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Abstract:

As the resident macrophages of the brain and spinal cord, microglia are crucial for the phagocytosis of
infectious agents, apoptotic cells and synapses. Developmentally, microglia originate from the embryonic
yolk sac and serve important roles in the sculpting of neonatal neural circuits. During brain injury or
infection, bone-marrow derived macrophages invade neural tissue, making it difficult to distinguish
between invading macrophages and resident microglia. In addition to circulation-derived monocytes,
other non-microglial central nervous system (CNS) macrophage subtypes include borderzone (meningeal
and perivascular) and choroid plexus macrophages. To distinguish between resident microglia and these
other CNS macrophage subtypes, we generated a P2ry12-CreER mouse line. P2RY12 is a microglial-
specific nucleotide sensing GPCR that is important for microglial response to tissue damage. Using
immunofluorescent labeling and flow cytometry experiments, we show that P2ry12-CreER recombination
is exceptionally specific to parenchymal microglia. We also perform ribosome immunoprecipitations and
transcriptional profiling of P2ry12-CreER recombined cells, using a Cre-dependent Rp/22-HA mouse line.
By identifying genes enriched in this dataset that are not correspondingly enriched in a broader Cx3CR1-
CreER; Rpl22 dataset, we isolate a number of borderzone macrophage-specific transcripts, including the
gene PF4. Using a PF4-Cre mouse line, we show that PF4 expression robustly marks borderzone
macrophages. Together, we demonstrate two new methods to genetically target distinct CNS
macrophage subtypes.

Introduction:

CNS macrophages can be broadly separated into three types: microglia, choroid plexus macrophages,
and borderzone macrophages of the dura, subdura and the perivascular space. Circulatory monocytes,
which invade the CNS and differentiate into macrophages, are also present in the context of CNS injury
and inflammation. These different types of macrophages play fundamental roles in CNS development,
homeostasis and disease, but their specific functions remain poorly defined. One primary barrier to
defining the subtype-specific functions of CNS macrophages has been a lack of genetic tools to
separately target these subpopulations.

Microglia, the resident macrophages of the neural parenchyma, regulate a wide variety of processes in
the brain, from development and synapse remodeling, to inflammatory insult and antigen presentation.
Fate-mapping and developmental analyses have revealed that microglia are derived from the embryonic
yolk sac, unlike circulating monocytes, which are derived from the adult bone marrow. Although bone-
marrow derived macrophages can adopt some features of endogenous microglia, they are not able to
fully recapitulate all of their properties, suggesting that there may be important functional differences
between these two populations of cells. The use of single-cell transcriptomic profiling has revealed new
insights about microglial biology in recent years (Hammond et al., 2019; Jordao et al., 2019; Li et al.,
2019; Van Hove et al.,, 2019) suggesting a greater degree of heterogeneity among microglia than
previously recognized. Recently developed microglial genetic labeling strategies, such as the mouse line
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Cx3cr1-CreER (Goldmann et al.,, 2013a; Parkhurst et al.,, 2013; Yona et al.,, 2013), have significant
advantages compared to their predecessors, but still have a number of drawbacks. For instance, Cx3cr1
is expressed in other immune cell types in the brain, including perivascular, choroid plexus and meningeal
macrophages (Goldmann et al., 2016). Cx3cr1-CreER also labels circulating monocytes, which results in
the labeling of peripherally-derived cells in the context of CNS injury or disease. Furthermore, Cx3cr1-
CreER mouse lines are haplo-insufficient for Cx3cr1, which may affect microglia functions, such as
synaptic pruning (Rogers et al., 2011).

Here, we describe a P2ry12-CreER knock-in mouse line that we have developed to specifically label brain
microglia. P2RY12 is a nucleotide sensing metabotropic GPCR in the P2Y family of GPCRs that has an
important role in the microglial “sensome” (Hickman et al., 2013). P2RY12 regulates the microglial
response to tissue damage and the adoption of the amoeboid “activated” microglial morphology (Bernier
et al.,, 2019; Haynes et al., 2006). We found that P2ry712-CreER, unlike the commonly used Cx3cr1-
CreER, specifically labeled brain microglia, but not perivascular or meningeal macrophages. Using this
line, we performed ribosomal immunoprecipitations and transcriptional profiling of “pure” microglia. By
comparing this dataset to existing ribosomal profiles of CNS macrophages and subtracting genes that are
shared by both datasets, we identify a number of borderzone macrophage markers, including PF4.
Analysis of the PF4-Cre mouse line shows that PF4-Cre recombination robustly labels perivascular and
meningeal macrophages. Altogether, we show that P2ry12-CreER and PF4-Cre can be used to
genetically target parenchymal microglia and perivascular macrophages, two distinct CNS macrophage
subtypes.

Results
Generation of a P2ry12-CreER mouse line

To identify specific markers of brain microglia, we cross-referenced published reports of microglial
markers (Gautier et al., 2012) (Buttgereit et al., 2016) (Wieghofer et al., 2015) with recently produced
single cell sequencing data sets (Tabula Muris: https://tabula-muris.ds.czbiohub.org, Myeloid Cell Single
Cell Seq database: https://myeloidsc.appspot.com). We analyzed several microglial markers (HexB,
P2ry12, Sall1, Tmem119, Trem2, Fcrls and others), and compared their expression across cell types in
the mouse body. Among these genes, P2ry12 appeared to be the most restricted to brain myeloid cells.

To genetically label P2RY12(+) microglia, we generated a PZ2ry12-2A-CreER knock-in mouse line
(hereafter called P2ry12-CreER) (Figure 1A) using CRISPR-facilitated homologous recombination. The
targeting construct was designed to preserve P2ry12 expression, with the P2ry12 stop codon replaced by
a ribosome-skipping 2A-fusion peptide coding sequence, followed by the coding sequence for CreER. We
did not find any health problems in either P2ry12-CreER heterozygous or homozygous mice.
Immunolabeling of homozygous and heterozygous P2ry12-CreER mice showed no significant change in
P2RY12 protein expression or microglial morphology in homozygous compared to wild-type mice (Fig
1A) indicating that gene knock-in did not affect gene expression or function.

P2ry12-CreER-mediated recombination efficiently and specifically labels microglia, but not CNS
border-associated macrophages

To determine the efficiency and specificity of P2ry12-CreER recombination, we generated P2ry12-CreER,
Ai14 reporter mice, which express TdTomato upon Cre-dependent recombination(“A robust and high-
throughput Cre reporting and characterization system for the whole mouse brain,” 2009). Following
tamoxifen induction in adult mice, we saw robust TdTomato expression in P2RY12" microglia (Fig 1A).
Analysis of P2ry12-CreER recombination in the brain by flow cytometry showed that CD11b*CD45""
microglia but not CD11b"CD45"" non-microglial macrophages were preferentially marked by P2ry12-
CreER recombination. 99.55% and .42% of TdTomato" cells were CD11b"; CD45°" and CD11b";
CD45"" respectively, in P2ry12-CreER; Ai14 mice. In comparison, 91.45% and 8.26% of TdTomato"
cells were CD11b"; CD45"°" and CD11b™; CD45h'9h, respectively, in Cx3cr1-CreER; Ai14 mice (Figure
1B,C), suggesting that P2ry12-CreER recombination is much more specific for parenchymal microglia
than Cx3cr1-CreER, which recombines many CNS macrophage subpopulations, including perivascular,
meningeal and choroid plexus macrophages. A systematic immunohistochemical analysis of P2ry12-
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CreER; Ai14 recombination showed high levels of microglial recombination throughout the CNS, as
measured by overlap with the pan-macrophage marker IBA1 (Figure 1D).

Consistent with our flow cytometry results, we saw no recombination in perivascular macrophages
(LYVE1" macrophages associated with aSMA immuno-labeled vessels), unlike Cx3cr1-CreER, which
robustly labels these cells (Figure 1E). Similarly, we saw no recombination in the meninges of P2ry12-
CreER; Ai14 mice, unlike Cx3cr1-CreER; Ai14 mice, which showed recombination in a significant portion
of LYVE1" meningeal macrophages. In the choroid plexus, P2ry12-CreER recombination marked a small
number of IBA1" cells, as well as a small number of IBA1-negative or IBA1-low cells, unlike Cx3cr1-
CreER, which showed recombination in most choroid plexus IBA1* macrophages (Figure 1G). Some of
the P2ry12-CreER; Ai14 recombined cells appeared to be on the surface of the choroid plexus, consistent
with a recently published study that revealed a microglia-like, P2ry12-expressing “CP-epi” subpopulation
of choroid plexus macrophages, which may be Kolmer’'s epiplexus cells (Ling et al., 1998; Van Hove et
al., 2019).

P2ry12-CreER recombination efficiently and specifically labels embryonic microglia

In our previous studies, we noted that P2RY 12 expression is developmentally regulated, increasing in the
brain throughout embryonic and early post-natal development (Arnold et al., 2019). To determine whether
P2ry12-CreER was capable of recombining embryonic macrophages, we induced pregnant dams
carrying P2ry12-CreER; Ai14 pups with a series of three tamoxifen doses at E13.5, E15.5, and E17.5
(Figure 2A). We collected these pups at E18.5 and analyzed their degree and pattern of recombination.
Examination of these brains revealed widespread recombination in IBA1" parenchymal microglia.
Recombination was seen in essentially all parenchymal IBA1" cells, which were most dense in the
subventricular zone and lateral migratory stream of the amygdala, where at this age there are significant
numbers of migrating GABAergic interneurons (Figure 2B-B’’, C, D). Unlike the widespread parenchymal
IBA1" recombination, we observed sparse recombination in the embryonic meninges that was limited to
LYVE1" macrophages (Figure 2C, E). Embryonic recombination in IBA1" cells of the choroid plexus was
widespread, unlike in the adult (Figure 2F). We did not observe any embryonic recombination in blood
vessels or other cell types in the brain at this age.

Expression of P2ry12-CreER in other tissues and in circulating monocytes

To determine the specificity of P2ry12-CreER-mediated recombination, we examined recombination in
non-microglial cell types in the brain, circulation and in a variety of organs. In the brain, we saw no
recombination in macroglia (oligodendrocytes and astrocytes), or neurons (Figure 3A). In organs of
P2ry12-CreER; Ai14; Cx3Cr1-eGFP mice, we found sparse recombination that often overlapped with
EGFP expression, suggesting P2ry12 expression mainly marks a small subset of macrophages in other
tissues (Figure 3B). Sparse recombination was seen in all organs analyzed (spleen, intestine, heart, skin,
lung, liver, muscle, thymus, spleen), except for the kidney, which did not show any recombination (not
shown). Strong splenic recombination was seen in a subset of Cx3cr1-eGFP" cells of the marginal zone
between the red and white pulp, an area that contains macrophages that surveil the bloodstream (Borges
da Silva et al., 2015). In the lung, intestine and heart, P2ry12-CreER; Ai14 recombination occurred in a
subset of Cx3cr1-eGFP cells; in the liver and thymus, P2ry12-CreER; Ai14 recombination partially
overlapped with Cx3cr1-eGFP.

To determine whether P2ry12-CreER recombines circulating monocytes, we examined recombination in
the circulating blood in smears and by flow cytometry. Blood smears of tamoxifen induced P2ry12-CreER;
Ai14; Cx3Cr1-eGFP mice showed no recombination in circulating lymphocytes, but as an internal positive
control, these mice did have numerous Cx3cr1-EGFP'CD45°CD11b" circulating monocytes (Figure 3C).
In contrast, smears of Cx3cr1-CreER; Ai14 mice, showed TdTomato expression indicative of
recombination in circulating monocytes. Flow cytometry of P2ry12-CreR; Ai14; Cx3Cr1-eGFP mice
showed a lack of TdTomato+ circulating monocytes (3 samples with 0 TdTomato” cells, 1 sample with 2
TdTomato" cells out of 2852 CD45"CD11b" monocytes), whereas Cx3cr1-CreER; Ai14 samples showed
recombination in 20.3% of CD45°CD11b" monocytes (Figure 3C). These data indicate that P2ry712-
CreER recombination labels sparse subsets of resident macrophages in organs other than the brain, but
does not label circulating monocytes.
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P2ry12-CreER-dependent ribosomal profiling enriches for transcripts of true brain microglia

We next studied the mRNA transcriptional profile of true microglia using P2ry12-CreER mice. Classically,
mRNA profiling of defined cell types requires preparation of single cell suspensions followed by cell
sorting, RNA isolation and sequencing. These manipulations are inefficient and introduce bias, especially
in macrophage populations, which are difficult to mechanically or enzymatically separate. Furthermore,
microglia become activated and show significant transcriptional changes upon dissociation and sorting
(Haimon et al., 2018a). To avoid these pitfalls, we performed TRAP-Seq (translating ribosome affinity
purification followed by mRNA sequencing) (Sanz et al., 2009) which allows for cell-specific isolation of
mRNA without these manipulations. We generated P2ry12-CreER; Rpl22-HA mice, which, upon
recombination, express a hemagglutanin (HA) epitope tagged RPL22 riboprotein that can be isolated by
immunoprecipitation (Figure 4A). Upon tamoxifen-induced recombination in P2ry12-CreER; Rpl22-HA
mice, we found robust labeling of microglia by Rpl22-HA, as shown by immunofluorescent costaining for
HA and IBA1 (Figure 4B). qPCR analysis of immunoprecipitations from P2ry12-CreER; Rpl22-HA mice
revealed significant enrichment for microglial transcripts such as Tmem119, P2ry12 and HexB (not
shown). After this qPCR validation, libraries from P2ry12-CreER; Rpl22 immunoprecipitations were
generated and sequenced (workflow in 4C). Analysis of the transcripts enriched in P2ry12-CreER; Rpl22
libraries revealed significant enrichment for many known microglial markers, but did not show enrichment
for markers of other cell types, such as neurons, oligodendrocytes and astrocytes (Figure 4D).

The transcriptional profile of P2ry12-CreER recombined cells was quite similar to recently published
profiles derived from Cx3cr1-CreER; Rpl22 immunoprecipitations (Haimon et al., 2018b). By comparing
the relative enrichment values for individual genes in our P2ry12-CreER; Rpl22 data (X axis, Figure 4E)
to Cx3cr1-CreER; Rpl22 enrichment values for the same gene (Y axis, Figure 4E), we identified a
number of enriched genes that were either common or unique to each dataset. Genes common to both
datasets included macrophage markers such as Pu.1, Aif1 (which codes for IBA1), Csfirand CD11b. In
line with our histological and cell-sorting data however, there were many genes enriched in Cx3cr1-
CreER; Rpl22 |Ps that were not enriched in P2ry12-CreER; Rpl22 IPs. Some of these genes have
recently been identified in single-cell sequencing studies as markers of border-associated macrophages
(Van Hove et al., 2019), suggesting that our comparison differentiates genes expressed in true microglia
from those expressed in non-parenchymal macrophages in the CNS. This subtractive approach also
identified a number of genes that were preferentially enriched in the P2ry12-CreER; Rpl22 population,
which represent potential microglial specific markers. As expected, P2ry12 was in this group, as were a
number of other P2Y and P2X family members, such as Gpr34, P2ry10b, 13, 6 and P2rx1, 7.

One gene that had significant enrichment in Cx3cr1-CreER; Rpl22 IPs but marked depletion in P2ry12-
CreER; Rpl22 |Ps was the gene PF4, also known as Cxcl4 (Figure 4E). Given its strong enrichment in
Cx3cr1-CreER expressing cells and lack of enrichment P2ry12-CreER expressing cells, PF4 appeared to
be a good candidate marker of perivascular and/or meningeal macrophages. We explored the lineage of
cells marked by PF4 expression by examining cells recombined by a PF4-Cre transgenic mouse line
(Tiedt et al.,, 2007). Indeed, we found that in PF4-Cre; Ai14 mice, perivascular and meningeal
macrophages are strongly recombined (Figure 4F). PF4-Cre; Ai14 mice also had a low degree of
microglial recombination, which appeared as clumps of cells scattered throughout the brain, suggestive of
sporadic recombination and subsequent clonal expansion.

Discussion:

In recent years, knock-in and transgenic mouse lines using the fractalkine receptor gene Cx3cr1 (e.g.
Cx3cr1-Cre, -CreER and -eGFP) have been some of the best and most frequently used tools for targeting
microglia (Goldmann et al., 2013b; Parkhurst et al., 2013). Other strategies, targeting genes such as Tie2
(Cre, CreMERM), CD11b (Cre, L10aGFP), and CSF1R (LacZ, eGFP, CreMERM) (M. L. Bennett and F.
C. Bennett, 2019; Wieghofer et al., 2015) have been used in landmark studies to determine the yolk-sac
origin of microglia, and to characterize the transcriptional architecture of these cells. However, despite
their usefulness, many of these microglia-targeting mouse lines mark other myeloid cell types in the CNS.
For instance, Cx3cr1-based mouse lines mark borderzone and choroid plexus macrophages in addition to
microglia. Cx3cr1 is also expressed in circulating T cells, B cells, NK cells and monocytes, which means
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that in the context of injury, Cx3CR17-Cre and eGFP are incapable of distinguishing between resident
macrophages and other invading immune cells (Bar-On et al., 2010; Fogg et al., 2006; Imai et al., 1997;
Liu et al.,, 2009). The tamoxifen-inducible Cx3cr71-CreER allele avoids this problem to a degree, but
requires a significant waiting period after the time of recombination for recombined circulating cells to be
depleted. This waiting period is inconvenient for most models of CNS injury and is incompatible with time-
sensitive studies, such as models of neonatal brain injury. In addition to issues regarding specificity,
Cx3cr1 knock-in alleles (eGFP, Cre, and CreER) (Goldmann et al., 2013a; Parkhurst et al., 2013) disrupt
the Cx3cr1 gene, which may result in Cx3cr1-dependent effects on synaptic pruning (Rogers et al., 2011).
Aside from Cx3CR1, knock-in GFP and CreER lines have been generated for the microglial-enriched
transcription factor Sall1 (Buttgereit et al., 2016). However, significant caveats for these lines exist,
including the fact that Sall7-GFP and CreER both disrupt the function of the Sall7 gene, and that Sall1-
CreER marks a broad range of non-myeloid CNS cell types (Chappell-Maor et al., 2019).

Here, we show by immunohistochemistry, flow cytometry, and ribosomal profiling that P2ry12-CreER has
a number of advantages over existing microglial targeting Cre and CreER mouse lines. One such
advantage is that P2ry12-CreER-recombination avoids circulating monocytes, meaning that in the context
of injury, resident microglia can be distinguished from invading monocyte-derived macrophages. P2ry12-
CreER also avoids targeting borderzone macrophages of the meninges or perivascular space. As
perivascular inflammation is a hallmark of many neurological diseases, such as multiple sclerosis and
Alzheimer’'s disease, the ability to separately manipulate microglial and borderzone macrophages in
mouse models of these diseases will be critical.

The P2ry12-CreER mouse line is particularly well-suited for the labeling and tracking of microglia during
CNS brain injury. By genetically labeling microglia, transcriptional profiling can be performed at different
stages of CNS injury, from the initial inflammatory response to later regenerative stages, without
contamination by invading peripheral monocytes. One major barrier to studying microglia in the context of
injury is that microglia undergo significant transcriptional changes when activated, making it difficult to
distinguish activated microglia from other macrophage subtypes. For instance, upon activation, microglia
have been shown to downregulate “true” microglia markers (Tmem119, P2ry12) and upregulate other
macrophage markers (CD45, CD86, Cd53, TLR4, TLR7) (Haimon et al., 2018b; Jordao et al., 2019).
Microglial activation occurs in response to CNS injury, but is also induced by methods used to prepare
microglia for analysis by flow cytometry. By genetically labeling and profiling microglia with P2RY12-
CreER and TRAP-seq, these transcriptional changes associated with flow cytometry can be avoided
(Haimon et al., 2018a).

The recent publication of a number of Tmem119-targeted mouse alleles (Tmem119-GFP, RFP, CreER)
serve to highlight some of the advantages of the P2ry712-CreER line described here (Kaiser and Feng,
2019; Ruan et al., 2020). Regarding the specificity of Tmem119-based lines, both Tmem119-CreER and
—GFP appear to show low but not insignificant levels of recombination or expression in brain-derived
CD11b+; C45int/hi myeloid cells (1.9% and 6.9% for CreER recombination and GFP expression
respectively). In the circulating blood, no Tmem119-GFP(+) monocytes were reported, but 7 days after
the last tamoxifen injection, 3% of circulating CD45(+) monocytes were labeled by Tmem119-CreER. In a
separate publication, using a Tmem119-RFP mouse line and a percoll gradient to isolate CNS
macrophages, 5.3% of RFP+ cells of CNS macrophages were shown to be CD11b"; CD45", similar to the
Tmem119-GFP report. In the neonatal P1 brain, Tmem119-GFP showed widespread expression
overlapping with the vascular endothelial cell marker, CD31. In adulthood, prolonged administration of
tamoxifen to Tmem119-CreER mice induced recombination in non-IBA1(+) cells. This recombination was
quite strong in IBA1(-) meningeal cells and in cells adjacent to large penetrating blood vessels, likely
representing meningeal and perivascular fibroblasts, respectively. Indeed, based on single cell
sequencing, Tmem119 is highly expressed in CNS resident fibroblasts
(http://betsholtzlab.org/VascularSingleCells/database.html). In summary, despite robust labeling of
microglia in Tmem119-based lines, recombination in CD11b+; C45int/hi CNS cells and circulating
monocytes by flow cytometry, the recombination in mural and meningeal cells, and the significant degree
of Tmem119-GFP endothelial expression in neonatal brains suggest that P2ry712 may be a more useful
gene for genetic targeting of microglia.
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P2ry12-CreER can be used to delete floxed alleles in embryonic or adult microglia. Here, we show that in
addition to the fluorescent TdTomato-expressing Ai14 reporter mouse line (Madisen et al., 2009), P2ry12-
CreER can be used to recombine the Rp/22-HA ribotrap allele for microglia-specific transcriptional
profiling. Interestingly, using a subtractive approach, we found a number of genes that had very high
enrichment in Cx3cr1-CreER; Rpl22 samples but no enrichment in P2ry12-CreER; Rpl22 samples. Some
of these markers (Mrc1, F13a1, Ms4a7 and MMP9) were recently identified in other studies that used
physical dissociation of the dural membranes from the neural parenchyma to separate borderzone
macrophages from other CNS macrophage subtypes (Jordao et al., 2019; Van Hove et al., 2019). After
isolating macrophages from these preparations, these groups performed single-cell sequencing to identify
gene signatures of microglia, border-associated and choroid plexus macrophages. One major drawback
to strategies that rely on the physical dissection of these populations is that this process results in
significant levels of cross contamination from microglia and other cells that that are in close contact with
the meningeal layers. Furthermore, physical dissection of the meningeal layers does not separate
perivascular macrophages of the penetrating vessels from the parenchymal microglia. In contrast,
P2ry12-CreER recombination provides a more precise and complete genetic segregation of these
populations that minimizes the transcriptional changes that are known to occur during sorting. The
differential enrichment observed in our subtractive approach revealed several transcripts only expressed
in border-associated macrophages. We focused on one such gene, PF4, and found that PF4-Cre robustly
and preferentially recombines borderzone macrophages. We did observe a low degree of sporadic
microglial recombination in PF4-Cre; Ai14 mice, which may be due to short-term expression of PF4,
perhaps upon microglial activation, or developmental labeling. Together, our studies find that with P2ry12-
CreER and PF4-Cre, both parenchymal and borderzone CNS macrophages can be genetically
dissociated.

CNS macrophages regulate a wide range of processes from early development to adulthood in health
and disease. Here, we provide improved methods for genetically targeting microglia and borderzone
macrophages. Use of these genetic tools will open new experimental avenues to better define the specific
functions of CNS macrophage subclasses. For instance, microglial or borderzone macrophages ablation
experiments can be performed with conditional Csf1R ablation, or conditional diphtheria toxin receptor
expression. Another particularly useful function of these lines will be to track and transcriptionally profile
distinct macrophages classes in the context of CNS injury or neurodegenerative disease.

Material and Methods:

Mice: P2ry12-CreER mice were generated by CRISPR-facilitated homologous recombination. The
P2ry12 coding sequence was joined to CreER by deletion of the P2ry12 stop codon and in-frame 3’
insertion of P2A-CreER. The P2A fusion peptide contains a 5° GSG motif, which has been shown to
significantly increase fusion protein cleavage efficiency (Szymczak-Workman et al., 2012). P2ry12-CreER
mice were generated by pronuclear injection of the P2ry12-CreER targeting construct and a Cas9+gRNA
expression plasmid (Biocytogen) into fertilized mouse eggs, followed by adoptive embryo transfer.
Founder mice and progeny were screened by PCR, and proper genomic integration was verified by
Southern blot and genomic sequencing. Recombination was induced by three doses of tamoxifen
dissolved in corn oil, administered by oral gavage every other day (150uL of 20mg/mL). For embryonic
mouse inductions, pregnant dams were given tamoxifen (150uL of 20mg/mL) on E13.5, E15.5 and E17.5,
for a total of three gavage injections. All mouse work was performed in accordance with UCSF
Institutional Animal Care and Use Committee protocols. The P2ry12-CreER mouse line will be deposited
at Jackson Labs and at the Mutant Mouse Resource and Research Center (MMMRC).

Histology and immunostaining: Mouse brains and other organs were harvested following transcardial
perfusion with 20 mL cold PBS and 20 mL cold 4% formaldehyde. Tissue was fixed overnight at 4
degrees in 4% formaldehyde, followed by overnight incubation in 30% sucrose. Samples were embedded
(Tissue Plus O.C.T. Compund, Fisher Scientific) and sectioned at 40um for adult tissues, and 20um for
embryonic tissues. Sections were immunostained using a blocking/permeabilization buffer of PBS
containing 2% BSA, 5% donkey serum and .5% TritonX-100. Primary and secondary antibodies were
diluted in PBS containing 1% BSA and .25% TritonX-100. Secondary antibodies conjugated to Alexa
fluorophores were used at 1:300 (Jackson ImmunoResearch). Primary antibodies used included: aSMA-
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647 (mouse monoclonal sc-32251, Santa Cruz Biotechnology, used at 1:150); Cd11b-PECy7 (BD
Biosciences, used at 1:100); Cd45-APC (BD Biosciences, used at 1:100); ERTR7 (rat monoclonal abcam
ab51824, used at 1:300); EGFP (chicken polyclonal, abcam ab13970 used at 1:300); TdTomato (rat
monoclonal, Chromotek, 5F8, used at 1:500); TdTomato (rabbit polyclonal, Living Colors DsRed
Polyclonal #632496, used at 1:1000); P2ry12 (rabbit polyclonal, kindly provided by Dr. David Julius, used
at 1:1000); Iba1 (Goat, Novus NB100-1028, used at 1:300); Olig2 (Rabbit polyclonal, Millipore, used at
1:300); NeuN (mouse, Millipore MAB377, used at 1:100); Sox9 (goat, R&D System AF3075, used at
1:300); Lyve1 (Rabbit polyclonal, Abcam ab14917, used at 1:300); HA (Rabbit monoclonal, Cell Signaling
C29F4, used at 1:300). Cell counting in Figure 1D was performed on three mice, using three separate
images taken from the spinal cord, cerebellum, cortex and hippocampus of each mouse.

Flow cytometry: Microglial flow cytometry was performed using a percol gradient isolation strategy.
Single-cell suspensions were prepared and centrifuged over a 30%/70% discontinuous Percoll gradient
(GE Healthcare) and mononuclear cells were isolated from the interface. Flow cytometry was performed
on a FACS Aria Ill using the FACSDiva 8.0 software (BD Biosciences) and was analyzed using FlowJo
v10.6.1. TdTomato+ cells were analyzed for CD45 and CD11b expression following initial gatings for
forward scatter, singlets and live cells. Blood smears and flow cytometry were performed on adult mice
following three tamoxifen inductions as described above. Blood was collected from the facial vein and
smears were imaged for EGFP and TdTomato expression. Prior to immunostaining, blood samples used
for flow cytometry were depleted of erythrocytes using an ammonium chloride lysis buffer (.15M NH4CI,
10mM NaHCO3, 1.2mM EDTA) wash. Blood flow cytometry was performed on a BD FACSVerse machine
and analyzed using FlowJo v10.6.1.

Ribosomal immunoprecipitations: Whole brains of P2ry12-CreER; Rpl22-HA and Cx3cr1-Cre; Rpl22-
HA mice were dounce homogenized in 5mL of homogenization buffer (1% NP-40, .1M KCL, 50 mM Tris
pH 7.4, .02 mg/mL cycloheximide, .012M MgCI2, RNAse inhibitors, Heparin, .5 mM DTT). Tissue lysates
were centrifuged at 10k-rcf for 10 min at 4 degrees to obtain a supernatant ribosomal fraction. An 80uL
input sample was taken at this point to serve as a comparison to immunoprecipitated samples. Rabbit
monoclonal anti-HA antibody (Cell Signaling C29F4, 2.5uL per mL) was added to the supernatant and
incubated for 4 hours at 4 degrees. lron-linked Protein A beads were added to the ribosomal
fraction/antibody mixture (40uL per mL) and incubated for an additional 4 hours before being magnetically
precipitated. Immunoprecipitate/beads were washed with a high salt buffer (.3M KCL, 1% NP-40, 50mM
Tris pH 7.4, .012M MgCL2, cyclohexamide, .5 mM DTT) 3 times and then eluted with 350 uL of buffer
RLT (Qiagen RNeasy kit). Input and immunoprecipitated RNA was purified on column (Qiagen RNeasy
kit) and frozen as aliquots at -80 degrees.

gPCR: cDNA from ribosomal immunoprecipitations was generated using Maxima First Strand cDNA
Synthesis Kit (Thermo scientific) and qPCRs were performed using SYBR Green qPCR Mastermix
(Bimake) on a BioRad CFX Connect thermocycler. Quantitative comparisons between
immunoprecipitations and input samples were made using delta-delta Ct normalization, with GAPDH as a
normalizing control.

Library preparation and sequencing: Total RNA quality was assessed by spectrophotometer
(NanoDrop, Thermo Fisher Scientific Inc., Waltham, MA) and with an Agilent Fragment Analyzer (Agilent
Technologies, Palo Alto, CA). All RNA samples had integrity scores greater than 9, reflecting high-quality,
intact RNA. RNA sequencing libraries were generated using the Nugen Universal Plus mRNA-Seq kit with
multiplexing primers, according to the manufacturer’s protocol (NuGen Technologies, Inc., San Carlos,
CA). Fragment size distributions were assessed using Agilent’'s Fragment Analyzer DNA high-sensitivity
kit. Library concentrations were measured using KAPA Library Quantification Kits (Kapa Biosystems, Inc.,
Woburn, MA). Equal amounts of indexed libraries were pooled and single end 50 bp sequencing were
performed on the lllumina HiSeq 4000 at the UCSF Center for Advanced Technology (CAT)
(http://cat.ucsf.edu).

RNA sequencing analysis: Raw reads were pseudo-mapped to the mouse transcriptome using Salmon
0.13.1 (Patro et al.,, 2017). Quantified transcripts were passed to Tximport 1.12 for gene-level
summarization and differential expression analysis was performed with DESeq2 1.24, using alpha = 0.05
(Love et al.,, 2015) (Love et al.,, 2014) . Genes with total read counts below 20 in all samples were
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eliminated from the analyses. Data has been submited to the Gene Expression Omnibus (GEO)
repository for datasets, the accension number for this dataset is: GSE138333.

Imaging: Confocal images were taken using a motorized Zeiss 780 upright laser scanning confocal
microscope with a 34 detector array with a water immersion Zeiss Plan Apochromat 20X/1.0 D=0.17
Parfocal length 75 mm (Zeiss, Germany). Images for Figure 2 and Figure 3C were taken with a Zeiss Axio
Imager.Z2 epifluorescent microscope.
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Figure Legends:

Figure 1. Microglia are specifically and efficiently recombined by P2ry712-CreER. A. Design
of the P2ry12 knock-in allele. Brain section from P2ry12-CreER;Ai14 reporter mouse stained for
microglia (P2RY12, cyan) and recombined cells (TdTomato, red). B. Flow cytometry analysis of
recombined TdTomato+ macrophages in P2ry12-CreER;Ai14 and Cx3cr1-CreER;Ai14 mice.
TdTomato+ cells were pre-gated on forward scatter, isolation of singlets, and removal of dead
cells. C. Quantification of flow cytometry analysis. D. Images and quantification of recombination
in the cerebral cortex, hippocampus, cerebellum and spinal cord in P2ry12-CreER;Ai14 mice.
Sections stained with pan-macrophage marker IBA1 (green). E. Analysis of Cx3cr1-CreER vs
P2ry12-CreER mediated recombination in aSMA-adjacent, LYVE1(+) perivascular macrophages.
Cx3cr1-CreER recombination labels perivascular macrophages (arrowheads), but P2ry12-CreER
does not. F. Analysis of Cx3cr1-CreER vs P2ry12-CreER mediated recombination in LYVE1(+)
meningeal macrophages. Cx3cr1-CreER recombination labels meningeal macrophages
(arrowheads), but P2ry12-CreER does not. ERTR7 expression delineates meningeal boundaries.
G. Analysis of Cx3cr1-CreER vs. P2ry12-CreER mediated recombination in the choroid plexus.
Cx3cr1-CreER recombination labels most IBA1(+) choroid plexus macrophages; P2ry12-CreER
recombination labels presumptive Kolmer epiplexus cells on the surface of the choroid plexus
(arrowhead). Sections stained with pan-macrophage marker IBA1 (green), vascular marker aSMA
(white), meningeal fibroblast marker (ERTR7, white) and meningeal macrophage marker LYVE1
(green). N =4 separate animals for each genotype in C. and 3 animals for analysis in D. For flow
analysis in C., p=.032, Student’s t-test. Scale Bar = 50um (D,E,F,G).

Figure 2. Embryonic recombination in P2ry12-CreER mice. A. Diagram of P2ry12-CreER;
Ai14 embryonic tamoxifen induction regimen. Pregnant mice were induced with tamoxifen at
E13.5, E15.5 and E17.5 and embryos were collected at E18.5. B. Recombination in the E18.5
brain, shown in three images, arranged rostral (B) to caudal (B”). C. P2ry12-CreER; Ai14
recombination in the developing cerebral cortex. Recombination was seen primarily in the
parenchyma of the brain, with sparse recombination in the meninges (arrowhead). D.
Recombination in the developing hippocampus. E. Sparse recombination of LYVE1-expressing
meningeal macrophages. F. Recombination in the choroid plexus was more widespread at E18.5,
marking the majority of IBA1(+) macrophages. Cx=Cortex, LS=Lateral migratory stream,
Str=Striatum, Th=Thalamus, SVZ=Subventricular zone. Scale bars= 800um (B), 400um (C, D),
200um (E, F).

Figure 3. P2ry12-CreER recombination in non-microglial populations is limited. A. Analysis
of P2ry12-CreER recombination showed a lack of recombination in oligodendrocytes (OLIG2),
astrocytes (SOX9) or neurons (NEUN). B. Analysis of recombination in the spleen, lung, heart,
thymus, intestine and liver of P2ry12-CreER; Ai14; Cx3cr1-eGFP mice. Cx3cr1-eGFP was used
as a marker of tissue resident macrophages. C. Flow cytometry and blood smear recombination
analysis reveals negligible recombination of blood cells in P2ry12-CreER;Ai14 mice compared to
Cx3cr1-eGFP (internal control) and Cx3cr1-CreER;Ai14 mice. p=.0015, Student’s t-test. N = 4
mice for A. and C., 3 mice for B. Scale bars: 100um (A,B,C). WP=White pulp, BZ=Borderzone,
RP=Red pulp.

Fig. 4. Cre-dependent ribosomal profiling of microglia. A. A diagram illustrating P2ry12-
CreER-dependent recombination of the Rpl22-HA allele, used to perform cell-type specific
ribosomal profiling. B. Immunostaining of tagged microglia for HA (red) and IBA1 (green) shows
strong Cre-dependent expression of Rp/22-HA in microglia. C. Workflow diagram for Cre-
dependent ribosomal profiling experiments. D. A comparison of relative enrichment for cell-type
specific markers from P2ry12-CreER; Rpl22-HA and Cx3cr1-CreER; Rpl22-HA ribosomal
immunoprecipitations. E. Genome-wide comparisons of relative enrichment following
immunoprecipitation of ribosomes in P2ry12-CreER; Rpl22-HA and Cx3cr1-CreER; Rpl22-HA
mice. Pan-macrophage markers in blue; presumptive microglial markers in pink; presumptive
borderzone macrophage markers in red. F. PF4-Cre robustly recombines perivascular SMA-
adjacent LYVE1(+) perivascular macrophages (closed arrowheads) and meningeal macrophages
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(open arrowheads). Asterisk: recombination in a small cluster of microglia. Scale bars: 40um (B)
and 100um (F).
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