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Abstract 24 

Summary:  25 

 Advances in high-throughput sequencing technologies and bioinformatic pipelines have 26 

exponentially increased the amount of data that can be obtained from uncultivated microbial 27 

lineages inhabiting diverse ecosystems. Various annotation tools and databases currently exist for 28 

predicting the functional potential of sequenced genomes or microbial communities based upon 29 

sequence identity. However, intuitive, reproducible, and user-friendly tools for further exploring 30 

and visualizing functional guilds of microbial community metagenomic sequencing datasets 31 

remains lacking. Here, we present metabolisHMM, a series of workflows for visualizing the 32 

distribution of curated and user-provided Hidden Markov Models (HMMs) to understand 33 

metabolic characteristics and evolutionary histories of microbial lineages. metabolisHMM 34 

performs functional annotations with a set of curated or user-defined HMMs to 1) construct 35 

ribosomal protein and single marker gene phylogenies, 2) summarize the presence/absence of 36 

metabolic pathway markers, and 3) create heatmap visualizations of presence/absence summaries.  37 

 38 

 39 

Availability and Implementation: metabolisHMM is freely available on Github at 40 
https://github.com/elizabethmcd/metabolisHMM and on PyPi at 41 
https://pypi.org/project/metabolisHMM/ under the GNU General Public License v3.0. 42 
 43 
 44 

Contact: elizabethmcd93@gmail.com  45 

 46 

 47 

 48 
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1. Introduction 49 

 Common comparative genomic approaches for analyzing large metagenomic datasets 50 

include analyzing the distribution and evolutionary history of genes of interest, describing the 51 

presence/absence of specific metabolic pathways in metagenome assembled genomes (MAGs) or 52 

single cell genomes (SAGs), and comparing these results to existing publicly available genomes. 53 

Many of these steps require computational expertise in several bioinformatic tools, specific file 54 

formats, and sometimes use of expensive, proprietary software platforms. Tools for intuitively 55 

summarizing and visualizing the functional potential of sequenced genomes in a high-throughput, 56 

user-friendly, reproducible manner that allow for maximum user flexibility (i.e. custom marker 57 

sets) and making comparisons among large genome datasets are overall lacking. Here we present 58 

metabolisHMM, a set of reproducible workflows for executing common comparative genomics 59 

analyses using profile Hidden Markov Models (HMMs). metabolisHMM encompasses a set of 60 

easy-to-use and flexible workflows for visualizing phylogenies and metabolic heatmaps from both 61 

curated and custom-provided HMM-based profile annotations. We demonstrate the capabilities 62 

and output results of metabolisHMM by using publicly available bacterial and archaeal genomes 63 

from a subsurface aquifer system (1), available as an online tutorial at 64 

https://github.com/elizabethmcd/metabolisHMM/wiki/Subsurface-Aquifer-Tutorial.  65 

 66 

2. Implementation 67 

 The metabolisHMM package contains two main functionalities: 1) phylogeny construction 68 

to visualize evolutionary histories and 2) heatmap-based synthesis of metabolic pathway 69 

distributions. The basic input requirements for each of the four embedded workflows are DNA 70 

sequences as raw genomic scaffolds in fasta file format for subsequent gene prediction using 71 
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Prodigal (2). Each workflow uses either curated or user-provided custom profile Hidden Markov 72 

Models (HMMs) with a threshold cutoff score provided by the user for performing functional 73 

annotation, based on the hmmsearch option of HMMER (3). Additionally, the user defines an 74 

output directory in which all intermediate files such as reformatted fasta files, HMM output results, 75 

alignments, and final phylogenies and heatmap figures are deposited. The remaining arguments 76 

and steps are workflow dependent. Detailed installation instructions and documentation for using 77 

the metabolisHMM package and each workflow is provided in the repository wiki: 78 

https://github.com/elizabethmcd/metabolisHMM/wiki.  79 

2.1 Constructing single marker phylogenies 80 

 The single-marker-phylogeny workflow searches a panel of genomes for a specific gene 81 

marker and builds a phylogenetic tree. Any of the package-provided curated marker sets or a user-82 

provided marker can be used for constructing a single-marker phylogeny. The alignment is 83 

constructed using MAFFT (4), and the user can choose to construct the phylogenetic tree using 84 

either FastTree (5) or RAxML (6), depending on available computational resources. Due to 85 

common issues with MAG gene content redundancy and unknown consequences of copy number 86 

variation from uncultivated organisms, metabolisHMM only uses the top-scoring hit for a 87 

particular marker within a genome for constructing the final alignment and phylogeny. Given a 88 

corresponding metadata file, the user can output data files configured for viewing trees with the 89 

interactive Tree Of Life (iTOL) online tool (7).  90 

2.2 Creating genome phylogenies 91 

 The create-genome-phylogeny workflow takes a set of input genomes and creates a 92 

ribosomal phylogeny or species tree. We provide a set of 16 single copy ribosomal proteins as part 93 

of the metabolisHMM software package release that are specific for archaea or bacteria (32 94 
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markers total) as described in Hug et al. (8). Alignments and tree construction are performed as 95 

described above, with individual alignments concatenated across all genomes. Since 96 

metabolisHMM was developed specifically for comparing MAGs and SAGs against isolate 97 

genomes, metabolisHMM will warn the user if a genome contains less than 12 or a pre-defined 98 

value of ribosomal markers, as confidence in the phylogenetic reconstruction will be low if a 99 

genome is missing several markers in the final alignment, due to incompleteness.  100 

2.3 Summarizing broad metabolic features using curated and custom markers 101 

 The summarize-metabolism workflow uses a set of manually curated profiles spanning 102 

major transformations in the carbon, nitrogen, sulfur, and hydrogen cycles, that were constructed 103 

and made publicly available by Anantharaman et al. (1). Marker descriptions are provided in the 104 

ancillary data files of the software distribution. The user also provides a metadata file containing 105 

either the specific taxonomical names for each genome, or broad groups by which to aggregate 106 

sets of genomes together, such as by phylum-level placement or sample origin. Any marker-107 

genome pair with a value greater than 1 is changed to a value of 1, resulting in a table of 0’s and 108 

1’s for the absence and presence, respectively, of every marker-genome pair. The resulting 109 

heatmap shows the presence/absence of all markers spanning broad biogeochemical cycles to show 110 

the overall functional guilds of the input genomes. In addition to visualizing curated marker sets 111 

provided with the metabolisHMM package, the user can specify any marker sets that are custom-112 

made or from outside databases, such as the PFAM and TIGRFAM databases, and/or the recently 113 

released KofamKOALA distribution. (9). The search-custom-markers workflow takes a set of 114 

specified markers in a user-provided order and produces a heatmap similar to that of the broad 115 

summaries mentioned above.  116 

3. Results and Assessment 117 
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To demonstrate the main features of the metabolisHMM workflow, we used a set of  2545 118 

publicly available bacterial and archaeal genomes from an aquifer metagenomic dataset (1). All 119 

demo figures are available within the tutorial at 120 

https://github.com/elizabethmcd/metabolisHMM/wiki/Subsurface-Aquifer-Tutorial. Using the 121 

single-marker-phylogeny workflow, we created a phylogeny of the folD marker, part of the 122 

reductive acetyl-coA pathway (10). We created a corresponding ribosomal phylogeny of genomes 123 

containing the folD marker. Using the FastTree option for constructing phylogenies, to search all 124 

2,545 genomes for the folD marker, construct the phylogeny of the single marker, and make a 125 

corresponding ribosomal phylogeny of the 610 hits was completed in less than 30 minutes using 1 126 

thread on a standard laptop (2015 MacBook Pro). We then characterized the broad metabolic 127 

capabilities of a subset of groups of MAGs within the aquifer dataset. Genomes were aggregated 128 

by phylum or superphylum group, where the shade of the cell for a specific marker indicates the 129 

percentage of genomes within that group that contain each marker. To screen the 874 genomes for 130 

all 80 curated markers, this workflow completed in approximately 1 hour using 1 thread. Using 131 

the search-custom-markers workflow, we screened 874 genomes for the main steps and subunits 132 

that are part of the methyl and carbonyl branches of the reductive acetyl-CoA cycle (11). Markers 133 

were accessed from the KofamKOALA KEGG distribution of HMMs and the corresponding 134 

threshold cutoffs for each marker was used as suggested (9). For screening 874  genomes with 15 135 

markers this workflow completed in less than 30 minutes using 1 thread.  136 

We compared the main functionalities and unique capabilities included in metabolisHMM 137 

with other recently released and popular software pipelines used for visualizing various functional 138 

aspects of sequenced genomes (Table 1). This includes GtoTree, MetaSanity, METABOLIC, 139 

KEGG Decoder, and Anvi’o (12–16). Overall, the core functionalities of metabolisHMM are 140 
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distributed among several existing pipelines. However, metabolisHMM allows for maximum 141 

flexibility concerning external HMM profiles, making a corresponding ribosomal phylogeny of 142 

genomes with a particular single marker, and customized groupings and orderings of heatmap 143 

visualizations. Additionally, metabolisHMM allows for all of these core functions and powerful 144 

customized options through simple workflows that are easy to install and use reproducibly.   145 

 146 

Table 1: Comparison of metabolisHMM functionalities with other pipelines. If a particular 147 

software pipeline was not intended for certain functions, we denoted that with NA. Pipelines 148 

encompassing a functionality but does not include flexible or customizable options, for example, 149 

are denoted with an X. Packages with a comparable functionality to metabolisHMM are denotated 150 

with a ✔.		151 
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 159 

Tool
Phylogenies of 
single markers

Phylogenomics/
phylogenies

Corresponding 
ribosomal tree of single 
marker hits

Curated metabolic 
markers/summaries

Custom marker 
input options

Heatmap 
visualizations

Custom group 
aggregating/row 
ordering

GtoTree � � � NA � NA NA

MetaSanity NA � NA � � � �

METABOLIC NA NA NA � � � �

KEGG Decoder NA NA NA � � � �

Anvi'o � � � NA � � �

metabolisHMM � � � � � � �
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