

1 Diverse demographic histories in a guild of hymenopteran
2 parasitoids

3 William Walton¹, Graham N Stone¹, and Konrad Lohse *¹

4 ¹Institute of Evolutionary Biology, University of Edinburgh, EH9 3FL, UK

5 * correspondence to konrad.lohse@ed.ac.uk

6 **Abstract**

7 Signatures of changes in population size have been detected in genome-wide variation in many species. However, the causes
8 of such changes and the extent to which they are shared across co-distributed species remain poorly understood. During
9 Pleistocene glacial maxima, many temperate European species were confined to southern refugia. While vicariance and range
10 expansion processes associated with glacial cycles have been widely studied, little is known about the demographic history of
11 refugial populations, and the extent and causes of demographic variation among codistributed species. We used whole genome
12 sequence data to reconstruct and compare demographic histories during the Quaternary for Iberian refuge populations in a
13 single ecological guild (seven species of chalcid parasitoid wasps associated with oak cynipid galls). We find support for large
14 changes in effective population size (N_e) through the Pleistocene that coincide with major climate change events. However,
15 there is little evidence that the timing, direction and magnitude of demographic change are shared across species, suggesting that
16 demographic histories are largely idiosyncratic. Our results are compatible with the idea that specialist parasitoids attacking a
17 narrow range of hosts experience greater fluctuations in N_e than generalists.

18 **Keywords:** N_e change, comparative phylogeography, glacial refugia, population genomics, chalcid

19 **Introduction**

20 Natural populations change in size and distribution in response to biotic and abiotic factors over both ecolog-
21 ical and evolutionary timescales. Given that population size is a fundamental parameter in the evolutionary

22 process, there is considerable interest in using genetic variation in modern samples to reconstruct the demo-
23 graphic history of populations (see Beichman et al., 2018, for a recent review). A key question is to what
24 extent demographic history has been shaped by past climatic events and, if so, whether such responses are
25 concordant across taxa, or vary with species traits.

26 During Pleistocene glacial maxima, the ranges of many temperate European plant and animal taxa were
27 restricted to southern refugia, primarily in Iberia, Italy and the Balkans (Hewitt, 2000; Feliner, 2011; Hofreiter
28 and Stewart, 2009). Modern refugial populations of such taxa commonly harbour higher genetic diversity than
29 northern populations founded by postglacial range expansion (e.g. Hewitt, 2000; Rokas et al., 2003; Tison
30 et al., 2014; Vitales et al., 2016) (but see Comps et al., 2001). However, little is known about how refugial
31 population sizes varied through glacial cycles, and the extent to which such variation is concordant across
32 co-distributed species. One hypothesis is that contraction of suitable habitat during glacial maxima reduced
33 population sizes simultaneously across suites of ecologically interacting species. Alternatively, the long term
34 size of refugial populations may be shaped by gene flow both within and between major refugia during brief
35 warmer periods within glacial maxima (Cooper et al., 2015; Hofreiter and Stewart, 2009; Tallavaara et al.,
36 2015). Persistent spatial structure within refugia has been discovered in some species, leading to a hypothesis
37 of 'refugia within refugia' (Gómez and Lunt, 2007; Feliner, 2011). In this case, the long term genetic diversity
38 of a species is predicted to be a function of its dispersal ability. We might also expect ecologically specialist
39 species (whose biology is critically dependent on interactions with a small number of other taxa) to experience
40 greater or more frequent demographic changes than generalists (whose demography is less tightly coupled
41 to abundance of any specific interaction) (Rand and Tscharntke, 2007; Östergård and Ehrlén, 2005). While
42 specialists have been shown to be more vulnerable than generalists to habitat fragmentation and climate
43 change in taxa ranging from parasites and parasitoids (Cizauskas et al., 2017; Rand and Tscharntke, 2007)
44 to fungi (Nordén et al., 2013) and mammalian predators (Janecka et al., 2016), few studies have investigated
45 whether specialists have experienced stronger or more frequent N_e changes than generalists over evolutionary
46 timescales (Mackintosh et al., 2019). A third alternative is associated with a pattern of longitudinal range
47 expansion across Europe seen in some taxa (including the system studied here) through the Pleistocene
48 (Stone et al., 2012; Bunnefeld et al., 2018). For refugial populations that formed during the Pleistocene, we
49 might expect signatures of past increases in population size. Here we discriminate between these alternative
50 hypotheses for Iberian refuge populations of multiple species in a single ecological guild - chalcid parasitoid
51 wasps associated with herbivorous cynipid gall wasp hosts on oak.

52 Oak gall wasp communities are multitrophic systems comprising oak (*Quercus*) host plants, cynipid

53 gall wasp herbivores and chalcid parasitoid natural enemies (Stone et al., 2002). The latter are obligate
54 specialists of cynipid galls, allowing the guild of parasitoids to be considered in ecological isolation. Many of
55 the component species show broad longitudinal distributions, extending from Iberia in the West to Iran in
56 the East, and all species studied to date are genetically structured into major southern refuge populations
57 (Stone et al., 2012, 2017; Nicholls et al., 2010, 2012; Lohse et al., 2010, 2012; Petit et al., 2002). Bunnefeld
58 et al. (2018) showed that refugia in the Balkans and Iberia were colonized primarily through westwards range
59 expansion from an eastern origin one or more glacial cycles in the past. Iberian populations have lower
60 genetic diversity than more eastern refugia, show little evidence of population structure (Rokas et al., 2003;
61 Stone et al., 2007; Nicholls et al., 2010) (for an exception see Rokas et al. (2001), and are the source of
62 most post-colonisation gene flow (Stone et al., 2017; Bunnefeld et al., 2018). Thus for most species in this
63 community the Iberian refuge population represents the end-point of a longitudinal expansion history.

64 Here we use whole genome sequence (WGS) data to quantify and compare the demographic histories
65 of Iberian refuge populations in seven chalcid parasitoid species in the oak gall wasp community. Our
66 sampling targets males (five from Iberia, one from the Balkans in each species), whose haploid genome
67 facilitates analysis (Bunnefeld et al., 2018; Hearn et al., 2014). WGS data allow for powerful demographic
68 inference even for non-model organisms. However, given fragmented reference genomes and limited sample
69 sizes available for these species, inference methods must be chosen carefully and, ideally, should use linkage
70 as well as allele frequency information. In particular, inference based only on the site frequency spectrum
71 (SFS) (e.g. Gutenkunst et al., 2009) requires larger samples for accurate inference of recent population
72 history. We investigate demographic history using two approaches that use the signal contained in genome-
73 wide variation of a small sample of individuals in different ways (Bunnefeld et al., 2018; Lohse et al., 2011; Li
74 and Durbin, 2011): we use a parametric maximum-composite likelihood (MCL) method based on a blockwise
75 summary of sequence variation (Lohse et al., 2011) (hereafter termed the 'blockwise method') to fit a model
76 of a single instantaneous step change in N_e . Using analytic likelihood calculations to fit such fully specified
77 but minimally complex histories utilises both frequency and linkage information and facilitates comparison
78 between species for the timing and magnitude of N_e change. We also applied a non-parametric method, the
79 Pairwise Sequentially Markovian Coalescent (PSMC) (Li and Durbin, 2011), based on the distribution of
80 pairwise differences in minimal samples of two haploid genomes. PSMC generates a more resolved picture
81 of N_e change through time, including an estimate of the time at which populations have diverged. As the
82 two methods use different data properties and sampling strategies, we can have high confidence in inferences
83 supported by both. Both methods have contrasting limitations: while the blockwise method – by design –

84 cannot detect gradual N_e changes or resolve population histories involving multiple changes, PSMC is known
85 to smooth out very sudden changes. PSMC is based on fewer samples which contain less information (i.e.
86 fewer coalescence events) about the recent N_e (Li and Durbin, 2011). The two methods therefore complement
87 each other and together provide a comprehensive picture of population history.

88 We address the following questions: *(i)* What signatures of N_e change, if any, are present for each species?
89 *(ii)* To what extent are the direction and timing of changes in N_e concordant across species? Do species show
90 evidence for simultaneous N_e change suggesting concordant responses to a shared underlying driver such as
91 climate change, or are their demographic histories largely idiosyncratic? *(iii)* Do major demographic changes
92 coincide with specific glacial or interglacial periods in the Pleistocene? *(iv)* Did inferred demographic changes
93 occur after the colonisation of Iberia, or are they shared with other refugial populations, suggesting that they
94 took place in a shared ancestral population prior to the colonisation of Iberia?

95 Materials and Methods

96 Samples and sequencing

97 We analysed whole genome Illumina paired end resequencing data for six (haploid) male individuals in each
98 of seven species of chalcid parasitoids (spanning five families): *Megastigmus dorsalis* and *M. stigmatizans*
99 (Megastigmidae), *Torymus auratus* (Torymidae), *Ormyrus nitidulus* and *O. pomaceus* (Ormyridae), *Eury-*
100 *toma brunniventris* (Eurytomidae) and *Cecidostiba fungosa* (Pteromalidae) (Table S1). The *M. dorsalis*
101 individuals correspond to cryptic species 1 for this complex, as defined by Nicholls et al. (2010). For each
102 species, we sampled five individuals from Iberia (the focal refugial population) and one from Hungary (the
103 Balkan refugium). Data for the Hungarian and two Iberian samples of each species were generated previously
104 by Bunnefeld et al. (2018). We generated analogous data for the remaining three Iberian individuals using
105 the protocols described by Bunnefeld et al. (2018). DNA was extracted from individual wasps using the Qi-
106 agen DNeasy kit. Individual Nextera genomic libraries were generated and sequenced on an Illumina HiSeq
107 2000 by the NERC Edinburgh Genomics facility, UK. Raw reads were deposited at the SRA (PRJEB20883).
108 Mean coverage per haploid individual ranged from 3.5x to 18.5x. Raw reads were mapped back to reference
109 genomes assembled by Bunnefeld et al. (2018) using *BWA* (0.7.15-r1140) (Li and Durbin, 2009), duplicates
110 were marked with *picard* (V2.9.0) *MarkDuplicates* (broadinstitute.github.io/picard/), variants were called
111 using *Freebayes* (v1.1.0-3-g961e5f3) (<https://github.com/ekg/freebayes>) with a minimum base quality of 10
112 and a minimum mapping quality of 20 (see Bunnefeld et al. (2018) for further details).

113 Inferring step changes in population size

114 We fitted a model of a single instantaneous step change in N_e using the framework for blockwise likelihood
115 calculations developed by Lohse et al. (2011). The model includes three parameters: the scaled mutation
116 rate $\theta = 4N_0\mu \times l$ (where N_0 is the current N_e and l is block length); T , the time of N_e change measured in
117 $2N_e$ generations; and $\lambda = N_0/N_1$, the relative magnitude of the N_e change, (where N_1 denotes the N_e prior
118 to the step change).

119 Following Bunnefeld et al. (2015), we summarized sequence variation in short blocks of a fixed length l by
120 the (folded) blockwise site frequency spectrum (bSFS). Given our sampling scheme of $n = 5$ haploid males,
121 the bSFS consists of counts of two types of variants: those for which the minor allele occurs once or twice in
122 the sample. The probability of observing a particular set of mutations in a block can be computed analytically
123 as a higher-order derivative of the generating function of genealogies (Lohse et al., 2011). The product of
124 probabilities of bSFS configurations across blocks can be interpreted as the composite likelihood (CL) of
125 the model. We maximised $\ln CL$ in *Mathematica* (Wolfram Research, 2016) using the function *NMaximise*
126 (Supplementary File 1).

127 To generate blockwise data for each species, we applied the same quality filters used for calling SNPs
128 to all sites, i.e. we identified regions of the genome with a base quality >10 and mapping quality >20 in
129 each individual from bam files by the CallableLoci walker of *GATK* (v3.4) (Van der Auwera et al., 2013).
130 Only regions meeting these criteria in all five Iberian individuals were included in further analyses. Custom
131 scripts were used to partition the data into blocks of a fixed length l of callable sites. l was chosen to be
132 inversely proportional to the pairwise genetic diversity of each species (Table 2), such that blocks contained
133 on average two pairwise differences. This ensures that the information content per block as well as any effect
134 of intra-block recombination is consistent across species. Blocks with a physical span (including non-callable
135 sites) of $> 2l$, contigs with length $< 2l$, and blocks with more than five “None” (uncalled) sites were removed.

136 We assessed support for a step change in N_e relative to the (nested) null model of constant N_e by
137 generating parametric bootstraps with the coalescent simulator *msprime* (Kelleher et al., 2016). For each
138 species, 100 replicate data sets were simulated under the null model assuming estimates of recombination
139 inferred by Bunnefeld et al. (2018) (Table S3). Each dataset had the same total length as the real data
140 (after filtering) and was partitioned into 5,000 windows of sequences (for computational efficiency). Both
141 a null model of constant N_e and a step change model were fitted to each replicate, and the 95% quantile
142 of the difference in support between models $\ln CLs$ was compared to that of the real data. Confidence
143 intervals (CIs) of parameter estimates were obtained via an analogous parametric bootstrapping procedure:

144 we simulated 100 datasets with recombination under the inferred step change model and fitted that model
145 to each simulation replicate. CIs were obtained as 2.5% and 97.5% quantiles of the distribution of parameter
146 estimates, and were centred around the point estimates of parameters obtained from the real data.

147 Reconstructing ancestral population size with PSMC

148 The Pairwise Sequentially Markovian Coalescent (PSMC) (Li and Durbin, 2011) was used to infer a history
149 of population size change in each species. PSMC is a non-parametric method that reconstructs a trajectory
150 of past N_e from the density of pairwise differences along the genome via a hidden Markov model in which
151 the hidden states are pairwise coalescence times, the distribution of which is used to estimate N_e in discrete
152 time intervals. In each species, the two Iberian individuals with the greatest average read depth were used
153 as the focal pair. Fastq files were generated using *samtools mpileup* (Li et al., 2009), and regions covered
154 in both individuals were combined into fastq files using *seqtk mergefa* (<https://github.com/lh3/seqtk>) and
155 converted into PSMC input files. PSMC, by default, discretizes pairwise alignments into blocks of 100bp
156 which are encoded as variant if they contain at least one variant. While this makes analyses of large genomes
157 with low diversity (e.g. humans) computationally efficient, this discretisation is too coarse when considering
158 more diverse genomes where the chance of several pairwise differences occurring in the same 100 bp block
159 is non-negligible (which biases N_e estimates downwards). We investigated the effect of varying block length
160 (100, 50, 25 and 1bp) on N_e inference for the most diverse (*E. brunniventris*, $\pi = 0.0071$) and the least
161 diverse (*M. stigmatizans* $\pi = 0.00067$) species in our set. As expected, population trajectories showed higher
162 N_e and were pushed back in time with smaller block lengths (Figure S1). We chose a block length of 25bp
163 for all analyses which minimizes these biases without excessive computational cost.

164 We inferred 30 free interval parameters across 64 time intervals (with the option -p “28*2+3+5”). The
165 maximum coalescence time (-t) was set to 5, the initial value of θ/ρ (-r) to 1. 100 bootstraps were performed
166 for each run. Times of peak N_e and values of N_e in each time interval were considered to be different between
167 species if there was no overlap in bootstrap replicates. To be able to compare the magnitude of inferred N_e
168 change between PSMC and blockwise analyses, we normalised the maximum N_e inferred by each method by
169 the long-term average N_e estimated simply from π (Table 2) as $\hat{N}_{e,\pi} = \pi/(4\mu)$ and computed the following
170 measure of N_e change: $\text{Max}[N_e]/\hat{N}_{e,\pi}$. Unlike the size of the step change (λ), this measures the maximum
171 N_e relative to the average over the entire history of a sample and is therefore expected to be smaller than λ .

172 Calibrating the timing of events

173 Time estimates were converted into years assuming a mutation rate of 3.46×10^{-9} mutations per base per
174 generation estimated for *Drosophila melanogaster* (Keightley et al., 2009). We assumed two generations per
175 year for all species with the exception of *M. stigmatizans* which has a single generation per year (Stone
176 et al., 2012). While this calibration allows comparisons with the estimates obtained by Bunnefeld et al.
177 (2018) (calibrated in the same way), these absolute times are likely underestimates and should be treated
178 with caution (given that we use a spontaneous mutation rate estimate and not all *de novo* mutations are
179 selectively neutral). We stress, however, that comparing the relative timing of demographic events across
180 this set of parasitoids only relies on the assumption of the same per generation mutation rate across species
181 rather than any absolute calibration.

182 Cross-population PSMC analyses

183 To test whether population size changes in each species occurred before or after the divergence between
184 the Iberian and Balkan refuge populations, we compared the PSMC trajectories of Iberian pairs and cross-
185 population pairs (one Iberian and one Hungarian individual). Any divergence between Iberian and the
186 Balkan refuge populations should be visible as a separation between the within-population (Iberian pair) and
187 the cross-population (Iberia-Balkan pair) PSMC trajectories. Specifically, in the absence of post-divergence
188 gene flow we expect N_e estimates for the cross-population pairs to increase from the time of the population
189 split due to the accumulation of genetic differences between the populations. Thus population size changes
190 that occurred in an ancestral population (potentially outside Iberia) should predate the divergence of within
191 and cross-population trajectories. In contrast, we would expect demographic events unique to the Iberian
192 population to happen after divergence of the within- and cross-population PSMC trajectories. We also
193 compared our PSMC divergence time estimates to those made by Bunnefeld et al. (2018) under explicit
194 models of divergence and admixture.

195 Potential population structure in Iberia

196 Population structure within any assumed panmictic population (here, Iberia) can confound inferences of past
197 demography (Gattepaille et al., 2013; Bunnefeld et al., 2015). In particular, N_e estimates may be inflated
198 due to divergence between demes (Gattepaille et al., 2013). Likewise, when samples are taken from the
199 same deme, the (structured) coalescent generates a mixture of very recent (within-deme) and older ancestry
200 resulting from migration between demes (Wakeley, 2008), which can mimic signatures of a bottleneck. To

201 test for population structure within Iberia, we repeated PSMC analyses on every pairwise combination of our
202 five individuals. In a structured population, and given that the sampling locations were widely spaced across
203 Iberia (Table S1), N_e trajectories are expected to differ between pairs of haploid males sampled from the
204 same *versus* different sub-populations (analogous to the within- and between-population analyses involving
205 Iberian and Hungarian samples).

206 Sensitivity analyses

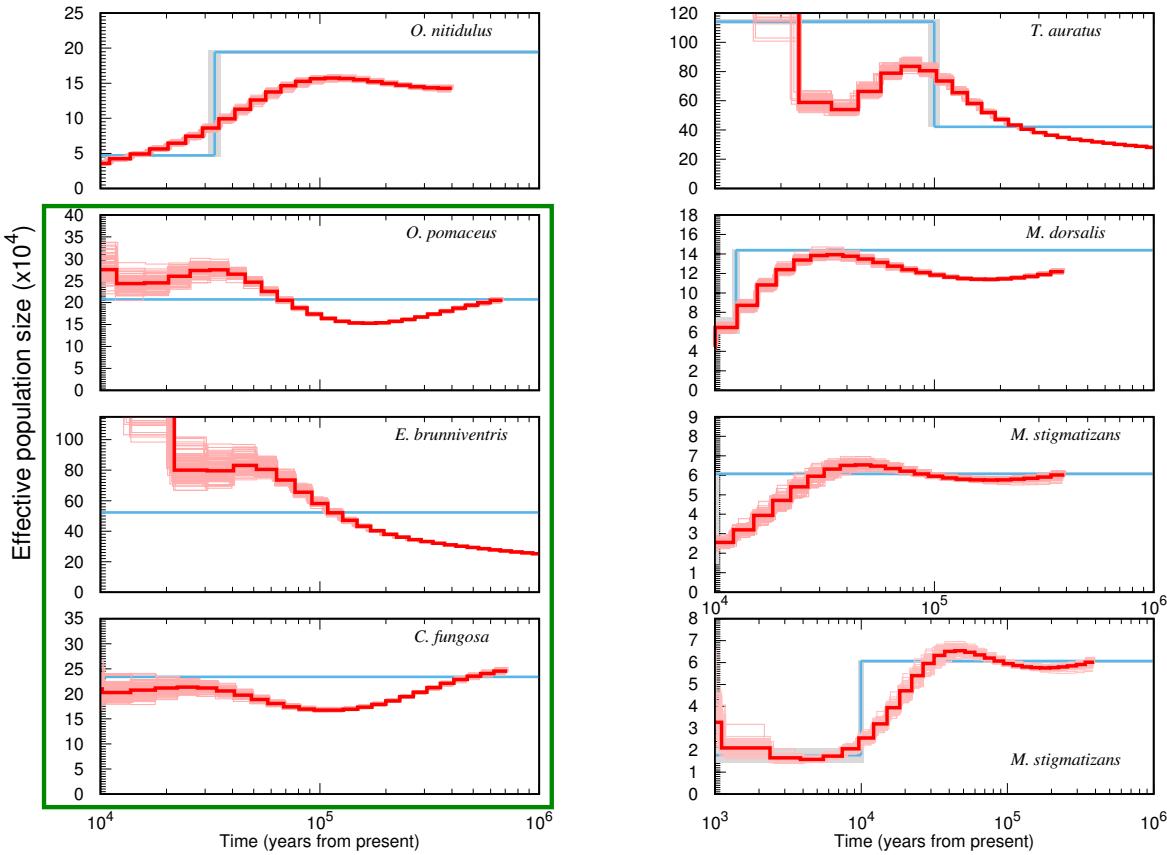
207 The assumption of no recombination within blocks (which is required to make the composite likelihood
208 estimation tractable) potentially leads to biases in parameter estimates. Specifically, recombination may lead
209 to a downward bias of N_e estimates (Wall, 2003; Bunnefeld et al., 2015). We used simulations in *msprime*
210 (Kelleher et al., 2016) to quantify the effect of recombination on parameter estimates (Table S2). One million
211 unlinked blocks of 586bp (corresponding to the block length used for *O. nitidulus*) were simulated under a
212 step change model with different recombination rates and step sizes.

213 It is well known that both selective sweeps (Smith and Haigh, 1974) and background selection (Charlesworth
214 et al., 1993) affect variation at neutral sites in the genome which, in turn, can bias demographic inference
215 (Ewing and Jensen, 2016; Schrider et al., 2016). To explore the effect of selection on the blockwise analyses,
216 we fitted step change models separately to blockwise data generated from genic and intergenic regions of
217 the *O. nitidulus* genome. Genes were predicted *ab initio* with *Augustus* (Stanke and Morgenstern, 2005).
218 *Nasonia vitripennis*, a chalcid parasitoid (family Pteromalidae), was used as a training set. If selection has a
219 strong effect on demographic inference, estimates of θ are expected to be much lower for genic compared to
220 intergenic regions, as most selection tends to reduce diversity both at selective targets and linked regions of
221 the genome (Smith and Haigh, 1974). Similarly, we would expect estimates for the time of the step change,
222 T , to be biased towards the present in genic compared to intergenic regions.

223 Results

224 After filtering, the blockwise datasets ranged in total length from 54 to 151 Mb (Table S3). The pairwise
225 alignments used as input for PSMC spanned a total length of 161 to 379 Mb (Table S3). Despite this difference
226 in overall length, which is mainly due to missing data and the difference in sample size (two *versus* five
227 individuals), estimates of average pairwise diversity, as measured by π (Nei, 1972), agreed broadly between
228 the two datasets and were slightly lower for the blockwise data (Table 1) compared to the pairwise alignments

229 (Table 2). Across species, π estimates spanned an order of magnitude, from 0.00067 in *M. stigmatizans* to
230 0.0071 in *E. brunniventris*.


231 Large changes in N_e detected in four species

232 Taking the results of the blockwise and PSMC analyses across all seven parasitoid species together, four
233 species (*M. stigmatizans*, *M. dorsalis*, *O. nitidulus* and *T. auratus*) show evidence for large (at least a
234 factor of three) changes in population size during the Quaternary period (Figure 1). In these species, an
235 instantaneous step change in N_e fits the blockwise data significantly better than a null model of a constant
236 N_e . We infer a decrease in N_e towards the present ($\lambda < 1$) in three species (*M. stigmatizans*, *M. dorsalis*
237 and *O. nitidulus*) and an increase in one species (*T. auratus*) ($\lambda > 1$) (Figure 1 and Table 1). In all four
238 species, the change in N_e in the PSMC trajectory (Figure 1) agrees both in direction and timescale with the
239 inference under the single step-change model. However, the N_e changes visible in the PSMC trajectory for
240 these species are not equally abrupt. For example, *T. auratus* shows a gradual increase of N_e over a period
241 of more than 200 ky, while the decreases in the PSMC trajectories of *M. dorsalis* and *M. stigmatizans* are
242 comparatively sudden. With the exception of *M. stigmatizans*, the magnitude of N_e change inferred under
243 the step-change model is greater than the relative magnitude of peak N_e in the PSMC trajectories (Figure 1,
244 Tables 1 and 2). Inferences based on PSMC and blockwise analyses are also broadly similar for *O. pomaceus*
245 and *C. fungosa*: a step change in N_e is supported in neither species, and both show comparatively small
246 population size changes in the PSMC analysis (Tables 1 and 2).

247 *E. brunniventris* is an exception to the broad agreement between blockwise and PSMC analyses: despite
248 showing no support for a step change, the PSMC trajectory of this species indicates a substantial (but
249 gradual) change in N_e (Table 2). However, additional analyses for this species (see Discussion) suggest that
250 the PSMC analyses for *E. brunniventris* may be affected by genetic structure and/or the low contiguity of
251 its reference genome.

252 No support for temporal clustering of demographic events

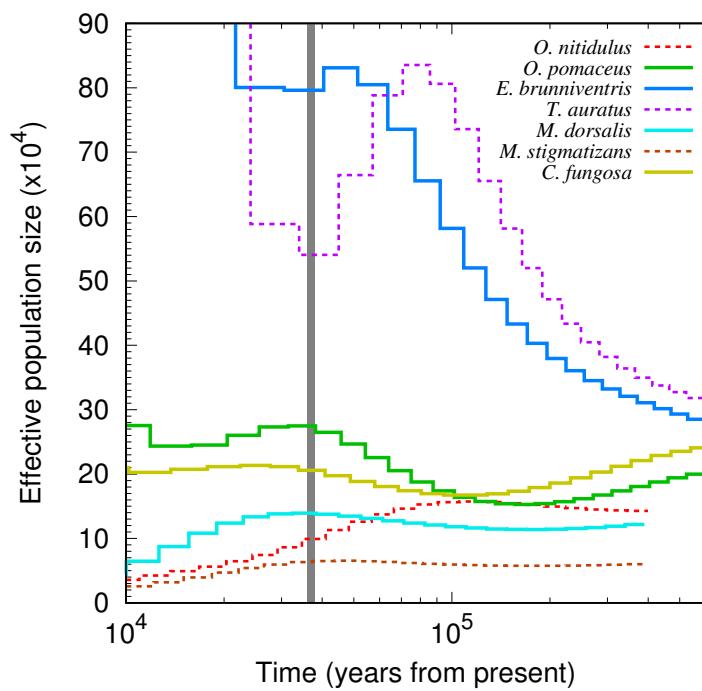
253 The four species with support for a step change in N_e (*M. stigmatizans*, *M. dorsalis*, *O. nitidulus* and
254 *T. auratus*) show no overlap in the estimated times of N_e change. Using an insect spontaneous mutation
255 rate (Keightley et al., 2009) to calibrate T estimates (see Methods for caveats), Iberian populations of *M.*
256 *stigmatizans* and *M. dorsalis* most likely decreased in size at the start of the current interglacial (10 and 12.5
257 kya respectively). In contrast, the decrease in N_e inferred for *O. nitidulus* most likely dates to late in the

Figure 1: PSMC and maximum composite likelihood estimates (MCLE) of N_e for Iberian populations of seven species of chalcid parasitoid wasps. PSMC estimates and bootstrap replicates are shown in dark red and pale red, respectively. Population sizes estimated using the composite likelihood step change model are shown in blue with 95% CIs in grey. Species for which a step change model is not supported are outlined in green. Results for *M. stigmatizans* are also plotted on an alternative timescale to reveal recent N_e change (bottom right).

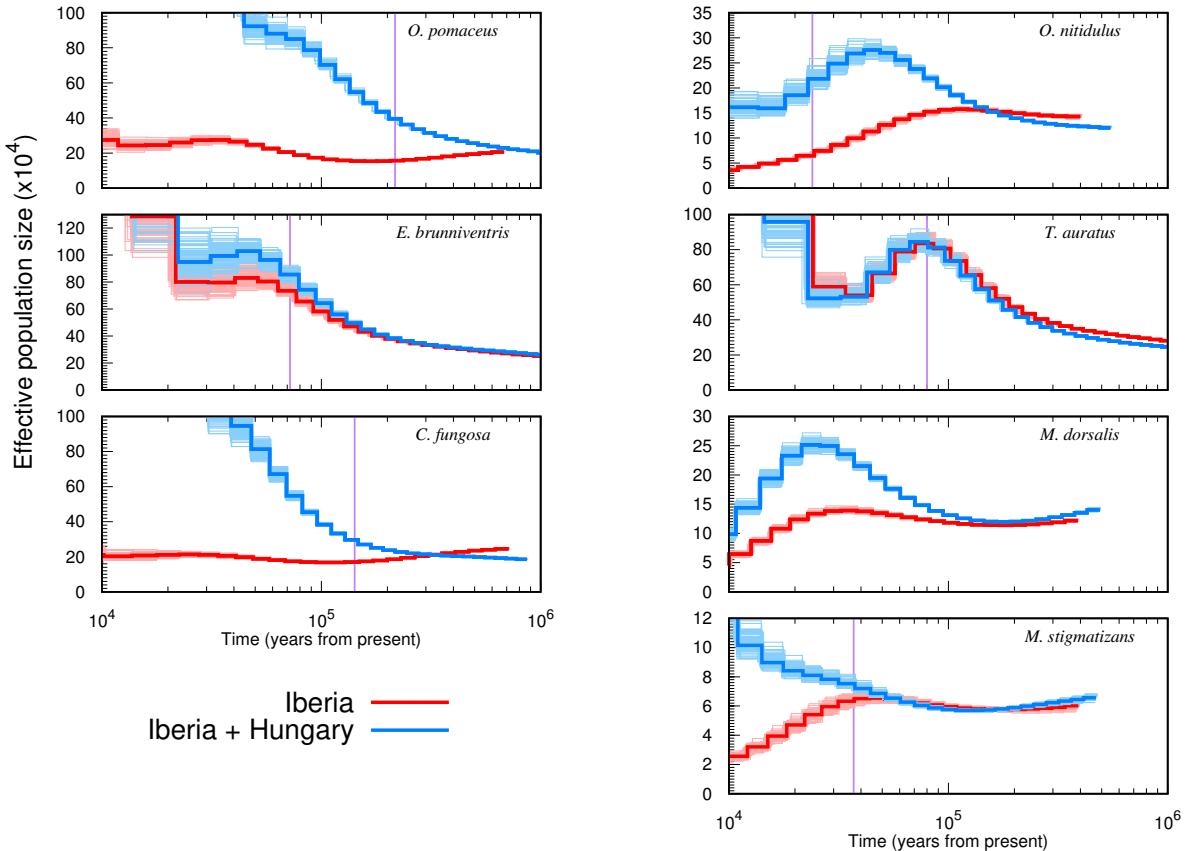
Table 1: Maximum composite likelihood estimates (MCLE) of demographic parameters for Iberian populations of seven species of chalcid parasitoid wasps under a model of a single step change. Estimates for the time of N_e change (T) are given in thousands of years ago (kya). 95% CIs are shown in brackets. The maximum N_e is scaled relative to π as $\text{Max}[N_e]/N_{e,\pi}$.

Species	π	Current $N_e \times 10^3$	Ancestral $N_e \times 10^3$	T (kya)	Relative $\text{Max}[N_e]$
<i>T. auratus</i>	0.00509	1,142 (1,126-1,157)	422 (418-425)	100 (94-106)	2.14
<i>M. stigmatizans</i>	0.00054	18 (14-21)	61 (60-61)	10 (9.5-10.4)	1.55
<i>M. dorsalis</i>	0.00142	67 (59-75)	144 (143-145)	12.5 (12.0-13.0)	1.40
<i>O. nitidulus</i>	0.00126	47 (45-49)	194 (192-197)	33 (31-35)	2.13
<i>O. pomaceus</i>	0.00230	207 (207-208)	207 n/a	n/a	n/a
<i>E. brunniventris</i>	0.00569	523 (521-525)	n/a	n/a	n/a
<i>C. fungosa</i>	0.00258	234 (233-235)	n/a	n/a	n/a

Table 2: Summaries of PSMC trajectories for Iberian populations of seven species of chalcid parasitoid wasps. Times are given in thousands of years ago (kya). 95 % CIs of peak N_e times are shown in brackets. The maximum N_e is scaled relative to π as $\text{Max}[N_e]/N_{e,\pi}$.


Species	π	Peak $N_e \times 10^3$	Peak N_e time (kya)	Split (kya)	time	Relative Max[N_e]
<i>T. auratus</i>	0.0064	835	78 (74-82)	n/a		1.81
<i>M. stigmatizans</i>	0.00067	65	47 (42-52)	37		1.34
<i>M. dorsalis</i>	0.0018	139	35 (31-39)	128		1.07
<i>O. nitidulus</i>	0.0016	157	114 (104-124)	132		1.36
<i>O. pomaceus</i>	0.0028	275	35 (30-40)	681		1.36
<i>E. brunniventris</i>	0.0071	831	46 (36-56)	n/a		1.62
<i>C. fungosa</i>	0.0032	213	25 (12-38)	267		0.92

258 last glacial period (33 kya) and the increase in N_e in *T. auratus* at 100 kya dates to just after the end of the
 259 (Eemian) interglacial (Table 1).


260 Paralleling the blockwise model results, the times of peak N_e in the PSMC trajectories also had non-
 261 overlapping CIs (across bootstrap replicates) in *M. stigmatizans*, *M. dorsalis*, *O. nitidulus* and *T. auratus*
 262 (although values for the two *Megastigmus* species are close, see Table 1). Interestingly, the three species with
 263 no support for a step change (*O. pomaceus*, *C. fungosa* and *E. brunniventris*) as well *M. dorsalis* show highly
 264 similar (overlapping CI) times of peak N_e (Figure 2 and Table 2).

265 **Changes in N_e occur after the divergence of Iberian populations**

266 In five species the PSMC trajectories of within-population (Iberia) pairs diverge clearly from the cross-
 267 population (Iberia *versus* Hungarian) trajectories. In contrast, little divergence between within and cross-
 268 population PSMC trajectories is visible for *E. brunniventris* and none for *T. auratus* (Figure 3). In the
 269 three species for which the blockwise analysis supports a decline in population size, the inferred time of N_e
 270 change is more recent than the divergence of within- and cross-population PSMC trajectories (Figure 3 and
 271 Table 2) and so must have occurred after Iberian and Balkan populations split. For *O. pomaceus*, *C. fungosa*
 272 and *M. stigmatizans* the split times between Iberian and the Balkan populations inferred here *post hoc* by
 273 comparing PSMCs trajectories are broadly compatible with the divergence estimates obtained by Bunnefeld
 274 et al. (2018) under explicit models of population divergence (Figure 3). In contrast, for both *M. dorsalis* and
 275 *O. nitidulus* PSMC based estimates of population divergence substantially predate the split times inferred
 276 by Bunnefeld et al. (2018). In both cases, the cross-population PSMC trajectories decrease after divergence
 277 between the Iberian and Hungarian populations, suggesting that these populations have been connected by
 278 some level of post-divergence gene flow.

Figure 2: N_e trajectories inferred by PSMC for Iberian populations of seven species of parasitoids. The vertical grey bar indicates the overlap in peak N_e of bootstrap replicates across four species (solid lines) (*M. dorsalis*, *O. pomaceus*, *C. fungosa* and *E. brunniventris*). The remaining three species (dashed lines) have unique peak N_e times.

Figure 3: PSMC N_e trajectories for Iberian (red) and cross-population (Iberian vs Balkans) pairs (blue) of seven species of parasitoids. Population splits can be inferred as the time at which the trajectories of within-population and cross-population pairs diverge. Vertical bars indicate the split times estimated by Bunnefeld et al. (2018) using a MCL method based on the blockwise data. The split time estimated by Bunnefeld et al. (2018) for *M. dorsalis* is too recent (8 kya) to be visible in this figure.

279 No evidence for structure within Iberia

280 We find little variation in PSMC trajectories between different Iberian pairs in almost all species (Figure S2),
281 suggesting that our demographic inferences are unlikely to be substantially influenced by population structure
282 within Iberia. For all species, with the exception of *E. brunniventris*, the differences in PSMC trajectories
283 between Iberian pairs are similar in magnitude to the variation across bootstrap replicates and so likely reflect
284 variation in coverage between individuals. *E. brunniventris* is the only species that showed clear variation in
285 PSMC trajectories between Iberian pairs. While our additional analyses for *E. brunniventris* suggest other
286 potential reasons for this finding (see Discussion), we cannot rule out that this variation is in part driven by
287 population structure.

288 Sensitivity analyses

289 Both demographic inference methods used here assume selective neutrality but make different simplifying
290 assumptions about recombination: while PSMC approximates recombination as a Markov process along the
291 genome, the blockwise composite likelihood framework assumes no recombination within blocks. To check
292 the extent to which recombination and selection may bias parameter estimates, we fitted histories of a step
293 change to data simulated with recombination. Our exploration of simulated data shows that both N_e and
294 λ are underestimated with increasing recombination rate whereas the time of step change (T) is biased
295 downwards when N_e declines towards the present ($\lambda < 1$) and upwards when N_e increases ($\lambda > 1$) (Table
296 S3). These biases are an expected consequence of the shuffling of genealogical histories within a block in the
297 presence of recombination, which reduces the variance in bSFS configurations. Given a recombination rate
298 of $r = 3 \times 10^{-9}$ estimated for the parasitoids, our simulation check suggests that while estimates of T , the
299 time of the step change may be underestimated by up to a factor of two, the ability to detect a step change
300 and estimate its magnitude (λ) is little affected.

301 To investigate the potential effect of selective constraint on the block based inference we fitted a history
302 of a single step change separately to genic and intergenic regions. Parameter estimates based on genic data
303 for *O. nitidulus* were similar to the full data set (Table S2). While N_e is slightly lower and T is slightly
304 greater for genic regions, as would be expected as a result of selective constraints, the timing and relative
305 magnitude of demographic change was little affected by partitioning the data by annotation.

306 Discussion

307 We analysed genome-wide sequence variation using two contrasting inference approaches to test if and how
308 demographic histories vary within a guild of insect parasitoids in a single Pleistocene refugium. We find
309 evidence for drastic declines in population size in three out of seven species (*M. stigmatizans*, *M. dorsalis*,
310 *O. nitidulus*), and a large increase in population size one species (*T. auratus*). However, contrary to simple
311 models of concordant community-wide responses to Pleistocene climatic events, we find that the demographic
312 histories of species in this guild differ markedly both in direction and timescale.

313 Interestingly, the four species that show the smallest change in past population size overlap in terms of
314 the time of peak N_e . The apparent congruence in these species may well be due to a shared background
315 demography, the signatures of which are masked in species that show more drastic and idiosyncratic changes
316 in N_e . However, given that PSMC assumes selective neutrality, which is problematic for compact insect
317 genomes, the genome-wide effect of selection is an alternative (and not mutually exclusive) explanation
318 for the shared timing of the "hump" in the PSMC trajectories. Schrider et al. (2016) have shown that
319 selective sweeps can generate troughs in PSMC trajectories and background selection has been shown to lead
320 to erroneous inference of population growth (Ewing and Jensen, 2016). We therefore cannot rule out the
321 possibility that congruent peaks in N_e are an artefact of selective effects which, assuming similar genome
322 composition, mutation, and recombination rates of these species, may distort PSMC inferences in similar
323 ways. However, the fact that we have reconstructed a set of very different PSMC trajectories, most of which
324 differ markedly from the selection-induced PSMC trajectories of Schrider et al. (2016) (in that they show large
325 declines rather than increases in N_e toward the present), suggests that it is unlikely that selective effects are
326 the main cause of the inferred N_e changes. For the blockwise analyses we find little difference in parameter
327 estimates between genic and intergenic regions of *O. nitidulus* (Table S2), which again argues against a
328 major effect of selection on our inferences. Furthermore, one would expect genomes with a shorter map
329 length (physical length \times recombination rate) to be disproportionately affected by linked selection (Smith
330 and Haigh, 1974; Mackintosh et al., 2019). However, if anything we observe the opposite pattern: the two
331 species with shortest map lengths (*O. nitidulus* and *C. fungosa*) show less pronounced N_e change than the
332 two species with the longest map length (*M. stigmatizans* and *M. dorsalis*).

333 Concordance between step change and PSMC analyses

334 PSMC and blockwise analyses exploit different aspects of the data and differ drastically in sampling schemes
335 (contiguous pairwise alignments vs short blocks sampled across five individuals) and underlying assumptions:

336 while the blockwise composite likelihood framework fits a single instantaneous step change in N_e , PSMC
337 reconstructs population size change as a continuous trajectory. Despite these differences, both methods yield
338 broadly congruent conclusions: the four species for which the blockwise analyses diagnose an abrupt change
339 in N_e also show PSMC trajectories with large N_e changes in the same direction and at similar times. The
340 slightly greater magnitude of N_e change under the step change history compared to the PSMC analyses may
341 be a consequence of the fact that larger samples contain more information about recent demography. In
342 other words, the change in N_e in the recent past detectable with larger samples (five haploid individuals) in
343 the blockwise framework may simply not be detectable by PSMC analysis (two individuals).

344 In general, one may view the fact that PSMC is essentially assumption-free as an advantage over model
345 based inference, because it enables straightforward inference of N_e changes. Comparison of PSMC trajectories
346 between pairs of individuals and populations allows qualitative assessment of divergence and admixture
347 (Figure 3). However, the flip-side of this flexibility is that PSMC has limited resolution in the recent past
348 and provides no obvious route for quantitatively testing (necessarily) simple demographic hypotheses across
349 species. We have sought to overcome the latter limitation by comparing PSMC trajectories in terms of simple
350 summaries (such as the timing and relative magnitude of peak N_e).

351 **Changes in population size coincide with late Pleistocene climatic transitions**

352 Our estimates of both the timing of drastic N_e changes and the cluster of peak N_e coincide with climatic
353 events in the Quaternary: the start of the Holocene around 11 kya, a Dansgaard-Oeschger interstadial event
354 – a brief warm period during the last glacial – 37 kya and the end of the Eemian interglacial around 106
355 kya. Previous studies on these and other species in the gallwasp community have inferred an increase in
356 gene flow between refugia during these three time periods (Bunnefeld et al., 2018; Lohse et al., 2010, 2012).
357 In particular, the cluster of peak N_e times during the Dansgaard-Oeschger interstadial event coincides with
358 a large community-wide peak in the frequency of admixture between refugia inferred by Bunnefeld et al.
359 (2018). Similarly, the increase in N_e for *T. auratus* at the end of the Eemian interglacial period coincides
360 with the divergence of the Iberian population of this species inferred previously (Bunnefeld et al., 2018; Stone
361 et al., 2012). It seems plausible that both events are associated with the geographic expansion of suitable
362 oak habitat across refugial barriers during these times (Brewer et al., 2002; Petit et al., 2002), which may
363 have triggered parasitoid range expansions.

364 Population structure within Iberia and gene flow from Eastern refugia

365 Population structure within southern European refugia has previously been demonstrated for some species,
366 and it has been suggested that given its complex topography Iberia should be considered a mosaic of multiple
367 micro-refugia rather than a single entity (Feliner, 2011; Hearn et al., 2014). However, our PSMC results
368 suggest a complete lack of population structure in six out of seven species in the parasitoid guild (Figure
369 S2) and imply high gene flow across Iberia. This is perhaps unsurprising given that gallwasp-associated
370 parasitoid wasps (and other chalcids) are able to disperse long distances even across patchy habitats and host
371 distributions (Hayward and Stone, 2006; Compton et al., 2000).

372 Our estimates of population split times based on comparisons of within and cross-population PSMC
373 trajectories agree broadly with those of Bunnefeld et al. (2018) for most species. *M. dorsalis* and *O. nitidulus*,
374 the two species that show the least agreement with past estimates, both show decreases in cross-population
375 N_e after divergence that are compatible with ongoing gene flow between refugia. The model space considered
376 by Bunnefeld et al. (2018) was limited to histories involving a single burst of instantaneous admixture between
377 refugial populations, with no potential to detect such post divergence gene flow.

378 *E. brunniventris* is an outlier

379 *E. brunniventris* is an outlier in our results in several ways: it is the species with the highest genetic diversity,
380 shows signals of population structure and is the only species for which our two inference approaches disagree.
381 While the blockwise analysis gives no support for a change in N_e , the PSMC trajectory shows a steady
382 increase by a factor of four. To explore the ability of the blockwise analyses to detect gradual changes in
383 population size, we simulated 100 replicate data sets (assuming the same size and block length as the real
384 data) under the gradual change in N_e inferred via PSMC for *E. brunniventris*. We find that in each case,
385 a history of a single step change fits the data better than a null model of constant N_e , indicating that the
386 blockwise analysis is indeed sensitive to gradual increases in population size. A possible explanation for the
387 discrepancy between the PSMC and blockwise inferences for *E. brunniventris* is that its genome assembly, the
388 least contiguous among our set of taxa (N50 of 3.8kb, Table S1), is simply too fragmented for reliable PSMC
389 inference. Since by default PSMC does not consider contigs < 10kb long, PSMC inference for *E. brunniventris*
390 is based on a likely conserved subset of the genome. However, even when the blockwise analysis is limited to
391 contigs > 10kb, a null model of constant N_e cannot be rejected. Interestingly, both a history of constant N_e
392 and a step change model give a poor fit to the observed frequency of bSFS configurations in *E. brunniventris*.
393 In particular, *E. brunniventris* shows an excess of both monomorphic blocks and blocks with a large number

394 of variants (Figure S4), suggesting that its history is not well approximated by any model that assumes a
395 single panmictic population. The lack of divergence of within and cross-population PSMC trajectories for *E.*
396 *brunniventris* would be compatible with substantial gene flow between the Iberian and Hungarian populations
397 (Figure 3). Alternatively *E. brunniventris* – an extreme generalist attacking a wide range of oak gallwasps
398 hosts (Askew et al., 2013) – may harbour genetic structure as a result of recent divergence into cryptic host
399 races. However, in the absence of a better reference genome and larger samples it remains unclear to what
400 extent the disagreement between PSMC and blockwise analyses for *E. brunniventris* is indicative of a more
401 complex history.

402 Outlook

403 We have uncovered considerable diversity in the demographic histories of a guild of insect parasitoids at the
404 scale of a single glacial refugium. Our results mirror the findings of Bunnefeld et al. (2018) who showed
405 that the relationships between refugia in this guild are to a large extent idiosyncratic. An obvious question
406 is to what extent differences in demographic history correlate with ecological traits. Intriguingly, the four
407 parasitoid species with support for a step change (in either direction) have a narrower host range (Askew
408 et al., 2013) and a lower ancestral N_e than those for which a null model of constant N_e could not be rejected
409 (Figure S3, Table S1). Although these trends are not significant, they are compatible with the idea that
410 specialists are more prone to large changes in N_e than generalists and, as a consequence, may also be at
411 a higher risk of extinction (Colles et al., 2009; McKinney, 1997). Larger samples of species, incorporating
412 wide diversity in host number and other relevant traits (such as dispersal ability) are required to explore the
413 potential relationships between species characteristics and demographic history.

414 Parasitoid wasps are particularly suited for such systematic comparisons across co-distributed species given
415 their rich biology and manageable genomes, which can be sampled in a haploid state by targeting males. It
416 will be particularly interesting to interrogate such data with a new generation of inference approaches that
417 reconstruct ancestral recombination graphs (ARG) from phased genomes (Kelleher et al., 2019; Speidel et al.,
418 2019). Given sufficiently large samples, it may be possible to infer much more detailed trajectories of N_e
419 change and population divergence times directly from such reconstructed ARGs.

420 Acknowledgements

421 We thank Lynsey Bunnefeld for help in the molecular lab and useful discussions and José Luis Nieves-Aldrey
422 and Juli Pujade-villar for contributing samples and Sam Ebdon for comments on the manuscript. This work
423 was supported by a Natural Environment Research Council to GNS and KL (NE/J010499/1). WW was
424 supported by an E3 doctoral training studentship from the Natural Environment Research Council (NERC)
425 UK, KL is supported by a NERC fellowship (NE/L011522/1) and an ERC starting grant (ModelGenomLand).

426 References

427 Askew, R. R., Melika, G., Pujade-Villar, J., Schönrogge, K., Stone, G. N., and Nieves-Aldrey, J. L. (2013).
428 Catalogue of parasitoids and inquilines in cynipid oak galls in the West Palaearctic. *Zootaxa*, 3643(1):1–133.

429 Beichman, A. C., Huerta-Sánchez, E., and Lohmueller, K. E. (2018). Using genomic data to infer historic
430 population dynamics of nonmodel organisms. *Annual Review of Ecology, Evolution, and Systematics*,
431 49(1):433–456.

432 Brewer, S., Cheddadi, R., de Beaulieu, J., and Reille, M. (2002). The spread of deciduous *Quercus* throughout
433 Europe since the last glacial period. *Forest Ecology and Management*, 156(1-3):27–48.

434 Bunnefeld, L., Frantz, L. A. F., and Lohse, K. (2015). Inferring bottlenecks from genome-wide samples of
435 short sequence blocks. *Genetics*, 201(3):1157–1169.

436 Bunnefeld, L., Hearn, J., Stone, G. N., and Lohse, K. (2018). Whole-genome data reveal the complex history
437 of a diverse ecological community. *Proceedings of the National Academy of Sciences of the United States
438 of America*, 115(28):E6507–E6515.

439 Charlesworth, B., Morgan, M. T., and Charlesworth, D. (1993). The effect of deleterious mutations on neutral
440 molecular variation. *Genetics*, 134(4):1289–1303.

441 Cizauskas, C. A., Carlson, C. J., Burgio, K. R., Clements, C. F., Dougherty, E. R., Harris, N. C., and Phillips,
442 A. J. (2017). Parasite vulnerability to climate change: an evidence-based functional trait approach. *Royal
443 Society Open Science*, 4(1):160535.

444 Colles, A., Liow, L. H., and Prinzing, A. (2009). Are specialists at risk under environmental change? Neoe-
445 cological, paleoecological and phylogenetic approaches. *Ecology letters*, 12(8):849–63.

446 Comps, B., Gömöry, D., Letouzey, J., Thiébaut, B., and Petit, R. J. (2001). Diverging trends between het-
447 erozygosity and allelic richness during postglacial colonization in the european beech. *Genetics*, 157(1):389–
448 397.

449 Compton, S. G., Ellwood, M. D. F., Davis, A. J., and Welch, K. (2000). The Flight Heights of Chalcid
450 Wasps (Hymenoptera, Chalcidoidea) in a Lowland Bornean Rain Forest: Fig Wasps are the High Fliers.
451 *Biotropica*, 32(3):515–522.

452 Cooper, A., Turney, C., Hughen, K. A., Brook, B. W., McDonald, H. G., and Bradshaw, C. J. A. (2015).
453 Abrupt warming events drove Late Pleistocene Holarctic megafaunal turnover. *Science*, 349(6248):602–6.

454 Ewing, G. B. and Jensen, J. D. (2016). The consequences of not accounting for background selection in
455 demographic inference. *Molecular Ecology*, 25(1):135–141.

456 Feliner, G. N. (2011). Southern European glacial refugia: A tale of tales. *Taxon*, 60(2):365–372.

457 Gattepaille, L. M., Jakobsson, M., and Blum, M. G. B. (2013). Inferring population size changes with
458 sequence and SNP data: lessons from human bottlenecks. *Heredity*, 110(5):409–19.

459 Gómez, A. and Lunt, D. H. (2007). Refugia within Refugia: Patterns of Phylogeographic Concordance in the
460 Iberian Peninsula. In *Phylogeography of Southern European Refugia*, pages 155–188. Springer Netherlands,
461 Dordrecht.

462 Gutenkunst, R. N., Hernandez, R. D., Williamson, S. H., Bustamante, C. D., and Stephan, W. (2009).
463 Inferring the Joint Demographic History of Multiple Populations from Multidimensional SNP Frequency
464 Data. *PLoS Genetics*, 5(10):e1000695.

465 Hayward, A. and Stone, G. N. (2006). Comparative phylogeography across two trophic levels: the oak gall
466 wasp *Andricus kollari* and its chalcid parasitoid *Megastigmus stigmatizans*. *Molecular Ecology*, 15(2):479–
467 489.

468 Hearn, J., Stone, G. N., Bunnefeld, L., Nicholls, J. A., Barton, N. H., and Lohse, K. (2014). Likelihood-based
469 inference of population history from low-coverage *de novo* genome assemblies. *Molecular Ecology*,
470 23(1):198–211.

471 Hewitt, G. (2000). The genetic legacy of the Quaternary ice ages. *Nature*, 405(6789):907–913.

472 Hofreiter, M. and Stewart, J. (2009). Ecological Change, Range Fluctuations and Population Dynamics
473 during the Pleistocene. *Current Biology*, 19(14):R584–R594.

474 Janecka, J. E., Tewes, M. E., Davis, I. A., Haines, A. M., Caso, A., Blankenship, T. L., and Honeycutt, R. L.
475 (2016). Genetic differences in the response to landscape fragmentation by a habitat generalist, the bobcat,
476 and a habitat specialist, the ocelot. *Conservation Genetics*, 17(5):1093–1108.

477 Keightley, P. D., Trivedi, U., Thomson, M., Oliver, F., Kumar, S., and Blaxter, M. L. (2009). Analysis of the
478 genome sequences of three *Drosophila melanogaster* spontaneous mutation accumulation lines. *Genome*
479 *research*, 19(7):1195–201.

480 Kelleher, J., Etheridge, A. M., and McVean, G. (2016). Efficient Coalescent Simulation and Genealogical
481 Analysis for Large Sample Sizes. *PLoS Computational Biology*, 12(5):1–22.

482 Kelleher, J., Wong, Y., Wohns, A. W., Fadil, C., Albers, P. K., and McVean, G. (2019). Inferring whole-
483 genome histories in large population dataset. *Nature Genetics*, 51(9):1330–1338.

484 Li, H. and Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform.
485 *Bioinformatics*, 25(14):1754–1760.

486 Li, H. and Durbin, R. (2011). Inference of human population history from individual whole-genome sequences.
487 *Nature*, 475(7357):493–496.

488 Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., and Durbin,
489 R. (2009). The Sequence Alignment/Map format and SAMtools. *Bioinformatics*, 25(16):2078–2079.

490 Lohse, K., Barton, N., Melika, G., and Stone, G. (2012). A likelihood-based comparison of population
491 histories in a parasitoid guild. *Molecular Ecology*, 21:4605–4617.

492 Lohse, K., Harrison, R. J., and Barton, N. H. (2011). A general method for calculating likelihoods under the
493 coalescent process. *Genetics*, 189(3):977–87.

494 Lohse, K., Sharanowski, B., and Stone, G. N. (2010). Quantifying the pleistocene history of the oak gall
495 parasitoid *Cecidostiba fungosa* using twenty intron loci. *Evolution*, 64(9):2664–2681.

496 Mackintosh, A., Laetsch, D. R., Hayward, A., Charlesworth, B., Waterfall, M., Vila, R., and Lohse, K.
497 (2019). The determinants of genetic diversity in butterflies. *Nature Genetics*, 10(1):3466.

498 McKinney, M. L. (1997). Extinction vulnerability and selectivity: Combining ecological and paleontological
499 views. *Annual Review of Ecology and Systematics*, 28(1):495–516.

500 Nei, M. (1972). Genetic distance between populations. *The American Naturalist*, 106(949):283–292.

501 Nicholls, J. A., Challis, R. J., Mutun, S., and Stone, G. N. (2012). Mitochondrial barcodes are diagnostic of
502 shared refugia but not species in hybridizing oak gallwasps. *Molecular Ecology*, 21(16):4051–4062.

503 Nicholls, J. A., Preuss, S., Hayward, A., Melika, G., Csóka, G., Nieves-Aldrey, J.-L., Askew, R. R., Tavakoli,
504 M., Schönrogge, K., and Stone, G. N. (2010). Concordant phylogeography and cryptic speciation in two
505 Western Palaearctic oak gall parasitoid species complexes. *Molecular Ecology*, 19(3):592–609.

506 Nordén, J., Penttilä, R., Siitonens, J., Tomppo, E., and Ovaskainen, O. (2013). Specialist species of
507 wood-inhabiting fungi struggle while generalists thrive in fragmented boreal forests. *Journal of Ecology*,
508 101(3):701–712.

509 Östergård, H. and Ehrlén, J. (2005). Among population variation in specialist and generalist seed predation -
510 the importance of host plant distribution, alternative hosts and environmental variation. *Oikos*, 111(1):39–
511 46.

512 Petit, R. J., Brewer, S., Bordács, S., Burg, K., Cheddadi, R., Coart, E., Cottrell, J., Csaikl, U. M., van
513 Dam, B., Deans, J. D., Espinel, S., Fineschi, S., Finkeldey, R., Glaz, I., Goicoechea, P. G., Jensen, J. S.,
514 König, A. O., Lowe, A. J., Madsen, S. F., Mátyás, G., Munro, R. C., Popescu, F., Slade, D., Tabbener,
515 H., de Vries, S. G., Ziegenhagen, B., de Beaulieu, J.-L., and Kremer, A. (2002). Identification of refugia
516 and post-glacial colonisation routes of European white oaks based on chloroplast DNA and fossil pollen
517 evidence. *Forest Ecology and Management*, 156(1-3):49–74.

518 Rand, T. A. and Tscharntke, T. (2007). Contrasting effects of natural habitat loss on generalist and specialist
519 aphid natural enemies. *Oikos*, 116(8):1353–1362.

520 Rokas, A., Atkinson, R. J., Brown, G. S., West, S. A., and Stone, G. N. (2001). Understanding patterns of
521 genetic diversity in the oak gallwasp *Biorhiza pallida*: demographic history or a Wolbachia selective sweep?
522 *Heredity*, 87(3):294–304.

523 Rokas, A., Atkinson, R. J., Webster, L., Csóka, G., and Stone, G. N. (2003). Out of Anatolia: longitudinal
524 gradients in genetic diversity support an eastern origin for a circum-Mediterranean oak gallwasp *Andricus*
525 *quercustozae*. *Molecular Ecology*, 12(8):2153–2174.

526 Schrider, D. R., Shanku, A. G., and Kern, A. D. (2016). Effects of linked selective sweeps on demographic
527 inference and model selection. *Genetics*, 204(3):1207–1223.

528 Smith, J. M. and Haigh, J. (1974). The hitch-hiking effect of a favourable gene. *Genet. Res., Camb*, 23:23–35.

529 Speidel, L., Forest, M., Shi, S., and Myers, S. R. (2019). A method for genome-wide genealogy estimation
530 for thousands of samples. *Nature Genetics*, 51(9):1321–1329.

531 Stanke, M. and Morgenstern, B. (2005). AUGUSTUS: a web server for gene prediction in eukaryotes that
532 allows user-defined constraints. *Nucleic acids research*, 33(Web Server issue):W465–7.

533 Stone, G., Lohse, K., Nicholls, J., Fuentes-Utrilla, P., Sinclair, F., Schönrogge, K., Csóka, G., Melika, G.,
534 Nieves-Aldrey, J.-L., Pujade-Villar, J., Tavakoli, M., Askew, R., and Hickerson, M. (2012). Reconstructing
535 Community Assembly in Time and Space Reveals Enemy Escape in a Western Palearctic Insect Commu-
536 nity. *Current Biology*, 22(6):532–537.

537 Stone, G. N., Challis, R. J., Atkinson, R. J., Csóka, G., Hayward, A., Melika, G., Mutun, S., Preuss, S.,
538 Rokas, A., Sadeghi, E., and Schönrogge, K. (2007). The phylogeographical clade trade: tracing the impact
539 of human-mediated dispersal on the colonization of northern Europe by the oak gallwasp *Andricus kollari*.
540 *Molecular Ecology*, 16(13):2768–2781.

541 Stone, G. N., Schönrogge, K., Atkinson, R. J., Bellido, D., and Pujade-Villar, J. (2002). The population
542 biology of oak gall wasps (Hymenoptera : Cynipidae). *Annual Review of Entomology*, 47(1):633–668.

543 Stone, G. N., White, S. C., Csóka, G., Melika, G., Mutun, S., Pénzes, Z., Sadeghi, S. E., Schönrogge, K.,
544 Tavakoli, M., and Nicholls, J. A. (2017). Tournament ABC analysis of the western Palearctic population
545 history of an oak gall wasp, <i>Synergus umbraculus</i>. *Molecular Ecology*, 26(23):6685–6703.

546 Tallavaara, M., Luoto, M., Korhonen, N., Järvinen, H., and Seppä, H. (2015). Human population dynamics
547 in Europe over the Last Glacial Maximum. *Proceedings of the National Academy of Sciences*, 112(27):8232–
548 8237.

549 Tison, J.-L., Edmark, V. N., Sandoval-Castellanos, E., Van Dyck, H., Tammaru, T., Välimäki, P., Dalén, L.,
550 and Gotthard, K. (2014). Signature of post-glacial expansion and genetic structure at the northern range
551 limit of the speckled wood butterfly. *Biological Journal of the Linnean Society*, 113(1):136–148.

552 Van der Auwera, G. A., Carneiro, M. O., Hartl, C., Poplin, R., del Angel, G., Levy-Moonshine, A., Jordan, T.,
553 Shakir, K., Roazen, D., Thibault, J., Banks, E., Garimella, K. V., Altshuler, D., Gabriel, S., and DePristo,
554 M. A. (2013). From FastQ Data to High-Confidence Variant Calls: The Genome Analysis Toolkit Best
555 Practices Pipeline. *Current Protocols in Bioinformatics*, 43(1):11.10.1–11.10.33.

556 Vitales, D., García-Fernández, A., Garnatje, T., Pellicer, J., and Vallès, J. (2016). Phylogeographic insights of
557 the lowland species *cheirolophus sempervirens* in the southwestern iberian peninsula. *Journal of Systematics*
558 and Evolution, 54(1):65–74.

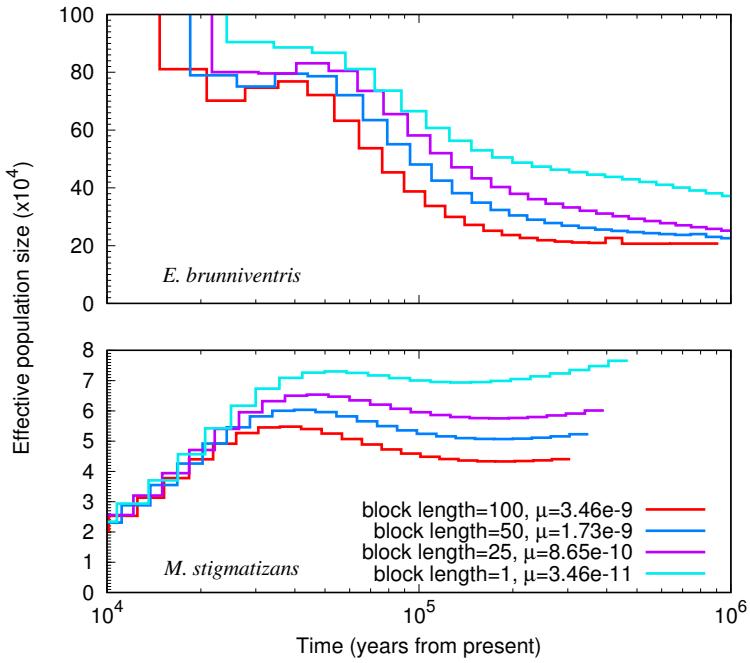
559 Wakeley, J. (2008). *Coalescent Theory: An Introduction*. W. H. Freeman.

560 Wall, J. D. (2003). Estimating ancestral population sizes and divergence times. *Genetics*, 163(1):395–404.

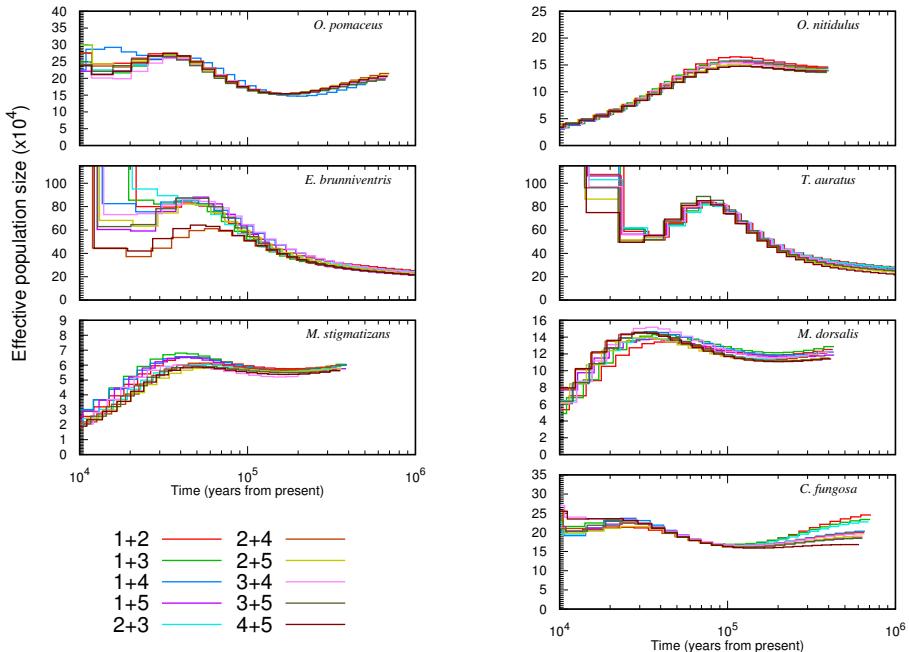
561 Wolfram Research, I. (2016). Mathematica.

562 Data Accessibility

563 • Raw reads have been deposited in the European Nucleotide Archive (ENA) (ERP023079) and the SRA
564 (PRJEB20883)


565 • Genome assemblies are deposited in the ENA (PRJEB27189 and ERP109243)

566 • *Mathematica* notebook and blockwise data are available as Supporting Information


567 Author Contributions

568 KL and GS designed the project; WW analysed the sequence data with contributions from KL; all authors
569 wrote the manuscript.

570 Supplementary information

Figure S1: N_e trajectories inferred by PSMC using different block lengths for *E. brunniventris* and *M. stigmatizans*. The mutation rate is adjusted accordingly for each block length.

Figure S2: N_e trajectories inferred by PSMC for all pairwise combinations of the five Iberian haploid males of each species. Individuals 1 and 2 for each species correspond to the focal pair in figures 1 2.

Table S1: Sampling locations and gallwasp hosts of parasitoid individuals used for whole genome sequencing. *: The two focal Iberian individuals used for PSMC analysis †: Individuals previously analysed by Bunnfield et al. (2018)

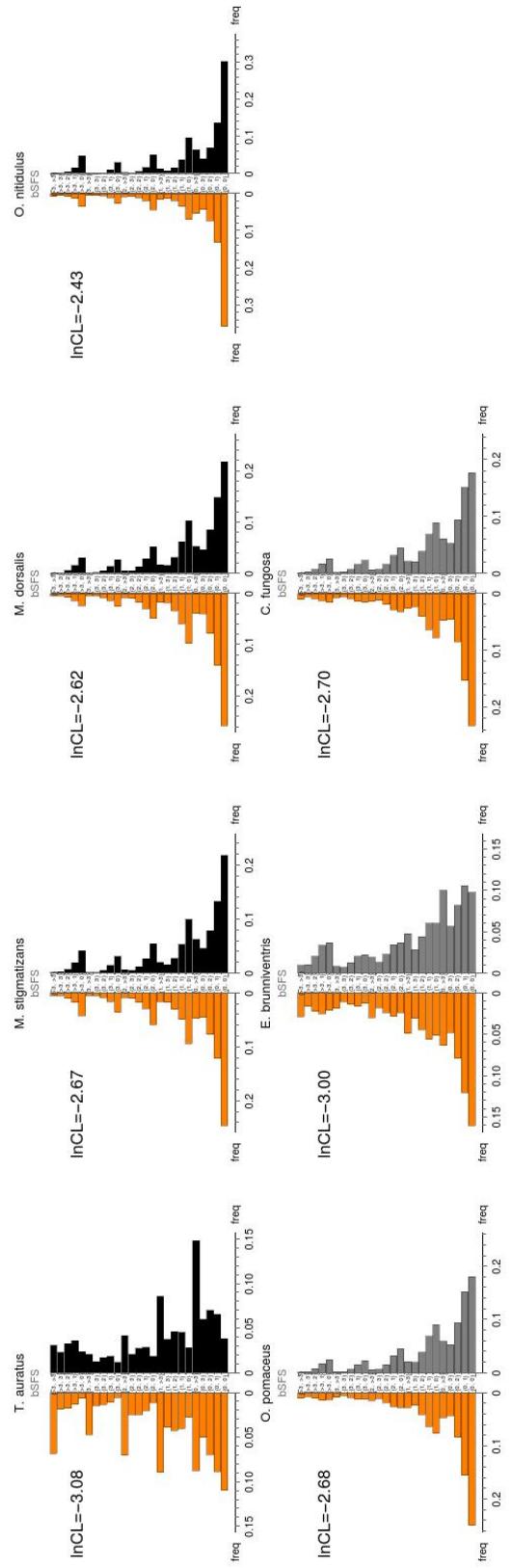

Species	Host range	Host	Individual	Host species	Locality country	Locality region	Locality name	Lat	Long
<i>M. stigmatizans</i>	21	Taur	1387	<i>Andricus quercustozae</i>	Portugal	Cádiz	Paradelha	36.50	-5.37
		Taur	435*	<i>Biorhiza pallida</i>	Spain	Cádiz	San Pablo	36.50	-5.37
		Taur	436	<i>Biorhiza pallida</i>	Spain	Bragança	San Pablo	41.48	-6.5
		Taur	438*	<i>Biorhiza pallida</i>	Portugal	Madrid	Vale de Lamas	40.58	-4.13
		Taur	409†	<i>Andricus quercustozae</i>	Spain	Jazbereny	El Escorial	47.50	19.92
		Taur	130†	<i>Cynips quercusfolii</i>	Hungary		Horcejo	40.64	-5.41
		Msti	297	<i>Andricus kollari</i>	Spain		Fresnedoso & Sorihuela		
		Msti	393	<i>Andricus kollari</i>	Spain		Horcajo		
		Msti	311*	<i>Andricus kollari</i>	Spain		Predo del Rey		
		Msti	004*	<i>Andricus quercustozae</i>	Spain		Horcajo		
<i>M. dorsalis</i>	65	Msti	395†	<i>Andricus kollari</i>	Spain				
		Msti	553B†	<i>Andricus kollari</i>	Hungary				
		Mdoi	2928	<i>Andricus quercustozae</i>	Portugal				
		Mdoi	1555*	<i>Andricus quercustozae</i>	Spain				
		Mdoi	429	<i>Andricus quercustozae</i>	Portugal				
		Mdoi	1348B*†	<i>Andricus kollari</i>	Spain				
		Mdoi	457B†	<i>Andricus kollari</i>	Spain				
		Mdoi	1448†	<i>Aphelonyx cerricola</i>	Hungary				
		Onit	388	<i>Andricus kollari</i>	Spain				
		Onit	171*	<i>Andricus kollari</i>	Portugal				
<i>O. nitidulus</i>	54	Onit	793*	<i>Andricus kollari</i>	Spain				
		Onit	1085	<i>Andricus kollari</i>	Portugal				
		Onit	386B†	<i>Andricus kollari</i>	Spain				
		Onit	1633†	<i>Andricus lucidus</i>	Hungary				
		Opom	674	<i>Cynips quercus</i>	Spain				
		Opom	886	<i>Cynips quercus</i>	Spain				
		Opom	14*	<i>Cynips quercus</i>	Spain				
		Opom	344*†	<i>Andricus grossulariae</i>	Spain				
		Opom	66	<i>Cynips quercus</i>	Spain				
		Opom	888†	<i>Andricus grossulariae</i>	Hungary				
<i>O. pomaceus</i>	87	Ebru	1130*	<i>Trygonaspis synapsis</i>	Spain				
		Ebru	406	<i>Andricus quercustozae</i>	Spain				
		Ebru	413	<i>Andricus curvator</i>	Spain				
		Ebru	719*†	<i>Andricus kollari</i>	Spain				
		Ebru	1132†	<i>Aphelonyx cerricola</i>	Hungary				
		Ebru	1027†	<i>Andricus quercustozae</i>	Spain				
		Cfun	135*†	<i>Andricus quercustozae</i>	Spain				
		Cfun	139*	<i>Andricus quercustozae</i>	Spain				
		Cfun	3528	<i>Andricus quercustozae</i>	Spain				
		Cfun	142†	<i>Andricus quercustozae</i>	Spain				
<i>C. fungosa</i>	59	Cfun	133	<i>Andricus quercustozae</i>	Spain				
		Cfun	71†	<i>Andricus caputmedusae</i>	Hungary				

Table S2: Simulation investigation of recombination bias in the likelihood method. Recombination rate for simulations with varying λ and block length is 2.3×10^{-9} . Comparison of genic and intergenic regions is performed on real data

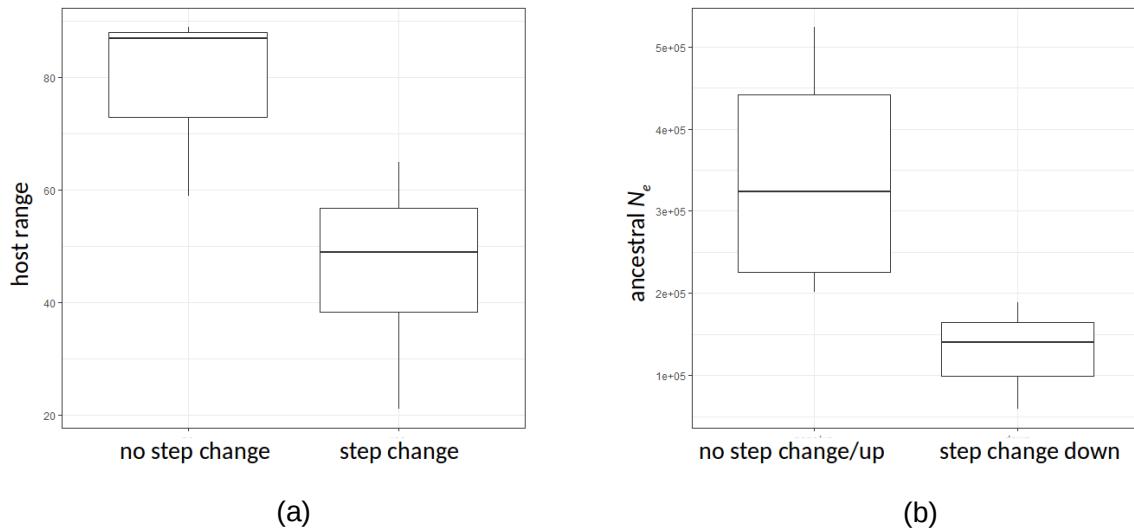

Independent parameter	θ	λ	T
recombination rate (/bp/generation)			
input parameters:			
0	1.509	0.480	0.492
3.46×10^{-11}	1.520	0.498	0.500
2.3×10^{-10}	1.518	0.502	0.470
7.3×10^{-10}	1.525	0.506	0.425
2.3×10^{-9}	1.457	0.497	0.281
7.3×10^{-9}	1.195	0.420	0.100
2.3×10^{-8}	1.885	0.668	0.007
λ			
input parameters:			
0.1	1.130	0.084	0.864
0.25	1.089	0.292	0.809
0.5	1.052	0.622	0.662
0.75	0.912	0.794	0.100
1	1.067	1.307	1.275
1.25	1.049	1.617	1.165
1.5	1.046	1.909	1.067
2	1.032	2.636	1.077
2.5	1.025	3.289	1.055
genomic regions of <i>O. nitidulus</i>			
whole genome	0.381	0.245	0.683
intergenic	0.401	0.265	0.591
genic	0.359	0.231	0.903

Table S3: Assembly summaries. N50: 50% of the assembly is contained in contigs of length equal to or greater than this value. CEGMA (Core Eukaryotic Genes Mapping Approach): full or partial presence of a core set of eukaryotic genes. *r*: recombination rate per base pair per generation estimated by Bunnefeld et al. (2018).

Species	Assembler	N50	Assembly size >200 bases	Number of contigs >200 bases	CEGMA % complete	CEGMA % partial	Median coverage per individual	Total length length (blocks)	<i>r</i>
<i>T. auratus</i>	SPAdes	10,570	397,870,892	100,431	91.53	97.18	6.55	146,116,456	$201,729,257 \times 10^{-9}$
<i>M. stigmatizans</i>	MaSuRCA	9,143	577,876,374	182,922	93.55	97.98	4.25	103,668,048	$270,416,674 \times 10^{-8}$
<i>M. dorsalis</i>	MaSuRCA	18,748	589,959,111	148,702	95.16	97.58	4.25	92,678,220	$369,548,731 \times 10^{-9}$
<i>O. nitidulus</i>	SPAdes	22,984	259,884,369	37,082	95.16	99.19	6.29	112,143,992	$175,944,993 \times 10^{-9}$
<i>O. pomaceus</i>	SPAdes	31,593	263,296,421	43,391	93.15	97.98	6.40	150,762,088	$187,178,948 \times 10^{-9}$
<i>E. brunninensis</i>	SPAdes	3,829	393,847,642	200,270	90.73	98.79	6.16	53,696,839	$167,341,525 \times 10^{-9}$
<i>C. fungosa</i>	SPAdes	8,7417	182,108,758	18,121	93.55	95.97	8.95	122,999,890	$160,721,439 \times 10^{-9}$

Figure S3: Goodness of fit of the best fitting demographic histories for seven species of panzitoids. The observed frequencies of blockwise configurations defined via the folded SFS are shown in orange (left). The expected frequency under the best fitting history is shown on the right for four species fitting a step change model (top, black) and three species for which a constant N_e could not be rejected (bottom, gray). For a sample of $n = 5$ the folded SFS has two entries $j_{2,3}, j_{1,4}$. The log composite likelihood, $\ln CL$ (per block), a measure of absolute goodness of fit of the data to the inferred model, is shown for each species.

Figure S4: (a) Host range and (b) ancestral N_e of species with and without N_e changes inferred by the likelihood method.