

1 Chlorotoxin Conjugated with Saporin Reduces Viability of ML-1 Thyroid Cancer Cells In Vitro

2 Rizvanovic, Husref¹; Pinheiro, A Daniel²; Kim, Kyoungtae¹; Thomas, Johnson³

3

4 ¹Department of Biology, Missouri State University, Springfield, Missouri, ²Ear Nose and Throat

5 Department, Mercy Hospital, Springfield, Missouri, ³Department of Endocrinology, Mercy Clinic,
6 Springfield, Missouri

7 Husref Rizvanovic, 901 S National Ave, Springfield, Missouri, USA 65897.

8 Husref123@live.missouristate.edu

9 A. Daniel Pinheiro, MD, Mercy Clinic Ear, Nose and Throat - Surgery Center, 1229 E. Seminole

10 Street, Suite 520, Springfield, MO 65804. adaniel.pinheiro@mercy.net

11 Kyoungtae Kim, 901 S National Ave, Springfield, Missouri, USA 65897. KKIm@missouristate.edu

12 Johnson Thomas, MD, FACE, 3231 S National Ave, Suite 440, Springfield, Missouri, USA 65807.

13 johnson.thomas@mercy.net

14 **Note: A portion of the data in this manuscript will be reported as an abstract at the 89th

15 annual meeting of the American Thyroid Association, Chicago, USA, October 2019. Article

16 embargoed until 8:00 am CST, 30th October 2019.

17 All authors contributed equally to this work

18 Running title: CTX-SAP decreases ML-1 cell viability

19 Key words: Saporin, Chlorotoxin, Radioactive Iodine resistance, Thyroid cancer, MMP-2, ML-1

20 **Abstract**

21 **Background**

22 Although differentiated thyroid cancer has good prognosis, radioactive iodine (RAI)
23 resistant thyroid cancer is difficult to treat. Current therapies for progressive RAI resistant
24 thyroid cancer are not very effective. There is an unmet need for better therapeutic agents in
25 this scenario. Studies have shown that aggressive thyroid cancers express matrix
26 metalloproteinase -2 (MMP-2). Chlorotoxin is a selective MMP-2 agonist. Given that Saporin is a
27 well-known ribosome-inactivating protein used for anti-cancer treatment, we hypothesized
28 that Chlorotoxin-conjugated Saporin (CTX-SAP) would inhibit the growth of aggressive thyroid
29 cancer cell lines expressing MMP-2.

30 **Methods**

31 The ML-1 thyroid cancer cell line was used for this study because it is known to express
32 MMP-2. ML-1 cells were treated with a toxin consisting of biotinylated Chlorotoxin bonded with
33 a secondary conjugate of Streptavidin-ZAP containing Saporin (CTX-SAP) from 0 to 600 nM for
34 72 hours. Then, cell viability was measured via XTT assay at an absorbance of $A_{450-630}$. Control
35 experiments were set up using Chlorotoxin and Saporin individually at the same varying
36 concentrations.

37 **Results**

38 After 7 hours of incubation, there was a statistically significant reduction in cell viability
39 with increasing concentrations of the CTX-SAP conjugate ($F=4.286$, $p=0.0057$). In particular, the
40 cell viability of ML-1 cells was decreased by 49.77% with the treatment of 600 nM of CTX-SAP

41 (F=44.24), and the reduction in cell viability was statistically significant (Dunnett's test
42 p<0.0001). In contrast, individual Chlorotoxin or Saporin in increasing concentrations had no
43 significant effect on cell viability using similar assay.

44 **Conclusion**

45 This *in vitro* study demonstrated the efficacy of a CTX-SAP conjugate in reducing the
46 viability of ML-1 thyroid cancer cells in a dose dependent manner. Further studies are needed
47 to delineate the effectiveness of CTX-SAP in the treatment of aggressive thyroid cancer. Our
48 study points towards MMP-2 as a potential target for RAI-resistant thyroid cancer.

49

50

51

52

53

54

55

56

57

58

59

60 **Introduction**

61 Incidence of thyroid cancer has been increasing in the past decade. Estimated incidence
62 of thyroid cancer in 2019 is 52,070 (1). It is predicted that by 2030, thyroid cancer will be the
63 fourth leading cause of new cancer diagnosis in the United States (2). In 2016 there were
64 822,242 patients living with thyroid cancer in the United States (1). Most of the thyroid cancers
65 respond well to surgery, radioactive iodine, and thyroid stimulating hormone (TSH)
66 suppression. However, a subset of these thyroid cancers will develop metastasis and become
67 radioactive iodine (RAI) resistant. According to a study by Schlumberger *et al.*, up to 50% of
68 thyroid cancer with metastasis may develop inability to concentrate iodine (3). When thyroid
69 cancer cells become resistant to RAI, newer therapeutic agents like tyrosine kinase inhibitors
70 could be used. Even with these newer therapeutic agents, most RAI resistant metastatic thyroid
71 cancer will progress. This could also result in multiple toxicities. Even with newer therapeutic
72 agents average progression free interval is about 18 months (4) and the ten year mortality rate
73 for these kinds of thyroid cancers can reach up to 50% (5). Hence, there is an unmet need for
74 better therapeutic agents for RAI resistant thyroid cancer. In this paper, we explore the effect
75 of Chlorotoxin-Saporin conjugate on the ML-1 thyroid cancer cell line.

76

77 Chlorotoxin was initially identified in the venom of scorpion *Leiurus quinquestriatus* (6).
78 It binds specifically to isoform 2 of matrix metalloproteinase (MMP-2) (7). MMP-2 is
79 overexpressed in aggressive thyroid cancers when compared to normal thyroid tissue (8).
80 Tumors with larger size, extrathyroidal invasion and lymph node metastasis were found to

81 overexpress MMP-2(9). Papillary thyroid cancers (PTC) with lymph node metastasis were found
82 to have significantly higher ratio of pro-MMP-2 activation when compared to follicular
83 adenomas and normal thyroid tissue (10). Widely invasive follicular thyroid cancer was also
84 found to express MMP-2 (11).

85

86 Saporin (SAP) is a ribosome-inactivating protein (RIP) derived from the seeds of the
87 soapwort plant, *Saponaria officinalis* (12). The mechanism of action of Saporin has been well
88 studied and successfully employed in the creation of immunotoxins. Saporin is very stable *in*
89 *vivo* and is resistant to proteases in the blood. Since Saporin works through many different cell
90 death pathways, it is hard to develop resistance to it (13–15). Saporin by itself is unable to
91 cause significant cell damage, since it cannot enter the cell efficiently (15). Conjugation with
92 antibodies or other toxins which promotes its internalization, confers lethality to SAP. The first
93 study using an antibody conjugated with SAP was conducted in humans for refractory Hodgkin's
94 disease, in which 75% of the patients achieved complete remission and 50% of them
95 experienced relief from symptoms (16). A recent study used Substance P conjugated with SAP
96 intrathecally in cancer patients with intractable pain (17).

97

98 ML-1 (ACC-464), thyroid cancer cell comes from dedifferentiated recurrent follicular
99 thyroid cancer from a 50 year old patient (18). ML-1 is tumorigenic in rodents. Grimm *et al.*,
100 demonstrated that ML-1 cell lines express MMP-2 (19). In this study we assessed the effect of
101 CTX-conjugated with SAP (CTX-SAP) on cell viability of ML-1 cells.

102

103 **Materials and methods**

104 **Toxins and Reagents**

105 The Chlorotoxin-Saporin (BETA 010) conjugate was acquired from Advanced Targeting
106 Systems (San Diego, CA). This toxin consisted of biotinylated Chlorotoxin bonded with a
107 secondary conjugate of Streptavidin-ZAP containing Saporin. Unconjugated Saporin and
108 Chlorotoxin were acquired through Sigma-Aldrich. Dulbecco's Modified Eagle Medium (DMEM),
109 Fetal Bovine Serum (FBS), Phosphate Buffered Saline (PBS), Trypsin-EDTA (and unconjugated
110 Trypsin), Propidium Iodide (PI), and Penicillin-Streptomycin antibodies were ordered from
111 Fischer Scientific. XTT activation reagent (PMS) and solution were purchased from Biotium.

112 **Thyroid cancer cell line**

113 ML-1 (ACC-464) thyroid cancer cells were acquired from the DSMZ German Leibniz
114 Institute of Microorganisms and Cell Cultures. ML-1 cells were cultured in DMEM supplemented
115 with 10% FBS and 1% Penicillin-Streptomycin antibodies in a 75 cm³ Corning culture flask at 37
116 °C and 5% CO₂.

117

118 **Toxin Treatment**

119 Cells were seeded at a density of 7500 cells/well on a 96-well plate and given 24 hours
120 to incubate and attach to the 96-well plate. Then, varying amounts of CTX, SAP, and CTX-SAP
121 were treated in triplicate or quadruplet repeats to the cells with an increasing dosage, ranging

122 from 0 (NTC) to 600 nM, by using 2 μ M stock solutions for CTX, SAP, and CTX-SAP. The final
123 volume of media including the toxin treatment per each well was 100 μ L. This was incubated
124 for a period of 72 hours.

125

126 **Cell Viability**

127 XTT (2,3-Bis-(2-Methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide,
128 disodium salt) assay is based off the cleavage of the tetrazolium salt. XTT, in the presence of N-
129 methyl dibenzopyrazine methyl sulfate (PMS), an electron-acceptor, is reduced to form a water
130 soluble, orange-colored formazan salt (20). This type of reaction can only occur in viable,
131 metabolically-active cells, and therefore, the amount of dye formed is directly related to the
132 number of metabolically active cells present (21). In this study, after a 72 hour incubation
133 period with toxin treatment, 25 μ L of activated XTT dye was added to each well containing
134 7,500 cells according to the manufacturer's guidelines without removing media, and the level of
135 color change was quantified using a multi-well spectrophotometer (A₄₅₀₋₆₃₀) (22). This setting
136 was chosen as the Biotium manufacturer suggested the signal absorbance be read at 450-500
137 nm, and have it be subtracted from the background at 630-690 nm. This is done by setting the
138 plate-reading spectrophotometer to Delta.

139

140 **Statistical analysis**

141 Prism8 statistical software (GraphPad Software Inc.) was utilized to conduct statistical
142 analysis. One-Way ANOVA was performed to compare absorbance values between toxin-

143 treated groups and non-treated controls. Post hoc comparisons were done using Dunnett's test
144 to compare values from toxin-treated groups to the NTC. All values are expressed as the mean
145 and standard deviation of recorded absorbance values. P-values calculated from Dunnett's test
146 were adjusted to account for multiple comparisons.

147

148 **Results**

149 Unconjugated chlorotoxin (CTX)

150 ML-1 cells were exposed to unconjugated chlorotoxin at concentrations ranging from 0
151 to 600 nM for 72 hours (Fig. 1A). There was an overall statistically significant difference in cell
152 viability assessed after 7 hours of incubation in the presence of XTT and PMS ($F=3.34$, $p=0.038$).
153 The largest difference was slightly increased viability (absorbance) of the cells exposed to 600
154 nM of unconjugated CTX relative to the non-treated control (mean difference in absorbance -
155 0.054). However, this was not statistically significant with a Dunnett's test ($p=0.1279$).

156

157 Saporin alone (SAP)

158 ML-1 cells were exposed to unconjugated Saporin at concentrations ranging from 0 to
159 600 nM (Fig. 1B). There was an overall statistically significant difference in cell viability after 7
160 hours of incubation with XTT and PMS ($F=3.271$, $p=0.0407$). The largest difference was
161 improved viability (absorbance) of the cells exposed to 20 nM of unconjugated SAP relative to

162 the non-treated control (mean difference in absorbance -0.05325). However, this was not
163 statistically significant with a Dunnett's test ($p=0.0874$).

164

165 Chlorotoxin-Saporin Conjugate (CTX-SAP)

166 ML-1 cells were exposed to Chlorotoxin-Saporin conjugate at concentrations ranging
167 from 0 to 200 nM (see Fig. 2A). There was an overall statistically significant difference in cell
168 viability at 7 hours of incubation with XTT and PMS ($F=4.286$, $p=0.0057$) with an apparent trend
169 for decreased viability with increasing concentration of the conjugate. Post hoc statistical
170 comparisons using Dunnett's test showed no significantly reduced viability for cells exposed to
171 2, 10 or 20 nM relative to non-treated control ($p>0.05$). However, cells exposed to CTX-SAP
172 conjugate at concentrations of 40, 100 and 200 nM had significantly reduced viability relative to
173 non-treated controls (Dunnett's tests, $p=0.0138$, $p=0.0052$, and $p=0.0037$ for 40, 100 and 200
174 nM, respectively, relative to NTC).

175

176 We repeated the experiment with a higher concentration of the CTX-SAP conjugate and
177 once again assessed viability at 7 hours of incubation (Fig. 2B). We used concentrations of 2, 20
178 and 600 nM, and there was a statistically significant difference in cell viability assessed with a
179 one-way ANOVA ($F=44.24$, $p<0.0001$). Post hoc comparisons using Dunnett's test revealed that
180 viability was significantly reduced for the 600 nM group relative to the non-treated control
181 (difference in absorbance of 0.8410, $p<0.0001$). However, the lower concentrations of the

182 conjugate did not significantly differ from the non-treated control ($p=0.2492$ and $p=0.5658$ for 2
183 and 20 nM, respectively).

184

185 **Discussion**

186 This study addressed the effectiveness of Saporin, Chlorotoxin and CTX-SAP conjugate in
187 decreasing cell viability of ML-1 cells. Saporin, a toxin from the plant seed *Saponaria officinalis*,
188 inhibits proliferation or cell viability of cancer cells (23). Previous studies have proven that
189 Saporin is an effective ribosome-inactivating protein (RIP) that inhibits protein synthesis and
190 growth of both normal and tumor cells (24). However, our data shows that there were no
191 significant effects on ML-1 cancer cell viability when treated with unconjugated Saporin up to
192 600 nM (**Fig. 1A**). This would be in agreement with other studies that have chosen to use
193 Saporin conjugates for cancer therapies rather than unconjugated Saporin alone (12). This data
194 suggested the need for a vehicle that can be conjugated to Saporin and help the toxin be
195 internalized. Chlorotoxin, which is a 36 amino-acid peptide from the venom of *Leiurus*
196 *quinquestriatus*, has been previously used as a vehicle to deliver anti-cancer drugs to cancer
197 cells (25). Chlorotoxin is also a known MMP-2 isoform agonist, that makes an effective vehicle
198 for internalization as most aggressive thyroid cancers express MMP-2 receptors (7).

199

200 MMP-2 belongs to the matrix metalloproteinases family which helps in degradation of
201 basement membranes and extracellular matrix. MMP-2 is also associated with angiogenesis
202 inside the tumor (26). This promotes spread of the cancer. Activation of MMP-2 can occur at

203 the cell membrane. MMP-2 production is enhanced in papillary thyroid cancer (10, 27, 28) .
204 Studies have shown direct correlation between the expression of MMPs and tumor invasion
205 and metastasis (29). Aggressive variants of thyroid cancers tend to express more MMP-2 (10).
206 Thyroid cancer cell lines - BCPAP (poorly differentiated thyroid cancer), K1 (papillary thyroid
207 cancer), CGTH-W-1 (follicular thyroid cancer with metastasis to sternum) and FTC133 (follicular
208 thyroid cancer) also express MMP-2 (19, 30) . Anaplastic thyroid cancer cell line SW 579 also
209 express MMP2 (31). Increased expression of MMP-2 is also seen in urothelial, prostate, breast,
210 stomach cancers and in gliomas. Chlorotoxin has been shown to help in the endocytosis of
211 MMP-2(7) . Study by Kalhori and Törnquist demonstrated that MMP-2 is involved in ML-1 cell
212 line's invasive potential (32).

213 In our study, unconjugated chlorotoxin did not show any significant reduction in cancer
214 cell viability when compared to untreated controls (**Fig. 1B**). It was hypothesized that a
215 Chlorotoxin and Saporin conjugate would inhibit the cell growth of ML-1 thyroid cancer cells.
216 We observed a significant dose-dependent inhibition of ML-1 cell viability when treated with
217 40-600 nM of conjugated toxin (**Fig. 2A**). The most statistically significant reduction of ML-1
218 thyroid cancer cell viability occurred with treatment of 600 nM of CTX-SAP. Cell viability was
219 decreased by 49.77% with 600 nM of CTX-SAP when compared with non-treated controls (**Fig.**
220 **2B**).

221

222 Further studies are needed before this can be used in clinical practice. This study needs
223 to be replicated in other thyroid cancer cell lines also. Reliable methods to detect the presence

224 of MMP-2 in cancer cell lines will help us identify potential malignancies that can be treated
225 with CTX-SAP. Radioiodine[^{131/125}I] labelled synthetic Chlorotoxin has been successfully
226 administered without any significant side effects *in vivo* (33–36). This could be used to image
227 tumors that are RAI-resistant but express MMP2. Further studies are also needed to
228 understand the effect of this toxin on tumor microenvironment and surrounding normal cells.

229

230 **Conclusion**

231 Our study demonstrated that CTX-SAP decreased cell viability of ML-1 cells which
232 express MMP-2. This study points towards MMP-2 as a potential target for RAI-resistant
233 thyroid cancer. Further studies are needed to develop safe and effective treatment against
234 aggressive thyroid cancer using CTX-SAP.

235 **Acknowledgments**

236 We thank the Department of Biology at Missouri State University, Springfield, Missouri,
237 United States for facilitating this study. Additionally, we are indebted to Hazzar Abysalamah,
238 Hanna Williams, and Dr. Christopher Lupfer for help with cell culture.

239

240 **Author Disclosure Statement**

241 No competing financial interests exist.

242

243 **Corresponding author**

244 Johnson Thomas, MD, FACE

245 3231 S National Ave, Suite 440

246 Springfield, Missouri, USA 65807

247 Email: johnson.thomas@mercy.net

248 Phone: 417 888 5660

249

250 **References**

251 1. Surveillance Epidemiology and End Results program (SEER) 2018 Cancer Stat Facts:

252 Thyroid Cancer. Natl cancer Inst.

253 2. Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM 2014

254 Projecting cancer incidence and deaths to 2030: The unexpected burden of thyroid, liver,
255 and pancreas cancers in the united states. Cancer Res.

256 3. Schlumberger M, Tubiana M, Vathaire F De, Hill C, Gardet P, Travagli JP, Fragu P,

257 Lumbroso J, Caillou B, Parmentier C 1986 Long-term results of treatment of 283 patients

258 with lung and bone metastases from differentiated thyroid carcinoma. J Clin Endocrinol

259 Metab.

260 4. Schlumberger M, Tahara M, Wirth LJ, Robinson B, Brose MS, Elisei R, Habra MA, Newbold

261 K, Shah MH, Hoff AO, Gianoukakis AG, Kiyota N, Taylor MH, Kim S-B, Krzyzanowska MK,

262 Dutcus CE, de las Heras B, Zhu J, Sherman SI 2015 Lenvatinib versus Placebo in
263 Radioiodine-Refractory Thyroid Cancer. *N Engl J Med.*

264 5. Jonklaas J, Sarlis NJ, Litofsky D, Ain KB, Bigos ST, Brierley JD, Cooper DS, Haugen BR,
265 Ladenson PW, Magner J, Robbins J, Ross DS, Skarulis M, Maxon HR, Sherman SI 2007
266 Outcomes of Patients with Differentiated Thyroid Carcinoma Following Initial Therapy.
267 Thyroid.

268 6. Dardevet L, Rani D, El Aziz TA, Bazin I, Sabatier JM, Fadl M, Brambilla E, De Waard M 2015
269 Chlorotoxin: A helpful natural scorpion peptide to diagnose glioma and fight tumor
270 invasion. *Toxins (Basel).*

271 7. Deshane J, Garner CC, Sontheimer H 2003 Chlorotoxin inhibits glioma cell invasion via
272 matrix metalloproteinase-2. *J Biol Chem.*

273 8. Maeta H, Ohgi S, Terada T 2001 Protein expression of matrix metalloproteinases 2 and 9
274 and tissue inhibitors of metalloproteinase 1 and 2 in papillary thyroid carcinomas.
275 *Virchows Arch.*

276 9. Jin Woo Park OHC 2016 Chapter 43 - Molecular Classification of Thyroid Tumors. In: Text
277 Book of Endocrine Surgery, Orlo H Clark, Quan-Yang Duh, Electron Kebebew, Jessica E
278 Gosnell, WTS (ed) Textbook of Endocrine Surgery, 3rd ed. JP Medical Publishers,
279 Philadelphia, p 517.

280 10. Nakamura H, Ueno H, Shimada T, Yamashita K, Yamamoto E, Noguchi M, Fujimoto N,
281 Sato H, Seiki M, Okada Y 1999 Enhanced production and activation of progelatinase A

282 mediated by membrane-type I matrix metalloproteinase in human papillary thyroid
283 carcinomas. *Cancer Res.*

284 11. Cho Mar K, Eimoto T, Tateyama H, Arai Y, Fujiyoshi Y, Hamaguchi M 2006 Expression of
285 matrix metalloproteinases in benign and malignant follicular thyroid lesions.
286 *Histopathology.*

287 12. Polito L, Bortolotti M, Mercatelli D, Battelli MG, Bolognesi A 2013 Saporin-S6: A useful
288 tool in cancer therapy. *Toxins (Basel).*

289 13. Polito L, Bortolotti M, Pedrazzi M, Bolognesi A 2011 Immunotoxins and other conjugates
290 containing saporin-s6 for cancer therapy. *Toxins (Basel).*

291 14. Tetzke TA, Caton MC, Maher PA, Parandoosh Z 1997 Effect of fibroblast growth factor
292 saporin mitotoxins on human bladder cell lines. *Clin Exp Metastasis.*

293 15. Vago R, Marsden CJ, Lord JM, Ippoliti R, Flavell DJ, Flavell SU, Ceriotti A, Fabbrini MS 2005
294 Saporin and ricin A chain follow different intracellular routes to enter the cytosol of
295 intoxicated cells *FEBS Journal.*

296 16. Falini B, Flenghi L, Aversa F, Barbabietola G, Martelli MF, Comeli P, Tazzari PL, Broe MK,
297 Stein H, Dürkop H, Pizzolo G, Bolognesi A, Stirpe F, Sabattini E, Pileri S 1992 Response of
298 refractory Hodgkin's disease to monoclonal anti-CD30 immunotoxin. *Lancet.*

299 17. Frankel AE, Nymeyer H, Lappi DA, Higgins D, Ahn C, Noe C 2014 Preliminary results from
300 a phase I study of substance P-saporin in terminal cancer patients with intractable pain. *J*
301 *Clin Oncol* **32**:191.

302 18. Schönberger J, Bauer J, Spruß T, Weber G, Chahoud I, Eilles C, Grimm D 2000
303 Establishment and characterization of the follicular thyroid carcinoma cell line ML-1. J
304 Mol Med.

305 19. Grosse J, Warnke E, Pohl F, Magnusson NE, Wehland M, Infanger M, Eilles C, Grimm D
306 2013 Impact of sunitinib on human thyroid cancer cells. Cell Physiol Biochem.
307 20. Huyck L, Ampe C, Van Troys M 2012 The XTT Cell Proliferation Assay Applied to Cell
308 Layers Embedded in Three-Dimensional Matrix. Assay Drug Dev Technol.
309 21. Roche Manual 2005 Cell Proliferation Kit II (XTT). Manual.
310 22. 2012 Biotium, XTT Cell Viability Kit. Available at <https://biotium.com/wp-content/uploads/2013/07/PI-30007.pdf>. Accessed August 11, 2019.
311
312 23. Giansanti F, Flavell DJ, Angelucci F, Fabbrini MS, Ippoliti R 2018 Strategies to improve the
313 clinical utility of saporin-based targeted toxins. Toxins (Basel).
314 24. Bergamaschi G, Perfetti V, Tonon L, Novella A, Lucotti C, Danova M, Glennie MJ, Merlini
315 G, Cazzola M 1996 Saporin, a ribosome-inactivating protein used to prepare
316 immunotoxins, induces cell death via apoptosis. Br J Haematol.
317 25. Ojeda PG, Wang CK, Craik DJ 2016 Chlorotoxin: Structure, activity, and potential uses in
318 cancer therapy. Biopolymers.
319 26. Itoh T, Tanioka M, Yoshida H, Yoshioka T, Nishimoto H, Itohara S 1998 Reduced
320 angiogenesis and tumor progression in gelatinase A-deficient mice. Cancer Res.
321 27. AUST G, HOFMANN A, LAUE S, ROST A, KÖHLER T, SCHERBAUM WA 1997 Human Thyroid

322 Carcinoma Cell Lines and Normal Thyrocytes: Expression and Regulation of Matrix

323 Metalloproteinase-1 and Tissue Matrix Metalloproteinase Inhibitor-1 Messenger-RNA

324 and Protein. Thyroid.

325 28. HOFMANN A, LAUE S, ROST A-K, SCHERBAUM WA, AUST G 2009 mRNA Levels of

326 Membrane-type 1 Matrix Metalloproteinase (MT1-MMP), MMP-2, and MMP-9 and of

327 their Inhibitors TIMP-2 and TIMP-3 in Normal Thyrocytes and Thyroid Carcinoma Cell

328 Lines. Thyroid.

329 29. Kraiem Z, Korem S 2009 Matrix Metalloproteinases and the Thyroid. Thyroid.

330 30. Wang N, Li Y, Wei J, Pu J, Liu R, Yang Q, Guan H, Shi B, Hou P, Ji M 2019 TBX1 Functions as

331 a Tumor Suppressor in Thyroid Cancer Through Inhibiting the Activities of the PI3K/AKT

332 and MAPK/ERK Pathways. Thyroid.

333 31. Roomi MW, Ivanov V, Niedzwiecki A, Rath M 2009 Inhibitory Effects of a Novel Nutrient

334 Mixture on MMP Secretion and Invasion on Human Thyroid Cancer Cell Line SW 579.

335 32. Kalhori V, Törnquist K 2015 MMP2 and MMP9 participate in S1P-induced invasion of

336 follicular ML-1 thyroid cancer cells. Mol Cell Endocrinol.

337 33. R. Stroud M, J. Hansen S, M. Olson J 2012 In Vivo Bio-imaging Using Chlorotoxin-based

338 Conjugates. Curr Pharm Des.

339 34. Shen S, Khazaeli MB, Gillespie GY, Alvarez VL 2005 Radiation dosimetry of 131I-

340 chlorotoxin for targeted radiotherapy in glioma-bearing mice. J Neurooncol.

341 35. Hockaday DC, Shen S, Fiveash J, Raubitschek A, Colcher D, Liu A, Alvarez V, Mamelak AN

342 2005 Imaging glioma extent with 131I-TM-601. J Nucl Med.

343 36. Mamelak AN, Rosenfeld S, Bucholz R, Raubitschek A, Nabors LB, Fiveash JB, Shen S,

344 Khazaeli MB, Colcher D, Liu A, Osman M, Guthrie B, Schade-Bijur S, Hablitz DM, Alvarez

345 VL, Gonda MA 2006 Phase I single-dose study of intracavitary-administered iodine-131-

346 TM-601 in adults with recurrent high-grade glioma. J Clin Oncol.

347

348

349

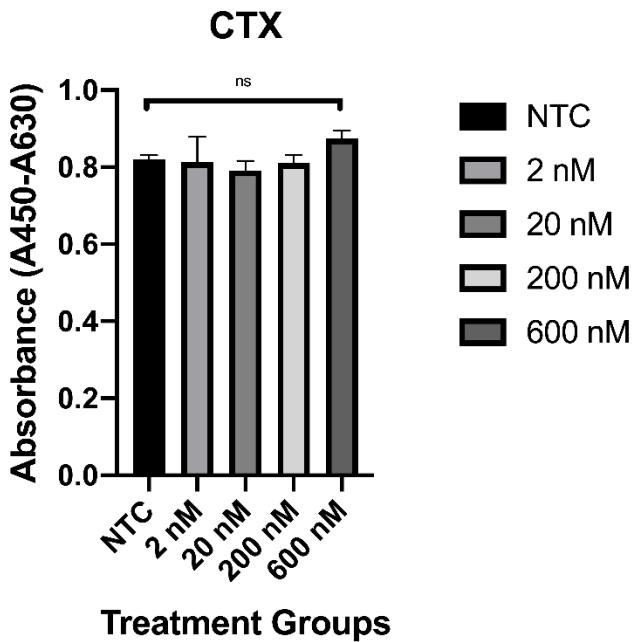
350

351

352

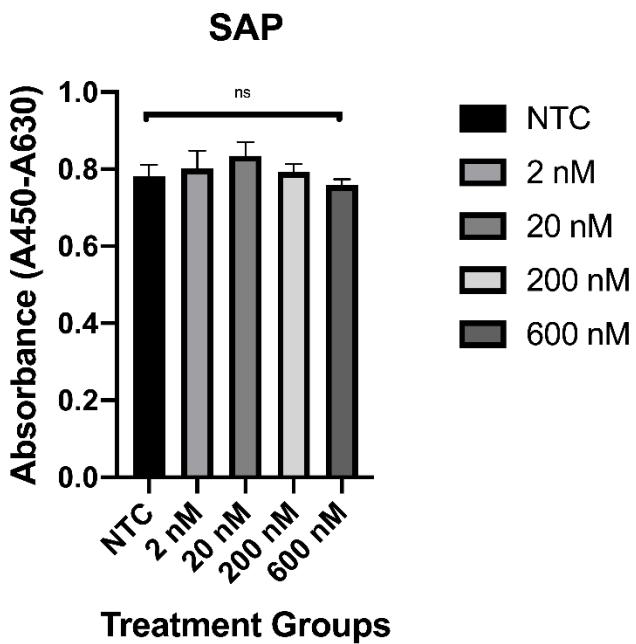
353

354

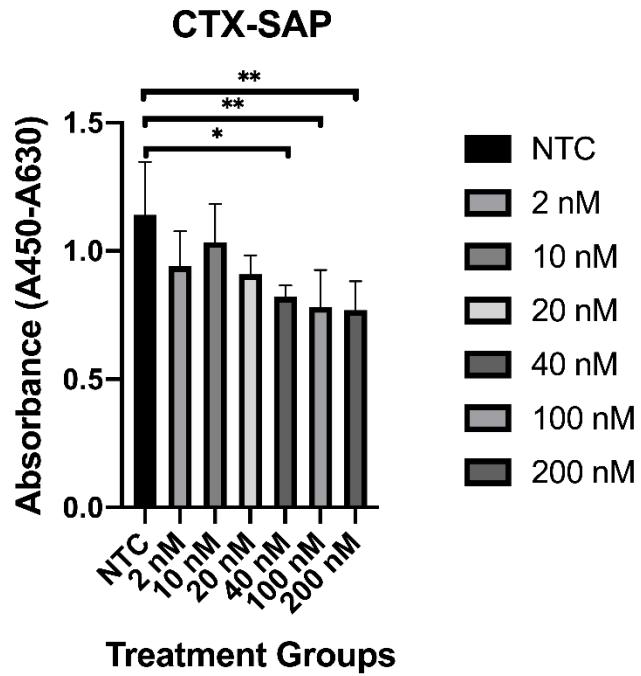

355

356

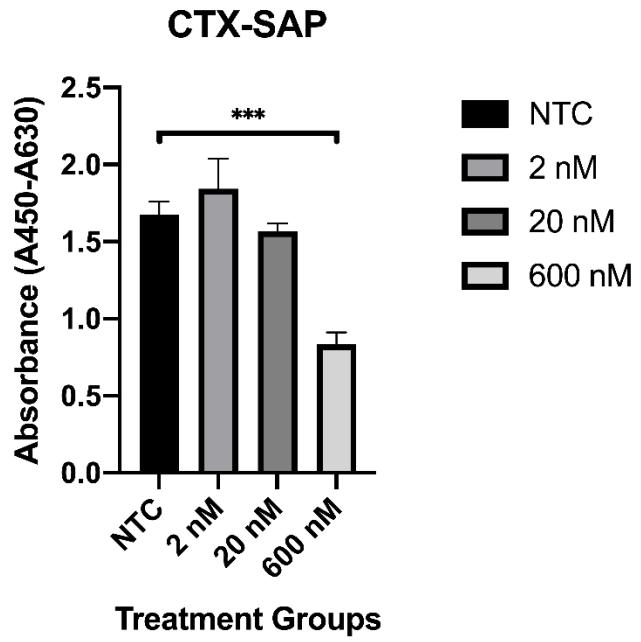
357


358

359


360

361 **FIG. 1A.** XTT assay results for unconjugated Chlorotoxin. Representation of cell viability with differing
362 amounts of unconjugated Chlorotoxin ranging from 0 nM (NTC) to 600 nM. Error bars represent the
363 standard deviation of each sample. There was no significant effect on ML-1 cell viability.



364

365 **FIG. 1B.** XTT assay results for unconjugated Saporin, at a concentration of 0 nM to 600 nM, on ML-1 cell
366 proliferation. There was no significant effect on cell viability of ML-1 cells.

367
368 **FIG. 2A.** XTT assay results for Chlorotoxin conjugated with Saporin on ML-1 cell proliferation. Dose-
369 dependent inhibition of ML-1 thyroid cancer cell proliferation with the CTX-SAP conjugate treatment at
370 varying concentrations up to 200 nM.

371

372 **FIG. 2B.** Viability of ML-1 cells was decreased by 49.77% with treatment of 600 nM of Chlorotoxin

373 Saporin conjugate.

374