

1 rMSIcleanup: An open-source tool for matrix-related peak annotation in 2 mass spectrometry imaging and its application to silver-assisted laser 3 desorption/ionization

4 **Gerard Baquer,¹ LLuc Sementé,¹ María García-Altares,^{1,2*} Young Jin Lee,⁴ Pierre Chaurand,⁵**
5 **Xavier Correig,^{1,2,3} Pere Ràfols^{1,2,3}**

6 ¹Department of Electronic Engineering, Rovira i Virgili University, Tarragona, Spain

7 ²Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders
8 (CIBERDEM), 28029, Madrid, Spain

9 ³Institut d'Investigació Sanitària Pere Virgili, Tarragona, Spain

10 ⁴ Department of Chemistry, Iowa State University, Ames, IA 50011, USA

11 ⁵ Department of Chemistry, Université de Montréal, Montreal, Quebec, H3C 3J7, Canada

12 *Correspondance to: María García-Altares; e-mail: maria.garcia-altares@urv.cat

14 Abstract

15 Mass spectrometry imaging (MSI) has become a mature, widespread analytical technique to
16 perform non-targeted spatial metabolomics. However, the compounds used to promote
17 desorption and ionization of the analyte during acquisition cause spectral interferences in the
18 low mass range that hinder downstream data processing in metabolomics applications. Thus, it
19 is advisable to annotate and remove matrix-related peaks to reduce the number of redundant
20 and non-biologically-relevant variables in the dataset. We have developed rMSIcleanup, an
21 open-source R package to annotate and remove matrix-related signals based on its chemical
22 formula and the spatial distribution of its ions. To validate the annotation method, rMSIcleanup
23 was challenged with several images acquired using silver-assisted laser desorption ionization
24 MSI (AgLDI MSI). The algorithm was able to correctly classify *m/z* signals related to silver clusters.
25 Visual exploration of the data using Principal Component Analysis (PCA) demonstrated that
26 annotation and removal of matrix-related signals improved spectral data post-processing. The
27 results highlight the need for including matrix-related peak annotation tools such as
28 rMSIcleanup in MSI workflows.

29 **Keywords:** mass spectrometry imaging; spatial metabolomics; matrix annotation; overlapping-
30 signal detection; silver-assisted laser/desorption ionization; spectral processing

31 Resources availability

32 The R package presented in this publication is freely available under the terms of the GNU
33 General Public License v3.0 at <https://github.com/gbaquer/rMSIcleanup>. The datasets used in
34 the experiments can be accessed upon request to the corresponding author.

35 1. Introduction

36 Mass spectrometry imaging (MSI) is a label-free technology that allows to obtain molecular and
37 spatial information from intact tissue sections [1]. MSI has been gradually adopted for spatial-
38 resolved metabolomics and it has been regarded as a potential tool for understanding the
39 mechanisms underlying complex diseases such as cancer or diabetes [2]. However, the
40 conventional organic matrices used in Matrix-Assisted Laser Desorption Ionization (MALDI)
41 produce spectral signals that interfere in the low *m/z* range. This is an issue particularly in
42 metabolomics which analyses low molecular weight compounds, so mass spectrometers are set
43 to acquire within the *m/z* range where MALDI matrices exhibit most MS signals. This seriously

44 hampers downstream metabolomics data processing [3,4], as the matrix introduces noise,
45 redundant variables, and variables with no biological meaning into the complex MSI datasets.

46 Several alternatives to the common organic matrices have been proposed to deal with
47 exogenous contamination caused by matrix ion signals. Nanomaterials or metal layer deposition
48 methods, for instance, dramatically reduce the number of signals related to the LDI promoting
49 material in the low *m/z* range. Some examples are graphene oxide, silicon or metals such as
50 gold, platinum or silver [5–8]. Nevertheless, even when these alternatives are used and the
51 number of peaks related to the LDI promoting material is reduced, there is still a need to
52 annotate them in order to reduce spectral complexity and distinguish exogenous from
53 endogenous compounds, especially in untargeted applications.

54 To tackle the issue of annotating MS signals related to the LDI-promoting material several
55 software-based solutions have been proposed. A simple approach consists of acquiring a
56 reference area outside the sample during the MSI experiment. Under the assumption that only
57 matrix-related peaks will be recorded, the peaks found in the outside area are then subtracted
58 from the tissue spectrum. Given its simplicity, some variation of this procedure has been
59 adopted by many researchers in their workflows. Expanding on this idea, Fonville et al. [9]
60 presented a method that relies on the hypothesis that matrix-related peaks will correlate
61 positively to a set of reference peaks outside the tissue region while endogenous peaks will
62 correlate negatively. However, this approach has three main limitations. Firstly, due to ion
63 suppression [10] and the formation of matrix adducts with endogenous compounds, the matrix-
64 related peaks outside and inside the tissue region might differ. Additionally, endogenous
65 molecules that are delocalized during the matrix application process can be misclassified as
66 matrix-related. Finally, the method cannot distinguish a given matrix-related MS peak from an
67 isobaric or overlapping endogenous MS peak. Thus, simplified approaches to annotate matrix-
68 related signals are not suitable for untargeted applications such as spatial metabolomics. Recent
69 work by Ovchinnikova et al. [11] takes a more comprehensive approach in defining three
70 automated algorithms for off-sample ion classification. Their methods have proved to perform
71 well when trained and validated against a “gold standard set” of ion images manually annotated
72 by experts. However, their focus is not specifically on matrix-related peaks, but on the
73 annotation of signals that exhibit a spatial distribution with high concentrations outside of the
74 tissue region. For this reason, these methods focus on classifying each ion image separately as
75 “on-sample” or “off-sample” and do not exploit relevant information such as the identity of the
76 ion, adduct type, matrix type, etc. Additionally, since they are based in machine and deep
77 learning methods they inherently suffer from the black box problem given that annotation
78 results cannot be traced back and easily justified.

79 To solve these limitations we propose a new algorithm that relies not only on the ion images but
80 also on the chemical information of the LDI promoting material used. The algorithm also
81 incorporates an overlapping peak detection feature to prevent misclassification of overlapped
82 or isobaric ions. The presented algorithm is implemented in an open-source R package freely
83 available to facilitate its use. Additionally, the package generates a visual report to transparently
84 justify each annotation.

85 In order to validate and optimize the proposed method, we opted for a well-understood LDI
86 promoting material such as silver. The use of silver nanolayers for MSI (AgLDI MSI) has been
87 steadily growing in recent years [6,12–17]. The characteristic isotopic pattern of silver
88 (^{107}Ag and ^{109}Ag , 51.84% and 48.16% abundance, respectively), as well as its well-known
89 ionization and adduct formation allow to define a list of possible and not-possible silver-related

90 peaks of a typical AgLDI MSI experiment. This set of possible and not-possible peaks is used as a
91 validation list to assess the performance of the classification algorithm. A total of 14 MSI
92 datasets acquired with an Ag-sputtered nanolayer from three different laboratories, were used
93 for validation.

94 **2. Materials & Methods**

95 Table 1 summarizes the main processing parameters for each of the 14 datasets used in this
96 study. Datasets 1-10 were acquired in our lab and the materials, sample preparation and MSI
97 acquisition parameters are described here. In order to overcome lab-specific bias in our study,
98 four additional datasets were provided by collaborating laboratories. For further details about
99 the materials, sample preparation and MSI acquisition of these datasets, refer to the original
100 publications of Dataset 11 [18], Dataset 12 [14] and Datasets 13 and 14 [6].

101 **2.1. Materials**

102 For the samples acquired by our group, indium tin oxide (ITO)-coated glass slides were obtained
103 from Bruker Daltonics (Bremen, Germany). The silver-target (purity grade > 99.99%) used for
104 sputtering was acquired from Kurt J. Lesker Company (Hastings, England).

105 **2.2. Sample preparation**

106 All the samples acquired by our group were obtained from mice and provided by the animal
107 facility at the Faculty of Medicine and Health Sciences of the University Rovira i Virgili. All tissues
108 were snap-frozen at -80°C after collection and kept at this temperature during shipping and
109 storing until MSI acquisition.

110 The tissues were sectioned with a Leica CM-1950 cryostat (Leica Biosystems Nussloch GmbH)
111 located at the Centre for Omics Sciences (COS) of the University Rovira i Virgili into 10
112 μm sections. Tissue sections were mounted on ITO coated slides by directly placing the glass
113 slide at ambient temperature onto the section.

114 The sputtering system ATC Orion 8-HV (AJA International, N. Scituate, MA, USA) was used to
115 deposit a silver nanolayer onto each tissue section. An argon atmosphere with a pressure of 30
116 mTorr was used to create the plasma in the gun. The working distance of the plate was set to 35
117 mm. The sputtering conditions were ambient temperature using DC mode at 100W for 10s. With
118 these parameters, an Ag layer thickness of roughly 5nm was obtained. The deposition times
119 were short to prevent the substrate temperature from increasing excessively and, consequently,
120 degrading metabolites.

121 **2.3. LDI-MS acquisition**

122 A MALDI TOF/TOF ultraflexXtreme instrument with SmartBeam II Nd:YAG/355 nm laser from
123 Bruker Daltonics available at COS was used for MSI acquisition. Acquisitions were carried out by
124 operating the laser at 2 kHz and collecting a total of 500 shots per pixel.

125 The TOF spectrometer was operated in positive ion, reflectron mode, in *m/z* ranges according
126 to Table 1. The spectrometer was calibrated prior to MSI data acquisition using $[\text{Ag}]_n^+$ cluster
127 peaks as internal reference masses.

128 **2.4. MSI data processing**

129 The raw spectral data of each MSI dataset was exported to the imZML data format [19] in profile
130 mode. The software rMSIproc [20] was used to process the data and generate a peak matrix in

131 centroid mode. The default processing parameters were used. The Signal-to-Noise Ratio (SNR)
132 threshold was set to 5 and the Savitzky-Golay smoothing had a kernel size of 7. Peaks appearing
133 in less than 5% of the pixels were filtered out. Peaks within a window of 6 data-points or scans
134 were binned together as the same mass peak. Mass spectra were re-calibrated using the Ag
135 reference peaks as reference masses [21].

136 Datasets 13 and 14 were acquired in centroid mode with an Orbitrap mass spectrometer. These
137 datasets were directly submitted to the binning process of rMSIproc [21] to conform to the peak
138 matrix format.

139 No data normalization was performed. Data were visualized and explored using rMSI [22].

140 **3. Algorithm description**

141 3.1. Input and output format

142 The matrix-related annotation algorithm takes the peak matrix in centroid mode and the
143 processed spectral data in profile mode as input. The user must also provide the chemical
144 formulae of the matrix applied and a list of possible adducts and neutral losses to consider.

145 The algorithm produces a vector containing the similarity scores that indicate the likelihood of
146 each mass in the input image being a matrix-related ion. The package also provides an
147 informative visual report for the user to understand the justification behind the classification.
148 Supplementary Figures S1-S4 show examples of the visual report.

149 3.2. In-silico cluster & adduct calculation

150 The theoretical mass and relative isotopic pattern intensities of all possible matrix-related
151 clusters are calculated using the open-source package enviPat [23], a fast and memory-efficient
152 algorithm to compute theoretical isotope patterns.

153 For each theoretical cluster t_i its experimental counterpart e_i is obtained from the mean spectra
154 of the dataset. The experimental masses closest to the theoretical ones within a given tolerance
155 specified by the user are used. The theoretical clusters will then be matched against their
156 experimental counterparts and their presence in the experimental dataset assessed using two
157 similarity metrics.

158 3.3. Similarity metrics

159 The similarity between each theoretical matrix-related cluster and experimental clusters is
160 assessed using two similarity scores according to equation 1.

$$161 S = S_1 \cdot S_2 \quad (1)$$

162 where S is the total similarity score, S_1 is the cluster spectral similarity and S_2 is the intra-cluster
163 morphological similarity. Both similarity scores range from 0 to 1.

164 The cluster spectral similarity score $S_{1,i}$ for theoretical cluster t_i determines the degree of
165 similarity between the scaled intensity vectors of intensities I_{t_i} and I_{e_i} and it is computed
166 according to equation 2.

$$167 S_{1,i} = e^{-dist\left(\frac{I_{t_i}}{\max(I_{t_i})}, \frac{I_{e_i}}{\max(I_{e_i})}\right)} \quad (2)$$

168 where $dist(a, b)$ is the distance function chosen by the user (Euclidean distance by default), I_{t_i}
169 is the vector of intensities of the theoretical cluster t_i and I_{e_i} is the vector of intensities of
170 experimental cluster e_i . Experimental cluster e_i is determined by accessing the element in the
171 peak matrix with the mass closest to that corresponding to t_i within a given tolerance. In plain
172 terms, S_1 is a decaying exponential function of the distance between the intensity scaled
173 intensity vectors I_{t_i} and I_{e_i} .

174 The intra-cluster morphological similarity $S_{2,i}$ returns the degree of similarity between the
175 spatial distributions of the ions conforming the experimental cluster e_i . Ions with a high spatial
176 correlation are more likely to belong to the same cluster. This metric is computed using equation
177 3.

$$178 \quad S_{2,i} = \frac{I'_{t_i} \cdot I_{t_i} \cdot \text{correl}(\text{Images}_{e_i})}{(\sum I_{t_i})^2} \quad (3)$$

179 where I_{t_i} is the intensity vector of the theoretical cluster t_i , $\text{correl}(A)$ is the correlation function
180 specified by the user (Pearson correlation by default) and Images_{e_i} is the set of images
181 corresponding to each ion in the experimental cluster e_i . In plain terms, S_2 is the weighted mean
182 across both directions of the correlation matrix between each ion image in e_i .

183 3.4. Overlapping peak detection

184 Insufficient resolving power leads to overlapped MS signals, which can be a severe problem in
185 matrix-related peak annotation as they can lead to a greater number of misclassified peaks. This
186 is a particularly limiting issue in lower resolution spectrometers such as some TOFs in contrast
187 to higher resolution analysers such as Orbitrap or FTICR [24]. An additional problem with the
188 same effect is the intrinsic inability of mass spectrometry to distinguish between isobaric
189 species. In order to cope with these issues, we propose an overlapping detection algorithm
190 capable of determining if a given MS signal corresponds to more than one overlapped ion peaks.

191 The overlapping detection algorithm is only executed in those clusters that report S_1 and S_2
192 scores under a threshold specified by the user. Before concluding that the cluster is not present,
193 the algorithm determines whether the low similarity metrics could be attributed to the presence
194 of overlapped signals.

195 The algorithm is based on the operating principle of bisecting k-means [25]. All the ions in an
196 experimental cluster e_i are split into two subgroups ($e_{i:1}$ and $e_{i:2}$) based on the correlation of
197 their spatial distributions using k-means. For each subgroup of ions the similarity metrics S_1 and
198 S_2 are recomputed. If the S_1 and S_2 scores of a given subgroup surpass the specified threshold,
199 all ions in the subgroup are tagged as matrix-related. The remaining ions in e_i are tagged as
200 matrix-related but suffering from overlapping, and the overlapping detection algorithm
201 terminates. If instead, none of the subgroups obtains an S_1 and S_2 above the threshold, the
202 process of splitting into two subgroups by k-means and recomputing the similarity scores is
203 repeated for both $e_{i:1}$ and $e_{i:2}$. This bisection of the ions in e_i is repeated iteratively until a
204 subgroup obtains S_1 and S_2 scores above the threshold. To prevent overfitting, the iterative
205 process will also stop when the number of peaks contained by the biggest subgroup becomes
206 smaller than half the amount of peaks in e_i . In such event, it is concluded that there are no
207 overlapped peaks and all ions in the experimental cluster e_i are tagged as not-matrix-related. To
208 sum, overlapped MS signals will be detected and distinguished from the rest of the ions in the
209 cluster based on the dissimilarity of their spatial distributions.

210 **4. Results**

211 4.1. Algorithm validation with AgLDI MSI

212 In order to validate and optimize the algorithm, we opted to use sample tissues covered by silver
213 nanoparticles, a well-defined and understood LDI promoting material. A total of 14 datasets,
214 from 3 different laboratories, were used. The datasets included several animal tissues, plant
215 tissues and human fingermarks.

216 The algorithm was challenged with the task of classifying a list of silver-containing compounds
217 and adducts for each dataset. The list includes a “positive class” formed by clusters that should
218 be present in all samples used in this study and a “negative class” containing clusters that should
219 not be present in any of them. This list is referred to as “validation list” and allowed us to assess
220 the performance of the algorithm. An algorithm with a perfect performance should classify all
221 clusters in the “positive class” as matrix-related signals and all clusters in the negative class as
222 not present and thus not-matrix related. This is a common approach in bioinformatics for
223 validating and assessing the performance of a classifier algorithm [26]. Table 2 shows the
224 complete validation list.

225 Silver clusters containing up to 60 atoms have been reported to form during silver sputtering
226 [27]. The “positive class” expected to be found in all datasets is therefore formed by all silver
227 clusters within the acquired mass range. For most of the datasets, this includes clusters from
228 Ag_1^+ to Ag_{10}^+ .

229 The “negative class” consists of silver compounds or adducts that should not be present in any
230 of the samples used in this study. Firstly, this list includes various silver neutral salts which
231 cannot be measured using LDI MSI, and some synthetic compounds that are not expected to be
232 present in animal or plant samples [28]. It also includes compounds found in aerial parts of
233 plants, wax and insects (not found in mammal tissues nor in corn root) that have been reported
234 to form adducts with silver in AgLDI MSI applications [29]. For each of these molecules, we also
235 included all clusters within the acquired mass range. These particular molecules and their
236 clusters were selected in an attempt to have a “negative class” covering the full mass range.

237 4.2. Performance of similarity scores

238 Using the validation list described in section 4.1, we assessed the performance of the similarity
239 scores as a classifier to annotate Ag_n^+ -related peaks in AgLDI MSI datasets.

240 Figure 1 shows the similarity scores obtained for each cluster in Table 2 when searched in all 14
241 datasets from Table 1. The blue points represent the “positive class” (clusters that should be
242 present) while the red points represent the negative class (clusters that should not be present).

243 Figure 1A represents the spectral similarity score (S_1) against the intra-cluster similarity score
244 (S_2) of each of these clusters. The “positive class” is clearly separated on the top right corner
245 (high S_1 and high S_2).

246 To evaluate the classifying performance of the two similarity metrics we use the Precision vs.
247 Recall (PR) curve [26]. The precision is defined as the ratio between the number of clusters in
248 the “positive class” classified as matrix-related (i.e. true positives) and the total number of
249 clusters classified as matrix-related (i.e. true positives + false positives). The recall, on the other
250 hand, is the ratio between the number of clusters in the “positive class” classified as matrix-

251 related (i.e. true positives) and the total number of clusters in the “positive class” (i.e. true
252 positives + false negatives). Figure 1B shows the PR curves for each of the similarity metrics
253 proposed. The areas under the curve (AUC) of 0.97 and 0.91, respectively, show that the spectral
254 similarity score S_1 is the best classifier followed by the intra-cluster morphology similarity score
255 S_2 . The product of $S_1 \cdot S_2$ had the same classifying skill as S_1 with an AUC of 0.97. These results
256 prove that Ag_n^+ -related peaks can be well classified by these two metrics.

257 S_1 performs much better than S_2 as a classifier, and the product of $S_1 \cdot S_2$ matches but does
258 not improve the performance of S_1 alone. Nevertheless, we still decided to use the product of
259 $S_1 \cdot S_2$ as a classifier in rMSIcleanup instead of using S_1 alone due to three main reasons. Firstly,
260 the overlapping detection algorithm strongly relies on the morphological similarity of ions and
261 thus depends on S_2 . Moreover, even though we did not find a single instance of a cluster with
262 a high S_1 score and a low S_2 score (matching isotopic patterns but unmatching spatial
263 distributions) in any of the samples, we still consider that S_2 should be present to allow for
264 correct classification should this occur. Finally, S_2 can be a strong asset in applications other
265 than AgLDI MSI where, due to less distinctive isotopic ratios, the performance of S_1 as a classifier
266 is diminished.

267 Figure 1C shows the similarity score $S_1 \cdot S_2$ obtained by each cluster in all datasets. Clusters are
268 arranged in decreasing order of mean similarity score. Supplementary Table S1 maps the cluster
269 numbers to cluster chemical formula. A clear gap between an S of 0.5 and 0.7 separates the
270 “positive class” from the negative one.

271 Only three false positives (i.e. clusters that should not be present but have a high S value) were
272 reported for adduct $[C_{28}H_{58}O + Ag]^+$. An example is shown for Dataset 4 in Supplementary
273 Figure S5. Identification by MS/MS is required to assess if the compound is indeed present in
274 the sample. Nevertheless, the mass error between experimental and theoretical isotopic
275 patterns for this compound was 154 ppm, an error much higher than the expected for this
276 dataset (acquired with a TOF MS analyzer). Therefore, we inferred that the experimental pattern
277 detected is not related to adduct $[C_{28}H_{58}O + Ag]^+$ and this is, in fact, a false positive. In order
278 to reduce the number of false positives, the mass tolerance of the algorithm can be decreased,
279 however, a too strict mass tolerance increases the number of false negatives.

280 A total of six false negatives (i.e. clusters that should be present but have a low S value) were
281 reported for some datasets for clusters Ag_3 , Ag_6 and Ag_{10} . False negatives correspond to
282 clusters for which the majority of peaks in their isotopic pattern were under the SNR threshold,
283 and thus were excluded during pre-processing. In these cases, the few included peaks were not
284 sufficient to reliably annotate the cluster. Supplementary Figure S6 shows the only exception,
285 the Ag_6 cluster in Dataset 12, whose misclassification is not due to intensity problems. In this
286 case, the fingerprint analysed showed highly homogeneous ion images, which impedes the
287 proper operation of the overlapping algorithm and leads to misclassification. Representative
288 examples of correct annotations are shown in Supplementary Figures S7-S8.

289 As an additional validation, the results were matched against the published annotations of the
290 datasets provided by external laboratories. Dataset 12 contains 60 identifications by MS/MS
291 [14]. Dataset 13 contains 4 metabolites identified by MS/MS and a total of 10 tentatively
292 identified formulae based on exact mass [6]. Dataset 14 contains 10 metabolites identified by
293 MS/MS and 6 tentatively identified formulae based on exact mass [6]. None of these
294 endogenous signals was misclassified as Ag_n^+ -related by our algorithm.

295 4.3. Overlapping peak detection performance

296 Figure 2 shows a case example where the overlapping peak detection algorithm successfully
297 identified overlapping ions when searching for the Ag_6 cluster in Dataset 1. Figure 2A depicts
298 the experimental mean profile spectrum in the mass range of interest along with the calculated
299 profile of the Ag_6 cluster. While most peaks follow the calculated isotopic distribution,
300 experimental peaks at m/z 641.43, m/z 643.43 and m/z 653.43 are considerably more intense
301 than in the predicted pattern. This generates a mismatch between the experimental and
302 calculated peaks that leads to a low $S1$ score. Figure 2B shows the spatial distributions of each
303 of the ions in the Ag_6 cluster. The correlation map in Figure 2D clearly indicates that peaks at
304 m/z 641.43 and m/z 643.43 have a spatial distribution that is unlike that of the rest of the ions
305 in the cluster. The peak at m/z 653.43 also shows a considerably different spatial correlation to
306 the rest. These low correlations lead to a lower $S2$ score. Figure 2C is a zoom-in of the peaks at
307 m/z 641.43 and m/z 643.43 showing that the silver ion peaks are clearly overlapped with Ag-
308 unrelated signals.

309 Initially, given the low $S1$ and $S2$ scores, all peaks in the Ag_6 cluster were misclassified as not
310 Ag_n^+ -related. Using the overlapping detection algorithm, the peaks at m/z 645.43, m/z 647.43,
311 m/z 649.43 and m/z 651.43 were correctly tagged as belonging to Ag_6 . Peaks at m/z 641.43,
312 m/z 643.43 and m/z 653.43 were tagged as related to Ag_6 but with overlapping.

313 Supplementary Figure S9 explores the effects of overlapping peak detection on overall
314 performance. Two main differences can be appreciated. Firstly, there is an overall increase in
315 the $S_1 \cdot S_2$ score obtained by the “positive class” which leads to a bigger gap between the
316 “positive class” and the “negative class” making the thresholding classification more robust. This
317 is due to the identification of some overlapping peaks in the Ag_n^+ clusters. Additionally, there is
318 a clear improvement in the scores obtained by the Ag_6 cluster. The Ag_6 cluster suffers from
319 overlapping in most of the datasets and is, therefore, the cluster most benefitted from the
320 overlapping detection algorithm. It is also important to note that the overlapping peak detection
321 algorithm does not add any false positives as the $S_1 \cdot S_2$ remains unchanged for the “negative
322 class”. This proves that overlapping detection leads to less misclassification of Ag_n^+ -related
323 peaks.

324 4.4. Matrix-related peak annotation improves the post-processing

325 In order to explore the influence of the annotation and removal of matrix-related peaks in the
326 post-processing workflows, we carried out a multivariate statistical exploratory analysis. The
327 widely used linear algorithm Principal Component Analysis (PCA) [30] was performed on all 14
328 datasets before and after removal of the Ag_n^+ peaks. We then compared the quality of the
329 spatial representation of the first three principal components. Given the lack of a standard
330 quantitative metric to compare the quality of two images in MSI, we followed the trend
331 established by recent work [11,31,32] and performed a qualitative visual comparison.

332 Figure 3 shows the results of this exploratory analysis on Dataset 2 and Dataset 11. In the
333 pancreatic tissue represented in Figure 3A (Dataset 2), PC1 did not change significantly after
334 matrix removal, while PC2 and PC3 showed a wider variety of morphologies on the tissue after
335 the Ag_n^+ interference was removed. In the brain tissue shown in Figure 3B (Dataset 11) the
336 contrast enhancement is even clearer in the three PCs. Before the Ag_n^+ peaks were removed,
337 PC1 and PC3 did not capture any substantial morphology but afterwards, they did and PC2,
338 which already showed morphological information, did so with increased contrast. To convey the

339 three principal components in a single picture we encoded each of them as a colour in the Red
340 Green Blue colour model (RGB). The RGB picture became richer and more informative after the
341 Ag_n^+ peaks were removed. Similar results were obtained in the remaining 12 datasets and their
342 corresponding images can be accessed in Supplementary Figures S10-S13. The main conclusion
343 that can be drawn from the visual analysis of these results is that the removal of matrix-related
344 peaks leads to a generalized enhancement in the contrast of morphological structures obtained
345 with the first principal components. This is due to the fact that the variance contribution of the
346 matrix-related signals is not fed to the PCA and therefore the resulting principal components are
347 better focused on the morphology of the tissue. In agreement with previous work on the effects
348 of MSI data reduction [33], these results demonstrate that the removal of matrix-related signals
349 improves post-processing, especially when using linear algorithms such as the widely used PCA.

350 **5. Discussion & Conclusion**

351 The goal of this study was to develop, optimize and validate a new algorithm to annotate signals
352 attributed to the LDI promoting material in MSI. The developed algorithm is packaged and
353 released as rMSIcleanup, an open-source R package freely available for the scientific community
354 and fully integrated with rMSIproc [20], a stand-alone package for the visualization, pre-
355 processing and analysis of MSI datasets.

356 In comparison to the top-performing alternatives for matrix-related peak annotation which are
357 based on machine and deep learning [11], rMSIcleanup has the main advantage of using two
358 intuitive scores (accounting for the isotopic ratios of clusters and the spatial distribution of their
359 ions) and providing a visual justification of each annotation. This is a key contribution as it helps
360 overcome the black-box problem, increases the user's confidence in the annotation and can help
361 researchers optimize experimental workflows (for instance, choosing LDI promoters that
362 minimize interferences in the *m/z* range of interest). Another merit of our work is that, to our
363 knowledge, it is the first matrix signal annotation algorithm to explicitly detect and deal with
364 overlapping MS signals, which successfully prevents overlapped peaks from being misclassified.
365 Given that we follow a targeted analytical approach, our classification is focused only on matrix-
366 related signals while the algorithms presented by Ovchinnikova et al. [11] have a broader scope
367 and also classify as off-sample other exogenous compounds. In the era of big data, these two
368 apparently opposite approaches (namely our analytical approach based on chemical similarity
369 scores and their untargeted approach based on machine learning) must not only coexist but also
370 complement each other following the trend already initiated in other fields [34]. This reality
371 urges the MSI community to develop annotation algorithms capable of, not only exploiting the
372 knowledge in the increasingly large amounts of MSI datasets available, but also incorporating
373 metrics that take into account the chemical context of the sample to aid transparent
374 justification.

375 AgLDI MSI was chosen to validate the algorithm, due to the well-understood ionization of silver.
376 A "validation list" was compiled from the literature, which included silver clusters that should
377 be present in all samples and silver adducts or compounds that should not be present in any of
378 them. Given the heterogeneity of the samples used in this study, the described validation list
379 was adapted to each dataset. For each dataset, those clusters in the validation list for which the
380 experimental data contained none of their theoretical masses were excluded. These
381 adjustments in the validation list prevented an overestimation of the performance of the
382 algorithm attributed to a high number of correctly classified "negative class" clusters (i.e. true
383 negatives) located in mass ranges with no signal. We propose this validation strategy as a novel
384 alternative to more common validation approaches such as chemical standards [6] or expert

385 annotation [11,32]. This study adds to previous work [6,14,17,29,35] and further demonstrates
386 the potentiality of AgLDI MS imaging, a thriving technology known for its reduced background
387 signals in spatial metabolomics that is strongly complemented by our annotation algorithm as it
388 further removes the influence of the matrix.

389 In agreement with previous work on the effects of MSI data reduction [33], we have
390 demonstrated that the annotation and removal of signals related to the LDI promoting material
391 used can further enhance post-processing, due to the elimination of variables attributed to
392 exogenous compounds that do not reflect the morphology nor chemical composition of the
393 sample. These results highlight the need to include software annotation tools such as
394 rMSIcleanup in MSI workflows before exploring the datasets with classical data analysis
395 techniques used in metabolomics. Here we would like to emphasize the need for a standardized
396 quantitative metric to assess the quality of MSI images and we acknowledge the relevance of
397 standardization initiatives such as the MALDISTAR project (www.maldistar.org).

398 We envision two main applications for rMSIcleanup. On the one hand, it can be used in a purely
399 exploratory fashion to better understand ionization and adduct cluster formation in new
400 matrices, tissues and applications. In this case, the user is advised to add a long list of potential
401 adducts or neutral losses to assess their formation. The validation approach followed in this
402 paper is a clear example of this exploratory application of rMSIcleanup. A second application is
403 the automated peak annotation of well-known matrices and tissues. In this case, only the
404 clusters that are known to be formed need to be given to the software. This curated selection
405 increases the data-processing speed. The set of matrix-related annotated peaks can then be
406 eliminated from the dataset prior to performing post-processing workflows such as multivariate
407 statistical analysis.

408 Finally, the promising results obtained in the annotation of Ag_n^+ -related peaks in AgLDI MSI open
409 the door to the extension of this methodology to more widely used matrices such as 2,5-
410 Dihydroxybenzoic acid (DHB), 1,5-Diaminonaphthalene (DAN), and 9-Aminoacridine (9AA)
411 among others. These organic matrices pose greater challenges. Firstly, they lead to increased
412 matrix background due to their greater fragmentation and adduct formation [36–38] and the
413 higher quantities in which they are added [37]. Moreover, they present the problem of “hot
414 spot” formation given their less homogeneous application process [39]. These issues highlight
415 not only the benefits of AgLDI MSI but also that matrix-related peak annotation can benefit data
416 post-processing even further in applications using organic matrices.

417 **Declarations of interest**

418 None

419 **Author contribution**

420 **Gerard Baquer:** Conceptualization, Methodology, Software, Validation, Visualization, Writing -
421 Original Draft. **Lluc Sementé:** Validation, Writing - Review & Editing. **María García-Altares:**
422 Conceptualization, Methodology, Investigation, Writing - Review & Editing, Supervision. **Young**
423 **Jin Lee:** Resources, Review & Editing. **Pierre Chaurand:** Resources, Review & Editing. **Xavier**
424 **Correig:** Conceptualization, Methodology, Writing - Review & Editing, Supervision, Project
425 administration, Funding acquisition. **Pere Ràfols:** Conceptualization, Methodology,
426 Investigation, Writing - Review & Editing, Supervision.

427

428 **Acknowledgements**

429 The authors acknowledge the financial support of the Spanish Ministry of Economy and
430 Competitiveness through projects TEC2015-69076-P and RTI2018-096061-B-100. GB acknowledges
431 the financial support of the European Union's Horizon 2020 research and innovation programme
432 under the Marie Skłodowska-Curie grant agreement No. 713679 and the Universitat Rovira i
433 Virgili (URV). LS acknowledges the financial support of Universitat Rovira i Virgili through the
434 pre-doctoral grant 2017PMF-PIPF-60. MGA acknowledges the financial support from the Spanish
435 Ministry of Science, Innovation and Universities (MICIN) through the post-doctoral grant IJCI-
436 2017-33438. PC acknowledges financial support from the Natural Sciences and Engineering
437 Research Council of Canada (NSERC).

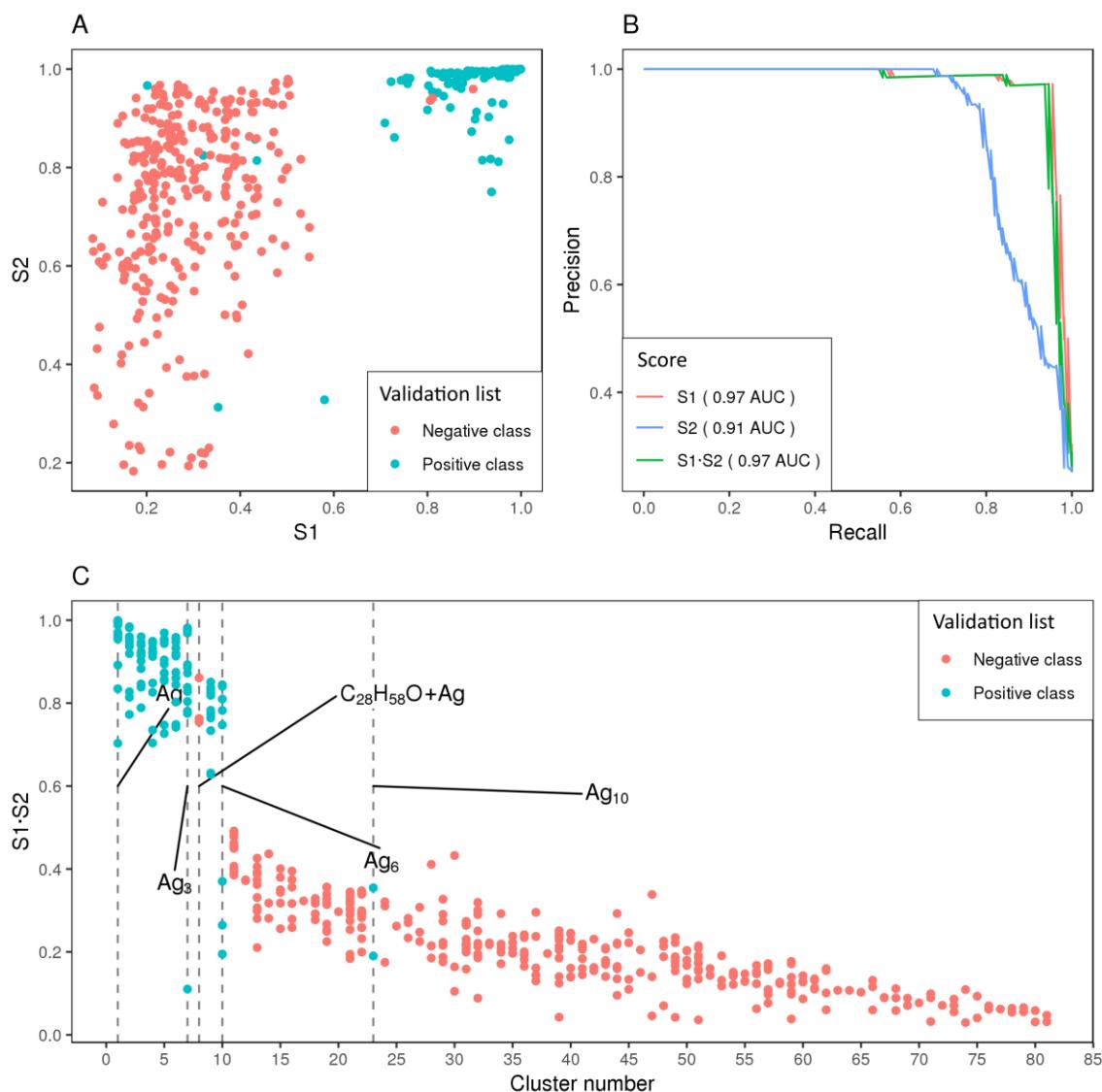
Tables and Figures

No.	Species	Tissue type	Ag deposition system and estimated layer thickness	Lateral Res.	m/z range	Mass spectrometer	Acq. Mode	Ref.
1	Mouse	Pancreas	ATC Orion 8-HV Sputtering system, 5 nm	30 μ m	70-1200	Bruker ultrafleXtreme™ MALDI-TOF/TOF	Positive / Profile	-
2	Mouse	Pancreas	ATC Orion 8-HV Sputtering system, 5 nm	30 μ m	70-1200	Bruker ultrafleXtreme™ MALDI-TOF/TOF	Positive / Profile	-
3	Mouse	Kidney	ATC Orion 8-HV Sputtering system, 5 nm	100 μ m	70-1200	Bruker ultrafleXtreme™ MALDI-TOF/TOF	Positive / Profile	-
4	Mouse	Brain	ATC Orion 8-HV Sputtering system, 5 nm	80 μ m	70-1200	Bruker ultrafleXtreme™ MALDI-TOF/TOF	Positive / Profile	-
5	Mouse	Brain	ATC Orion 8-HV Sputtering system, 5 nm	80 μ m	70-1200	Bruker ultrafleXtreme™ MALDI-TOF/TOF	Positive / Profile	-
6	Mouse	Brain	ATC Orion 8-HV Sputtering system, 5 nm	80 μ m	70-1200	Bruker ultrafleXtreme™ MALDI-TOF/TOF	Positive / Profile	-
7	Mouse	Brain	ATC Orion 8-HV Sputtering system, 5 nm	80 μ m	80-1000	Bruker ultrafleXtreme™ MALDI-TOF/TOF	Positive / Profile	-
8	Mouse	Brain	ATC Orion 8-HV Sputtering system, 5 nm	80 μ m	80-1000	Bruker ultrafleXtreme™ MALDI-TOF/TOF	Positive / Profile	-
9	Mouse	Brain	ATC Orion 8-HV Sputtering system, 5 nm	80 μ m	80-1000	Bruker ultrafleXtreme™ MALDI-TOF/TOF	Positive / Profile	-
10	Mouse	Brain	ATC Orion 8-HV Sputtering system, 5 nm	80 μ m	80-1000	Bruker ultrafleXtreme™ MALDI-TOF/TOF	Positive / Profile	-
11	Mouse	Brain	Cressington Sputter Coater, 23 \pm 2 nm	75 μ m	100-1100	Bruker ultrafleXtreme™ MALDI-TOF/TOF	Positive / Profile	[18]
12	<i>Homo sapiens sapiens</i>	Fingermark	Cressington Sputter Coater, 14 \pm 2 nm	75 μ m	100-1100	Bruker ultrafleXtreme™ MALDI-TOF/TOF	Positive / Profile	[14]
13	B73 inbred corn	Root	Cressington 108Auto, 5s	10 μ m	50-970	Thermo Finnigan™ MALDI-LTQ-Orbitrap Discovery	Positive / Centroid	[6]
14	B73 inbred corn	Root	Cressington 108Auto, 5s	10 μ m	50-900	Thermo Finnigan™ MALDI-LTQ-Orbitrap Discovery	Negative / Centroid	[6]

Table 1. List of the 14 AgLDI MSI datasets used for validation. Sample type, sample preparation and LDI-MSI acquisition parameters. Datasets from 1-10 were acquired in-house. Datasets 11-14 were provided by external laboratories.

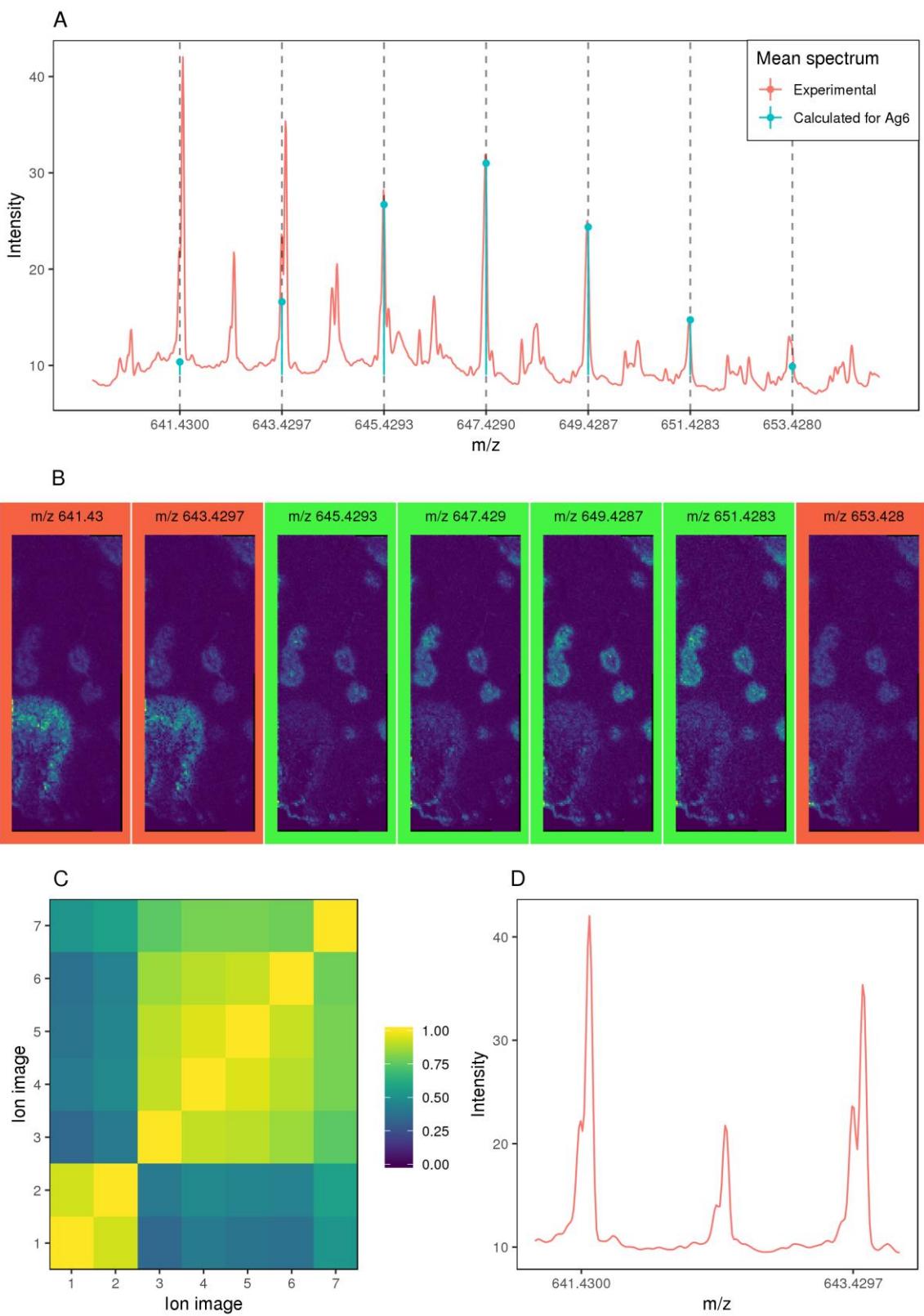
Chemical formula	Validation list	Type	Monoisotopic mass (n=1)	PubChem CID	Ref
$[Ag]_n^+$	Positive class	Silver cluster	106.9051	104755	[27]
$[AgF]_n$			125.903	62656	
$[AgCl]_n$			141.8734	24561	
$[AgBr]_n$			185.8229	66199	
$[AgI]_n$			233.809	24563	
$[AgH]_n$		Synthetic compound	107.9124	139654	
$[AgH_2]_n$			108.9202	92028350	
$[AgHe]_n$			110.9072	71348557	
$[AgNO_3]_n$			168.8924	24470	
$[AgTh_2]_n$			570.9807	71351869	
$[AgF_2]_n$	Negative class	Plants, wax, insects' pheromones	144.9014	82221	[28]
$[AgBF_4]_n$			192.9111	159722	
$[C_{27}H_{56} + Ag]_n^+$			487.3428	-	
$[C_{29}H_{60} + Ag]_n^+$		Plant wax	515.3741	-	
$[C_{31}H_{64} + Ag]_n^+$			543.4054	-	
$[C_{26}H_{54}O + Ag]_n^+$			489.322	-	
$[C_{28}H_{58}O + Ag]_n^+$		Wax	517.3533	-	
$[C_{30}H_{62}O + Ag]_n^+$			545.3846	-	
$[C_{26}H_{52}O_2 + Ag]_n^+$		Wax	503.3013	-	[29]
$[C_{30}H_{60}O_2 + Ag]_n^+$			559.3639	-	

441 *Table 2. "Validation list" used for validation. The "positive class" consists of silver clusters. The "negative class"*
442 *consists of neutral silver salts, synthetic silver compounds and silver adducts that are not expected to be found in*
443 *animal samples. The index n denotes the number of atoms or molecules inside the cluster. The minimum and*
444 *maximum value of n depend on the monoisotopic mass of the atom or molecule and the mass range of the dataset.*



445

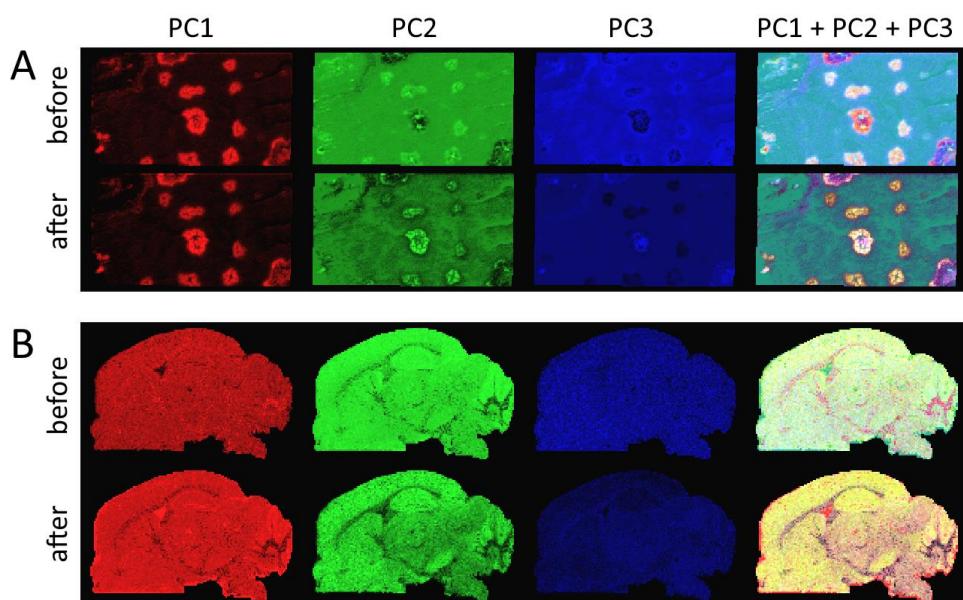
446 *Fig. 1. Similarity scores performance (A) Spectral similarity S1 vs. Intra-cluster morphological similarity S2 scatter plot.*
 447 *Each point represents a potential cluster classified by the algorithm. All clusters shown in Table 2 are evaluated for all*
 448 *14 datasets presented in Table 1. Blue points represent the “positive class” (should be present in the sample) while the*
 449 *red points correspond to the negative class (should not be present in the sample). Most “positive class” points are*
 450 *located in the top right corner well separated from the negative class points. This indicates proper classification power.*
 451 *(B) Precision and recall (PR) curve computed according to Davis et al. 2006 [40]. (C) Similarity score S1-S2 vs. Cluster*
 452 *number. Clusters are arranged in decreasing order of mean similarity score. A clear gap between an S of 0.5 and 0.7*
 453 *separates the “positive class” from the negative class. Refer to Supplementary Table S1 for a mapping of cluster*
 454 *numbers to cluster chemical formula.*



455

456 *Fig. 2. Overlapping detection algorithm performance when searching for the Ag₆ cluster in Dataset 1. (A) Comparison*
 457 *between the mean experimental spectra and the theoretical Ag₆ cluster at the Ag₆ cluster masses within a tolerance*
 458 *of 4 scans. Red and blue represent theoretical and experimental profiles, respectively. As can be seen, while the peaks*
 459 *in the centre of the cluster perfectly match the theoretical ratios, the peaks on the edges differ considerably. (B) Spatial*
 460 *distributions of the experimental cluster peaks. After performing the overlapping detection only the four ion images*
 461 *in the centre in green are classified as Ag-related. The remaining ion images in red are classified as Agⁿ⁺ suffering*
 462 *from overlapping. The morphologies of the Agⁿ⁺ overlapped ions (red) differ from the ones without overlapping*

463 (green) due to ion overlapping. (C) Correlation matrix between the experimental ion images of the Ag_6 cluster. The
464 ion image number corresponds to the position of the ion in the isotopic pattern in ascending order of m/z . The first
465 two images are clearly not correlated with the remaining images of the cluster. The last image also shows a
466 considerably lower correlation. (D) Zoom-in of experimental mean spectra. Peaks m/z 641.43 and m/z 643.43 show
467 clear overlapping.



468

469 Fig. 3 Exploratory analysis with PCA before and after removing matrix-related peaks. Red, green and blue are used to
470 represent the spatial distribution of PC1, PC2 and PC3, respectively. The last column uses the Red Green Blue colour
471 model (RGB) to represent the first three principal components in a single image. The annotation and removal of the
472 matrix-related peaks lead to a generalized improvement in the contrast of morphological structures in all principal
473 components. (A) Pancreas tissue from Dataset 2. (B) Brain tissue from Dataset 11 [18].

474

475 **References**

476 [1] T.C. Rohner, D. Staab, M. Stoeckli, MALDI mass spectrometric imaging of biological
477 tissue sections, in: *Mech. Ageing Dev.*, 2005: pp. 177–185.
478 doi:10.1016/j.mad.2004.09.032.

479 [2] J.L. Norris, R.M. Caprioli, Imaging mass spectrometry: A new tool for pathology in a
480 molecular age, *Proteomics - Clin. Appl.* 7 (2013) 733–738. doi:10.1002/prca.201300055.

481 [3] L.H. Cohen, A.I. Gusev, Small molecule analysis by MALDI mass spectrometry, *Anal.*
482 *Bioanal. Chem.* 373 (2002) 571–586. doi:10.1007/s00216-002-1321-z.

483 [4] P. Ràfols, D. Vilalta, J. Brezmes, N. Cañellas, E. del Castillo, O. Yanes, N. Ramírez, X.
484 Correig, Signal preprocessing, multivariate analysis and software tools for MA(LDI)-TOF
485 mass spectrometry imaging for biological applications, *Mass Spectrom. Rev.* 37 (2018)
486 281–306. doi:10.1002/mas.21527.

487 [5] P. Ràfols, D. Vilalta, S. Torres, R. Calavia, B. Heijs, L.A. McDonnell, J. Brezmes, E. del
488 Castillo, O. Yanes, N. Ramírez, X. Correig, Assessing the potential of sputtered gold
489 nanolayers in mass spectrometry imaging for metabolomics applications, *PLoS One.* 13
490 (2018). doi:10.1371/journal.pone.0208908.

491 [6] R.L. Hansen, M.E. Dueñas, Y.J. Lee, Sputter-Coated Metal Screening for Small Molecule
492 Analysis and High-Spatial Resolution Imaging in Laser Desorption Ionization Mass
493 Spectrometry, *J. Am. Soc. Mass Spectrom.* 30 (2019) 299–308. doi:10.1007/s13361-018-
494 2081-0.

495 [7] S.A. Iakab, P. Rafols, M. García-Altares, O. Yanes, X. Correig, Silicon-Based Laser
496 Desorption Ionization Mass Spectrometry for the Analysis of Biomolecules: A Progress
497 Report, *Adv. Funct. Mater.* 29 (2019) 1903609. doi:10.1002/adfm.201903609.

498 [8] G.B. Yagnik, R.L. Hansen, A.R. Korte, M.D. Reichert, J. Vela, Y.J. Lee, Large Scale
499 Nanoparticle Screening for Small Molecule Analysis in Laser Desorption Ionization Mass
500 Spectrometry, *Anal. Chem.* 88 (2016) 8926–8930. doi:10.1021/acs.analchem.6b02732.

501 [9] J.M. Fonville, C. Carter, O. Cloarec, J.K. Nicholson, J.C. Lindon, J. Bunch, E. Holmes,
502 Robust data processing and normalization strategy for MALDI mass spectrometric
503 imaging, *Anal. Chem.* 84 (2012) 1310–1319. doi:10.1021/ac201767g.

504 [10] T.M. Annesley, Ion suppression in mass spectrometry, *Clin. Chem.* 49 (2003) 1041–
505 1044. doi:10.1373/49.7.1041.

506 [11] K. Ovchinnikova, V. Kovalev, L. Stuart, T. Alexandrov, Recognizing off-sample mass
507 spectrometry images with machine and deep learning, *BioRxiv.* (2019) 518977.
508 doi:10.1101/518977.

509 [12] M. Guan, Z. Zhang, S. Li, J. Liu, L. Liu, H. Yang, Y. Zhang, T. Wang, Z. Zhao, Silver
510 nanoparticles as matrix for MALDI FTICR MS profiling and imaging of diverse lipids in
511 brain, *Talanta.* 179 (2018) 624–631. doi:10.1016/j.talanta.2017.11.067.

512 [13] E.C. Moule, T.M. Guinan, O.J.R. Gustafsson, H. Kobus, K.P. Kirkbride, N.H. Voelcker,
513 Silver-assisted development and imaging of fingermarks on non-porous and porous
514 surfaces, *Int. J. Mass Spectrom.* 422 (2017) 27–31. doi:10.1016/j.ijms.2017.08.001.

515 [14] N. Lauzon, M. Dufresne, V. Chauhan, P. Chaurand, Development of laser desorption
516 imaging mass spectrometry methods to investigate the molecular composition of latent
517 fingermarks, *J. Am. Soc. Mass Spectrom.* 26 (2015) 878–886. doi:10.1007/s13361-015-

518 1123-0.

519 [15] N. Lauzon, P. Chaurand, Detection of exogenous substances in latent fingermarks by
520 silver-assisted LDI imaging MS: Perspectives in forensic sciences, *Analyst*. 143 (2018)
521 3586–3594. doi:10.1039/c8an00688a.

522 [16] N. Lauzon, M. Dufresne, A. Beaudoin, P. Chaurand, Forensic analysis of latent
523 fingermarks by silver-assisted LDI imaging MS on nonconductive surfaces, *J. Mass*
524 *Spectrom.* 52 (2017) 397–404. doi:10.1002/jms.3938.

525 [17] M. Dufresne, A. Thomas, J. Breault-Turcot, J.-F.F. Masson, P. Chaurand, Silver-assisted
526 laser desorption ionization for high spatial resolution imaging mass spectrometry of
527 olefins from thin tissue sections, *Anal. Chem.* 85 (2013) 3318–3324.
528 doi:10.1021/ac3037415.

529 [18] A. Thomas, N.H. Patterson, M. Dufresne, P. Chaurand, (MA)LDI MS imaging at high
530 specificity and sensitivity, in: *Adv. MALDI Laser-Induced Soft Ioniz. Mass Spectrom.*,
531 Springer International Publishing, Cham, 2015: pp. 129–147. doi:10.1007/978-3-319-
532 04819-2_7.

533 [19] T. Schramm, A. Hester, I. Klinkert, J.P. Both, R.M.A. Heeren, A. Brunelle, O. Laprévote,
534 N. Desbenoit, M.F. Robbe, M. Stoeckli, B. Spengler, A. Römpp, *ImzML - A common data*
535 *format for the flexible exchange and processing of mass spectrometry imaging data*, *J.*
536 *Proteomics*. 75 (2012) 5106–5110. doi:10.1016/j.jprot.2012.07.026.

537 [20] P. Ràfols, GitHub - prafols/rMSIproc: An open-source R package for mass spectrometry
538 (MS) imaging data pre-processing, (2019). <https://github.com/prafols/rMSIproc>
539 (accessed December 10, 2019).

540 [21] P. Ràfols, E. del Castillo, O. Yanes, J. Brezmes, X. Correig, Novel automated workflow for
541 spectral alignment and mass calibration in MS imaging using a sputtered Ag nanolayer,
542 *Anal. Chim. Acta*. 1022 (2018) 61–69. doi:10.1016/j.aca.2018.03.031.

543 [22] P. Ràfols, S. Torres, N. Ramírez, E. Del Castillo, O. Yanes, J. Brezmes, X. Correig, RMSI: An
544 R package for MS imaging data handling and visualization, *Bioinformatics*. 33 (2017)
545 2427–2428. doi:10.1093/bioinformatics/btx182.

546 [23] M. Loos, C. Gerber, F. Corona, J. Hollender, H. Singer, Accelerated isotope fine structure
547 calculation using pruned transition trees, *Anal. Chem.* 87 (2015) 5738–5744.
548 doi:10.1021/acs.analchem.5b00941.

549 [24] A. Römpp, B. Spengler, Mass spectrometry imaging with high resolution in mass and
550 space, *Histochem. Cell Biol.* 139 (2013) 759–783. doi:10.1007/s00418-013-1097-6.

551 [25] M. Steinbach, G. Karypis, V. Kumar, others, A comparison of document clustering
552 techniques, *KDD workshop on text mining*, (2000).
553 http://www.cs.umn.edu/tech_reports/ (accessed December 10, 2019).

554 [26] O. Irsoy, O.T. Yildiz, E. Alpaydin, Design and analysis of classifier learning experiments in
555 bioinformatics: Survey and case studies, *IEEE/ACM Trans. Comput. Biol. Bioinforma.* 9
556 (2012) 1663–1675. doi:10.1109/TCBB.2012.117.

557 [27] C. Staudt, R. Heinrich, A. Wucher, Formation of large clusters during sputtering of silver,
558 *Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms*. 164
559 (2000) 677–686. doi:10.1016/S0168-583X(99)01078-2.

560 [28] S. Kim, J. Chen, T. Cheng, A. Gindulyte, J. He, S. He, Q. Li, B.A. Shoemaker, P.A. Thiessen,

561 B. Yu, L. Zaslavsky, J. Zhang, E.E. Bolton, PubChem 2019 update: Improved access to
562 chemical data, *Nucleic Acids Res.* 47 (2019) D1102–D1109. doi:10.1093/nar/gky1033.

563 [29] J.H. Jun, Z. Song, Z. Liu, B.J. Nikolau, E.S. Yeung, Y.J. Lee, High-spatial and high-mass
564 resolution imaging of surface metabolites of *arabidopsis thaliana* by laser desorption-
565 ionization mass spectrometry using colloidal silver, *Anal. Chem.* 82 (2010) 3255–3265.
566 doi:10.1021/ac902990p.

567 [30] I.T. Jolliffe, J. Cadima, Principal component analysis: A review and recent developments,
568 *Philos. Trans. R. Soc. A Math. Phys. Eng. Sci.* 374 (2016). doi:10.1098/rsta.2015.0202.

569 [31] K. Ovchinnikova, A. Rakhlin, L. Stuart, S. Nikolenko, T. Alexandrov, ColocAI: artificial
570 intelligence approach to quantify co-localization between mass spectrometry images,
571 *BioRxiv*. (2019) 758425. doi:10.1101/758425.

572 [32] A. Palmer, E. Ovchinnikova, M. Thuné, R. Lavigne, B. Guével, A. Dyatlov, O. Vitek, C.
573 Pineau, M. Borén, T. Alexandrov, Using collective expert judgements to evaluate quality
574 measures of mass spectrometry images, in: *Bioinformatics*, 2015: pp. i375–i384.
575 doi:10.1093/bioinformatics/btv266.

576 [33] L.A. McDonnell, A. van Remoortere, N. de Velde, R.J.M. van Zeijl, A.M. Deelder, Imaging
577 mass spectrometry data reduction: Automated feature identification and extraction, *J.*
578 *Am. Soc. Mass Spectrom.* 21 (2010) 1969–1978. doi:10.1016/j.jasms.2010.08.008.

579 [34] R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, D. Pedreschi, A survey of
580 methods for explaining black box models, *ACM Comput. Surv.* 51 (2018).
581 doi:10.1145/3236009.

582 [35] E. Yang, F. Fournelle, P. Chaurand, Silver spray deposition for AgLDI imaging MS of
583 cholesterol and other olefins on thin tissue sections, *J. Mass Spectrom.* (2019).
584 doi:10.1002/jms.4428.

585 [36] K. Dreisewerd, The desorption process in MALDI, *Chem. Rev.* 103 (2003) 395–425.
586 doi:10.1021/cr010375i.

587 [37] R.M.A. Heeren, D.F. Smith, J. Stauber, B. Kükrer-Kaletas, L. MacAleese, Imaging Mass
588 Spectrometry: Hype or Hope?, *J. Am. Soc. Mass Spectrom.* 20 (2009) 1006–1014.
589 doi:10.1016/j.jasms.2009.01.011.

590 [38] L. MacAleese, J. Stauber, R.M.A. Heeren, Perspectives for imaging mass spectrometry in
591 the proteomics landscape, *Proteomics*. 9 (2009) 819–834.
592 doi:10.1002/pmic.200800363.

593 [39] C.K. Chiang, W.T. Chen, H.T. Chang, Nanoparticle-based mass spectrometry for the
594 analysis of biomolecules, *Chem. Soc. Rev.* 40 (2011) 1269–1281.
595 doi:10.1039/c0cs00050g.

596 [40] J. Davis, M. Goadrich, The relationship between precision-recall and ROC curves, in:
597 *ACM Int. Conf. Proceeding Ser.*, 2006: pp. 233–240. doi:10.1145/1143844.1143874.

598

599

600

601