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Abstract

Mass spectrometry imaging (MSI) has become a mature, widespread analytical technique to
perform non-targeted spatial metabolomics. However, the compounds used to promote
desorption and ionization of the analyte during acquisition cause spectral interferences in the
low mass range that hinder downstream data processing in metabolomics applications. Thus, it
is advisable to annotate and remove matrix-related peaks to reduce the number of redundant
and non-biologically-relevant variables in the dataset. We have developed rMSicleanup, an
open-source R package to annotate and remove matrix-related signals based on its chemical
formula and the spatial distribution of its ions. To validate the annotation method, rMSlicleanup
was challenged with several images acquired using silver-assisted laser desorption ionization
MSI (AgLDI MSI). The algorithm was able to correctly classify m/z signals related to silver clusters.
Visual exploration of the data using Principal Component Analysis (PCA) demonstrated that
annotation and removal of matrix-related signals improved spectral data post-processing. The
results highlight the need for including matrix-related peak annotation tools such as
rMSlIcleanup in MSI workflows.

Keywords: mass spectrometry imaging; spatial metabolomics; matrix annotation; overlapping-
signal detection; silver-assisted laser/desorption ionization; spectral processing

Resources availability

The R package presented in this publication is freely available under the terms of the GNU
General Public License v3.0 at https://github.com/gbaquer/rMSicleanup. The datasets used in
the experiments can be accessed upon request to the corresponding author.

1. Introduction

Mass spectrometry imaging (MSI) is a label-free technology that allows to obtain molecular and
spatial information from intact tissue sections [1]. MSI has been gradually adopted for spatial-
resolved metabolomics and it has been regarded as a potential tool for understanding the
mechanisms underlying complex diseases such as cancer or diabetes [2]. However, the
conventional organic matrices used in Matrix-Assisted Laser Desorption lonization (MALDI)
produce spectral signals that interfere in the low m/z range. This is an issue particularly in
metabolomics which analyses low molecular weight compounds, so mass spectrometers are set
to acquire within the m/z range where MALDI matrices exhibit most MS signals. This seriously
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hampers downstream metabolomics data processing [3,4], as the matrix introduces noise,
redundant variables, and variables with no biological meaning into the complex MSI datasets.

Several alternatives to the common organic matrices have been proposed to deal with
exogenous contamination caused by matrix ion signals. Nanomaterials or metal layer deposition
methods, for instance, dramatically reduce the number of signals related to the LDI promoting
material in the low m/z range. Some examples are graphene oxide, silicon or metals such as
gold, platinum or silver [5-8]. Nevertheless, even when these alternatives are used and the
number of peaks related to the LDI promoting material is reduced, there is still a need to
annotate them in order to reduce spectral complexity and distinguish exogenous from
endogenous compounds, especially in untargeted applications.

To tackle the issue of annotating MS signals related to the LDI-promoting material several
software-based solutions have been proposed. A simple approach consists of acquiring a
reference area outside the sample during the MSI experiment. Under the assumption that only
matrix-related peaks will be recorded, the peaks found in the outside area are then subtracted
from the tissue spectrum. Given its simplicity, some variation of this procedure has been
adopted by many researchers in their workflows. Expanding on this idea, Fonville et al. [9]
presented a method that relies on the hypothesis that matrix-related peaks will correlate
positively to a set of reference peaks outside the tissue region while endogenous peaks will
correlate negatively. However, this approach has three main limitations. Firstly, due to ion
suppression [10] and the formation of matrix adducts with endogenous compounds, the matrix-
related peaks outside and inside the tissue region might differ. Additionally, endogenous
molecules that are delocalized during the matrix application process can be misclassified as
matrix-related. Finally, the method cannot distinguish a given matrix-related MS peak from an
isobaric or overlapping endogenous MS peak. Thus, simplified approaches to annotate matrix-
related signals are not suitable for untargeted applications such as spatial metabolomics. Recent
work by Ovchinnikova et al. [11] takes a more comprehensive approach in defining three
automated algorithms for off-sample ion classification. Their methods have proved to perform
well when trained and validated against a “gold standard set” of ion images manually annotated
by experts. However, their focus is not specifically on matrix-related peaks, but on the
annotation of signals that exhibit a spatial distribution with high concentrations outside of the
tissue region. For this reason, these methods focus on classifying each ion image separately as
“on-sample” or “off-sample” and do not exploit relevant information such as the identity of the
ion, adduct type, matrix type, etc. Additionally, since they are based in machine and deep
learning methods they inherently suffer from the black box problem given that annotation
results cannot be traced back and easily justified.

To solve these limitations we propose a new algorithm that relies not only on the ion images but
also on the chemical information of the LDI promoting material used. The algorithm also
incorporates an overlapping peak detection feature to prevent misclassification of overlapped
or isobaric ions. The presented algorithm is implemented in an open-source R package freely
available to facilitate its use. Additionally, the package generates a visual report to transparently
justify each annotation.

In order to validate and optimize the proposed method, we opted for a well-understood LDI
promoting material such as silver. The use of silver nanolayers for MSI (AgLDI MSI) has been
steadily growing in recent years [6,12-17]. The characteristic isotopic pattern of silver
(197Ag and 1°94g, 51.84% and 48.16% abundance, respectively), as well as its well-known
ionization and adduct formation allow to define a list of possible and not-possible silver-related
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90 peaks of a typical AgLDI MSI experiment. This set of possible and not-possible peaks is used as a
91  validation list to assess the performance of the classification algorithm. A total of 14 MSI
92  datasets acquired with an Ag-sputtered nanolayer from three different laboratories, were used
93  for validation.

94 2. Materials & Methods

95  Table 1 summarizes the main processing parameters for each of the 14 datasets used in this

96  study. Datasets 1-10 were acquired in our lab and the materials, sample preparation and MSI

97  acquisition parameters are described here. In order to overcome lab-specific bias in our study,

98  four additional datasets were provided by collaborating laboratories. For further details about

99  the materials, sample preparation and MSI acquisition of these datasets, refer to the original
100 publications of Dataset 11 [18], Dataset 12 [14] and Datasets 13 and 14 [6].

101 2.1. Materials

102 For the samples acquired by our group, indium tin oxide (ITO)-coated glass slides were obtained
103  from Bruker Daltonics (Bremen, Germany). The silver-target (purity grade > 99.99%) used for
104  sputtering was acquired from Kurt J. Lesker Company (Hastings, England).

105 2.2. Sample preparation

106  All the samples acquired by our group were obtained from mice and provided by the animal
107  facility at the Faculty of Medicine and Health Sciences of the University Rovira i Virgili. All tissues
108 were snap-frozen at -802C after collection and kept at this temperature during shipping and
109 storing until MSI acquisition.

110  The tissues were sectioned with a Leica CM-1950 cryostat (Leica Biosystems Nussloch GmbH)
111 located at the Centre for Omics Sciences (COS) of the University Rovira i Virgili into 10
112 um sections. Tissue sections were mounted on ITO coated slides by directly placing the glass
113  slide at ambient temperature onto the section.

114  The sputtering system ATC Orion 8-HV (AJA International, N. Scituate, MA, USA) was used to
115  deposit a silver nanolayer onto each tissue section. An argon atmosphere with a pressure of 30
116  mTorr was used to create the plasma in the gun. The working distance of the plate was set to 35
117  mm. The sputtering conditions were ambient temperature using DC mode at 100W for 10s. With
118  these parameters, an Ag layer thickness of roughly 5nm was obtained. The deposition times
119  wereshort to prevent the substrate temperature from increasing excessively and, consequently,
120  degrading metabolites.

121 2.3. LDI-MS acquisition

122 A MALDI TOF/TOF ultrafleXtreme instrument with SmartBeam Il Nd:YAG/355 nm laser from
123 Bruker Daltonics available at COS was used for MSI acquisition. Acquisitions were carried out by
124 operating the laser at 2 kHz and collecting a total of 500 shots per pixel.

125  The TOF spectrometer was operated in positive ion, reflectron mode, in m/z ranges according
126  to Table 1. The spectrometer was calibrated prior to MSI data acquisition using [Ag]; cluster
127 peaks as internal reference masses.

128 2.4. MSI data processing

129  Theraw spectral data of each MSI dataset was exported to the imZML data format [19] in profile
130 mode. The software rMSIproc [20] was used to process the data and generate a peak matrix in
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131  centroid mode. The default processing parameters were used. The Signal-to-Noise Ratio (SNR)
132  threshold was set to 5 and the Savitzky-Golay smoothing had a kernel size of 7. Peaks appearing
133 in less than 5% of the pixels were filtered out. Peaks within a window of 6 data-points or scans
134  were binned together as the same mass peak. Mass spectra were re-calibrated using the Ag
135 reference peaks as reference masses [21].

136  Datasets 13 and 14 were acquired in centroid mode with an Orbitrap mass spectrometer. These
137 datasets were directly submitted to the binning process of rMSlproc [21] to conform to the peak
138 matrix format.

139 No data normalization was performed. Data were visualized and explored using rMSI [22].
140 3. Algorithm description

141 3.1. Input and output format

142  The matrix-related annotation algorithm takes the peak matrix in centroid mode and the
143 processed spectral data in profile mode as input. The user must also provide the chemical
144  formulae of the matrix applied and a list of possible adducts and neutral losses to consider.

145  The algorithm produces a vector containing the similarity scores that indicate the likelihood of
146 each mass in the input image being a matrix-related ion. The package also provides an
147 informative visual report for the user to understand the justification behind the classification.
148  Supplementary Figures S1-S4 show examples of the visual report.

149 3.2. In-silico cluster & adduct calculation

150 The theoretical mass and relative isotopic pattern intensities of all possible matrix-related
151  clusters are calculated using the open-source package enviPat [23], a fast and memory-efficient
152  algorithm to compute theoretical isotope patterns.

153 For each theoretical cluster t; its experimental counterpart e; is obtained from the mean spectra
154  of the dataset. The experimental masses closest to the theoretical ones within a given tolerance
155  specified by the user are used. The theoretical clusters will then be matched against their
156 experimental counterparts and their presence in the experimental dataset assessed using two
157 similarity metrics.

158 3.3. Similarity metrics

159  The similarity between each theoretical matrix-related cluster and experimental clusters is
160  assessed using two similarity scores according to equation 1.

161 S = Sl . SZ (1)

162 where S is the total similarity score, S; is the cluster spectral similarity and S, is the intra-cluster
163 morphological similarity. Both similarity scores range from 0 to 1.

164  The cluster spectral similarity score S;; for theoretical cluster t; determines the degree of
165 similarity between the scaled intensity vectors of intensities Iy; and I,; and it is computed
166 according to equation 2.

It. Ie.
—dist( L L )
167 S1,i —e max(lti) max(lel.) (2)
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168  where dist(a, b) is the distance function chosen by the user (Euclidean distance by default), I,
169 s the vector of intensities of the theoretical cluster t; and I, is the vector of intensities of
170  experimental cluster e;. Experimental cluster e; is determined by accessing the element in the
171 peak matrix with the mass closest to that corresponding to t; within a given tolerance. In plain
172 terms, Sy is a decaying exponential function of the distance between the intensity scaled
173  intensity vectors Iy, and I, .

174  The intra-cluster morphological similarity S,; returns the degree of similarity between the
175  spatial distributions of the ions conforming the experimental cluster e;. lons with a high spatial
176 correlation are more likely to belong to the same cluster. This metric is computed using equation
177 3.

l{i Iy, correl(Imagese,)

C1e)?

178 Syi = (3)
179 where, is the intensity vector of the theoretical cluster t;, correl(A) is the correlation function
180  specified by the user (Pearson correlation by default) and Images,, is the set of images
181  corresponding to eachion in the experimental cluster e;. In plain terms, S, is the weighted mean
182  across both directions of the correlation matrix between each ion image in e;.

183 3.4. Overlapping peak detection

184 Insufficient resolving power leads to overlapped MS signals, which can be a severe problem in
185 matrix-related peak annotation as they can lead to a greater number of misclassified peaks. This
186 s a particularly limiting issue in lower resolution spectrometers such as some TOFs in contrast
187 to higher resolution analysers such as Orbitrap or FTICR [24]. An additional problem with the
188 same effect is the intrinsic inability of mass spectrometry to distinguish between isobaric
189  species. In order to cope with these issues, we propose an overlapping detection algorithm
190 capable of determining if a given MS signal corresponds to more than one overlapped ion peaks.

191  The overlapping detection algorithm is only executed in those clusters that report S1 and S2
192  scores under a threshold specified by the user. Before concluding that the cluster is not present,
193  thealgorithm determines whether the low similarity metrics could be attributed to the presence
194  of overlapped signals.

195  The algorithm is based on the operating principle of bisecting k-means [25]. All the ions in an
196  experimental cluster e; are split into two subgroups (e;.; and e;., ) based on the correlation of
197  their spatial distributions using k-means. For each subgroup of ions the similarity metrics S1 and
198  S2 are recomputed. If the S1 and S2 scores of a given subgroup surpass the specified threshold,
199  all ions in the subgroup are tagged as matrix-related. The remaining ions in e; are tagged as
200 matrix-related but suffering from overlapping, and the overlapping detection algorithm
201 terminates. If instead, none of the subgroups obtains an S1 and S2 above the threshold, the
202 process of splitting into two subgroups by k-means and recomputing the similarity scores is
203 repeated for both e;.; and e;., . This bisection of the ions in e; is repeated iteratively until a
204  subgroup obtains S1 and S2 scores above the threshold. To prevent overfitting, the iterative
205 process will also stop when the number of peaks contained by the biggest subgroup becomes
206 smaller than half the amount of peaks in e;. In such event, it is concluded that there are no
207  overlapped peaks and all ions in the experimental cluster e; are tagged as not-matrix-related. To
208 sum, overlapped MS signals will be detected and distinguished from the rest of the ions in the
209  cluster based on the dissimilarity of their spatial distributions.
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210 4, Results

211 4.1. Algorithm validation with AgLDI MSI

212 In order to validate and optimize the algorithm, we opted to use sample tissues covered by silver
213 nanoparticles, a well-defined and understood LDI promoting material. A total of 14 datasets,
214 from 3 different laboratories, were used. The datasets included several animal tissues, plant
215 tissues and human fingermarks.

216  The algorithm was challenged with the task of classifying a list of silver-containing compounds
217 and adducts for each dataset. The list includes a “positive class” formed by clusters that should
218 be present in all samples used in this study and a “negative class” containing clusters that should
219 not be present in any of them. This list is referred to as “validation list” and allowed us to assess
220  the performance of the algorithm. An algorithm with a perfect performance should classify all
221  clusters in the “positive class” as matrix-related signals and all clusters in the negative class as
222 not present and thus not-matrix related. This is a common approach in bioinformatics for
223 validating and assessing the performance of a classifier algorithm [26]. Table 2 shows the
224  complete validation list.

225  Silver clusters containing up to 60 atoms have been reported to form during silver sputtering
226 [27]. The “positive class” expected to be found in all datasets is therefore formed by all silver
227 clusters within the acquired mass range. For most of the datasets, this includes clusters from
228  Agf to Agi,.

229  The “negative class” consists of silver compounds or adducts that should not be present in any
230  of the samples used in this study. Firstly, this list includes various silver neutral salts which
231 cannot be measured using LDI MSI, and some synthetic compounds that are not expected to be
232 present in animal or plant samples [28]. It also includes compounds found in aerial parts of
233 plants, wax and insects (not found in mammal tissues nor in corn root) that have been reported
234 to form adducts with silver in AgLDI MSI applications [29]. For each of these molecules, we also
235 included all clusters within the acquired mass range. These particular molecules and their
236  clusters were selected in an attempt to have a “negative class” covering the full mass range.

237 4.2. Performance of similarity scores

238 Using the validation list described in section 4.1, we assessed the performance of the similarity
239  scores as a classifier to annotate Ag; -related peaks in AgLDI MSI datasets.

240  Figure 1 shows the similarity scores obtained for each cluster in Table 2 when searched in all 14
241  datasets from Table 1. The blue points represent the “positive class” (clusters that should be
242 present) while the red points represent the negative class (clusters that should not be present).

243 Figure 1A represents the spectral similarity score (S1) against the intra-cluster similarity score
244  (S2) of each of these clusters. The “positive class” is clearly separated on the top right corner
245  (high 51 and high 52).

246  To evaluate the classifying performance of the two similarity metrics we use the Precision vs.
247 Recall (PR) curve [26]. The precision is defined as the ratio between the number of clusters in
248  the “positive class” classified as matrix-related (i.e. true positives) and the total number of
249 clusters classified as matrix-related (i.e. true positives + false positives). The recall, on the other
250 hand, is the ratio between the number of clusters in the “positive class” classified as matrix-
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251 related (i.e. true positives) and the total number of clusters in the “positive class” (i.e. true
252 positives + false negatives). Figure 1B shows the PR curves for each of the similarity metrics
253 proposed. The areas under the curve (AUC) of 0.97 and 0.91, respectively, show that the spectral
254  similarity score S1 is the best classifier followed by the intra-cluster morphology similarity score
255  S2.The product of S1 - S2 had the same classifying skill as S1 with an AUC of 0.97. These results
256  prove that Ag; -related peaks can be well classified by these two metrics.

257 S1 performs much better than S2 as a classifier, and the product of S1 - S2 matches but does
258 not improve the performance of S1 alone. Nevertheless, we still decided to use the product of
259  S1-S2asaclassifier in rMSIcleanup instead of using S1 alone due to three main reasons. Firstly,
260  the overlapping detection algorithm strongly relies on the morphological similarity of ions and
261  thus depends on S2. Moreover, even though we did not find a single instance of a cluster with
262  a high S1 score and a low S2 score (matching isotopic patterns but unmatching spatial
263 distributions) in any of the samples, we still consider that S2 should be present to allow for
264  correct classification should this occur. Finally, S2 can be a strong asset in applications other
265  than AglLDI MSlwhere, due to less distinctive isotopic ratios, the performance of S1 as a classifier
266 is diminished.

267 Figure 1C shows the similarity score S1-S2 obtained by each cluster in all datasets. Clusters are
268  arranged in decreasing order of mean similarity score. Supplementary Table S1 maps the cluster
269 numbers to cluster chemical formula. A clear gap between an S of 0.5 and 0.7 separates the
270  “positive class” from the negative one.

271 Only three false positives (i.e. clusters that should not be present but have a high S value) were
272 reported for adduct [C,gHsg0 + Ag]*. An example is shown for Dataset 4 in Supplementary
273 Figure S5. Identification by MS/MS is required to assess if the compound is indeed present in
274  the sample. Nevertheless, the mass error between experimental and theoretical isotopic
275 patterns for this compound was 154 ppm, an error much higher than the expected for this
276  dataset (acquired with a TOF MS analyzer). Therefore, we inferred that the experimental pattern
277  detected is not related to adduct [C,gHsg0 + Ag]* and this is, in fact, a false positive. In order
278 to reduce the number of false positives, the mass tolerance of the algorithm can be decreased,
279 however, a too strict mass tolerance increases the number of false negatives.

280 A total of six false negatives (i.e. clusters that should be present but have a low S value) were
281  reported for some datasets for clusters Agz, Age and Ag,o. False negatives correspond to
282  clusters for which the majority of peaks in their isotopic pattern were under the SNR threshold,
283  and thus were excluded during pre-processing. In these cases, the few included peaks were not
284  sufficient to reliably annotate the cluster. Supplementary Figure S6 shows the only exception,
285  the Agg cluster in Dataset 12, whose misclassification is not due to intensity problems. In this
286  case, the fingerprint analysed showed highly homogeneous ion images, which impedes the
287 proper operation of the overlapping algorithm and leads to misclassification. Representative
288 examples of correct annotations are shown in Supplementary Figures S7-S8.

289  As an additional validation, the results were matched against the published annotations of the
290 datasets provided by external laboratories. Dataset 12 contains 60 identifications by MS/MS
291 [14]. Dataset 13 contains 4 metabolites identified by MS/MS and a total of 10 tentatively
292 identified formulae based on exact mass [6]. Dataset 14 contains 10 metabolites identified by
293 MS/MS and 6 tentatively identified formulae based on exact mass [6]. None of these
294  endogenous signals was misclassified as Ag; -related by our algorithm.
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295 4.3. Overlapping peak detection performance

296  Figure 2 shows a case example where the overlapping peak detection algorithm successfully
297 identified overlapping ions when searching for the Agg cluster in Dataset 1. Figure 2A depicts
298  the experimental mean profile spectrum in the mass range of interest along with the calculated
299 profile of the Age cluster. While most peaks follow the calculated isotopic distribution,
300 experimental peaks at m/z 641.43, m/z 643.43 and m/z 653.43 are considerably more intense
301 than in the predicted pattern. This generates a mismatch between the experimental and
302 calculated peaks that leads to a low S1 score. Figure 2B shows the spatial distributions of each
303 of the ions in the Agg cluster. The correlation map in Figure 2D clearly indicates that peaks at
304 m/z 641.43 and m/z 643.43 have a spatial distribution that is unlike that of the rest of the ions
305 in the cluster. The peak at m/z 653.43 also shows a considerably different spatial correlation to
306  the rest. These low correlations lead to a lower S2 score. Figure 2C is a zoom-in of the peaks at
307 m/z 641.43 and m/z 643.43 showing that the silver ion peaks are clearly overlapped with Ag-
308 unrelated signals.

309 Initially, given the low S1 and S2 scores, all peaks in the Agg cluster were misclassified as not
310 Ag;-related. Using the overlapping detection algorithm, the peaks at m/z 645.43, m/z 647.43,
311  m/z 649.43 and m/z 651.43 were correctly tagged as belonging to Age. Peaks at m/z 641.43,
312  m/z643.43 and m/z 653.43 were tagged as related to Agg, but with overlapping.

313  Supplementary Figure S9 explores the effects of overlapping peak detection on overall
314 performance. Two main differences can be appreciated. Firstly, there is an overall increase in
315 the S; - S, score obtained by the “positive class” which leads to a bigger gap between the
316  “positive class” and the “negative class” making the thresholding classification more robust. This
317 is due to the identification of some overlapping peaks in the Ag, clusters. Additionally, there is
318  aclear improvement in the scores obtained by the Agg cluster. The Ag¢ cluster suffers from
319  overlapping in most of the datasets and is, therefore, the cluster most benefitted from the
320  overlapping detection algorithm. It is also important to note that the overlapping peak detection
321  algorithm does not add any false positives as the S; - S, remains unchanged for the “negative
322  class”. This proves that overlapping detection leads to less misclassification of Ag;: -related
323 peaks.

324 4.4. Matrix-related peak annotation improves the post-processing

325 In order to explore the influence of the annotation and removal of matrix-related peaks in the
326  post-processing workflows, we carried out a multivariate statistical exploratory analysis. The
327 widely used linear algorithm Principal Component Analysis (PCA) [30] was performed on all 14
328  datasets before and after removal of the Ag;' peaks. We then compared the quality of the
329  spatial representation of the first three principal components. Given the lack of a standard
330 quantitative metric to compare the quality of two images in MSI, we followed the trend
331 established by recent work [11,31,32] and performed a qualitative visual comparison.

332 Figure 3 shows the results of this exploratory analysis on Dataset 2 and Dataset 11. In the
333 pancreatic tissue represented in Figure 3A (Dataset 2), PC1 did not change significantly after
334  matrix removal, while PC2 and PC3 showed a wider variety of morphologies on the tissue after
335 the Ag; interference was removed. In the brain tissue shown in Figure 3B (Dataset 11) the
336  contrast enhancement is even clearer in the three PCs. Before the Ag;l peaks were removed,
337 PC1 and PC3 did not capture any substantial morphology but afterwards, they did and PC2,
338 which already showed morphological information, did so with increased contrast. To convey the
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339  three principal components in a single picture we encoded each of them as a colour in the Red
340 Green Blue colour model (RGB). The RGB picture became richer and more informative after the
341  Ag; peaks were removed. Similar results were obtained in the remaining 12 datasets and their
342  corresponding images can be accessed in Supplementary Figures $10-S13. The main conclusion
343  that can be drawn from the visual analysis of these results is that the removal of matrix-related
344  peaks leads to a generalized enhancement in the contrast of morphological structures obtained
345  with the first principal components. This is due to the fact that the variance contribution of the
346 matrix-related signals is not fed to the PCA and therefore the resulting principal components are
347 better focused on the morphology of the tissue. In agreement with previous work on the effects
348 of MSI data reduction [33], these results demonstrate that the removal of matrix-related signals
349 improves post-processing, especially when using linear algorithms such as the widely used PCA.

350 5. Discussion & Conclusion

351  The goal of this study was to develop, optimize and validate a new algorithm to annotate signals
352 attributed to the LDI promoting material in MSI. The developed algorithm is packaged and
353 released as rMSlIcleanup, an open-source R package freely available for the scientific community
354  and fully integrated with rMSlproc [20], a stand-alone package for the visualization, pre-
355 processing and analysis of MSI datasets.

356  In comparison to the top-performing alternatives for matrix-related peak annotation which are
357 based on machine and deep learning [11], rMSlcleanup has the main advantage of using two
358 intuitive scores (accounting for the isotopic ratios of clusters and the spatial distribution of their
359 ions) and providing a visual justification of each annotation. This is a key contribution as it helps
360 overcome the black-box problem, increases the user’s confidence in the annotation and can help
361 researchers optimize experimental workflows (for instance, choosing LDI promoters that
362 minimize interferences in the m/z range of interest). Another merit of our work is that, to our
363 knowledge, it is the first matrix signal annotation algorithm to explicitly detect and deal with
364  overlapping MS signals, which successfully prevents overlapped peaks from being misclassified.
365  Given that we follow a targeted analytical approach, our classification is focused only on matrix-
366  related signals while the algorithms presented by Ovchinnikova et al. [11] have a broader scope
367  and also classify as off-sample other exogenous compounds. In the era of big data, these two
368  apparently opposite approaches (namely our analytical approach based on chemical similarity
369  scores and their untargeted approach based on machine learning) must not only coexist but also
370 complement each other following the trend already initiated in other fields [34]. This reality
371 urges the MSI community to develop annotation algorithms capable of, not only exploiting the
372 knowledge in the increasingly large amounts of MSI datasets available, but also incorporating
373 metrics that take into account the chemical context of the sample to aid transparent
374  justification.

375  AglLDI MSI was chosen to validate the algorithm, due to the well-understood ionization of silver.
376 A “validation list” was compiled from the literature, which included silver clusters that should
377 be present in all samples and silver adducts or compounds that should not be present in any of
378 them. Given the heterogeneity of the samples used in this study, the described validation list
379 was adapted to each dataset. For each dataset, those clusters in the validation list for which the
380 experimental data contained none of their theoretical masses were excluded. These
381 adjustments in the validation list prevented an overestimation of the performance of the
382  algorithm attributed to a high number of correctly classified “negative class” clusters (i.e. true
383 negatives) located in mass ranges with no signal. We propose this validation strategy as a novel
384 alternative to more common validation approaches such as chemical standards [6] or expert
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385 annotation [11,32]. This study adds to previous work [6,14,17,29,35] and further demonstrates
386  the potentiality of AgLDI MS imaging, a thriving technology known for its reduced background
387  signals in spatial metabolomics that is strongly complemented by our annotation algorithm as it
388  further removes the influence of the matrix.

389 In agreement with previous work on the effects of MSI data reduction [33], we have
390 demonstrated that the annotation and removal of signals related to the LDI promoting material
391 used can further enhance post-processing, due to the elimination of variables attributed to
392 exogenous compounds that do not reflect the morphology nor chemical composition of the
393  sample. These results highlight the need to include software annotation tools such as
394  rMSlicleanup in MSI workflows before exploring the datasets with classical data analysis
395 techniques used in metabolomics. Here we would like to emphasize the need for a standardized
396  quantitative metric to assess the quality of MSI images and we acknowledge the relevance of
397  standardization initiatives such as the MALDISTAR project (www.maldistar.org).

398 We envision two main applications for rMSlicleanup. On the one hand, it can be used in a purely
399 exploratory fashion to better understand ionization and adduct cluster formation in new
400  matrices, tissues and applications. In this case, the user is advised to add a long list of potential
401  adducts or neutral losses to assess their formation. The validation approach followed in this
402 paper is a clear example of this exploratory application of rMSIcleanup. A second application is
403  the automated peak annotation of well-known matrices and tissues. In this case, only the
404 clusters that are known to be formed need to be given to the software. This curated selection
405 increases the data-processing speed. The set of matrix-related annotated peaks can then be
406 eliminated from the dataset prior to performing post-processing workflows such as multivariate
407  statistical analysis.

408 Finally, the promising results obtained in the annotation of Ag; -related peaks in AgLDI MSI open
409  the door to the extension of this methodology to more widely used matrices such as 2,5-
410  Dihydroxybenzoic acid (DHB), 1,5-Diaminonaphthalene (DAN), and 9-Aminoacridine (9AA)
411  among others. These organic matrices pose greater challenges. Firstly, they lead to increased
412 matrix background due to their greater fragmentation and adduct formation [36—-38] and the
413 higher quantities in which they are added [37]. Moreover, they present the problem of “hot
414  spot” formation given their less homogeneous application process [39]. These issues highlight
415 not only the benefits of AgLDI MSI but also that matrix-related peak annotation can benefit data
416  post-processing even further in applications using organic matrices.
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Tables and Figures

No. Species Tissue type Ag deposition system and | Lateral m/z range Mass spectrometer Acq. Mode Ref.
estimated layer thickness | Res.
1 Mouse Pancreas ATC Orion 8-HV Sputtering | 30 um 70-1200 Bruker ultrafleXtreme™ MALDI-TOF/TOF Positive / Profile -
system, 5 nm
2 Mouse Pancreas ATC Orion 8-HV Sputtering | 30 um 70-1200 Bruker ultrafleXtreme™ MALDI-TOF/TOF Positive / Profile -
system, 5 nm
3 Mouse Kidney ATC Orion 8-HV Sputtering | 100 um 70-1200 Bruker ultrafleXtreme™ MALDI-TOF/TOF Positive / Profile -
system, 5 nm
4 Mouse Brain ATC Orion 8-HV Sputtering | 80 um 70-1200 Bruker ultrafleXtreme™ MALDI-TOF/TOF Positive / Profile -
system, 5 nm
5 Mouse Brain ATC Orion 8-HV Sputtering | 80 um 70-1200 Bruker ultrafleXtreme™ MALDI-TOF/TOF Positive / Profile -
system, 5 nm
6 Mouse Brain ATC Orion 8-HV Sputtering | 80 um 70-1200 Bruker ultrafleXtreme™ MALDI-TOF/TOF Positive / Profile -
system, 5 nm
7 Mouse Brain ATC Orion 8-HV Sputtering | 80 um 80-1000 Bruker ultrafleXtreme™ MALDI-TOF/TOF Positive / Profile -
system, 5 nm
8 Mouse Brain ATC Orion 8-HV Sputtering | 80 um 80-1000 Bruker ultrafleXtreme™ MALDI-TOF/TOF Positive / Profile -
system, 5 nm
9 Mouse Brain ATC Orion 8-HV Sputtering | 80 um 80-1000 Bruker ultrafleXtreme™ MALDI-TOF/TOF Positive / Profile -
system, 5 nm
10 Mouse Brain ATC Orion 8-HV Sputtering | 80 um 80-1000 Bruker ultrafleXtreme™ MALDI-TOF/TOF Positive / Profile -
system, 5 nm
11 Mouse Brain Cressington Sputter | 75 um 100-1100 Bruker ultrafleXtreme™ MALDI-TOF/TOF Positive / Profile [18]
Coater, 23 £2 nm
12 Homo sapiens | Fingermark Cressington Sputter | 75 um 100-1100 Bruker ultrafleXtreme™ MALDI-TOF/TOF Positive / Profile [14]
sapiens Coater, 142 nm
13 B73 inbred | Root Cressington 108Auto, 5s 10 um 50-970 Thermo Finnigan™ MALDI-LTQ-Orbitrap | Positive / Centroid [6]
corn Discovery
14 B73 inbred | Root Cressington 108Auto, 5s 10 um 50-900 Thermo Finnigan™ MALDI-LTQ-Orbitrap | Negative / Centroid [6]
corn Discovery

Table 1. List of the 14 AgLDI MSI datasets used for validation. Sample type, sample preparation and LDI-MSI acquisition parameters. Datasets from 1-10 were acquired in-house. Datasets 11-14
were provided by external laboratories.
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Monoisotopic

PubChem

Chemical formula Validation list Type mass (n=1) D Ref
[Agl} Positive class | Silver cluster 106.9051 104755 [27]
[AgF], 125.903 62656
[AgCl], 141.8734 24561
[AgBr], Neutral salt 185.8229 66199
[AgI], 233.809 24563
[AgH], 107.9124 139654
[AgH,], 108.9202 92028350 [28]
[AgHe], _ 110.9072 71348557
[AgNOs], ;ym”g;it: y 168.8924 24470
[AgTh,], 570.9807 71351869
[AgF,], Negative class 144.9014 82221
[AgBF,], 192.9111 159722
[Cy,Hse + Agli Plants, wax, 487.3428 -
[CooHgo + Agly insects’ 515.3741 -
[C31Hes + Agln pheromones 543.4054 )
[Cr6Hs,0 + Agl}: 489.322 - [29]
[CogHs50 + Agli Plant wax 517.3533 -
[C30He,0 + Agl 545.3846 -
[C,eHs,0, + Agl}: Wax 503.3013 -
[C30Heo0, + Agl} 559.3639 -

Table 2.” Validation list” used for validation. The “positive class” consists of silver clusters. The “negative class”
consists of neutral silver salts, synthetic silver compounds and silver adducts that are not expected to be found in
animal samples. The index n denotes the number of atoms or molecules inside the cluster. The minimum and
maximum value of n depend on the monoisotopic mass of the atom or molecule and the mass range of the dataset.
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Fig. 1. Similarity scores performance (A) Spectral similarity S1 vs. Intra-cluster morphological similarity S2 scatter plot.
Each point represents a potential cluster classified by the algorithm. All clusters shown in Table 2 are evaluated for all
14 datasets presented in Table 1. Blue points represent the “positive class” (should be present in the sample) while the
red points correspond to the negative class (should not be present in the sample). Most “positive class” points are
located in the top right corner well separated from the negative class points. This indicates proper classification power.
(B) Precision and recall (PR) curve computed according to Davis et al. 2006 [40]. (C) Similarity score $S1-S2 vs. Cluster
number. Clusters are arranged in decreasing order of mean similarity score. A clear gap between an S of 0.5 and 0.7
separates the “positive class” from the negative class. Refer to Supplementary Table S1 for a mapping of cluster
numbers to cluster chemical formula.
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456 Fig. 2. Overlapping detection algorithm performance when searching for the Agg cluster in Dataset 1. (A) Comparison
457 between the mean experimental spectra and the theoretical Age cluster at the Age cluster masses within a tolerance
458 of 4 scans. Red and blue represent theoretical and experimental profiles, respectively. As can be seen, while the peaks
459 in the centre of the cluster perfectly match the theoretical ratios, the peaks on the edges differ considerably. (B) Spatial
460 distributions of the experimental cluster peaks. After performing the overlapping detection only the four ion images
461 in the centre in green are classified as Ag-related. The remaining ion images in red are classified as Ag™* suffering

462 from overlapping. The morphologies of the Ag™* overlapped ions (red) differ from the ones without overlapping
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463 (green) due to ion overlapping. (C) Correlation matrix between the experimental ion images of the Age cluster. The
464 ion image number corresponds to the position of the ion in the isotopic pattern in ascending order of m/z. The first
465 two images are clearly not correlated with the remaining images of the cluster. The last image also shows a
466 considerably lower correlation. (D) Zoom-in of experimental mean spectra. Peaks m/z 641.43 and m/z 643.43 show

467 clear overlapping.

PC1 PC2 PC3 PC1+PC2 +PC3

before

after

before

after

468

469 Fig. 3 Exploratory analysis with PCA before and after removing matrix-related peaks. Red, green and blue are used to
470 represent the spatial distribution of PC1, PC2 and PC3, respectively. The last column uses the Red Green Blue colour
471 model (RGB) to represent the first three principal components in a single image. The annotation and removal of the
472 matrix-related peaks lead to a generalized improvement in the contrast of morphological structures in all principal
473 components. (A) Pancreas tissue from Dataset 2. (B) Brain tissue from Dataset 11 [18].

474
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