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Abstract 14 

Mass spectrometry imaging (MSI) has become a mature, widespread analytical technique to 15 

perform non-targeted spatial metabolomics. However, the compounds used to promote 16 

desorption and ionization of the analyte during acquisition cause spectral interferences in the 17 

low mass range that hinder downstream data processing in metabolomics applications. Thus, it 18 

is advisable to annotate and remove matrix-related peaks to reduce the number of redundant 19 

and non-biologically-relevant variables in the dataset. We have developed rMSIcleanup, an 20 

open-source R package to annotate and remove matrix-related signals based on its chemical 21 

formula and the spatial distribution of its ions. To validate the annotation method, rMSIcleanup 22 

was challenged with several images acquired using silver-assisted laser desorption ionization 23 

MSI (AgLDI MSI). The algorithm was able to correctly classify m/z signals related to silver clusters. 24 

Visual exploration of the data using Principal Component Analysis (PCA) demonstrated that 25 

annotation and removal of matrix-related signals improved spectral data post-processing. The 26 

results highlight the need for including matrix-related peak annotation tools such as 27 

rMSIcleanup in MSI workflows. 28 

Keywords: mass spectrometry imaging; spatial metabolomics; matrix annotation; overlapping-29 

signal detection; silver-assisted laser/desorption ionization; spectral processing 30 

Resources availability 31 

The R package presented in this publication is freely available under the terms of the GNU 32 

General Public License v3.0 at https://github.com/gbaquer/rMSIcleanup. The datasets used in 33 

the experiments can be accessed upon request to the corresponding author. 34 

1. Introduction 35 

Mass spectrometry imaging (MSI) is a label-free technology that allows to obtain molecular and 36 
spatial information from intact tissue sections [1]. MSI has been gradually adopted for spatial-37 
resolved metabolomics and it has been regarded as a potential tool for understanding the 38 
mechanisms underlying complex diseases such as cancer or diabetes [2]. However, the 39 
conventional organic matrices used in Matrix-Assisted Laser Desorption Ionization (MALDI) 40 
produce spectral signals that interfere in the low m/z range. This is an issue particularly in 41 
metabolomics which analyses low molecular weight compounds, so mass spectrometers are set 42 
to acquire within the m/z range where MALDI matrices exhibit most MS signals. This seriously 43 
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hampers downstream metabolomics data processing [3,4], as the matrix introduces noise, 44 
redundant variables, and variables with no biological meaning into the complex MSI datasets.  45 

Several alternatives to the common organic matrices have been proposed to deal with 46 

exogenous contamination caused by matrix ion signals. Nanomaterials or metal layer deposition 47 

methods, for instance, dramatically reduce the number of signals related to the LDI promoting 48 

material in the low m/z range. Some examples are graphene oxide, silicon or metals such as 49 

gold, platinum or silver [5–8]. Nevertheless, even when these alternatives are used and the 50 

number of peaks related to the LDI promoting material is reduced, there is still a need to 51 

annotate them in order to reduce spectral complexity and distinguish exogenous from 52 

endogenous compounds, especially in untargeted applications. 53 

To tackle the issue of annotating MS signals related to the LDI-promoting material several 54 

software-based solutions have been proposed. A simple approach consists of acquiring a 55 

reference area outside the sample during the MSI experiment. Under the assumption that only 56 

matrix-related peaks will be recorded, the peaks found in the outside area are then subtracted 57 

from the tissue spectrum. Given its simplicity, some variation of this procedure has been 58 

adopted by many researchers in their workflows. Expanding on this idea, Fonville et al. [9] 59 

presented a method that relies on the hypothesis that matrix-related peaks will correlate 60 

positively to a set of reference peaks outside the tissue region while endogenous peaks will 61 

correlate negatively. However, this approach has three main limitations. Firstly, due to ion 62 

suppression [10] and the formation of matrix adducts with endogenous compounds, the matrix-63 

related peaks outside and inside the tissue region might differ. Additionally, endogenous 64 

molecules that are delocalized during the matrix application process can be misclassified as 65 

matrix-related. Finally, the method cannot distinguish a given matrix-related MS peak from an 66 

isobaric or overlapping endogenous MS peak. Thus, simplified approaches to annotate matrix-67 

related signals are not suitable for untargeted applications such as spatial metabolomics. Recent 68 

work by Ovchinnikova et al. [11] takes a more comprehensive approach in defining three 69 

automated algorithms for off-sample ion classification. Their methods have proved to perform 70 

well when trained and validated against a “gold standard set” of ion images manually annotated 71 

by experts. However, their focus is not specifically on matrix-related peaks, but on the 72 

annotation of signals that exhibit a spatial distribution with high concentrations outside of the 73 

tissue region. For this reason, these methods focus on classifying each ion image separately as 74 

“on-sample” or “off-sample” and do not exploit relevant information such as the identity of the 75 

ion, adduct type, matrix type, etc. Additionally, since they are based in machine and deep 76 

learning methods they inherently suffer from the black box problem given that annotation 77 

results cannot be traced back and easily justified.  78 

To solve these limitations we propose a new algorithm that relies not only on the ion images but 79 

also on the chemical information of the LDI promoting material used. The algorithm also 80 

incorporates an overlapping peak detection feature to prevent misclassification of overlapped 81 

or isobaric ions. The presented algorithm is implemented in an open-source R package freely 82 

available to facilitate its use. Additionally, the package generates a visual report to transparently 83 

justify each annotation. 84 

In order to validate and optimize the proposed method, we opted for a well-understood LDI 85 

promoting material such as silver. The use of silver nanolayers for MSI (AgLDI MSI) has been 86 

steadily growing in recent years [6,12–17]. The characteristic isotopic pattern of silver 87 

( 𝐴𝑔 
107  and 𝐴𝑔 

109 , 51.84% and 48.16% abundance, respectively), as well as its well-known 88 

ionization and adduct formation allow to define a list of possible and not-possible silver-related 89 
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peaks of a typical AgLDI MSI experiment. This set of possible and not-possible peaks is used as a 90 

validation list to assess the performance of the classification algorithm. A total of 14 MSI 91 

datasets acquired with an Ag-sputtered nanolayer from three different laboratories, were used 92 

for validation. 93 

2. Materials & Methods 94 

Table 1 summarizes the main processing parameters for each of the 14 datasets used in this 95 

study. Datasets 1-10 were acquired in our lab and the materials, sample preparation and MSI 96 

acquisition parameters are described here. In order to overcome lab-specific bias in our study, 97 

four additional datasets were provided by collaborating laboratories. For further details about 98 

the materials, sample preparation and MSI acquisition of these datasets, refer to the original 99 

publications of Dataset 11 [18], Dataset 12 [14] and Datasets 13 and 14 [6]. 100 

2.1. Materials 101 

For the samples acquired by our group, indium tin oxide (ITO)-coated glass slides were obtained 102 

from Bruker Daltonics (Bremen, Germany). The silver-target (purity grade > 99.99%) used for 103 

sputtering was acquired from Kurt J. Lesker Company (Hastings, England). 104 

2.2. Sample preparation 105 

All the samples acquired by our group were obtained from mice and provided by the animal 106 

facility at the Faculty of Medicine and Health Sciences of the University Rovira i Virgili. All tissues 107 

were snap-frozen at -80ºC after collection and kept at this temperature during shipping and 108 

storing until MSI acquisition.  109 

The tissues were sectioned with a Leica CM-1950 cryostat (Leica Biosystems Nussloch GmbH) 110 

located at the Centre for Omics Sciences (COS) of the University Rovira i Virgili into 10 111 

𝜇𝑚 sections. Tissue sections were mounted on ITO coated slides by directly placing the glass 112 

slide at ambient temperature onto the section. 113 

The sputtering system ATC Orion 8-HV (AJA International, N. Scituate, MA, USA) was used to 114 

deposit a silver nanolayer onto each tissue section. An argon atmosphere with a pressure of 30 115 

mTorr was used to create the plasma in the gun. The working distance of the plate was set to 35 116 

mm. The sputtering conditions were ambient temperature using DC mode at 100W for 10s. With 117 

these parameters, an Ag layer thickness of roughly 5nm was obtained. The deposition times 118 

were short to prevent the substrate temperature from increasing excessively and, consequently, 119 

degrading metabolites.  120 

2.3. LDI-MS acquisition 121 

A MALDI TOF/TOF ultrafleXtreme instrument with SmartBeam II Nd:YAG/355 nm laser from 122 

Bruker Daltonics available at COS was used for MSI acquisition. Acquisitions were carried out by 123 

operating the laser at 2 kHz and collecting a total of 500 shots per pixel. 124 

The TOF spectrometer was operated in positive ion, reflectron mode, in m/z ranges according 125 

to Table 1. The spectrometer was calibrated prior to MSI data acquisition using [𝐴𝑔]𝑛
+ cluster 126 

peaks as internal reference masses. 127 

2.4. MSI data processing 128 

The raw spectral data of each MSI dataset was exported to the imZML data format [19] in profile 129 

mode. The software rMSIproc [20] was used to process the data and generate a peak matrix in 130 
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centroid mode. The default processing parameters were used. The Signal-to-Noise Ratio (SNR) 131 

threshold was set to 5 and the Savitzky-Golay smoothing had a kernel size of 7. Peaks appearing 132 

in less than 5% of the pixels were filtered out. Peaks within a window of 6 data-points or scans 133 

were binned together as the same mass peak. Mass spectra were re-calibrated using the Ag 134 

reference peaks as reference masses [21].  135 

Datasets 13 and 14 were acquired in centroid mode with an Orbitrap mass spectrometer. These 136 

datasets were directly submitted to the binning process of rMSIproc [21] to conform to the peak 137 

matrix format.  138 

No data normalization was performed. Data were visualized and explored using rMSI [22]. 139 

3. Algorithm description 140 

3.1. Input and output format 141 

The matrix-related annotation algorithm takes the peak matrix in centroid mode and the 142 

processed spectral data in profile mode as input. The user must also provide the chemical 143 

formulae of the matrix applied and a list of possible adducts and neutral losses to consider. 144 

The algorithm produces a vector containing the similarity scores that indicate the likelihood of 145 

each mass in the input image being a matrix-related ion. The package also provides an 146 

informative visual report for the user to understand the justification behind the classification. 147 

Supplementary Figures S1-S4 show examples of the visual report. 148 

3.2. In-silico cluster & adduct calculation  149 

The theoretical mass and relative isotopic pattern intensities of all possible matrix-related 150 

clusters are calculated using the open-source package enviPat [23], a fast and memory-efficient 151 

algorithm to compute theoretical isotope patterns. 152 

For each theoretical cluster 𝑡𝑖 its experimental counterpart 𝑒𝑖 is obtained from the mean spectra 153 

of the dataset. The experimental masses closest to the theoretical ones within a given tolerance 154 

specified by the user are used. The theoretical clusters will then be matched against their 155 

experimental counterparts and their presence in the experimental dataset assessed using two 156 

similarity metrics. 157 

3.3. Similarity metrics 158 

The similarity between each theoretical matrix-related cluster and experimental clusters is 159 

assessed using two similarity scores according to equation 1. 160 

𝑆 = 𝑆1 · 𝑆2     (1) 161 

where 𝑆 is the total similarity score, 𝑆1 is the cluster spectral similarity and 𝑆2 is the intra-cluster 162 

morphological similarity. Both similarity scores range from 0 to 1.  163 

The cluster spectral similarity score 𝑆1,𝑖 for theoretical cluster 𝑡𝑖 determines the degree of 164 

similarity between the scaled intensity vectors of intensities 𝐼𝑡𝑖
 and 𝐼𝑒𝑖

  and it is computed 165 

according to equation 2. 166 

𝑆1,𝑖 = 𝑒
−𝑑𝑖𝑠𝑡(

𝐼𝑡𝑖

max(𝐼𝑡𝑖
)
,

𝐼𝑒𝑖

max(𝐼𝑒𝑖
)
)

     (2) 167 
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where 𝑑𝑖𝑠𝑡(𝑎, 𝑏) is the distance function chosen by the user (Euclidean distance by default), 𝐼𝑡𝑖
 168 

is the vector of intensities of the theoretical cluster 𝑡𝑖 and 𝐼𝑒𝑖
  is the vector of intensities of 169 

experimental cluster 𝑒𝑖. Experimental cluster 𝑒𝑖 is determined by accessing the element in the 170 

peak matrix with the mass closest to that corresponding to 𝑡𝑖 within a given tolerance. In plain 171 

terms, 𝑆1 is a decaying exponential function of the distance between the intensity scaled 172 

intensity vectors 𝐼𝑡𝑖
 and 𝐼𝑒𝑖

 . 173 

The intra-cluster morphological similarity 𝑆2,𝑖 returns the degree of similarity between the 174 

spatial distributions of the ions conforming the experimental cluster 𝑒𝑖. Ions with a high spatial 175 

correlation are more likely to belong to the same cluster. This metric is computed using equation 176 

3.  177 

𝑆2,𝑖 =    
𝐼𝑡𝑖 

′ · 𝐼𝑡𝑖
· 𝑐𝑜𝑟𝑟𝑒𝑙(𝐼𝑚𝑎𝑔𝑒𝑠𝑒𝑖

)

(∑ 𝐼𝑡𝑖
)

2      (3) 178 

where 𝐼𝑡𝑖
 is the intensity vector of the theoretical cluster 𝑡𝑖, 𝑐𝑜𝑟𝑟𝑒𝑙(𝐴) is the correlation function 179 

specified by the user (Pearson correlation by default) and 𝐼𝑚𝑎𝑔𝑒𝑠𝑒𝑖
 is the set of images 180 

corresponding to each ion in the experimental cluster 𝑒𝑖. In plain terms, 𝑆2 is the weighted mean 181 

across both directions of the correlation matrix between each ion image in 𝑒𝑖. 182 

3.4. Overlapping peak detection 183 

Insufficient resolving power leads to overlapped MS signals, which can be a severe problem in 184 

matrix-related peak annotation as they can lead to a greater number of misclassified peaks. This 185 

is a particularly limiting issue in lower resolution spectrometers such as some TOFs in contrast 186 

to higher resolution analysers such as Orbitrap or FTICR [24]. An additional problem with the 187 

same effect is the intrinsic inability of mass spectrometry to distinguish between isobaric 188 

species. In order to cope with these issues, we propose an overlapping detection algorithm 189 

capable of determining if a given MS signal corresponds to more than one overlapped ion peaks.  190 

The overlapping detection algorithm is only executed in those clusters that report S1 and S2 191 

scores under a threshold specified by the user. Before concluding that the cluster is not present, 192 

the algorithm determines whether the low similarity metrics could be attributed to the presence 193 

of overlapped signals. 194 

The algorithm is based on the operating principle of bisecting k-means [25]. All the ions in an 195 

experimental cluster 𝑒𝑖 are split into two subgroups (𝑒𝑖:1 and 𝑒𝑖:2 ) based on the correlation of 196 

their spatial distributions using k-means. For each subgroup of ions the similarity metrics S1 and 197 

S2 are recomputed. If the S1 and S2 scores of a given subgroup surpass the specified threshold, 198 

all ions in the subgroup are tagged as matrix-related. The remaining ions in  𝑒𝑖 are tagged as 199 

matrix-related but suffering from overlapping, and the overlapping detection algorithm 200 

terminates. If instead, none of the subgroups obtains an S1 and S2 above the threshold, the 201 

process of splitting into two subgroups by k-means and recomputing the similarity scores is 202 

repeated for both 𝑒𝑖:1 and 𝑒𝑖:2 . This bisection of the ions in 𝑒𝑖 is repeated iteratively until a 203 

subgroup obtains S1 and S2 scores above the threshold. To prevent overfitting, the iterative 204 

process will also stop when the number of peaks contained by the biggest subgroup becomes 205 

smaller than half the amount of peaks in 𝑒𝑖. In such event, it is concluded that there are no 206 

overlapped peaks and all ions in the experimental cluster 𝑒𝑖 are tagged as not-matrix-related. To 207 

sum, overlapped MS signals will be detected and distinguished from the rest of the ions in the 208 

cluster based on the dissimilarity of their spatial distributions. 209 
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4. Results 210 

4.1. Algorithm validation with AgLDI MSI  211 

In order to validate and optimize the algorithm, we opted to use sample tissues covered by silver 212 

nanoparticles, a well-defined and understood LDI promoting material. A total of 14 datasets, 213 

from 3 different laboratories, were used. The datasets included several animal tissues, plant 214 

tissues and human fingermarks. 215 

The algorithm was challenged with the task of classifying a list of silver-containing compounds 216 

and adducts for each dataset. The list includes a “positive class” formed by clusters that should 217 

be present in all samples used in this study and a “negative class” containing clusters that should 218 

not be present in any of them. This list is referred to as “validation list” and allowed us to assess 219 

the performance of the algorithm. An algorithm with a perfect performance should classify all 220 

clusters in the “positive class” as matrix-related signals and all clusters in the negative class as 221 

not present and thus not-matrix related. This is a common approach in bioinformatics for 222 

validating and assessing the performance of a classifier algorithm [26]. Table 2 shows the 223 

complete validation list. 224 

Silver clusters containing up to 60 atoms have been reported to form during silver sputtering 225 

[27]. The “positive class” expected to be found in all datasets is therefore formed by all silver 226 

clusters within the acquired mass range. For most of the datasets, this includes clusters from 227 

𝐴𝑔1
+ to 𝐴𝑔10

+ .  228 

The “negative class” consists of silver compounds or adducts that should not be present in any 229 

of the samples used in this study. Firstly, this list includes various silver neutral salts which 230 

cannot be measured using LDI MSI, and some synthetic compounds that are not expected to be 231 

present in animal or plant samples [28]. It also includes compounds found in aerial parts of 232 

plants, wax and insects (not found in mammal tissues nor in corn root) that have been reported 233 

to form adducts with silver in AgLDI MSI applications [29]. For each of these molecules, we also 234 

included all clusters within the acquired mass range. These particular molecules and their 235 

clusters were selected in an attempt to have a “negative class” covering the full mass range. 236 

4.2. Performance of similarity scores 237 

Using the validation list described in section 4.1, we assessed the performance of the similarity 238 
scores as a classifier to annotate 𝐴𝑔𝑛

+-related peaks in AgLDI MSI datasets. 239 

Figure 1 shows the similarity scores obtained for each cluster in Table 2 when searched in all 14 240 
datasets from Table 1. The blue points represent the “positive class” (clusters that should be 241 
present) while the red points represent the negative class (clusters that should not be present). 242 

Figure 1A represents the spectral similarity score (𝑆1) against the intra-cluster similarity score 243 
(S2) of each of these clusters. The “positive class” is clearly separated on the top right corner 244 
(high 𝑆1 and high 𝑆2). 245 

To evaluate the classifying performance of the two similarity metrics we use the Precision vs. 246 

Recall (PR) curve [26]. The precision is defined as the ratio between the number of clusters in 247 

the “positive class” classified as matrix-related (i.e. true positives) and the total number of 248 

clusters classified as matrix-related (i.e. true positives + false positives). The recall, on the other 249 

hand, is the ratio between the number of clusters in the “positive class” classified as matrix-250 
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related (i.e. true positives) and the total number of clusters in the “positive class” (i.e. true 251 

positives + false negatives). Figure 1B shows the PR curves for each of the similarity metrics 252 

proposed. The areas under the curve (AUC) of 0.97 and 0.91, respectively, show that the spectral 253 

similarity score S1 is the best classifier followed by the intra-cluster morphology similarity score 254 

𝑆2. The product of 𝑆1 · 𝑆2 had the same classifying skill as 𝑆1 with an AUC of 0.97. These results 255 

prove that 𝐴𝑔𝑛
+-related peaks can be well classified by these two metrics. 256 

𝑆1 performs much better than 𝑆2 as a classifier, and the product of 𝑆1 · 𝑆2 matches but does 257 

not improve the performance of 𝑆1 alone. Nevertheless, we still decided to use the product of 258 

𝑆1 · 𝑆2 as a classifier in rMSIcleanup instead of using 𝑆1 alone due to three main reasons. Firstly, 259 

the overlapping detection algorithm strongly relies on the morphological similarity of ions and 260 

thus depends on 𝑆2. Moreover, even though we did not find a single instance of a cluster with 261 

a high 𝑆1 score and a low 𝑆2 score (matching isotopic patterns but unmatching spatial 262 

distributions) in any of the samples, we still consider that 𝑆2 should be present to allow for 263 

correct classification should this occur. Finally, 𝑆2 can be a strong asset in applications other 264 

than AgLDI MSI where, due to less distinctive isotopic ratios, the performance of 𝑆1 as a classifier 265 

is diminished. 266 

Figure 1C shows the similarity score S1·S2 obtained by each cluster in all datasets. Clusters are 267 

arranged in decreasing order of mean similarity score. Supplementary Table S1 maps the cluster 268 

numbers to cluster chemical formula. A clear gap between an 𝑆 of 0.5 and 0.7 separates the 269 

“positive class” from the negative one.  270 

Only three false positives (i.e. clusters that should not be present but have a high 𝑆 value) were 271 

reported for adduct [C28H58O + Ag]+. An example is shown for Dataset 4 in Supplementary 272 

Figure S5. Identification by MS/MS is required to assess if the compound is indeed present in 273 

the sample.  Nevertheless, the mass error between experimental and theoretical isotopic 274 

patterns for this compound was 154 ppm, an error much higher than the expected for this 275 

dataset (acquired with a TOF MS analyzer). Therefore, we inferred that the experimental pattern 276 

detected is not related to adduct [C28H58O + Ag]+ and this is, in fact, a false positive. In order 277 

to reduce the number of false positives, the mass tolerance of the algorithm can be decreased, 278 

however, a too strict mass tolerance increases the number of false negatives.  279 

A total of six false negatives (i.e. clusters that should be present but have a low 𝑆 value) were 280 

reported for some datasets for clusters 𝐴𝑔3, 𝐴𝑔6 and 𝐴𝑔10. False negatives correspond to 281 

clusters for which the majority of peaks in their isotopic pattern were under the SNR threshold, 282 

and thus were excluded during pre-processing. In these cases, the few included peaks were not 283 

sufficient to reliably annotate the cluster. Supplementary Figure S6 shows the only exception, 284 

the 𝐴𝑔6 cluster in Dataset 12, whose misclassification is not due to intensity problems. In this 285 

case, the fingerprint analysed showed highly homogeneous ion images, which impedes the 286 

proper operation of the overlapping algorithm and leads to misclassification. Representative 287 

examples of correct annotations are shown in Supplementary Figures S7-S8.  288 

As an additional validation, the results were matched against the published annotations of the 289 

datasets provided by external laboratories. Dataset 12 contains 60 identifications by MS/MS 290 

[14]. Dataset 13 contains 4 metabolites identified by MS/MS and a total of 10 tentatively 291 

identified formulae based on exact mass [6]. Dataset 14 contains 10 metabolites identified by 292 

MS/MS and 6 tentatively identified formulae based on exact mass [6]. None of these 293 

endogenous signals was misclassified as 𝐴𝑔𝑛
+-related by our algorithm. 294 
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4.3. Overlapping peak detection performance 295 

Figure 2 shows a case example where the overlapping peak detection algorithm successfully 296 

identified overlapping ions when searching for the 𝐴𝑔6 cluster in Dataset 1. Figure 2A depicts 297 

the experimental mean profile spectrum in the mass range of interest along with the calculated 298 

profile of the 𝐴𝑔6 cluster. While most peaks follow the calculated isotopic distribution, 299 

experimental peaks at m/z 641.43, m/z 643.43 and m/z 653.43 are considerably more intense 300 

than in the predicted pattern. This generates a mismatch between the experimental and 301 

calculated peaks that leads to a low 𝑆1 score. Figure 2B shows the spatial distributions of each 302 

of the ions in the 𝐴𝑔6 cluster. The correlation map in Figure 2D clearly indicates that peaks at 303 

m/z 641.43 and m/z 643.43 have a spatial distribution that is unlike that of the rest of the ions 304 

in the cluster. The peak at m/z 653.43 also shows a considerably different spatial correlation to 305 

the rest. These low correlations lead to a lower 𝑆2 score. Figure 2C is a zoom-in of the peaks at 306 

m/z 641.43 and m/z 643.43 showing that the silver ion peaks are clearly overlapped with Ag-307 

unrelated signals.  308 

Initially, given the low S1 and S2 scores, all peaks in the 𝐴𝑔6 cluster were misclassified as not 309 

𝐴𝑔𝑛
+-related. Using the overlapping detection algorithm, the peaks at m/z 645.43, m/z 647.43, 310 

m/z 649.43 and m/z 651.43 were correctly tagged as belonging to 𝐴𝑔6. Peaks at m/z 641.43, 311 

m/z 643.43 and m/z 653.43 were tagged as related to 𝐴𝑔6 but with overlapping.  312 

Supplementary Figure S9 explores the effects of overlapping peak detection on overall 313 

performance. Two main differences can be appreciated. Firstly, there is an overall increase in 314 

the 𝑆1 · 𝑆2 score obtained by the “positive class” which leads to a bigger gap between the 315 

“positive class” and the “negative class” making the thresholding classification more robust.  This 316 

is due to the identification of some overlapping peaks in the 𝐴𝑔𝑛
+ clusters. Additionally, there is 317 

a clear improvement in the scores obtained by the 𝐴𝑔6 cluster. The 𝐴𝑔6 cluster suffers from 318 

overlapping in most of the datasets and is, therefore, the cluster most benefitted from the 319 

overlapping detection algorithm. It is also important to note that the overlapping peak detection 320 

algorithm does not add any false positives as the 𝑆1 · 𝑆2 remains unchanged for the “negative 321 

class”. This proves that overlapping detection leads to less misclassification of 𝐴𝑔𝑛
+-related 322 

peaks. 323 

4.4. Matrix-related peak annotation improves the post-processing 324 

In order to explore the influence of the annotation and removal of matrix-related peaks in the 325 

post-processing workflows, we carried out a multivariate statistical exploratory analysis. The 326 

widely used linear algorithm Principal Component Analysis (PCA) [30] was performed on all 14 327 

datasets before and after removal of the 𝐴𝑔𝑛
+ peaks. We then compared the quality of the 328 

spatial representation of the first three principal components.  Given the lack of a standard 329 

quantitative metric to compare the quality of two images in MSI, we followed the trend 330 

established by recent work [11,31,32] and performed a qualitative visual comparison. 331 

Figure 3 shows the results of this exploratory analysis on Dataset 2 and Dataset 11. In the 332 

pancreatic tissue represented in Figure 3A (Dataset 2), PC1 did not change significantly after 333 

matrix removal, while PC2 and PC3 showed a wider variety of morphologies on the tissue after 334 

the 𝐴𝑔𝑛
+ interference was removed. In the brain tissue shown in Figure 3B (Dataset 11) the 335 

contrast enhancement is even clearer in the three PCs. Before the 𝐴𝑔𝑛
+ peaks were removed, 336 

PC1 and PC3 did not capture any substantial morphology but afterwards, they did and PC2, 337 

which already showed morphological information, did so with increased contrast. To convey the 338 
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three principal components in a single picture we encoded each of them as a colour in the Red 339 

Green Blue colour model (RGB). The RGB picture became richer and more informative after the 340 

𝐴𝑔𝑛
+ peaks were removed. Similar results were obtained in the remaining 12 datasets and their 341 

corresponding images can be accessed in Supplementary Figures S10-S13. The main conclusion 342 

that can be drawn from the visual analysis of these results is that the removal of matrix-related 343 

peaks leads to a generalized enhancement in the contrast of morphological structures obtained 344 

with the first principal components. This is due to the fact that the variance contribution of the 345 

matrix-related signals is not fed to the PCA and therefore the resulting principal components are 346 

better focused on the morphology of the tissue. In agreement with previous work on the effects 347 

of MSI data reduction [33], these results demonstrate that the removal of matrix-related signals 348 

improves post-processing, especially when using linear algorithms such as the widely used PCA. 349 

5. Discussion & Conclusion 350 

The goal of this study was to develop, optimize and validate a new algorithm to annotate signals 351 

attributed to the LDI promoting material in MSI. The developed algorithm is packaged and 352 

released as rMSIcleanup, an open-source R package freely available for the scientific community 353 

and fully integrated with rMSIproc [20], a stand-alone package for the visualization, pre-354 

processing and analysis of MSI datasets. 355 

In comparison to the top-performing alternatives for matrix-related peak annotation which are 356 

based on machine and deep learning [11], rMSIcleanup has the main advantage of using two 357 

intuitive scores (accounting for the isotopic ratios of clusters and the spatial distribution of their 358 

ions) and providing a visual justification of each annotation. This is a key contribution as it helps 359 

overcome the black-box problem, increases the user’s confidence in the annotation and can help 360 

researchers optimize experimental workflows (for instance, choosing LDI promoters that 361 

minimize interferences in the m/z range of interest). Another merit of our work is that, to our 362 

knowledge, it is the first matrix signal annotation algorithm to explicitly detect and deal with 363 

overlapping MS signals, which successfully prevents overlapped peaks from being misclassified. 364 

Given that we follow a targeted analytical approach, our classification is focused only on matrix-365 

related signals while the algorithms presented by Ovchinnikova et al. [11]  have a broader scope 366 

and also classify as off-sample other exogenous compounds. In the era of big data, these two 367 

apparently opposite approaches (namely our analytical approach based on chemical similarity 368 

scores and their untargeted approach based on machine learning) must not only coexist but also 369 

complement each other following the trend already initiated in other fields [34]. This reality 370 

urges the MSI community to develop annotation algorithms capable of, not only exploiting the 371 

knowledge in the increasingly large amounts of MSI datasets available, but also incorporating 372 

metrics that take into account the chemical context of the sample to aid transparent 373 

justification. 374 

AgLDI MSI was chosen to validate the algorithm, due to the well-understood ionization of silver. 375 

A “validation list” was compiled from the literature, which included silver clusters that should 376 

be present in all samples and silver adducts or compounds that should not be present in any of 377 

them. Given the heterogeneity of the samples used in this study, the described validation list 378 

was adapted to each dataset. For each dataset, those clusters in the validation list for which the 379 

experimental data contained none of their theoretical masses were excluded. These 380 

adjustments in the validation list prevented an overestimation of the performance of the 381 

algorithm attributed to a high number of correctly classified “negative class” clusters (i.e. true 382 

negatives) located in mass ranges with no signal. We propose this validation strategy as a novel 383 

alternative to more common validation approaches such as chemical standards [6] or expert 384 
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annotation [11,32]. This study adds to previous work [6,14,17,29,35] and further demonstrates 385 

the potentiality of AgLDI MS imaging, a thriving technology known for its reduced background 386 

signals in spatial metabolomics that is strongly complemented by our annotation algorithm as it 387 

further removes the influence of the matrix. 388 

In agreement with previous work on the effects of MSI data reduction [33], we have 389 

demonstrated that the annotation and removal of signals related to the LDI promoting material 390 

used can further enhance post-processing, due to the elimination of variables attributed to 391 

exogenous compounds that do not reflect the morphology nor chemical composition of the 392 

sample. These results highlight the need to include software annotation tools such as 393 

rMSIcleanup in MSI workflows before exploring the datasets with classical data analysis 394 

techniques used in metabolomics. Here we would like to emphasize the need for a standardized 395 

quantitative metric to assess the quality of MSI images and we acknowledge the relevance of 396 

standardization initiatives such as the MALDISTAR project (www.maldistar.org). 397 

We envision two main applications for rMSIcleanup. On the one hand, it can be used in a purely 398 

exploratory fashion to better understand ionization and adduct cluster formation in new 399 

matrices, tissues and applications. In this case, the user is advised to add a long list of potential 400 

adducts or neutral losses to assess their formation. The validation approach followed in this 401 

paper is a clear example of this exploratory application of rMSIcleanup. A second application is 402 

the automated peak annotation of well-known matrices and tissues. In this case, only the 403 

clusters that are known to be formed need to be given to the software. This curated selection 404 

increases the data-processing speed. The set of matrix-related annotated peaks can then be 405 

eliminated from the dataset prior to performing post-processing workflows such as multivariate 406 

statistical analysis. 407 

Finally, the promising results obtained in the annotation of 𝐴𝑔𝑛
+-related peaks in AgLDI MSI open 408 

the door to the extension of this methodology to more widely used matrices such as 2,5-409 

Dihydroxybenzoic acid (DHB), 1,5-Diaminonaphthalene (DAN), and 9-Aminoacridine (9AA) 410 

among others. These organic matrices pose greater challenges. Firstly, they lead to increased 411 

matrix background due to their greater fragmentation and adduct formation [36–38] and the 412 

higher quantities in which they are added [37]. Moreover, they present the problem of “hot 413 

spot” formation given their less homogeneous application process [39]. These issues highlight 414 

not only the benefits of AgLDI MSI but also that matrix-related peak annotation can benefit data 415 

post-processing even further in applications using organic matrices. 416 
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Tables and Figures 438 

No. Species Tissue type Ag deposition system and 
estimated layer thickness 

Lateral 
Res. 

m/z range Mass spectrometer Acq. Mode Ref. 

1 Mouse Pancreas ATC Orion 8-HV Sputtering 
system, 5 nm  

30 𝜇𝑚 70-1200 Bruker ultrafleXtreme™ MALDI-TOF/TOF Positive / Profile - 

2 Mouse Pancreas ATC Orion 8-HV Sputtering 
system, 5 nm  

30 𝜇𝑚 70-1200 Bruker ultrafleXtreme™ MALDI-TOF/TOF Positive / Profile - 

3 Mouse Kidney ATC Orion 8-HV Sputtering 
system, 5 nm  

100 𝜇𝑚 70-1200 Bruker ultrafleXtreme™ MALDI-TOF/TOF Positive / Profile - 

4 Mouse Brain ATC Orion 8-HV Sputtering 
system, 5 nm  

80 𝜇𝑚 70-1200 Bruker ultrafleXtreme™ MALDI-TOF/TOF Positive / Profile - 

5 Mouse Brain ATC Orion 8-HV Sputtering 
system, 5 nm  

80 𝜇𝑚 70-1200 Bruker ultrafleXtreme™ MALDI-TOF/TOF Positive / Profile - 

6 Mouse Brain ATC Orion 8-HV Sputtering 
system, 5 nm  

80 𝜇𝑚 70-1200 Bruker ultrafleXtreme™ MALDI-TOF/TOF Positive / Profile - 

7 Mouse Brain ATC Orion 8-HV Sputtering 
system, 5 nm  

80 𝜇𝑚 80-1000 Bruker ultrafleXtreme™ MALDI-TOF/TOF Positive / Profile - 

8 Mouse Brain ATC Orion 8-HV Sputtering 
system, 5 nm  

80 𝜇𝑚 80-1000 Bruker ultrafleXtreme™ MALDI-TOF/TOF Positive / Profile - 

9 Mouse Brain ATC Orion 8-HV Sputtering 
system, 5 nm  

80 𝜇𝑚 80-1000 Bruker ultrafleXtreme™ MALDI-TOF/TOF Positive / Profile - 

10 Mouse Brain ATC Orion 8-HV Sputtering 
system, 5 nm  

80 𝜇𝑚 80-1000 Bruker ultrafleXtreme™ MALDI-TOF/TOF Positive / Profile - 

11 Mouse Brain Cressington Sputter 
Coater, 23 ± 2 nm 

75 𝜇𝑚 100-1100 Bruker ultrafleXtreme™ MALDI-TOF/TOF Positive / Profile [18] 

12 Homo sapiens 
sapiens 

Fingermark Cressington Sputter 
Coater, 14 ± 2 nm 

75 𝜇𝑚 100-1100 Bruker ultrafleXtreme™ MALDI-TOF/TOF Positive / Profile [14] 

13 B73 inbred 
corn 

Root Cressington 108Auto, 5s 10 𝜇𝑚 50-970 Thermo Finnigan™ MALDI-LTQ-Orbitrap 
Discovery  

Positive / Centroid [6] 

14 B73 inbred 
corn 

Root Cressington 108Auto, 5s 10 𝜇𝑚 50-900 Thermo Finnigan™ MALDI-LTQ-Orbitrap 
Discovery 

Negative / Centroid [6] 

Table 1. List of the 14 AgLDI MSI datasets used for validation. Sample type, sample preparation and LDI-MSI acquisition parameters. Datasets from 1-10 were acquired in-house. Datasets 11-14 439 
were provided by external laboratories.440 
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Chemical formula Validation list Type 
Monoisotopic 

mass (n=1) 
PubChem 

CID 
Ref 

[𝐴𝑔]𝑛
+ Positive class Silver cluster 106.9051 104755 [27] 

[𝐴𝑔𝐹]𝑛 

Negative class 

Neutral salt 

125.903 62656 

[28] 

[𝐴𝑔𝐶𝑙]𝑛 141.8734 24561 

[𝐴𝑔𝐵𝑟]𝑛 185.8229 66199 

[𝐴𝑔𝐼]𝑛 233.809 24563 

[𝐴𝑔𝐻]𝑛 

Synthetic 
compound 

107.9124 139654 

[𝐴𝑔𝐻2]𝑛 108.9202 92028350 

[𝐴𝑔𝐻𝑒]𝑛 110.9072 71348557   

[𝐴𝑔𝑁𝑂3]𝑛 168.8924 24470 

[𝐴𝑔𝑇ℎ2]𝑛 570.9807 71351869 

[𝐴𝑔𝐹2]𝑛 144.9014 82221 

[𝐴𝑔𝐵𝐹4]𝑛 192.9111 159722 

[𝐶27𝐻56 + 𝐴𝑔]𝑛
+ Plants, wax, 

insects’ 
pheromones 

487.3428 - 

[29] 

[𝐶29𝐻60 + 𝐴𝑔]𝑛
+ 515.3741 - 

[𝐶31𝐻64 + 𝐴𝑔]𝑛
+ 543.4054 - 

[𝐶26𝐻54𝑂 + 𝐴𝑔]𝑛
+ 

Plant wax 

489.322 - 

[𝐶28𝐻58𝑂 + 𝐴𝑔]𝑛
+ 517.3533 - 

[𝐶30𝐻62𝑂 + 𝐴𝑔]𝑛
+ 545.3846 - 

[𝐶26𝐻52𝑂2 + 𝐴𝑔]𝑛
+ 

Wax 
503.3013 - 

[𝐶30𝐻60𝑂2 + 𝐴𝑔]𝑛
+ 559.3639 - 

Table 2.” Validation list” used for validation. The “positive class” consists of silver clusters. The “negative class” 441 
consists of neutral silver salts, synthetic silver compounds and silver adducts that are not expected to be found in 442 
animal samples. The index n denotes the number of atoms or molecules inside the cluster. The minimum and 443 
maximum value of n depend on the monoisotopic mass of the atom or molecule and the mass range of the dataset. 444 
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 445 

Fig. 1. Similarity scores performance (A) Spectral similarity S1 vs. Intra-cluster morphological similarity S2 scatter plot. 446 
Each point represents a potential cluster classified by the algorithm. All clusters shown in Table 2 are evaluated for all 447 
14 datasets presented in Table 1. Blue points represent the “positive class” (should be present in the sample) while the 448 
red points correspond to the negative class (should not be present in the sample). Most “positive class” points are 449 
located in the top right corner well separated from the negative class points. This indicates proper classification power. 450 
(B) Precision and recall (PR) curve computed according to Davis et al. 2006 [40]. (C) Similarity score S1·S2 vs. Cluster 451 
number. Clusters are arranged in decreasing order of mean similarity score. A clear gap between an S of 0.5 and 0.7 452 
separates the “positive class” from the negative class. Refer to Supplementary Table S1 for a mapping of cluster 453 
numbers to cluster chemical formula. 454 
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 455 

Fig. 2. Overlapping detection algorithm performance when searching for the 𝐴𝑔6 cluster in Dataset 1. (A) Comparison 456 
between the mean experimental spectra and the theoretical 𝐴𝑔6 cluster at the 𝐴𝑔6 cluster masses within a tolerance 457 
of 4 scans. Red and blue represent theoretical and experimental profiles, respectively. As can be seen, while the peaks 458 
in the centre of the cluster perfectly match the theoretical ratios, the peaks on the edges differ considerably. (B) Spatial 459 
distributions of the experimental cluster peaks. After performing the overlapping detection only the four ion images 460 
in the centre in green are classified as Ag-related. The remaining ion images in red are classified as 𝐴𝑔𝑛+ suffering 461 
from overlapping. The morphologies of the 𝐴𝑔𝑛+ overlapped ions (red) differ from the ones without overlapping 462 
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(green) due to ion overlapping. (C) Correlation matrix between the experimental ion images of the 𝐴𝑔6 cluster. The 463 
ion image number corresponds to the position of the ion in the isotopic pattern in ascending order of m/z. The first 464 
two images are clearly not correlated with the remaining images of the cluster. The last image also shows a 465 
considerably lower correlation.  (D) Zoom-in of experimental mean spectra. Peaks m/z 641.43 and m/z 643.43 show 466 
clear overlapping.  467 

 468 

Fig. 3 Exploratory analysis with PCA before and after removing matrix-related peaks. Red, green and blue are used to 469 
represent the spatial distribution of PC1, PC2 and PC3, respectively. The last column uses the Red Green Blue colour 470 
model (RGB) to represent the first three principal components in a single image. The annotation and removal of the 471 
matrix-related peaks lead to a generalized improvement in the contrast of morphological structures in all principal 472 
components. (A) Pancreas tissue from Dataset 2. (B) Brain tissue from Dataset 11 [18]. 473 

  474 
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