H,) =0.5, then the
optimal system decides Hi if p(x|H,) > p(x|H,).

The optimal decision threshold: To find the optimal decision threshold, we need to solve the equation
L(x) =y, i.e.,, P(H,)p(x|H,)=P(H,)p(x|H,), for x. When Ho and H; are equi-probable, the threshold
equation to be solved simplifiesto L(x) =1, i.e., p(x|H,) = p(x|H,).

The decision error probabilities: Once the optimal decision threshold is determined, it can be used
to compute false alarm and miss decision error probabilities, by integrating the conditional PDFs of data
over error regions. More specifically, using the conditional PDFs p(x|H,) and p(x|H,) representing the
response probabilities of the In of PTEN levels under the two hypotheses, Equation (2) can be written as

[1]:

Pa= [ p(xIHo)dx, @)

xe false alarm region

Ri= [ pxIH)dx (5)

Xe miss region

10
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The false alarm region in (4) is defined by {x: p(x|H,)> p(x|H,)} when Ho is true, whereas the miss
region in (5) is defined by {x: p(x|H,)> p(x|H,)}when Hy is true. By substituting P., and B, in
Equation (3) the overall error probability P. can be obtained.

The Gaussian data model to compute the optimal decision threshold: Here we focus on Fig 3B as
an example, where two Gaussian PDFs are shown for x =In(PTEN), the natural logarithm of PTEN levels
in the two data sets of IR = 1 Gy and IR = 2 Gy, with each data set consisting of 5000 cells. Let A (1,,07)
and ¥ (u,,c7) represent the Gaussian PDFs that correspond to the IR = 1 Gy and IR = 2 Gy data sets,
respectively, where (u,,07) and (u,c.) are mean/variance pairs estimated from their associated data
sets. The optimal maximum likelihood decision threshold in Fig 3B is at the intersection of the two PDFs,
and can be computed by solving the equation p(x|H,) = p(x|H,) written below:

(2703) ™ exp[ ~(x— 1) 1 (203) | = (2757) M exp| ~(x = 4)* 1 (207) ]. (6)

By multiplying both sides by (27c7)"? exp[(x—4)° / (257)] and then taking natural logarithm of both
sides, (6) can be written in the following quadratic equation form [1]:

(05 —07)X* +2(07 1y — 0o 1) X+ 05 11 = 07 g — 20507 In(0, 1 07) =0. (7)

Equation (7) is derived assuming our hypotheses are equi-probable, i.e., P(H,) = P(H,) =0.5, as mentioned
before. The solution of Equation (7) gives the optimal decision threshold PTEN, located at the intersection
of the two PDFs for IR =1 Gy and IR = 2 Gy doses in Fig 3B (the italic style is adopted to clarify that the
threshold is related to the logarithm of PTEN data). Interestingly, for equal variances, solution of Equation
(7) for the optimal decision threshold simplifies to the average of the means, i.e., (u, +44)/2, which
intuitively makes sense. For other prior probabilities and PDF models, the optimal threshold can be obtained
similarly, by solving the equation P(H,) p(x|H,)=P(H,)p(x|H,) for x.

The Gaussian data model to compute the decision error probabilities: Using the PTEN obtained
by solving Equation (7) and using the Gaussian PDFs, Equations (4) and (5) for the false alarm and miss
error probabilities can be written as:

P, = J. p(x|H0)dx:QLMJ’ (8)
PTEN,, Oy
PTEN
" - PTEN
Pi= [ plx] Hl)dx=Q(%} ©)
—o 1

where Q(#n) is tail probability of the standard Gaussian PDF .#°(0,1) :
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QUr) = (27) ™ [exp(-u* / 2)du.

Equation (8) represents area of the pink region in Fig 3B under the tail of the IR = 1 Gy PDF, beyond
the PTEN threshold. In this region of x > PTEN, we have p(x|H,)> p(x|H,), while Ho is true. This is
the false alarm region for which we have computed P, =0.57 in Fig 3B. On the other hand, Equation (9)
represents area of the gray region in Fig 3B under the tail of the IR =2 Gy PDF, below the PTEN threshold.
In this region of x < PTEN,, we have p(x|H,)> p(x|H,), while Hy is true. This is the miss region for
which we have computed B, =0.28 in Fig 3B. After computing P-, and P,,, we can now compute the
overall error probability P. using Equation (3), which results in P. =(P., + P, )/2=0.43. Similarly, by
computing Equations (8) and (9) for the 1 vs. 8 Gy scenario we obtain P. =0.001 (Fig 3D). Based on the
results of 1 vs. 2 Gy and 1 vs. 8 Gy decision scenarios, it can be concluded that when the difference between
the two applied IR doses increases, the overall decision error probability P. decreases. This is mainly
because the two response PDFs become more distinct with less overlap, as the difference between the two
applied IR doses increases.

For some cases such as 1 vs. 3, 4,5 and 6 Gy IR doses, some data sets need to be modeled by a mixture
of Gaussian PDFs due to bistable behavior of p53 system and hence cells’ bimodal histograms. Still the
same underlying theory and proposed framework hold. Nevertheless, in what follows we explain how to
determine the optimal decision thresholds and how to compute the decision error probabilities when using
a mixture model, for the 1 vs. 4 Gy scenario.

Histograms of natural logarithm of PTEN levels for IR = 1, 4 Gy data sets are shown in Fig 4A. We
notice that while 1 Gy data histogram is unimodal, histogram of 4 Gy data is bimodal. Therefore, for the 1
Gy data we use a single Gaussian PDF as before, whereas for the 4 Gy data we utilize a mixture of two
Gaussian PDFs. More specifically, we consider .4 (u,,o;) for H, to represent the single Gaussian PDF
that corresponds to the IR = 1 Gy data, whereas we use &N (uy,,075) + Q- E)AN (14,,05) for H,, with
0 < £ <1 being the mixing parameter, to represent the mixture of two Gaussian PDFs which correspond to
the IR = 4 Gy data set. The mean and variance (u,,o.) are estimated from the 1 Gy data and the associated
single Gaussian PDF is shown in Fig 4B. Furthermore, the means and variances (4,,07;) and (u,,07,)
and the mixing parameter & are estimated from the 4 Gy data using the MATLAB command “fitgmdist”
which implements the iterative Expectation-Maximization (EM) algorithm. The resulting mixture of two
Gaussian PDFs is shown in Fig 4B.

Similar to the previous scenarios, the optimal maximum likelihood decision thresholds shown in Fig
4B for equi-probable hypotheses are at the intersections of the conditional PDFs p(x|H,) and p(x|H,),
the latter being a Gaussian mixture for the 4 Gy data. Note that here solving the equation
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p(x|H,) = p(x|H,) results in four solutions for x, that is why there are four decision thresholds,
PTEN,,;, i=12,3,4 in Fig 4B (Note that each decision threshold PTEN,, is listed as “Decision Threshold
i” in Fig 4).

To compute the decision error probabilities, the false alarm and miss probabilities P., and P,, need to
be calculated using Equation (4) and Equation (5), respectively. Since there are four decision thresholds in
this case, integration has to be performed over multiple regions, which results in lengthy expressions.
However, note that as can be seen in Fig 4B and its zoomed-in view in Fig 4C, PDFs for low dose (red) and
the lower Gaussian mode for the high dose (black) assume very small values as they reach the third
threshold. Therefore, their contributions to possible error events around the third and fourth thresholds are
negligible (later this is shown numerically). Similarly, given the very small variance of the higher Gaussian
mode of the PDF for the high dose, this PDF is substantially different from zero only between the third and
fourth thresholds. Consequently, the contribution of the PDF of this mode to possible errors around the
third and fourth thresholds is negligible as well. Overall, as just explained, optimal decision when
PTEN,, <X <PTEN,, is H, with no decision error, whereas for x < PTEN,,, PTEN,, <x<PTEN,,
and PTEN,, <x<PTEN,,, optimal decisions are H,, H, and H,, respectively, with the following
decision error probabilities:

PTEN,, — PTEN,, —
P —Q —ﬂJ_Q[—ﬂJ

Oy Oy

PM — §|:Q My — PTENthl)_FQ( PTENch —Hy ]i| '

oy Oon

The P, expression corresponds to the pink region in Fig 4C, whereas the two Q functions in the B,
expression correspond to the two gray regions in Fig 4C, respectively. Using the data, computed numerical
values are £=0.51, P, =0.28-0.06~0.22, B, =0.51[0.41+0.07]~0.25 and P. =0.24, the last one
being calculated using Equation (3).

As an example of a negligible decision error probability around the third and fourth thresholds
mentioned earlier, consider the area under the red Gaussian PDF p(x|H,) in Fig 4C for
PTEN,,; <Xx<PTEN,,. While not visible due to being very small, it can be understood that the
aforementioned area is a false alarm probability of deciding H,, although H, is true. Numerical value of
this false alarm probability is Q((PTEN,,; — 14,) / 64 ) — Q((PTEN,, — 1)/ 0,) =1.2x10"° - 2.8x10° ~ 0,
which is negligible compared to P., ~0.22 calculated in the previous paragraph.
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Fig 4: Univariate decision making and signaling outcome analysis in the normal p53 system when a
PTEN response distribution is bimodal. (A) Histograms of PTEN levels of cells under IR =1 Gy and IR
=4 Gy doses. (B) A Gaussian probability density function (PDF) for PTEN levels of cells under IR =1 Gy
and a mixture of two Gaussian PDFs for PTEN levels of cells under IR = 4 Gy doses, together with the
optimal maximum likelihood decision thresholds which minimize the total decision error probability. (C)
Zoomed-in view of panel B.

Abnormal p53 systems: To see how an abnormality in the p53 system affects the decision making and
signaling outcomes, we calculate P. values when Wip1 synthesis rate is elevated by 50% from 0.1 to 0.15
(Fig 5), as mentioned previously. As suggested by Habibi et al. [1], decision thresholds are modeled to be
those of the normal cells. This implies that abnormal cells are not aware of the abnormality, and therefore
erroneously use the previous threshold. As we see later, this increases decision error probabilities, a
behavior that can be anticipated from abnormal cells. Using Equations (8), (9) and (3), P:,, P, and P. are
computed: P. =0.44is obtained for 1 vs. 2 Gy scenario (Fig 5A), and P. =0.16 is obtained for 1 vs. 8 Gy
scenario (Fig 5B). Compared to the normal system results, the overall error probability is significantly
higher for the abnormal system under the 1 vs. 8 Gy scenario (we observe that P. =0.001 of normal cells
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markedly increases to P. =0.16 in abnormal cells). The reason is that when the Wipl synthesis rate is

increased, the two response PDF curves significantly overlap (notice the overlap between the left-side
component of the IR = 8 Gy PDF with the IR = 1 Gy PDF in Fig 5B). This is while in normal cells they had
almost no overlap (Fig 3D).
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Fig 5: Univariate decision making and signaling outcome analysis in an abnormal p53 system, with
increased Wip1l synthesis rate, based on PTEN response distributions. (A) Gaussian probability density
functions (PDFs) for PTEN levels of abnormal cells under IR = 1 Gy and IR = 2 Gy doses, together with
the decision threshold of normal cells. This implies that in abnormal cells the previous decision threshold
is erroneously used [1]. As discussed later, this increases decision error probabilities, a behavior that can
be anticipated from abnormal cells. (B) A Gaussian PDF for PTEN levels of abnormal cells under IR = 1
Gy dose and a mixture of two Gaussian PDFs for PTEN levels of abnormal cells under IR = 8 Gy dose,

together with the decision threshold of normal cells.
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Similarly, we compute error probabilities for the other abnormal p53 system we mentioned previously,
generated by the PTEN synthesis rate reduced from 0.03 to 0.015 (50% reduction). Error probabilities for
this abnormality for all different radiation exposure scenarios of 1 vs. 2 Gy up to 1 vs. 8 Gy are shown in
Fig 6. For comparison, error probabilities for the Wipl-perturbed abnormal p53 system and also the normal
p53 system are provided in Fig 6 as well. We observe that as the difference between the two applied IR
doses increases, decision error probability in normal cells drops significantly. This is while in abnormal
cells, decision error probabilities remain high. These signaling outcomes might be correlated with the
observation that cell death percentages in abnormal systems are considerably lower than the normal system,
even when the radiation dose increases (Fig 2). This could indicate that abnormal cells do not respond to
IR levels properly and hence, decisions and signaling outcomes affecting apoptosis and survival become
more erroneous. Care should be taken that these specific observations are based on the low versus high IR,
e.g. do vs d: IR hypothesis testing formulation where the low IR dose is fixed to 1 Gy (do = 1 Gy) and the
high IR dose is ranging from 2 Gy up to 8 Gy (d: =2, 3, ..., 8 Gy) in the p53 system, that is considered in
this paper as an example. These observations may not be generalized to other selections of the low do and
high d: IR doses or other hypothesis testing formulations, case studies or signaling networks. However, the
proposed framework and its analytical tools, whose introduction has been the main goal of this paper, can
be similarly used.
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Fig 6: Decision error probabilities for several low IR versus high IR scenarios. The “Abnormal System
— PTEN” legend refers to a p53 system whose PTEN synthesis rate is decreased by 50%, compared to its
nominal value. The “Abnormal System — Wip1” legend refers to a p53 system whose Wip1 synthesis rate
is increased by 50%, compared to its nominal value. Smaller decision error probabilities in the normal
system are noteworthy.
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Decision and signaling outcome analysis using receiver operating characteristic (ROC)
curves

In this subsection, we show how to analyze performance of a decision maker using receiver operating
characteristic (ROC) curves. The ROC curve is developed to visualize the performance of decision making
systems [30, 40], and is a graph of probability of detection, P, =1—P,,, versus the probability of false
alarm, P.,. In Fig 7 we present ROC curves for both the normal p53 system (Fig 7A) and the abnormal
p53 system (Fig 7B) whose Wipl synthesis rate is elevated, for these two low vs. high IR decision making
scenarios: 1 vs. 2 Gy and 1 vs. 8 Gy. The theoretical ROC curves in Fig 7 are graphed using the false alarm
and miss decision error probability formulas in Equations (8) and (9), respectively, with s, o s and the
thresholds estimated from the data. The empirical ROC curves in Fig 7 are graphed by using the data sets
directly, using the MATLAB command “perfcurve”. We observe that the theoretical and empirical ROCs
are nearly the same. Therefore, in what follows, we focus on the theoretical ROC curves, to explain concepts
and results.

A ROC curve is above a 45° diagonal line [30], the gray dashed line in Fig 7. In our study it represents
the worst possible decision maker, i.e., a decision making system that does not use the data and instead
randomly decides if the applied IR dose is low or high, by just flipping a coin. The 45° line is indeed a
reference to judge the performance of a decision making system. A ROC curve far away from the 45°
reference line indicates a good decision maker. Each point on a ROC curve represents a (P-,,P,) pair that
corresponds to a certain decision threshold. Other properties of ROC curves can be found in VVan Trees et
al. [40]. The “X” marks in Fig 7A show the optimal (P.,,P,) points that correspond to the optimal decision
thresholds shown in Fig 3B and Fig 3D, previously computed using Equation (7) for the 1 vs. 2 Gy and 1
vs. 8 Gy scenarios, respectively.

Based on the normal p53 system ROC curves in Fig 7A, we observe that decisions are made better
under the 1 vs. 8 Gy scenario, because of its ROC curve being very far from the 45° reference line, compared
to the 1 vs. 2 Gy case whose ROC curve is much closer to the 45° reference line. This finding supports our
results presented in Fig 6, showing the smaller decision error probability of 0.001 for 1 vs. 8 Gy, compared
to the larger decision error probability of 0.43 for 1 vs. 2 Gy. ROC curves also show that abnormalities in
the p53 system can cause decision precision loss. Comparing the normal (Fig 7A) and abnormal system
ROC curves (Fig 7B), we observe that the abnormal system ROC curves are closer to the 45° reference
line, meaning that more erroneous decisions are made, when there is an abnormality in the system.
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Fig 7: Empirical and theoretical receiver operating characteristic (ROC) curves for both normal and
abnormal p53 systems. The theoretical ROC curves labeled by o are obtained from the Gaussian and
mixture of Gaussians data models and formulas whose parameters are estimated from the data, whereas the
empirical ROC curves labeled by ¢ are obtained directly from the data. We observe that the theoretical and
empirical ROCs are nearly the same. Note that Threshold = In(PTEN Level) in the figures. (A) ROC curves
of 1 vs. 2 Gy and 1 vs. 8 Gy radiation scenarios for the normal system. (B) ROC curves of 1 vs. 2 Gy and
1 vs. 8 Gy radiation scenarios for the Wipl-perturbed abnormal system.

Bivariate analysis: Methods for computing decision thresholds and decision error rates
using two time point measurements in individual cells

In this section, we analyze PTEN levels of 5000 cells measured in one hour and 30 hours after the
irradiation phase. Using two variables instead of one allows to study the effect of temporal dynamical
changes on decision making and signaling outcomes, and paves the way for analyzing decisions based on
multiple time point data. Suppose x and y represent the In(PTEN) levels in one hour and 30 hours,
respectively, after radiation. Joint Gaussian PDF for x and y can be written as [41]

y) - 1 {(x_ﬂx)z_zp<x—yx)(y—uy>+(y—§y> D (10)

276,0,1— 2exp[_z(l—!?z) oy 0.0 o
x“y P X X7y y

where (u,,o7) and (,uy,o-j) are means and variances of xand y, and p is correlation coefficient between
x and y. Bivariate conditional likelihood ratio is given by L(x,y)=p(x,y|H,)/ p(x,y|H,), and the
optimal decision maker which minimizes the overall error probability P. compares L(x,y) with the ratio
y=P(H,)/ P(H,). The system decides H: if L(x,y)>y. If the hypotheses are equi-probable, i.e.,
P(H,)=P(H,) =0.5, then the optimal system decides H: if p(x,y|H,) > p(x,y|H,). To find the optimal
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decision  threshold curve, we need to solve the equation L(x,y) =7, i.e.,
PH,) p(x,y|H,)=PH,)p(x,y|H,), for x and y. When Ho and Hi are equi-probable, the threshold
equation to be solved simplifiesto L(x,y) =1 i.e.,, p(x,y|H,)=p(X,y|H,). To find false alarm and miss

probabilities, Equations (4) and (5) can be extended to two variables as follows:

Pa= [[ pOuyIH,)dxdy, (11)

(x,y)e false alarm region

Pe= [[  p(xyIH)dxdy, (12)

(x,y)e miss region

where {x,y:p(x,y|H,)>p(x,y|H,)} defines the false alarm region when Ho, is true, and
{x,y:p(x,y|Hy) > p(x,y|H,)} specifies the miss region when Hy is true. After computing P-, and B, ,
the overall decision error probability P. can be calculated using Equation (3).

As an example, here we focus on Fig 8A, where two bivariate Gaussian PDFs are shown for
x =In(PTEN at the 1™ hour) and y = In(PTEN at the 30" hour), logarithms of PTEN levels in the two data
sets of IR =1 Gy and IR = 2 Gy, with each data set consisting of 5000 cells. The mean and variance
parameters of each bivariate response PDF are estimated from the associated data set. The overlap between
the two bivariate PDFs in response to IR =1 Gy and IR = 2 Gy can be better seen in the top view shown in
Fig 8B. This figure also demonstrates that the decision threshold between the two PDFs is going to be a
curve in the x-y plane, where the two PDFs intersect. Equation for this optimal threshold curve which
minimizes the total decision error probability is given by L(x,y) =1, where L is the bivariate conditional
likelihood ratio defined previously. This decision threshold curve curvew is shown together with contour
plots of the two bivariate PDFs in Fig 8C. To compute the decision error probabilities using the decision
threshold curven, Equations (11) and (12) for the false alarm and miss error probabilities can be written as:

Po= | [ PO yIHo)dydx (13

X=—00 y=CUIVey,
o curvey

Ri= | | pOuylH,)dydx. (14)

X=—00 y=—0

After computing the integrals in Equations (13) and (14) numerically, we obtain P., =0.24 and B, =0.26.
Upon their substitution in Equation (3) and with equi-probable hypotheses, we obtain P. =0.25.

To compare the above two time point decision with individual one time point decisions, we compute

decision error probabilities based on the 1% hour data and the 30" hour data, individually, for the IR = 1 vs.
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2 Gy scenario. We obtain P, =0.5 and P, =0.27 for individual univariate decisions in one hour and 30
hours after the radiation, respectively. We observe that the bivariate decision offers significant improvement
over the one hour decision, and slight improvement over the 30 hour decision. Univariate decision error
probabilities at different time points are discussed in the next section, as well as how multivariate decision
error probability changes, as the data of more time points are added to the decision process in a sequential
manner.
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Fig 8: Bivariate decision making and signaling outcome analysis in the normal p53 system based on
PTEN response distributions. (A) Bivariate Gaussian probability density functions (PDFs) for PTEN
levels of cells at the 1%t hour and the 30" hour, under IR = 1 Gy and IR = 2 Gy doses. (B) Top view of the
two bivariate Gaussian PDFs. (C) Top contour view of the two bivariate Gaussian PDFs, together with the
optimal maximum likelihood decision threshold curve which minimizes the total decision error probability.
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Multivariate analysis: Methods for computing decision thresholds and decision error rates
using multiple time point measurements in individual cells

In this section, we further study the effect of system dynamics on decision making and signaling
outcomes, by considering multiple time point data. More specifically, we consider PTEN levels of 5000
cells measured in 1, 10, 20, 30, 40, 50, 60 and 70 hours after the irradiation phase. Let @ be an N x1
column vector that represents the In(PTEN) levels at a subset or all of the aforementioned time instants.
Joint Gaussian PDF for all the decision variables in @ can be written as [31, 40]:

1 1 Ty1
p(o) =—e><p[——(w—u) z (w—u)}, (15)
(27[) N/2 |Z|1/2 2
where pis the N x1 mean vector, X isthe N x N covariance matrix, |):| and X7 denote the determinant
and inverse of X, respectively, and T represents matrix transpose. This multivariate Gaussian or normal
PDF for the decision vector » can be symbolically shown by ® ~ .#(n,X). For N =2, Equation (15)
simplifies to the bivariate PDF in Equation (10), such that:

X g 2
I P R g
y /Jy ,DO-XO'y Gy

Computation of the decision error probabilities using multiple decision variables can be accomplished using
discriminant functions [31, 40]:

g,(@)=In p(w|H,)+InP(H,), i=01, (16)

where p(eo|H,;)~#(n;,X;) and i is index of the discriminant function associated with the hypothesis H,.
In our case we have i=0,1, referring to our two hypotheses in Equation (1). For any hypothesis H,,
substitution of (15) in (16) simplifies its discriminant function to:

g, (@) = —%(m—ui)TZil(m —n) —%In (27) —%In I |+InP(H,), i=0,1. (17)

Using the discriminant functions in (17) and for a given , the optimal decision making system decides
Ho if g,(®) > g,(®), and decides Hi if g,(®) > g,(w). The false alarm probability P, is the probability
of deciding Hy, i.e., g,(®) > g,(®), whereas in fact Ho is true. On the other hand, the miss probability B,
is the probability of deciding Ho, i.e., g,(®) > g,(w), although indeed H; is true. Computing P;, and B,
using multivariate PDFs directly entail multivariate integrations over regions defined by decision surfaces.
Given the complexities of such computations, as a simpler alternative we calculate P., and B, using the
data directly, by counting the number of times that false alarm and miss event occur, respectively, after
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comparing the discriminant function values g, (®) and g,(w) for each «, and then divide them by the total
number of data points. The overall decision error probability P. can be calculated using Equation (3).
Another method for computing P, and B, relies on characteristic functions [42].

Single-variable decision making and signaling outcome analysis as time evolves: To understand
how decision making and signaling outcomes may change over time, first we look at the decision error
probability P. using PTEN levels measured at individual consecutive time instants (Fig 9A), for the 1 vs.
2 Gy scenario. A noteworthy observation is that the decision error exhibits a minimum value. The minimum
occurs in 20 hours after the radiation. This can be visually explained by the amount of overlap of PTEN
histograms at each individual time point. For instance, we provide histograms of PTEN levels at the 20™
and the 70" hours in Fig 10, for IR = 1 and 2 Gy doses. We observe that the 20" hour histograms have less
overlap than the 70" hour histograms, shown in Fig 10A and Fig 10B, respectively, which results in the
smaller P. at the 20" hour in Fig 9A.

Multi-variable decision making and signaling outcome analysis as time evolves: Now we focus on
studying how decision making works, if data of N time instants are utilized, suchthat N=1, 2, ..., 8 (Fig
9B). In the figure, N = 1 means the PTEN data of the 1 hour, N = 2 refers to the PTEN data of the 1% and
the 10™ hours, N = 3 indicates the PTEN data of the 1%, the 10", and the 20" hours, etc. This assumes at
any given time, decision is made based on the data of that given time, plus the data of the previous time
instants, which means progressively accumulating the data to make decisions. It is observed in Fig 9B that
Pe first decreases, and after a certain point, it remains nearly constant. To understand this behavior, we note
that if the data collected at various time instants are independent, then error probability of a decision making
system that performs sequential hypothesis testing decreases, as the number of observations N increases
[42]. This property of a multivariate sequential decision maker is intuitively appealing. However, if the data
collected at various time instants are correlated, performance of the multivariate sequential decision maker
can significantly degrade and its error probability does not necessarily decrease, as N increases [42].

To examine possible temporal correlations among the data that the suggested sequential decision
strategy employs, we compute condition numbers of X, and X,, the N x N covariance matrices of the
data for the two hypotheses Ho and Hs, for IR =1 and 2 Gy, respectively, as N increases from 2 to 8 (Fig
9C). The condition number of a matrix is the ratio of its largest singular value to its smallest. A large
condition number indicates that the matrix is nearly singular. On the other hand, a near singular covariance
matrix of several random variables means that some of the random variables are highly correlated.
Therefore, a large condition number for a covariance matrix implies large correlations among some of its
random variables. We observe in Fig 9C that as N increases, condition numbers of both of the covariance
matrices X, and X, increase. This means as time evolves after a certain point, the suggested sequential
decision maker incorporates a new observation that is correlated with the previously used observations. The
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correlation does not allow the decision error probability to decrease beyond a certain point, although N
constantly increases (Fig 9B).
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Fig 9: Decision error probabilities versus time in the normal p53 system: A single versus multiple
time point study. (A) Pe as a function of time for the 1 vs. 2 Gy radiation scenario, computed using only
the PTEN data of a single, N = 1, individual time instant. This assumes at any given time, decision is made
based on the data of that time only. Having a minimum error probability at the 20" hour is noteworthy. (B)
Pe as a function of time for the 1 vs. 2 Gy radiation scenario, computed using the PTEN data of N time
instants, N =1, 2, ..., 8 (N = 1 means the PTEN data of the 1% hour, N = 2 refers to the PTEN data of the
1%t and the 10" hours, N = 3 indicates the PTEN data of the 1%, the 10", and the 20" hours, etc.). This
assumes at any given time, decision is made based on the data of that time, plus the data of the previous
time instants, which means accumulating the data to make a decision. It is observed that Pe first decreases,
and after a certain point, it remains nearly constant. (C) Condition numbers of X, and X,, the NxN

covariance matrices of the data for the two hypotheses Ho and Hj, for IR = 1 and 2 Gy, respectively, as N
increases from 2 to 8. When N increases, condition numbers of both of the covariance matrices X, and X,

increase. On the other hand, a large condition number for a covariance matrix implies large correlations
among some of its random variables. Therefore, as time evolves after a certain point, the suggested
sequential decision maker incorporates a new observation that is correlated with the previously used
observations. The correlation does not allow the decision error probability Pe to decrease beyond a certain
point, although N constantly increases.
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Fig 10: Comparison of the histograms of cells PTEN levels at the 20" and the 70™ hours under IR =
1 Gy and 2 Gy doses in the normal p53 system. (A) Histograms of the 20" hour PTEN data under IR =
1 and 2 Gy doses, which show less overlap. (B) Histograms of the 70" hour PTEN data under IR = 1 and 2
Gy doses, which show more overlap.

Multi-variable analysis of two or more molecules: Methods for computing decision thresholds
and decision error rates using their concentration measurements in individual cells: So far we have
focused on multi-variable decision making and signaling outcome analysis for one molecule at different
time instants. However, the introduced methods and algorithms are not limited to the outcome analyses for
just one molecule, and they can be applied to various other scenarios and studies. In fact, they can be used

to analyze and compute decision error rates based on concentration levels of two or more molecules,
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measured simultaneously or even at different time instants. For example, if decision and outcome analysis
are going to be conducted based on simultaneous concentration level measurements of two molecules
labeled by x and y, then Equations (10)-(14) can be used to find the maximum likelihood bivariate decision
strategy and its minimum error probability. As a more elaborate example, suppose concentration levels of
molecule A measured at time instants t; and t; are labeled as variables x and y, respectively, concentration
levels of molecule B measured at t; and t, are labeled as variables v and w, respectively, and finally
concentration levels of molecule C measured at t; and t, are labeled as variables w and £, respectively.
The 6x1 decision vector @ including all these six decision variables can be defined as
o=[x yvwy ], where T stands for transpose. Now Equations (15)-(17) can be used to find the
maximum likelihood six-variate decision strategy and its minimum decision error probability.

Beyond binary decisions: Ternary decisions and signaling outcomes, and ternary error
probabilities

While the focus of this paper is on binary hypothesis testing, it is possible to develop a multiple
hypothesis testing model for outcome analysis, where there exist more than two possible outcomes. This
entails more erroneous decisions than false alarm and miss events. Optimal decision thresholds and error
probabilities for all the incorrect decisions can be similarly computed. For example, assume there are three
different signaling outcomes depending on concentration level of a hypothetical molecule called MOL,
whose level can fall within one of three regions, which results in the following three possible hypotheses:

H, : MOL level is low,
H, : MOL level is medium, (18)
H, :MOL level is high.

Let us assume under each condition, PDF of the MOL level represented by x is normal or Gaussian, i.e.,
X~ (u,c”) such that g, < s, < u,, where variances are assumed to be equal, to simplify the notation.
These PDFs are shown in Fig 11, with g, =5, z4 =10, g, =15, and o® =2.25. By extending the binary
decision errors presented earlier in Equations (8) and (9), ternary decision errors for the three hypotheses
can be written as:

Py, = | PX|Hy)dx= Q(Mj , (19
" o
P, = j (x| Hl)dx+T (x| Hl)dX:Q(ﬂl—a}Q[b—_ﬂlj, (20)
e Y o o
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v = | p(x|H2)dx=Q(“2—‘bj. 1)
W=l -

In the above equations, a and b are thresholds to decide between Ho and Hi, and between H; and Hy,
respectively. This means the decision regions for the three hypotheses can be written as:

H,: x<a,
H,: a<x<b, (22)
H,: b<x

For equi-probable hypotheses and similarly to the derivation that lead to Equation (7), optimal decision
thresholds which minimize the total decision error probability can be shown to be:

a=/u0+/u”l, b:.UNLﬂz. (23)

2 2

Upon substituting (23) in (19)-(21), the total error probability in making ternary decisions can be written
as:

P =(L/3)P.,,, +(L/3P.,, +(L/3)P.,,
_ H— Hy H—Hy H — Ky Hy — Hy
_(1/3)Q(—26 j+(1/3)[q(_20 j+q[_20 ﬂ+(1/3)Q[—20 j o
=(2/3)Q(MJ+(2/3)Q(MJ.

20 20

As a reference, for the binary decision making problem and outcome analysis studied earlier in the
paper and using Equations (8) and (9), the total error probability in making binary decisions with equal
variances simplifies to:

PE:(1/2)Q(M2;G’u°j+(1/2)Q(M2;ﬂ°j=Q(M_”°j. (25)

20

To compare ternary and binary error probabilities, let us assume g, — 4 = 14, — p4, =, Which reduces
Equations (24) and (25) to (4/3)Q(y/(20)) and Q(y / (20)), respectively. This indicates that the ternary
decision error rate can be higher than the binary decision error rate, under the assumed conditions.
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Fig 11: Response probability density functions of a hypothetical molecule called MOL whose level
entails a ternary decision making process with three signaling outcomes. Shaded tail areas with the
same color represent decision error regions associated with each specific hypothesis. Assuming equi-
probable hypotheses, optimal maximum likelihood decision thresholds which minimize the total decision
error probability are shown by vertical blue lines at the points of intersection of the probability density
functions.

On the costs of correct and incorrect decisions

In decision theory, there can be some costs associated with correct or incorrect decisions. Let C; be
the cost of deciding H;, when H, is true. To minimize the expected cost, Cy,P(H,)+CyP(H,)P,
+C,,P(Hy) Py +C;P(H,), the decision making system decides H, if [30]:

_ p(x|H,) S (Clo _Coo)P(Ho) _

L =
5= bxIH)~ (Cor—Cu)P(H,)

7 (26)

where C,>C, and C, >C,. Usually the costs associated with correct decisions are zero, i.e.,
C, =C,; =0. Additionally, if there is no preference in assigning different costs to different incorrect
decisions, one can choose C,,=C,,. This is what we would consider as well, since we do not have a
knowledge of the costs of incorrect decisions in the studied cellular system. Upon substituting C,, =C,, =0
and C,, =C,, inthe above equation, it simplifies to the following equation, which is the optimal maximum
likelihood decision rule presented earlier in the paper:

Lo POIHD) P(Hy) -
5= oxIfy) ~ P(Hy) @)
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Conclusion

This study presents a set of decision-theoretic and statistical signal processing methods and metrics for
modeling and measurement of decision making processes and signaling outcomes under normal and
abnormal conditions, and in the presence of noise and other uncertainties. Due to the noise, signaling
malfunctions, or other factors, cells may respond differently to the same input signal. Some of these
responses can be erroneous and unexpected. Here we present univariate and multivariate models and
methods for decision making processes and signaling outcome analyses and as an example, apply them to
an important system that is involved in cell survival and death, i.e., the p53 system shown in Fig 1 (another
decision analysis example can be found in the paper by Habibi et al. [1]). The p53 system becomes active
due to DNA damage caused by ionizing radiation (IR), and as a result, cell can take two different actions:
it can either survive by repairing the DNA or trigger apoptosis. In this context, we model decisions and
signaling outcomes triggered by the p53 system as a binary hypothesis testing problem, where two
hypotheses are introduced in Equation (1). Regarding these two hypotheses, our approach identifies that
there can be two types of incorrect decisions: false alarm and miss. To compute the likelihood of these
decisions, we employ the simulator of Hat et al. [9], to obtain single cell data of the p53 system, by exposing
the cells to different radiation doses. We consider PTEN levels in cells as the decision variable, since it is
a good predictor of cell fate [9]. Our analysis focuses on low radiation dose versus high radiation dose
scenarios, where we fix the low IR dose at 1 Gy, whereas we set the high IR dose at 2 Gy, 3 Gy, 4 Gy, 5
Gy, 6 Gy, 7 Gy and 8 Gy. We also analyze decision making events and signaling outcomes when an
abnormality is present in the p53 system.

The incorrect decision probabilities provided in Equation (2) and the overall decision error probability
in Equation (3) are computed after determining an optimal decision threshold. We obtain this decision
threshold using the maximum likelihood principle which states that the best decision can be made by
selecting the hypothesis that has the maximum probability of occurrence. We compute decision threshold
and error probabilities using single time point data of PTEN levels in both normal and abnormal p53
systems. For 1 Gy vs. 2 Gy and 1 Gy vs. 8 Gy case studies, we present histograms, response distributions,
decision thresholds, and false alarm and miss decision regions in normal and abnormal p53 systems in Fig
3 and Fig 5, respectively. Our decision analysis reveals and quantifies that more erroneous decisions are
made when deciding between two nearly the same radiation doses in the normal p53 system (Fig 6). On the
other hand, the difference between responses is easily identifiable for very low versus very high IR doses.
This feature seems not be present in the abnormal p53 systems (Fig 6), according to our decision modeling
approach. Our decision and outcome analyses and observations are further visualized and confirmed by
using the receiver operating characteristic (ROC) curves (Fig 7), which are useful graphical tools to study
the performance of decision making systems. We would like to note that these observations are specifically
made based on the low versus high IR case studies, e.g. doVvs di IRs introduced in the paper for the p53
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system, as an example of a signaling network, in which the low IR dose is fixed to 1 Gy (do = 1 Gy) and
the high IR dose is ranging from 2 Gy up to 8 Gy (d1 = 2, 3, ..., 8 Gy). Such conclusions may not be
generalized to other biological hypotheses and systems, while the proposed framework and its analytical
tools, whose introduction has been the main goal of this paper, can be similarly used.

In addition to the above univariate single time point analysis, we extend our signaling outcome
modeling framework to dynamical multi-time point measurements and multi-dimensional decision making
algorithms, to see how the number of decision variables affects the decisions and signaling outcomes over
time. To introduce the concepts, first we conduct a bivariate analysis, for which bivariate response
distributions of cells PTEN levels measured at two different time instants are shown in Fig 8, as well as the
optimal maximum likelihood decision boundary. Then we introduce a multivariate dynamic decision
modeling framework, for the general scenario where there are more than two decision variables over time.
This allows to model and understand how decision error probability changes over time, if at any time the
decision is made based on the current observation, together with the previous observations. We observe in
Fig 9B that as the decision making strategy incorporates more and more PTEN data of various time instants
into its decisions, for the p53 system exposed to two radiation doses of 1 and 2 Gy, the decision error
probability reaches its smallest value at a certain time instant. However, adding more data afterwards does
not necessarily improve the decision precision, i.e., the decision error probability does not necessarily
decrease as N increases with time (Fig 9B). We show that this behavior can be related to the correlations
that exist among the PTEN levels measured at different times (Fig 9C).

Although we focus on multi-variable decision making and signaling outcome analysis for one molecule
at different time instants, the introduced methods and algorithms are not limited to the outcome analyses
for just one molecule. They can be applied to various other scenarios and studies. For instance, they can be
used to analyze decision strategies and compute decision error rates based on concentration levels of two
or more molecules, measured simultaneously or even at different time instants.

We finally show how the introduced binary decision making and signaling outcome analysis models
can be extended to more than two decisions, i.e., more than two hypotheses. A ternary scenario with three
signaling outcomes is analyzed as an example, and it is shown that under certain conditions, ternary decision
error probability can be higher than the binary one.

The methods and models presented here can be expanded to describe the performance and precision of
more complex systems and networks such as the ones whose inputs are multiple ligands or secondary
messengers and whose outputs are several transcription factors involved in certain cellular functions.
Analyzing concentration levels of these transcription factors over time using the proposed approaches can
model various decisions and signaling outcomes, and their probabilities, in the presence of noise or some
cellular abnormalities, and in response to the input signals.
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Overall, these decision-theoretic models and signaling outcome analysis methods can be beneficial for
better understanding of transition from physiological to pathological conditions such as inflammatory
diseases, various cancers and autoimmune diseases.
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