

1 **Intracellular DNA replication and differentiation of *Trypanosoma cruzi* is**
2 **asynchronous within individual host cells *in vivo* at all stages of infection**

3

4 Martin. C. Taylor^{*+}, Alexander Ward⁺, Francisco Olmo⁺, Shiromani Jayawardhana⁺

5 Amanda F. Francisco, Michael D. Lewis and John M. Kelly

6

7 Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical
8 Medicine, London, UK

9

10 *Corresponding author: martin.taylor@lshtm.ac.uk (MCT)

11 + Contributed equally to the work

12

13

14

15

16

17

18

19

20

21

22

23

24

25 Short title: Replication and differentiation of *T. cruzi* *in vivo*

26 **ABSTRACT**

27

28 Investigations into intracellular replication and differentiation of *Trypanosoma cruzi*
29 within the mammalian host have been restricted by limitations in our ability to detect
30 parasitized cells throughout the course of infection. We have overcome this problem
31 by generating genetically modified parasites that express a bioluminescent/fluorescent
32 fusion protein. By combining *in vivo* imaging and confocal microscopy, this has
33 enabled us to routinely visualise murine infections at the level of individual host cells.
34 These studies reveal that intracellular parasite replication is an asynchronous process,
35 irrespective of tissue location or disease stage. Furthermore, using TUNEL assays
36 and EdU labelling, we demonstrate that within individual infected cells, replication of
37 both mitochondrial (kDNA) and nuclear genomes is not co-ordinated within the
38 parasite population, and that replicating amastigotes and non-replicating
39 trypomastigotes can co-exist in the same cell. Finally, we report the presence of
40 distinct non-canonical morphological forms of *T. cruzi* in the mammalian host. These
41 appear to represent transitional forms in the amastigote to trypomastigote
42 differentiation process. Therefore, the intracellular life-cycle of *T. cruzi* *in vivo* is more
43 complex than previously realised, with potential implications for our understanding of
44 disease pathogenesis, immune evasion and drug development. Dissecting the
45 mechanisms involved will be an important experimental challenge.

46

47 **AUTHOR SUMMARY**

48 Chagas disease, caused by the protozoan parasite *Trypanosoma cruzi*, is becoming
49 an emerging threat in non-endemic countries and establishing new foci in endemic
50 countries. The treatment available has not changed significantly in over 40 years.

51 Therefore, there is an urgent need for a greater understanding of parasite biology and
52 disease pathogenesis to identify new therapeutic targets and to maximise the efficient
53 use of existing drugs. We have used genetically modified strains of *T. cruzi* carrying a
54 bioluminescence/fluorescence dual reporter fusion gene to monitor parasite
55 replication *in vivo* during both acute and chronic infections in a mouse model. Utilising
56 TUNEL assays for mitochondrial DNA replication and EdU incorporation for total DNA
57 replication, we have found that parasite division within infected cells is asynchronous
58 in all phases of infection. Differentiation also appears to be uncoordinated, with
59 replicating amastigotes co-existing with non-dividing trypomastigotes in the same host
60 cell.

61

62 INTRODUCTION

63 The obligate intracellular parasite *Trypanosoma cruzi* is responsible for Chagas
64 disease, a debilitating infection that is widespread in Latin America. There are an
65 estimated 6-7 million people infected [1]. In addition, due to migration, cases are
66 increasingly being detected outside endemic regions [2, 3]. *T. cruzi* is spread by blood-
67 sucking triatomine bugs, although oral transmission via contaminated food or drink,
68 and the congenital route are also important. The parasite has a wide mammalian host
69 range and can infect most nucleated cells. During its life-cycle, the major features of
70 which were established more than a century ago [4], *T. cruzi* passes through a number
71 of differentiation stages involving both replicative and non-replicative forms. Infections
72 are initiated by insect transmitted metacyclic trypomastigotes, which are flagellated
73 and non-replicating. Once these have invaded host cells, they escape from the
74 parasitophorous vacuole into the cytosol, differentiate into ovoid non-motile
75 amastigotes, and divide by binary fission. After a period of approximately 4-7 days, by

76 which time parasite numbers can have reached several hundred per infected cell, they
77 differentiate into non-replicating flagellated motile trypomastigotes. This eventually
78 promotes host cell lysis, and the released parasites then invade other cells, spread
79 systemically through blood and tissue fluids, or can be taken up by triatomine bugs
80 during a bloodmeal. Within the insect vector, they differentiate into replicating
81 epimastigotes, and finally metacyclic trypomastigotes, to complete the cycle.

82

83 More recently, *in vitro* studies have suggested that the parasite life-cycle may be more
84 complex than outlined above. These reports include the identification of an intracellular
85 epimastigote-like form [5], and amastigote-like forms with short flagella, termed
86 sphaeromastigotes [6]. Whether these parasite forms represent intermediate
87 transitional types, or correspond to intracellular stages with a specific role, remains to
88 be determined. Adding to the complexity, trypomastigotes can also differentiate into
89 an epimastigote-like stage, via an amastigote-like transitional form [7]. These recently
90 differentiated epimastigotes have a distinct proteomic profile, display complement-
91 resistance, can invade phagocytic and cardiac cells, and are infectious to mice. In
92 addition, it has been reported that when bloodstream trypomastigotes invade
93 mammalian cells, they can undergo a differentiation step in which asymmetric cell
94 division results in the generation of an amastigote, together with a second, defective
95 parasite cell termed a zoid, which contains a kinetoplast, but lacks a nucleus [8]. This
96 has not, as yet, been demonstrated for the metacyclic trypomastigote which initiates
97 natural mammalian infection. Most recently, it has been observed that infrequent
98 spontaneous dormancy can occur in intracellular amastigotes, a phenomenon that
99 may be linked to increased drug tolerance [9]. These non-proliferating intracellular
100 amastigotes, which have been identified both *in vivo* and *in vitro*, retain the ability to

101 differentiate into trypomastigotes. Their metabolic status is unknown. To date, a lack
102 of sufficiently sensitive *in vivo* parasite detection methods has meant that it has not
103 been possible to investigate the biological role of these and the other non-classical
104 parasite forms during either acute or chronic stage infections.

105

106 There are three distinct stages to Chagas disease. In humans, the acute stage occurs
107 in the first 4-6 weeks, and is characterised by a widely disseminated infection, together
108 with patent parasitemia. This results in the induction of a robust CD8⁺ T cell-mediated
109 response [10], with infected individuals then progressing to the asymptomatic chronic
110 stage, where the parasite burden is extremely low and difficult to detect. Around 30-
111 40% of those infected eventually develop chronic disease pathology, predominantly
112 cardiomyopathy and/or digestive tract megasyndromes [11, 12]. In humans, infections
113 with *T. cruzi* are considered to be life-long, however our understanding of parasite
114 biology and tropism during the chronic stage, and their relationship to disease outcome
115 are limited [13]. To address these issues, we developed an experimental murine model
116 based on highly sensitive bioluminescence imaging of *T. cruzi* genetically modified to
117 express a red-shifted luciferase [14, 15]. This system allows chronic infections to be
118 followed in real time for periods of longer than a year, and enables endpoint
119 assessment of parasite location by *ex vivo* imaging. In this mouse model, the infection
120 is pan-tropic during the acute stage and parasites are readily detectable in almost all
121 organs and tissues. During the chronic stage however, the parasite burden is very low
122 and restricted mainly to the colon and/or stomach, with other organs/tissues infected
123 only sporadically [14, 16].

124

125 Although bioluminescence can be widely used for *in vivo* testing of drugs and
126 vaccines, and as a technique for exploring infection kinetics and dynamics, it does not
127 easily allow the identification or study of single parasites at a cellular level [16-19]. To
128 overcome this limitation, we re-engineered the *T. cruzi* strain to express a
129 bioluminescent/fluorescent fusion protein [20]. The aim was to enable infection
130 dynamics to be monitored at a whole animal level using bioluminescence, followed by
131 investigation of host-parasite interactions at a single cell level using fluorescence. With
132 this approach, we have been able to routinely image individual parasites in murine
133 tissues during chronic stage infections. This has allowed us to readily visualise
134 parasites residing within individual host cells in chronically infected animals. Here, we
135 describe the exploitation of this dual imaging procedure to gain new insights into
136 parasite biology in experimental models of acute and chronic Chagas disease.

137

138 **METHODS**

139 **Parasite culture**

140 *T. cruzi* CL-Luc::Neon epimastigotes were cultured in supplemented RPMI-1640 as
141 described previously [21]. Genetically manipulated lines were routinely maintained on
142 their selective agent (hygromycin, 150 µg ml⁻¹; puromycin, 5 µg ml⁻¹; blasticidin, 10 µg
143 ml⁻¹; G418, 100 µg ml⁻¹). MA-104 (fetal African green monkey kidney epithelial) cells
144 (ATCC CRL-2378.1) were cultivated to 95–100% confluence in Minimum Essential
145 Medium Eagle (MEM, Sigma.), supplemented with 5 % Foetal Bovine Serum (FBS),
146 100 U/ml of penicillin, and 100 µg ml⁻¹ streptomycin at 37°C and 5% CO₂. Tissue
147 culture trypomastigotes (TCTs) were derived by infecting MA104 cells with stationary
148 phase metacyclic trypomastigotes. Cell cultures were infected for 18 hours. External
149 parasites were then removed by washing in Hank's Balanced Salt Solution (Sigma-

150 Aldrich), and the flasks incubated with fresh medium (Minimum Essential Medium
151 (Sigma-Aldrich) supplemented with 5% FBS) for a further 5-7 days. Extracellular TCTs
152 were isolated by centrifugation at 1600 g. Pellets were re-suspended in Dulbecco's
153 PBS and motile trypomastigotes counted using a haemocytometer. *In vitro* infections
154 for microscopy were carried out as above, but on coverslips incubated in 24-well plates
155 using an MOI of 5:1 (host cell:parasite). Coverslips were fixed with 2%
156 paraformaldehyde at 72 hours post infection. Cells were then labelled with TUNEL
157 (section 4.6).

158

159 **Ethics statement**

160 All animal work was performed under UK Home Office licence 70/8207 and approved
161 by the London School of Hygiene and Tropical Medicine Animal Welfare and Ethical
162 Review Board. All protocols and procedures were conducted in accordance with the
163 UK Animals (Scientific Procedures) Act 1986.

164

165 **Mouse infection and necropsy**

166 Mice were maintained under specific pathogen-free conditions in individually
167 ventilated cages. They experienced a 12 hour light/dark cycle and had access to food
168 and water *ad libitum*. Female mice aged 8-12 weeks were used. CB17 SCID mice
169 were infected with 1×10^4 tissue culture trypomastigotes, and monitored by
170 bioluminescence imaging (BLI), as previously reported [14]. At the peak of the
171 bioluminescence signal, when trypomastigotes were visible in the bloodstream, the
172 mouse was culled by an overdose of pentobarbital sodium, and the infected blood
173 obtained by exsanguination. The trypomastigotes were washed in Dulbecco's PBS
174 and diluted to $5 \times 10^3 \text{ ml}^{-1}$. 1×10^3 trypomastigotes were injected i.p. into each mouse

175 (BALB/c or C3H/HeN) and the course of infection followed by BLI. At specific time-
176 points, the mice were euthanised by an overdose of pentobarbital sodium and
177 necropsied (for detailed description of the necropsy method, see Taylor *et al.*, 2019).
178 Their organs were subject to *post mortem* BLI. We excised those segments that were
179 bioluminescence-positive and placed them into histology cassettes. BLI images from
180 living animals and *post-mortem* tissues were analysed using Living Image 4.5.4
181 (PerkinElmer Inc.)

182

183 **Tissue embedding and sectioning**

184 Tissue sections were produced as described previously [20, 22]. Briefly, excised tissue
185 was fixed in pre-chilled 95% ethanol for 20-24 hours in histology cassettes. The tissues
186 were dehydrated in 100% ethanol, cleared in xylene, and then embedded in paraffin
187 at 56°C. Sections were cut with a microtome and mounted on glass slides, then dried
188 overnight. Slides were stored in the dark at room temperature until required.

189

190 **TUNEL assay for kDNA replication**

191 For *in vitro* studies, logarithmically growing epimastigotes and infected mammalian
192 cells on coverslips were fixed with 2% paraformaldehyde in PBS. Fixed epimastigotes
193 were air-dried onto glass 8-well slides. Cells were washed once in PBS and
194 permeabilized in 0.1% TritonX-100/PBS for 5 min and washed 3 times with PBS. 20
195 µL TUNEL reaction mixture (In situ Cell Death Detection Kit, TMR-red, Roche) was
196 added to each well or coverslip and the reaction incubated for 1 hour at 37°C. For
197 tissue sections, slides were deparaffinised in 2 changes (30 s each) of xylene, 3
198 changes (1 min each) of pre-chilled 95% ethanol, and 3 changes (1 min each) of pre-
199 chilled Tris-buffered saline (TBS). Sections were outlined with a hydrophobic pen then

200 permeabilized in 0.1% TritonX-100/PBS for 5 min and washed 3 times with PBS. 20
201 μ L TUNEL reaction mixture was added to each section and the slide was overlaid with
202 a coverslip to ensure that the reaction mix was evenly distributed. The reaction was
203 incubated for 20 min to 2 hours at 37°C. Coverslips and slides were mounted in
204 VECTASHIELD® with DAPI (Vector Laboratories, Inc.) before observation on a Zeiss
205 Axioplan LSM510 confocal microscope.

206

207 **EdU assay for DNA replication**

208 Mice were injected intraperitoneally with 12.5 mg kg⁻¹ EdU (Sigma-Aldrich) in PBS at
209 specific time points (as detailed in Results) prior to euthanasia. Tissues were fixed and
210 sectioned as above. Labelling of the incorporated EdU was carried out using the Click-
211 iT Plus EdU AlexaFluor 555 Imaging kit (Invitrogen), following a similar method as
212 used for TUNEL labelling, but substituting the Click-iT reagent for the TUNEL reaction
213 mix. For sections which had been in paraffin for extended time periods (> 6 months),
214 the slides were immersed in 100 mM EDTA for 16 hours (on manufacturer's
215 recommendation), then washed extensively with TBS prior to the Click-iT reaction.

216

217 **Confocal microscopy**

218 Slides and sections were examined using a Zeiss LSM510 Axioplan confocal laser
219 scanning microscope. Cells containing multiple parasites were imaged in three
220 dimensions to allow precise counting of amastigotes (using the 63x or 100x objectives
221 with appropriate scan zoom for the particular cell/number of parasites). Phase images
222 were obtained at lower magnification (40x) to allow orientation of the tissue section
223 and identification of specific layers/structures. All images were acquired using Zeiss

224 LSM510 software. Scale bars were added using the Zeiss LSM Image Browser overlay
225 function and the images were then exported as .TIF files to generate the Figs.

226

227 **Live imaging of infected cells.**

228 Videos were acquired using an inverted Nikon Eclipse microscope. The chamber
229 containing the specimen was moved in the x-y plane through the 580 nm LED
230 illumination. Images were collected using a 16-bit, 1-megapixel Pike AVT (F-100B)
231 CCD camera set in the detector plane. An Olympus LMPlanFLN 20x/0.40 objective
232 was used to collect the exit wave leaving the specimen. Time-lapse imaging was
233 performed by placing the chamber slide on the microscope surrounded by an
234 environmental chamber (Solent Scientific Limited, UK) maintaining the cells and the
235 microscope at 37°C / 5% CO₂. Time-lapse video sequences were created using the
236 deconvolution app in the Nikon imaging software.

237

238 **RESULTS**

239 **Parasite kinetoplast DNA replication is not synchronised within individual
240 infected cells.**

241 The text book view of the *T. cruzi* intracellular cycle is that invading trypomastigotes
242 differentiate into amastigotes, which then begin to divide by binary fission within the
243 cytoplasm of the host cell. These then differentiate into trypomastigotes and the host
244 cell lyses releasing the trypanosomes, see for example Fig 1a in [23]. However, the
245 degree to which amastigote division and differentiation are co-ordinated within single
246 cells, and the potential for this to be influenced by host cell type and/or tissue-specific
247 location are poorly understood.

248

249 During trypanosomatid cell division there are two distinct DNA replication events that
250 result in duplication of the mitochondrial (kinetoplast or kDNA) and then the nuclear
251 genomes. However, at early stages of kDNA or nuclear DNA replication, it is not
252 feasible to assign parasites to a particular cell-cycle phase by morphology or total DNA
253 staining, as many parasites appear similar. To identify the replication status of the
254 mitochondrial genome in intracellular amastigotes we took advantage of the TUNEL
255 assay (terminal deoxynucleotidyl transferase dUTP nick end labelling), a procedure
256 normally used to quantify apoptotic cell death in mammalian cells [24]. In *T. cruzi*, this
257 assay can be utilised to monitor kDNA replication [20], a genome that consists of
258 thousands of catenated circular double-stranded DNA molecules. The majority of
259 these are the mini-circles that encode the guide RNAs that mediate RNA editing [25].
260 To maintain functional RNA editing, daughter cells must each inherit copies of the
261 entire mini-circle repertoire. During replication, mini-circles are first detached from the
262 catenated network and the new strands are then synthesised. However, some of the
263 single-strand breaks that result from removal of RNA primers in the newly synthesised
264 DNA are maintained until the whole mini-circle network has been replicated. This
265 enables newly duplicated circles to be distinguished from non-replicated circles and
266 ensure each daughter network is complete [26, 27]. Therefore, during the S-phase of
267 kDNA replication, the free 3' hydroxyl groups at the nicks on the newly synthesised
268 strands can be labelled with a fluorescent analogue by terminal uridylyl transferase
269 [20, 26, 28]. This means that the TUNEL assay enables specific labelling of parasites
270 that have commenced cell division.

271

272 We first applied TUNEL assays to asynchronous, exponentially growing epimastigote
273 cultures to confirm that this method was applicable to *T. cruzi*. Parasites in the early

274 phase of kDNA synthesis displayed TUNEL positivity in antipodal sites on either side
275 of the kDNA disk, indicative of the two replication factories (Fig 1a). Later in replication,
276 the entire disk was labelled (Fig 1b). Nuclear DNA did not exhibit a positive signal at
277 any stage (Fig 1a and b).

278

279 **FIG 1** Kinetoplast replication of *T. cruzi* amastigotes is asynchronous in vitro. (a)
280 Epimastigote at early stage of kDNA replication with TUNEL labelling of antipodal
281 sites. (b) Epimastigotes at late stage of kDNA replication showing TUNEL labelling of
282 entire kDNA disk. (c) MA104 cells infected with *T. cruzi* CL-Luc::Neon amastigotes for
283 72 hours then fixed and labelled with the TUNEL reagent. Left hand panel: cell
284 containing 11 amastigotes with non-replicating kDNA (all TUNEL-ve); central panel:
285 cell with parasites in which kDNA replication is asynchronous (mix of TUNEL+ve and
286 TUNEL-ve); right hand panel: cell where all amastigotes are TUNEL+ve, but at
287 different stages of kDNA replication (7 of 8 amastigotes display bright antipodal
288 staining, the eighth is faintly TUNEL+ve, as shown by white arrows in the inset). (d)
289 TUNEL data from 200 infected cells pooled from 3 replicate wells. The red line
290 represents the number of infected cells assessed that contained the specified number
291 of resident amastigotes. The black bars represent the percentage of amastigotes per
292 cell that label as TUNEL+ve. Bar = 5 μ m

293

294 To quantify the replication of kDNA in intracellular amastigotes, the parasites in 200
295 infected cells were assessed for TUNEL positivity *in vitro* 72 hours post-infection.
296 These cultures were infected with a low multiplicity of infection (1 parasite per 5 host
297 cells) to minimise the chance of individual cells being infected twice. It was apparent
298 that kDNA replication within single infected cells was largely asynchronous, since most

299 infected cells contained both TUNEL+ve and –ve amastigotes (Fig 1c and d). Most
300 TUNEL+ve parasites displayed antipodal staining, indicative of early phase replication
301 (see examples in Fig 1c). The number of amastigotes displaying whole disk staining
302 was low suggesting that kDNA nick repair may occur more rapidly than in
303 epimastigotes. The few amastigotes that displayed a 2K1N morphology showed no
304 TUNEL staining on either kinetoplast, indicating that nicks are repaired prior to
305 segregation, as expected (example shown in S1 Fig) [26].

306

307 Total amastigote numbers within infected cells were also consistent with
308 asynchronous replication; they did not follow a geometric progression as would be
309 expected if growth was co-ordinated (Fig 1d, red line). There were no cases where a
310 specific number of amastigotes within a cell was always associated with 100% TUNEL
311 labelling (S2 Fig). Intracellular populations of 2, 4 or 8 amastigotes were equally as
312 likely to be asynchronous as populations containing non-geometric numbers (Fig 1d,
313 black bars, S2 Fig). In the minority of infected cells where every amastigote was
314 TUNEL+ve (14.5% of cells that contained more than one parasite), there were
315 differences in the degree of labelling between the parasites in 24% of the host cells
316 (Fig 1c inset, for example, white arrows indicate faint TUNEL labelling of one
317 amastigote in earlier phase of kDNA replication). Collectively, these results therefore
318 show that within a single infected cell *in vitro*, amastigote kDNA replication is not
319 synchronised within the population.

320

321 We then applied the TUNEL assay to mouse tissues obtained from acute experimental
322 infections with the dual bioluminescent/fluorescent *T. cruzi* cell line CL-Luc::Neon [20].
323 The acute phase in mice is characterised by widespread dissemination of infection

324 with amastigotes in diverse cell and tissue types. We sampled a range of organs and
325 tissues (Fig 2; S3 Fig). This revealed that within any given infected host cell, the extent
326 of kDNA labelling varied between parasites. We quantified the frequency of TUNEL
327 positivity amongst amastigotes in sections from various organs in a single mouse (Fig
328 3). The majority of amastigotes in the acute phase had TUNEL+ve kDNA, showing
329 that they were undergoing replication. However, there was no evidence for
330 programmed synchronicity, and in each tissue, individual cells could contain both
331 TUNEL+ve and TUNEL-ve parasites. Moreover, all of the different organs that were
332 analysed showed similar profiles with respect to parasite replication states (Fig 3).

333

334 **FIG 2** Asynchronous replication of parasite mitochondrial DNA within single infected
335 host cells *in vivo* revealed by TUNEL assays. (a) Asynchronous replication of kDNA in
336 intracellular parasites infecting mouse spleen cells during an acute stage infection (day
337 19). BALB/c mice were infected with *T. cruzi* CL-Luc::Neon and histological sections
338 prepared from bioluminescent tissue (Experimental procedures). Parasites were
339 detected by green fluorescence (mNeon), and the tissue sections subjected to TUNEL
340 assays to highlight replicating kDNA (red). (b) Asynchronous replication of kDNA in an
341 amastigote nest detected in the smooth muscle layer of stomach tissue during a
342 chronic stage infection (day 117). Bar = 10 μ m.

343

344 **FIG 3** Quantification of TUNEL in BALB/c mice during the acute stage of infection with
345 *T. cruzi* CL-Luc::Neon. Tissue sections from mice sacrificed on day 19 post-infection
346 were processed for imaging and subjected to TUNEL staining (Experimental
347 procedures). The graphs show the number of amastigotes that were TUNEL+ve (red)
348 or TUNEL-ve (blue) in individual infected cells within the specified tissues. The x-axis

349 refers to individual host cells. Bars containing both TUNEL-ve and +ve amastigotes
350 were present in all tissues examined. Note that the level of TUNEL signal may vary
351 between amastigotes within a given cell, so even bars that are red only may represent
352 parasites at different stages of kDNA replication (c.f. differential levels of TUNEL
353 staining in Fig 2a and b, DAPI/TUNEL panels).

354

355 **Replication of parasite nuclear DNA is not synchronised within individual**
356 **infected host cells.**

357 TUNEL assays identify parasites where kDNA replication has initiated, but do not
358 provide information on those where it has terminated and the parasite has progressed
359 to nuclear DNA synthesis. To get a more quantitative picture of both nuclear and
360 kinetoplast replication, we injected *T. cruzi*-infected mice with the nucleoside analogue
361 5-ethynyl-2'-deoxyuridine (EdU) at specific time points prior to necropsy [29]. We
362 chose EdU rather than BrdU, since this analogue can be fluorescently labelled directly
363 in double stranded DNA and does not require harsh denaturing conditions. This
364 preserves the mNeonGreen fluorescence used to locate *T. cruzi* *in situ*. EdU is
365 incorporated into newly synthesised DNA molecules and identifies parasites
366 undergoing nuclear or kDNA replication during the time period of the EdU pulse. It also
367 labels mammalian cells that enter S-phase during this period. EdU distribution in
368 murine tissues is extensive and incorporation is stable. For example, Merkel cells from
369 mice whose mothers were injected with EdU during pregnancy remain labelled nine
370 months after birth, suggesting that the analogue is not removed during DNA repair [30-
371 32]. Labelling of replicating host cells within a given tissue section can therefore be
372 used as an internal control for EdU tissue penetration to sites of *T. cruzi* infection.
373 Fixed tissue sections containing host cells and/or parasites that incorporate EdU are

374 fluorescently labelled by click chemistry and can be examined by confocal microscopy
375 [33] (Experimental procedures).

376
377 We assessed a range of bioluminescence positive tissues excised from mice in the
378 acute stage of infection (Fig 4). In cardiac sections, there was negligible labelling of
379 host cell nuclei, as expected, since heart muscle consists predominantly of terminally
380 differentiated non-replicative cells. However, labelled intracellular parasites were
381 easily detected. Within host cells containing multiple parasites, EdU labelling was
382 heterogeneous across the population and many parasites had not incorporated EdU
383 (Fig 4a) during the time of exposure. Similarly, in adipose tissue, parasites within the
384 same infected cells displayed a wide range of EdU specific fluorescence intensity (Fig
385 4b). This heterogeneity was dispersed throughout the infected cell, with replicating
386 and non-replicating organisms being interspersed.

387
388 **FIG 4** Asynchronous parasite DNA replication within single infected host cells *in vivo*
389 revealed by EdU-labelling. Replication of parasite DNA within mice infected by *T. cruzi*
390 clone CL-Luc::Neon was assessed after inoculating EdU (for (a) and (b), one pulse 6
391 hours prior to tissue sampling; for (c), two pulses 18 and 28 hours prior to tissue
392 sampling (Experimental procedures). Parasite location in histological sections was
393 detected by green fluorescence (mNeon). (a) DNA replication (EdU, red) in a parasite
394 nest during an acute stage infection (heart tissue, day 15 post-infection). In the DAPI
395 stained image, the white arrow indicates parasite nest, and red arrow the host cell
396 nucleus. The merged DAPI/EdU image, bottom left, illustrates the heterogeneity in the
397 DNA replication status of parasites within the nest. (b) DNA replication in parasites
398 within adipose tissue (day 15 post-infection). Red and white arrows in the DAPI image

399 identify host and parasite DNA, respectively. Combined EdU and DAPI image shows
400 replicating parasites interspersed with non-replicating parasites. (c) Section from GI
401 tract of mouse, upper panel shows image at low magnification – note the presence of
402 some EdU+ve mammalian cells within the mucosal layer due to epithelial cell
403 replacement (indicated by white arrowheads). Lower panels show magnified view of
404 parasite nest. EdU signal in magenta box is shown in higher magnification to the right;
405 note a single amastigote with EdU labelling at antipodal sites of kDNA replication. All
406 other parasites in this nest are negative. Bars = 10 μ m.

407
408 In gut sections obtained from chronically infected mice, EdU labelling of host cells in
409 the mucosal epithelium was readily apparent, since these cells are continually shed
410 into the gut lumen and replaced from stem cells (Fig 4c, white arrowheads). As in the
411 acute stage, the labelling pattern within amastigote “nests” was consistent with
412 asynchronous replication of nuclear DNA, with many parasites showing no detectable
413 EdU incorporation (Fig 4c; S4 Fig a, b). We also analysed sections taken from tissue
414 samples that contained all of the detectable bioluminescent foci in the gastrointestinal
415 tract of three individual chronically infected C3H/HeN mice (M275-17, M277-17 and
416 M279-17). We injected these animals with two pulses of EdU at 18 and 28 hours before
417 euthanasia. The number of parasites and infected cells was consistent with the
418 strength of the bioluminescent signal visible on ex-vivo organ sections (Fig 5a). Some
419 of the nests were very large (“mega-nests”), containing hundreds of parasites, and in
420 some cases, they clearly extended beyond the limits of the tissue section (indicated
421 by asterisks, Fig 5b, c). However, examination of serial sections of a single large nest
422 indicated that the asynchronous nature of EdU incorporation was sustained throughout
423 the nest (Fig 6), since in each section there were both EdU+ve and EdU-ve

424 amastigotes. The extent of EdU labelling within amastigotes in an infected cell was
425 variable as had been observed with the TUNEL assay. This would be expected if
426 parasites were sampled at different stages within S-phase. It was clear that many
427 parasites had not replicated during the period of EdU exposure because most
428 amastigotes (77% in the GI tract, 62% in the peritoneal muscle) were negative for EdU
429 labelling in either kinetoplast or nucleus. Therefore, both TUNEL assays and EdU
430 incorporation demonstrate that *in vivo*, the timing of DNA replication is autonomous to
431 individual parasites within an infected host cell, with no evident synchronisation of the
432 process between different amastigotes.

433

434 **FIG 5** EdU labelling reveals that cells infected with small numbers of amastigotes have
435 a lower percentage of actively replicating parasites in a chronic infection. (a) *Ex vivo*
436 imaging of organs. Bioluminescent foci were removed from the GI tract of three
437 chronically infected C3H/HeN mice (day 211 post-infection) that had been injected
438 with two pulses of EdU 18 and 28 hours prior to necropsy (Experimental procedures).
439 (b) Each infected cell in the GI tract foci was imaged and the number of amastigotes
440 that were positive or negative for EdU incorporation was quantified. The graphs show
441 the total number of amastigotes in each cell (blue bars) and the number that were
442 labelled with EdU (red bars). (c) Bioluminescent foci from the peritoneal muscle were
443 also dissected, stained for EdU and quantified as above. Asterisks above bars indicate
444 cells were the number of parasites represents a minimum due to the infected nest
445 being larger than the z-dimension of the section.

446

447 **FIG 6** Large nests are present in the chronic stage of infection (C3H/HeN mouse, day
448 211) and show asynchronous EdU incorporation throughout. Images of the same nest

449 taken from different sections through the tissue. The top row shows DAPI, EdU and
450 mNeonGreen merged channels, whilst the lower row shows DAPI and EdU channels
451 (for clarity). Bar = 10 μ m. Note that sections are from the same infection focus but not
452 all sections of this nest are included due to loss in processing.

453

454 **Both replicating and differentiating parasites co-exist in the same host cell**

455 The final step in the intracellular development of *T. cruzi* is differentiation of replicating
456 amastigotes into non-dividing flagellated trypomastigotes, prior to their escape from
457 the host cell. The mechanisms that regulate this process *in vivo*, from a temporal and
458 organisational perspective, are unknown. In mammalian cell monolayers infected *in*
459 *vitro*, we observed that amastigotes could be detected in the same cells as
460 differentiated trypomastigotes (Fig 7a). We used the TUNEL assay to examine
461 whether amastigotes in this environment were undergoing replication or were about to
462 differentiate. Antipodal TUNEL staining was observed in the kinetoplasts of some
463 amastigotes present in cells with trypomastigotes indicating ongoing kDNA replication
464 (Fig 7b). Co-existence of replicating parasites with trypomastigotes was confirmed by
465 live-cell imaging of infected cells *in vitro* (S5 Fig, S1 Movie, S2 Movie). This suggested
466 asynchronicity in the process of both differentiation and cell division. Amastigotes can
467 therefore initiate a new replicative phase while in the same host cell as parasites that
468 have differentiated to trypomastigotes as judged by morphology and flagellar position.
469 It remains possible that some amastigotes initiate replication but then “pause”, leading
470 to TUNEL+ve parasites co-existing with flagellated trypomastigotes.

471

472 **FIG 7** TUNEL assays indicate that amastigote replication and amastigote-to-
473 trypomastigote differentiation can occur concurrently within single infected host cells

474 *in vitro*. (a) MA104 cells infected *in vitro* with *T. cruzi*. Two amastigotes (1 and 2) are
475 visible within a cell full of trypomastigotes. The two lower right-hand panels show the
476 two amastigotes at a higher magnification for clarity. (b) MA104 cells infected *in vitro*
477 with *T. cruzi*. The cells were fixed 72 hours post-infection and subjected to a TUNEL
478 assay. Two replicating amastigotes can be identified by antipodal TUNEL labelling on
479 the kinetoplast, amongst a population of differentiated trypomastigotes. Bar = 10 μ m.
480

481 **Multiple morphological forms of *T. cruzi* are present in deep tissues of infected
482 mice**

483 Classically, the *T. cruzi* life-cycle in mammals involves two distinct morphological
484 stages, the intracellular replicative amastigote, which lacks an external flagellum, and
485 the non-replicating extracellular flagellated trypomastigote. However, other forms of
486 the parasite have been observed under *in vitro* conditions (for review, [34]). These
487 observations normally involve only one host cell type, and lack environmental signals
488 and a tissue milieu. Therefore, it has not been possible to be assess if these non-
489 classical forms are physiologically relevant during host infections, or whether they are
490 artefacts of *in vitro* culture.

491
492 We observed a number of distinct *T. cruzi* morphological forms during murine
493 infections that do not conform to the standard amastigote/trypomastigote dichotomy.
494 In both acute and chronic infections, we frequently visualised amastigote-like forms
495 with a protruding flagellum (Fig 8). This flagellum extended from the anterior of the
496 parasite, based on the relative position of the kinetoplast and nucleus (Fig 8a-c). The
497 kinetoplast and nucleus displayed the forms associated with the replicative stages of
498 the parasite. The length of the visible flagellum was highly variable with the majority of

499 amastigotes having no protruding flagellum. (Fig 8d). The length of the amastigote cell
500 body varied between 3 and 7 μm (mean $4.2 \pm 0.8 \mu\text{m}$) with the flagellar length being
501 independent of cell body length (Fig 8c and e). The flagellated amastigote-like
502 parasites have similarities to sphaeromastigotes (Tyler & Engman, 2001), a form that
503 has been observed *in vitro*.

504

505 **Fig 8** *T. cruzi* parasites display a wide range of morphologies during murine infections.
506 BALB/c mice were inoculated with parasites expressing a fluorescent/bioluminescent
507 fusion protein and infected tissues identified by *in vivo* bioluminescence imaging
508 (Experimental procedures). Fluorescent (green) flagellated “amastigote” forms
509 detected in (a) adipose tissue (day 13 post-infection) (DNA stained red – appears
510 yellow where mNeon fluorescence overlaps DNA), and (b) cardiac tissue (day 19 post-
511 infection). (c) Parasite nests in the rectum (day 19 post-infection) containing a variety
512 of morphological forms. Note that none of the flagellated forms displays the posterior
513 rounded kinetoplast characteristic of tryomastigotes. Bar = 5 μm . (d and e) The
514 flagellar length was measured in 100 amastigote-like cells from various tissue sites,
515 where parasites were distinct enough to measure both flagellum and cell body. (d)
516 Graph showing the flagellar length (μm) measured in each individual amastigote. (e)
517 Graph showing the flagellar length (μm) plotted against parasite body length (μm).

518

519 In addition to the flagellated amastigote-like parasites, we also observed a second
520 non-standard form that displays an epimastigote-like morphology (Fig 8c, orange box
521 and inset). Similar forms have been reported once before in a very early stage of
522 infection (day 8) [35]. These epimastigote-like forms, which we detected repeatedly in
523 tissue samples, often co-existed with dividing amastigotes and differentiating

524 trypomastigotes in the same infected cell, and could be observed by live cell imaging
525 *in vitro* (S5 Fig). Whether these forms are simply morphological intermediates, or have
526 a distinct role in infection or transmission remains unknown.

527

528 **DISCUSSION**

529 The broad outline of *T. cruzi* replication and stage-specific differentiation during
530 mammalian infection has been known for more than a century. However, it is clear
531 that this part of the life-cycle is more complex than previously described, with possible
532 implications for our understanding of pathogenesis, immune evasion and transmission
533 [34]. Unravelling the biology of *T. cruzi* within the host is also crucial from a drug
534 development perspective, since some life-cycle stages may be less sensitive to
535 treatment [9], and the ability of the parasite to reside in metabolically distinct tissue
536 compartments may have significant effects on drug exposure and pharmacodynamics.

537 To date, most research on *T. cruzi* replication and differentiation has utilised *in vitro*
538 systems. Although these are informative, they may not capture the full developmental
539 range, and could give rise to artefactual observations that are not relevant to these
540 processes within the mammalian host. In addition, *in vitro* cultures often use
541 immortalised mammalian cell lines, whereas *in vivo* *T. cruzi* is usually found in non-
542 replicating terminally differentiated cells such as muscle fibres.

543

544 One of the major unknowns in *T. cruzi* biology is the extent to which parasite growth
545 is co-ordinated within individual host cells during a mammalian infection, and how it is
546 influenced by tissue/organ location and disease status. This issue has been
547 highlighted by recent reports of spontaneous dormancy during intracellular infection
548 (Sánchez-Valdés et al., 2018). Here, using a bioluminescent/fluorescent dual reporter

549 strain that significantly enhances our ability to identify and visualise infected host cells
550 *in vivo*, we provide evidence that intracellular replication is largely asynchronous. From
551 observation, it is apparent that the number of parasites per host cell does not follow a
552 predictable or tightly regulated pattern *in vitro* (Fig 1, S2 Fig), or *in vivo*, at any phase
553 of the infection, or in any specific tissues (Figs 2-6). Consistent with this, two separate
554 assays indicate that, within individual infected cells, DNA replication is not
555 synchronised between parasites at either nuclear or kinetoplast genome levels (Figs
556 2-6, S3, S4). In the case of EdU labelling, this was not a reflection of differential tissue
557 penetration, since replicating amastigotes were interspersed with non-labelled
558 parasites in a wide range of tissues types, during both acute and chronic infections.
559 TUNEL labelling is not dependent on incorporation of nucleoside analogues in a living
560 mouse and is therefore an orthogonal assay for mitochondrial DNA replication.

561
562 The finding that extremely large nests of asynchronously dividing or differentiating
563 parasites can exist in chronically infected animals (Fig 6 and S4 Fig) could have
564 therapeutic implications. Infected cells such as these may contain parasites in a range
565 of metabolic states (including dormancy) that exhibit heterogeneity in terms of drug
566 susceptibility. In addition, the possibility that these *in vivo* mega-nests could result in
567 some form of intracellular “herd-protection” may give rise to an environment that is
568 difficult to replicate in the standard *in vitro* assays used in the drug development
569 pipeline.

570
571 Single infected cells can contain both replicating amastigotes and non-replicating,
572 differentiated tryomastigotes (Fig 7). Therefore, whatever the signal(s) that trigger
573 differentiation and/or replication, they are not perceived and/or acted on in concert by

574 every parasite within the nest. This contrasts with the related extracellular parasite *T.*
575 *brucei* in which a well-characterised quorum sensing pathway initiates differentiation
576 from the replicative long slender bloodstream form to the non-replicating short stumpy
577 form, preadapted for transmission to the tsetse fly vector [36-39]. The lack of
578 synchrony in differentiation between amastigote, intracellular “epimastigote” and
579 trypomastigote, during *T. cruzi* infection, indicates that either a ubiquitous quorum
580 sensing mechanism of this kind does not operate within single infected host cells, or
581 that some parasites remain refractory to the trigger signal, as exemplified by the
582 quiescent amastigotes identified recently [9].

583

584 The dual reporter parasite strain also enabled us to identify a number of non-standard
585 parasite forms in tissues of infected mice, sometimes co-existing within the same host
586 cell (Fig 5, S5 Fig). The role of the intracellular and extracellular epimastigote-like, and
587 flagellated amastigote-like forms in the parasite life-cycle remains to be determined.
588 Their relative scarcity suggests that they could be transient forms which occur during
589 the differentiation from amastigote to trypomastigote. Importantly, detection of these
590 morphological forms *in vivo* excludes the possibility that they represent laboratory
591 culture artefacts. Intriguingly, in this context, it has been established that in the
592 opossum, an ancient natural host of *T. cruzi*, there is an insect stage-like epimastigote
593 cycle within the anal glands. This appears to exist independently of the intracellular
594 pathogenic cycle found in other tissues [40]. It has also been demonstrated that
595 trypomastigotes can exist in two distinct populations (TS+ and TS-, referring to *trans-*
596 *sialidase* surface expression). TS- parasites are poorly infective to mammalian cells
597 and significantly less virulent in mice [41]. This suggests that the two populations may
598 have distinct roles, one perhaps preadapted for invasion of the insect vector, and the

599 other for propagation of infection within the mammalian host, analogous to the slender
600 and stumpy forms of *T. brucei*.

601
602 In conclusion, this study reports the first detailed analysis of *T. cruzi* replication in
603 animals at the level of single infected cells within a range of tissue types. The data
604 reveal the complexity of parasite replication and differentiation cycles, and confirm the
605 existence *in vivo* of parasites with a non-classical morphology. The presence of even
606 transient non-canonical forms in infected animals highlights important questions about
607 their susceptibility to trypanocidal drugs, compared with standard amastigotes.
608 Similarly, it is unknown whether these forms express the same surface protein
609 repertoire as amastigotes and/or trypomastigotes, if they are equally targeted by anti-
610 parasite antibodies in the bloodstream and tissue fluids, or if they retain the ability to
611 infect other cells and disseminate the infection. It will now be important to develop
612 procedures to isolate these non-classical parasite types in sufficient numbers to allow
613 their biochemical and biological characterisation.

614
615 **References**

- 616 1. WHO. Chagas disease (American Trypanosomiasis) 2019. Available from: [www.who.int/news-room/fact-sheets/detail/chagas-disease-\(american-trypanosomiasis\)](http://www.who.int/news-room/fact-sheets/detail/chagas-disease-(american-trypanosomiasis)).
- 617 2. Bern C, Kjos S, Yabsley MJ, Montgomery SP. Trypanosoma cruzi and Chagas' Disease in the
618 United States. Clin Microbiol Rev. 2011;24(4):655-81.
- 619 3. Requena-Mendez A, Aldasoro E, de Lazzari E, Sicuri E, Brown M, Moore DA, et al. Prevalence
620 of Chagas disease in Latin-American migrants living in Europe: a systematic review and meta-analysis.
621 PLoS Negl Trop Dis. 2015;9(2):e0003540.
- 622 4. Chagas C. Nova tripanozomiae humana: estudos sobre a morfologia e o ciclo evolutivo do
623 Schizotrypanum cruzi n. gen., n. sp., agente etiológico de nova entidade morbida do homem. Memorias
624 do Instituto Oswaldo Cruz. 1909;1(2):159-218.
- 625 5. Almeida-de-Faria M, Freymuller E, Colli W, Alves MJ. Trypanosoma cruzi: characterization of
626 an intracellular epimastigote-like form. Exp Parasitol. 1999;92(4):263-74.
- 627 6. Tyler KM, Engman DM. The life cycle of Trypanosoma cruzi revisited. Int J Parasitol. 2001;31(5-6):472-81.
- 628 7. Kessler RL, Contreras VT, Marliere NP, Aparecida Guarneri A, Villamizar Silva LH, Mazzarotto
629 G, et al. Recently differentiated epimastigotes from Trypanosoma cruzi are infective to the mammalian
630 host. Mol Microbiol. 2017;104(5):712-36.

633 8. Kurup SP, Tarleton RL. The *Trypanosoma cruzi* flagellum is discarded via asymmetric cell
634 division following invasion and provides early targets for protective CD8(+) T cells. *Cell Host Microbe*.
635 2014;16(4):439-49.

636 9. Sanchez-Valdez FJ, Padilla A, Wang W, Orr D, Tarleton RL. Spontaneous dormancy protects
637 *Trypanosoma cruzi* during extended drug exposure. *Elife*. 2018;7.

638 10. Tarleton RL. CD8+ T cells in *Trypanosoma cruzi* infection. *Semin Immunopathol*.
639 2015;37(3):233-8.

640 11. Ribeiro AL, Nunes MP, Teixeira MM, Rocha MO. Diagnosis and management of Chagas disease
641 and cardiomyopathy. *Nat Rev Cardiol*. 2012;9(10):576-89.

642 12. Cunha-Neto E, Chevillard C. Chagas disease cardiomyopathy: immunopathology and genetics.
643 *Mediators Inflamm*. 2014;2014:683230.

644 13. Lewis MD, Kelly JM. Putting Infection Dynamics at the Heart of Chagas Disease. *Trends
645 Parasitol*. 2016;32(11):899-911.

646 14. Lewis MD, Fortes Francisco A, Taylor MC, Burrell-Saward H, McLatchie AP, Miles MA, et al.
647 Bioluminescence imaging of chronic *Trypanosoma cruzi* infections reveals tissue-specific parasite
648 dynamics and heart disease in the absence of locally persistent infection. *Cell Microbiol*.
649 2014;16(9):1285-300.

650 15. Lewis MD, Francisco AF, Taylor MC, Kelly JM. A new experimental model for assessing drug
651 efficacy against *Trypanosoma cruzi* infection based on highly sensitive in vivo imaging. *J Biomol Screen*.
652 2015;20(1):36-43.

653 16. Lewis MD, Francisco AF, Taylor MC, Jayawardhana S, Kelly JM. Host and parasite genetics
654 shape a link between *Trypanosoma cruzi* infection dynamics and chronic cardiomyopathy. *Cell
655 Microbiol*. 2016;18(10):1429-43.

656 17. Francisco AF, Jayawardhana S, Lewis MD, White KL, Shackleford DM, Chen G, et al.
657 Nitroheterocyclic drugs cure experimental *Trypanosoma cruzi* infections more effectively in the
658 chronic stage than in the acute stage. *Sci Rep*. 2016;6:35351.

659 18. Francisco AF, Lewis MD, Jayawardhana S, Taylor MC, Chatelain E, Kelly JM. Limited Ability of
660 Posaconazole To Cure both Acute and Chronic *Trypanosoma cruzi* Infections Revealed by Highly
661 Sensitive In Vivo Imaging. *Antimicrob Agents Chemother*. 2015;59(8):4653-61.

662 19. Taylor MC, Lewis MD, Fortes Francisco A, Wilkinson SR, Kelly JM. The *Trypanosoma cruzi*
663 vitamin C dependent peroxidase confers protection against oxidative stress but is not a determinant
664 of virulence. *PLoS Negl Trop Dis*. 2015;9(4):e0003707.

665 20. Costa FC, Francisco AF, Jayawardhana S, Calderano SG, Lewis MD, Olmo F, et al. Expanding the
666 toolbox for *Trypanosoma cruzi*: A parasite line incorporating a bioluminescence-fluorescence dual
667 reporter and streamlined CRISPR/Cas9 functionality for rapid in vivo localisation and phenotyping.
668 *PLoS Negl Trop Dis*. 2018;12(4):e0006388.

669 21. Kendall G, Wilderspin AF, Ashall F, Miles MA, Kelly JM. *Trypanosoma cruzi* glycosomal
670 glyceraldehyde-3-phosphate dehydrogenase does not conform to the 'hotspot' topogenic signal
671 model. *EMBO J*. 1990;9(9):2751-8.

672 22. Taylor MC, Francisco AF, Jayawardhana S, Mann GS, Ward AI, Olmo F, et al. Exploiting
673 Genetically Modified Dual-Reporter Strains to Monitor Experimental *Trypanosoma cruzi* Infections
674 and Host-Parasite Interactions. *Methods Mol Biol*. 2019;1955:147-63.

675 23. Dumoulin PC, Burleigh BA. Stress-Induced Proliferation and Cell Cycle Plasticity of Intracellular
676 *Trypanosoma cruzi* Amastigotes. *MBio*. 2018;9(4).

677 24. Gavrieli Y, Sherman Y, Ben-Sasson SA. Identification of programmed cell death in situ via
678 specific labeling of nuclear DNA fragmentation. *J Cell Biol*. 1992;119(3):493-501.

679 25. Sturm NR, Simpson L. Kinetoplast DNA minicircles encode guide RNAs for editing of
680 cytochrome oxidase subunit III mRNA. *Cell*. 1990;61(5):879-84.

681 26. Guilbride DL, Englund PT. The replication mechanism of kinetoplast DNA networks in several
682 trypanosomatid species. *J Cell Sci*. 1998;111 (Pt 6):675-9.

683 27. Liu B, Liu Y, Motyka SA, Agbo EE, Englund PT. Fellowship of the rings: the replication of
684 kinetoplast DNA. *Trends Parasitol.* 2005;21(8):363-9.

685 28. Mandell MA, Beverley SM. Continual renewal and replication of persistent *Leishmania* major
686 parasites in concomitantly immune hosts. *Proc Natl Acad Sci U S A.* 2017;114(5):E801-E10.

687 29. Salic A, Mitchison TJ. A chemical method for fast and sensitive detection of DNA synthesis in
688 vivo. *Proc Natl Acad Sci U S A.* 2008;105(7):2415-20.

689 30. Wright MC, Logan GJ, Bolock AM, Kubicki AC, Hemphill JA, Sanders TA, et al. Merkel cells are
690 long-lived cells whose production is stimulated by skin injury. *Dev Biol.* 2017;422(1):4-13.

691 31. Bordiuk OL, Smith K, Morin PJ, Semenov MV. Cell proliferation and neurogenesis in adult
692 mouse brain. *PLoS One.* 2014;9(11):e111453.

693 32. King JB, von Furstenberg RJ, Smith BJ, McNaughton KK, Galanko JA, Henning SJ. CD24 can be
694 used to isolate Lgr5+ putative colonic epithelial stem cells in mice. *Am J Physiol Gastrointest Liver*
695 *Physiol.* 2012;303(4):G443-52.

696 33. Mead TJ, Lefebvre V. Proliferation assays (BrdU and EdU) on skeletal tissue sections. *Methods*
697 *Mol Biol.* 2014;1130:233-43.

698 34. Francisco AF, Jayawardhana S, Lewis MD, Taylor MC, Kelly JM. Biological factors that impinge
699 on Chagas disease drug development. *Parasitology.* 2017;1-10.

700 35. Ferreira BL, Orikaza CM, Cordero EM, Mortara RA. *Trypanosoma cruzi*: single cell live imaging
701 inside infected tissues. *Cell Microbiol.* 2016;18(6):779-83.

702 36. Mony BM, Matthews KR. Assembling the components of the quorum sensing pathway in
703 African trypanosomes. *Mol Microbiol.* 2015;96(2):220-32.

704 37. Reuner B, Vassella E, Yutzy B, Boshart M. Cell density triggers slender to stumpy differentiation
705 of *Trypanosoma brucei* bloodstream forms in culture. *Mol Biochem Parasitol.* 1997;90(1):269-80.

706 38. Rojas F, Silvester E, Young J, Milne R, Tettey M, Houston DR, et al. Oligopeptide Signaling
707 through TbGPR89 Drives Trypanosome Quorum Sensing. *Cell.* 2019;176(1-2):306-17 e16.

708 39. Vassella E, Reuner B, Yutzy B, Boshart M. Differentiation of African trypanosomes is controlled
709 by a density sensing mechanism which signals cell cycle arrest via the cAMP pathway. *J Cell Sci.*
710 1997;110 (Pt 21):2661-71.

711 40. Jansen AM, Madeira F, Carreira JC, Medina-Acosta E, Deane MP. *Trypanosoma cruzi* in the
712 opossum *Didelphis marsupialis*: a study of the correlations and kinetics of the systemic and scent gland
713 infections in naturally and experimentally infected animals. *Exp Parasitol.* 1997;86(1):37-44.

714 41. Pereira ME, Zhang K, Gong Y, Herrera EM, Ming M. Invasive phenotype of *Trypanosoma cruzi*
715 restricted to a population expressing trans-sialidase. *Infect Immun.* 1996;64(9):3884-92.

716

717 **S1 Fig** MA104 cells infected with *T. cruzi* CL-Luc::Neon amastigotes for 72 hours,
718 fixed, then labelled with the TUNEL reagent. The parasite in the red box has completed
719 kDNA replication and segregation, but not nuclear replication, and clearly shows that
720 the segregated kinetoplasts no longer display TUNEL positivity.

721

722 **S2 Fig** Plot of TUNEL+ve amastigote numbers as a function of total amastigotes
723 present in an infected cell, for each infected cell used to derive Fig 1d. Each circle
724 represents a single infected host cell. (a) All 200 infected cells from Fig 1d. (b) An

725 expanded view of the area indicated by the box to allow clear visualisation of the host
726 cell numbers. For cells infected with 1 amastigote, n=28.

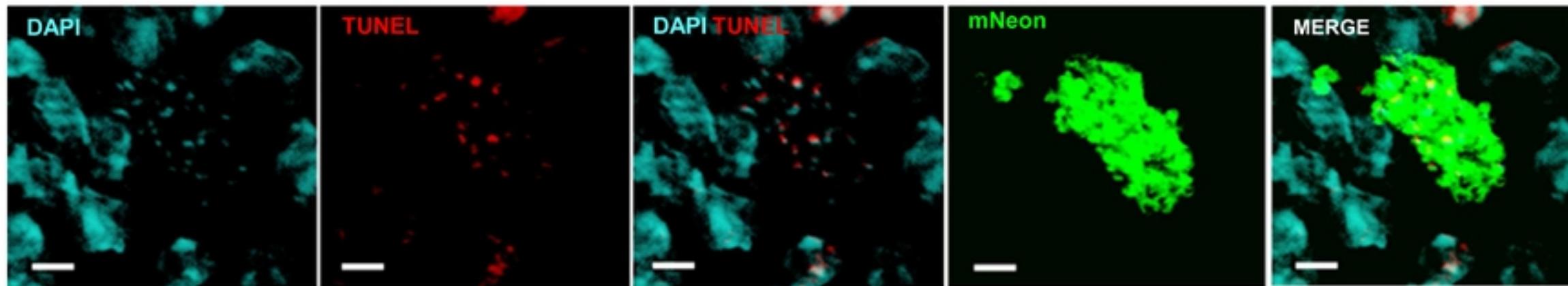
727
728 **S3 Fig** Asynchronous parasite kDNA replication within single infected host cells *in vivo*
729 in acutely infected (19 days post infection) BALB/c mice revealed by TUNEL reactivity.
730 (a) caecum, (b) rectum, (c) heart, (d) spleen and (e) lung. Images are from two
731 individual mice. Bar = 10 μ m

732
733 **S4 Fig** Asynchronous parasite DNA replication within single infected host cells in
734 chronically infected (211 days post infection) C3H/HeN mice revealed by EdU-
735 labelling. Replication of parasite DNA within mice infected by *T. cruzi* clone CL-
736 Luc::Neon (Costa et al., 2018) was assessed after inoculating two EdU pulses 18 and
737 28 hours prior to tissue sampling (Experimental procedures). Parasites were located
738 in histological sections by fluorescence (mNeon, green). a) DNA replication (red) in a
739 chronic phase parasite nest (colon). The combined DAPI/EdU image illustrates the
740 heterogeneity of parasite replication within the nest. Bar = 10 μ m. b) Section from
741 colon of mouse showing parasite nest. Upper panels show individual channels and a
742 merged image. The lower panel shows DAPI and EdU channels only, allowing
743 visualisation of the interspersed nature of EdU+ve amongst EdU-ve parasites. (a) and
744 (b) are from different mice. Bars indicate 10 μ m.

745
746 **S5 Fig** Multiple morphological forms within single infected cells. Each image shows
747 an M104 cell (blue, nucleus) 6 days after infection with *T. cruzi* (green) showing
748 amastigotes (arrow a) dividing amastigotes (arrow da), epimastigote-like forms (arrow

749 e) and trypomastigotes (arrow t) within the same cell. (a-d) sequential still images from
750 S1 Movie, (e-h) sequential still images from S2 Movie. Bars indicate 20 μ m.

751


752 **S1 Movie** Multiple morphological forms within a single infected cell
753 Live cell imaging of an M104 cell 6 days after infection with *T. cruzi* showing dividing
754 amastigotes, epimastigote-like forms and trypomastigotes within the same cell. See
755 S5 Fig a-d for locations of representative parasites for each morphotype.

756

757 **S2 Movie** Multiple morphological forms within a single infected cell. Live cell imaging
758 of an M104 cell 6 days after infection with *T. cruzi* showing amastigotes, epimastigote-
759 like forms and trypomastigotes within the same cell. See S5 Fig e-h for locations of
760 representative parasites for each morphotype.

761

(a) Spleen

(b) Stomach

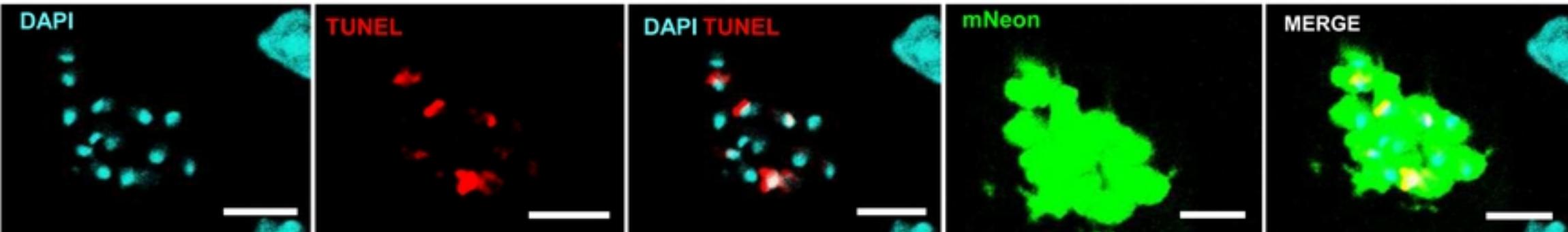
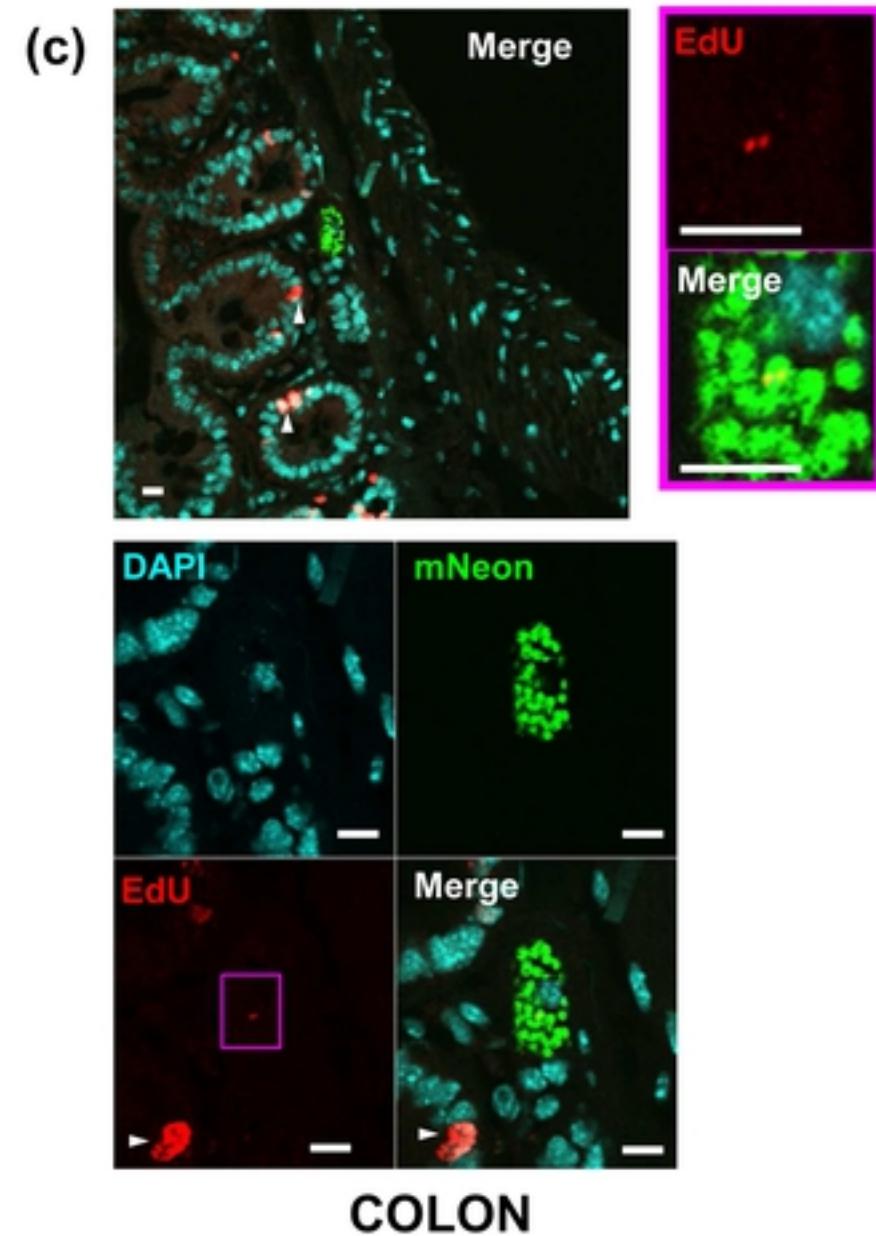
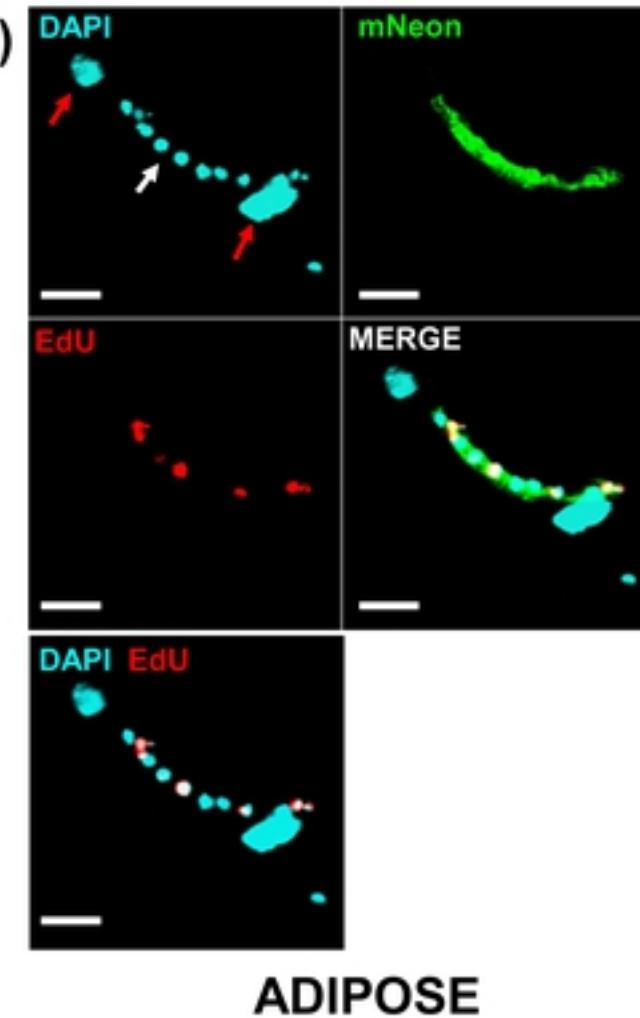
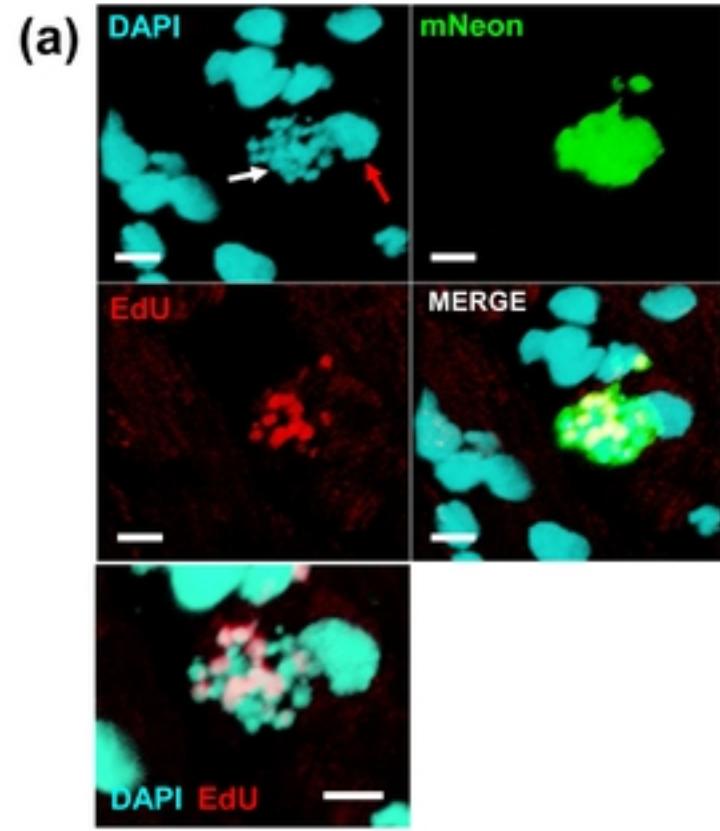
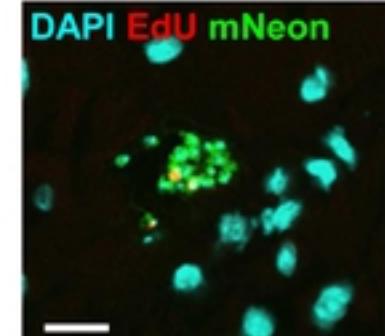
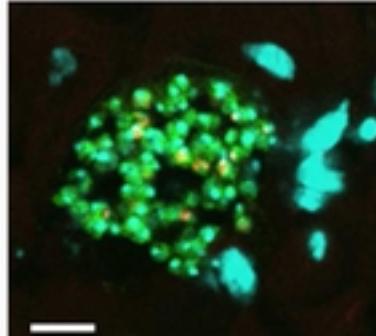
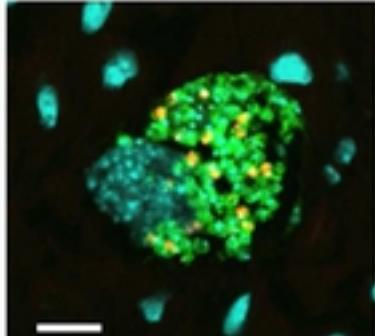


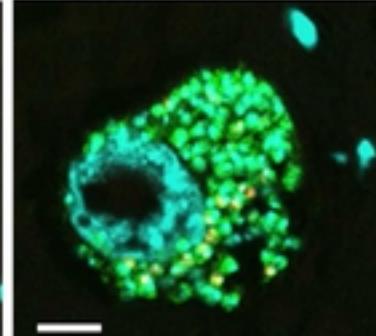
Figure 2

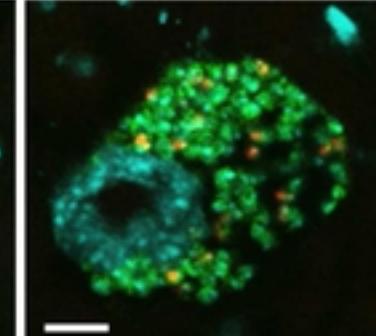





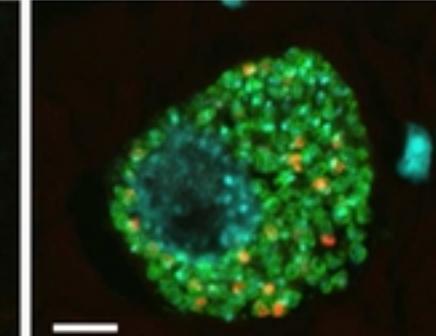

Figure 4

Colon (day 211)


Section 1


Section 2


Section 3


Section 4

Section 5

Section 6

DAPI EdU

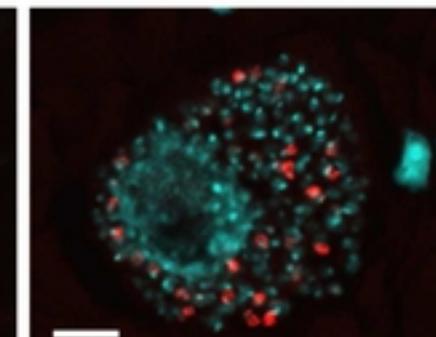
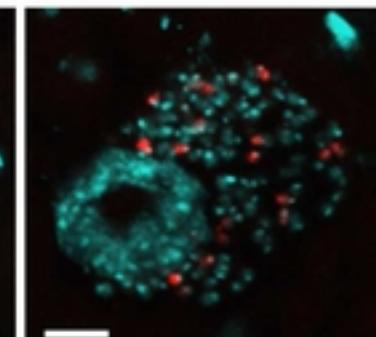
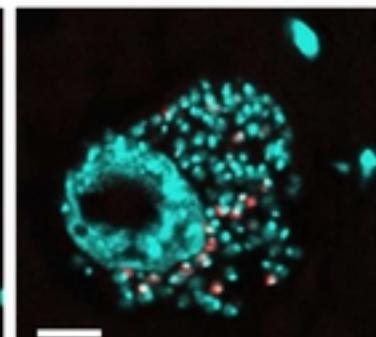
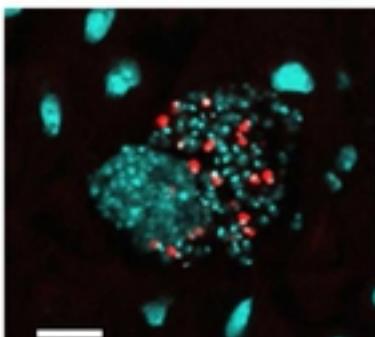
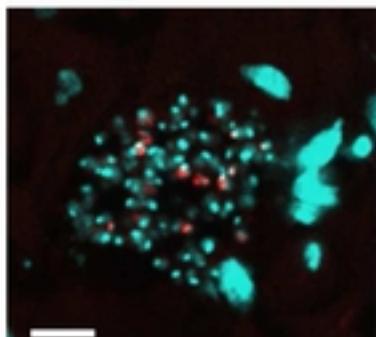
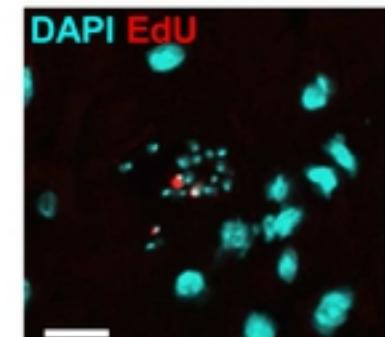







Figure 6

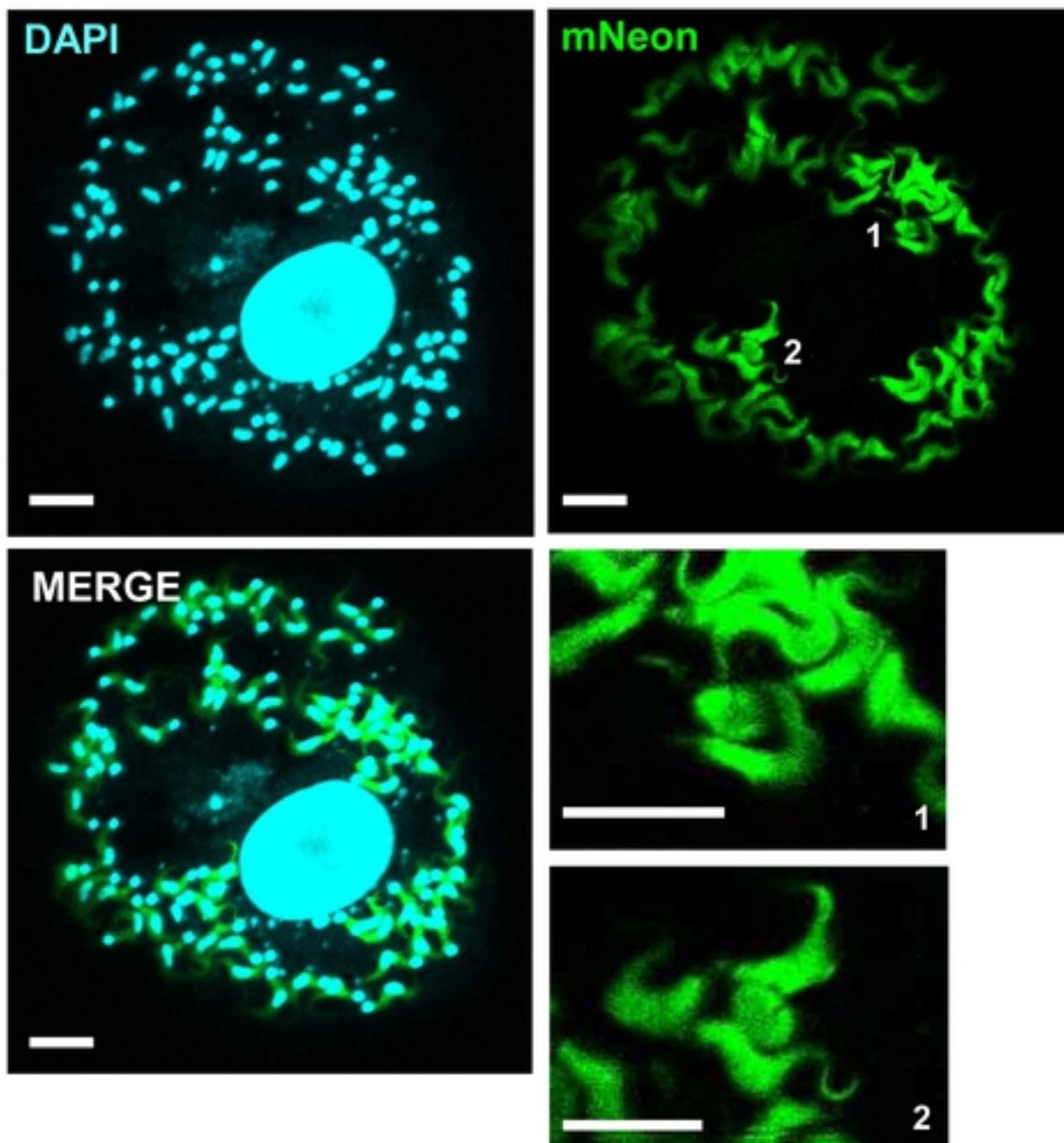
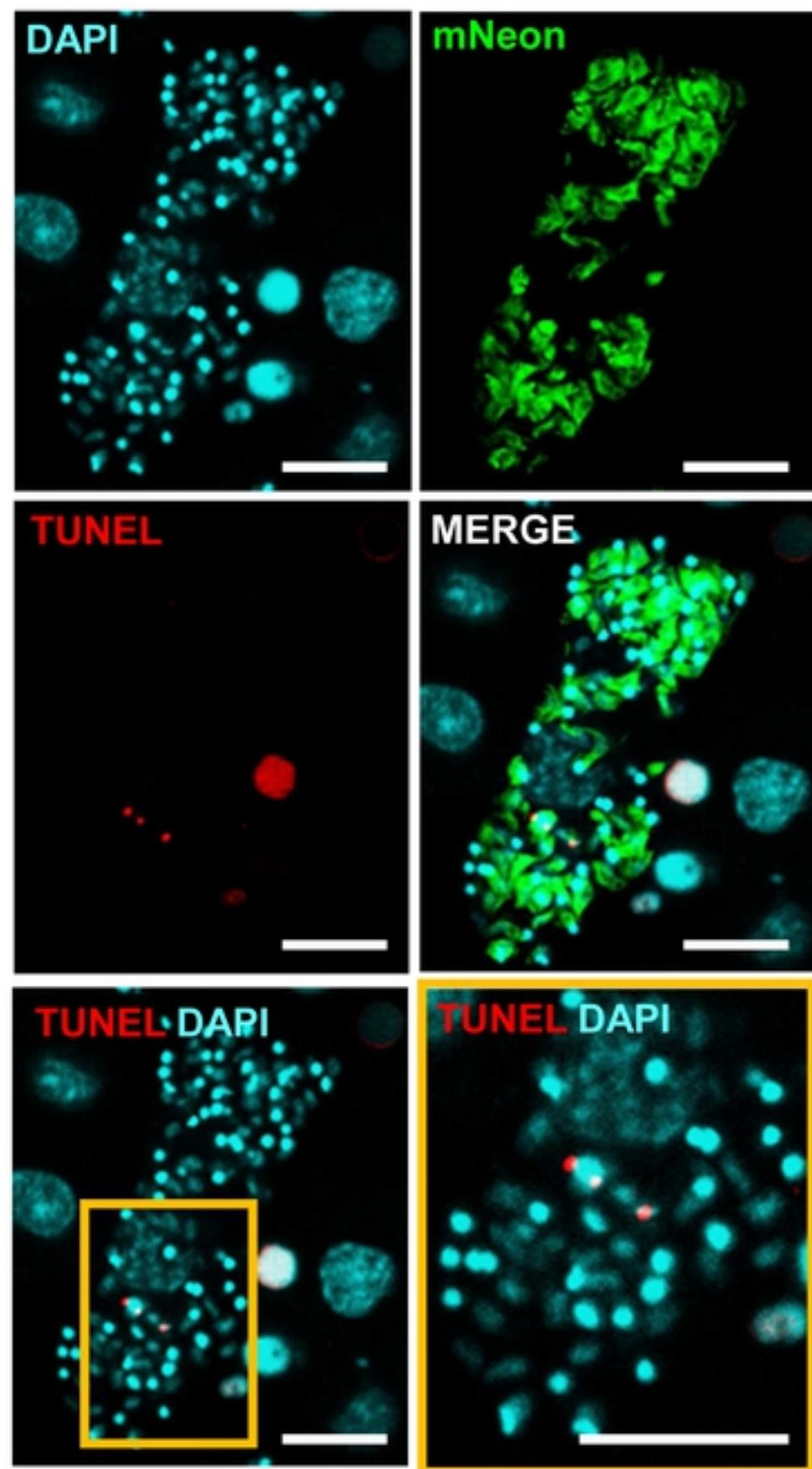


(a)**(b)**

Figure 7

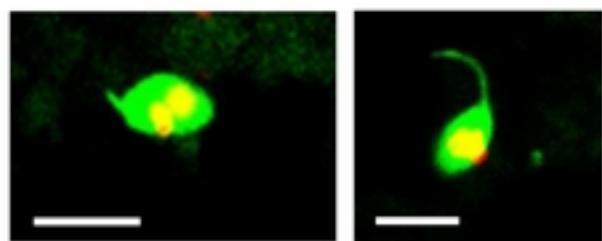
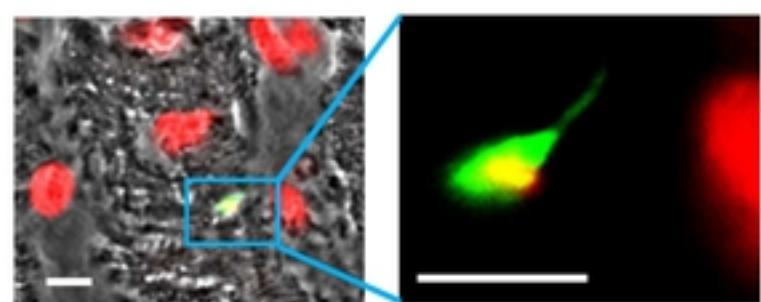
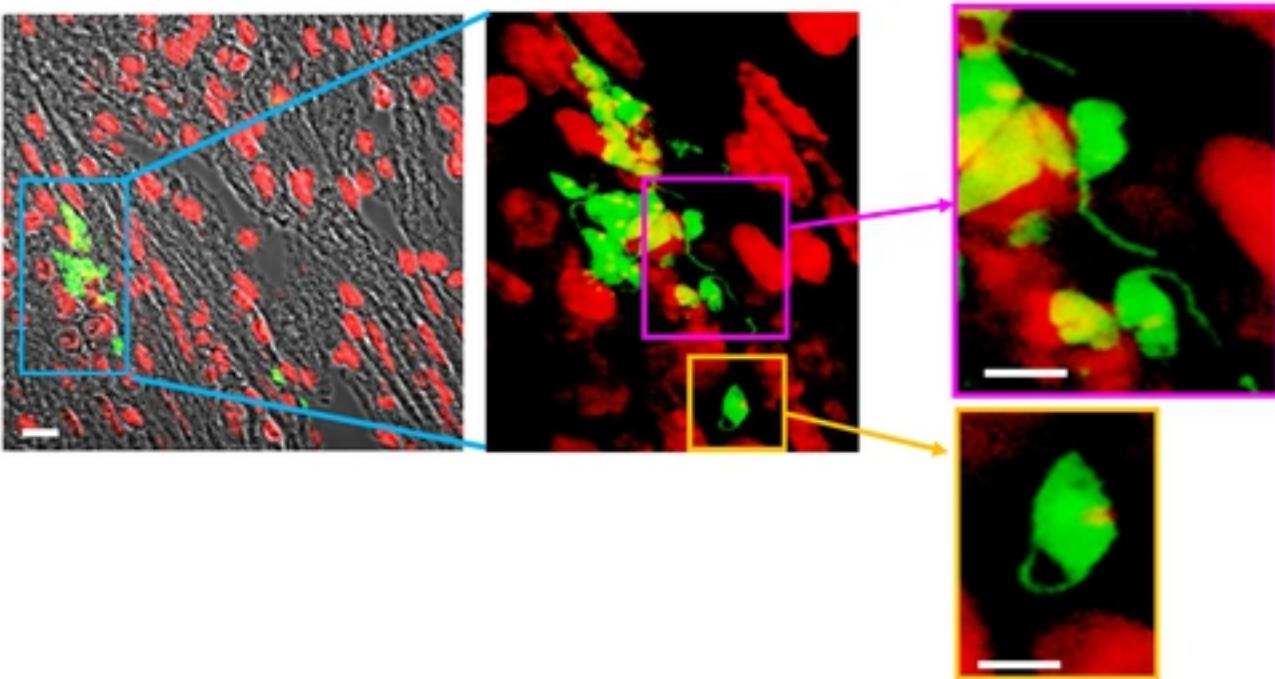
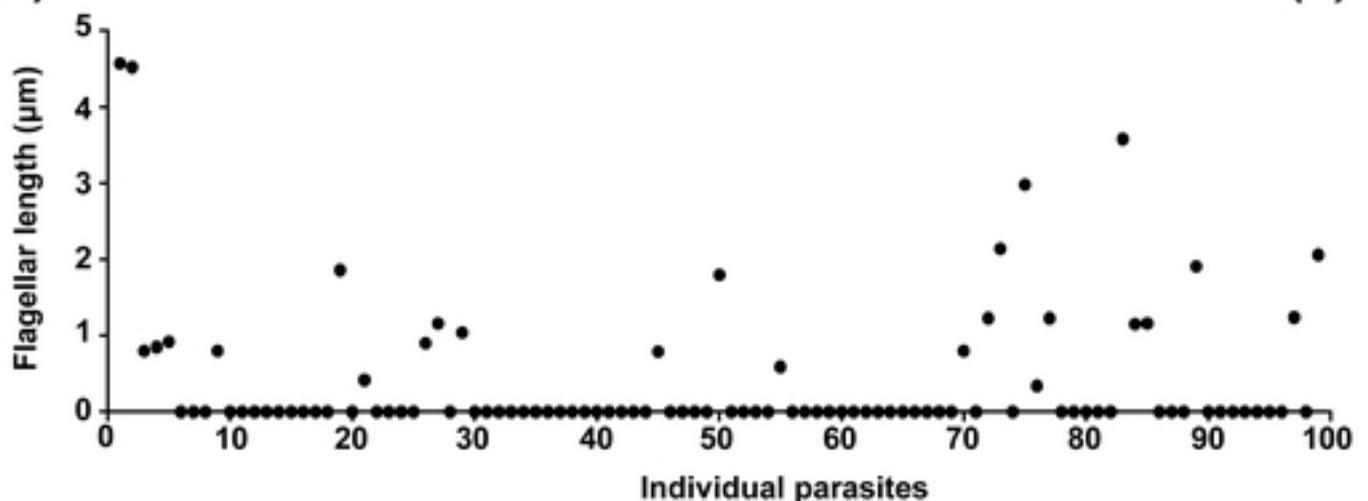
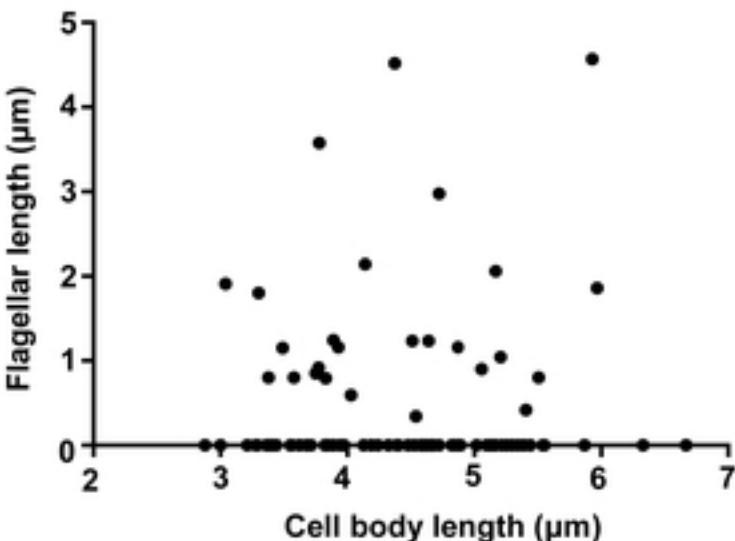





(a)**(b)****(c)****(d)****(e)**

Figure 8



Figure 1

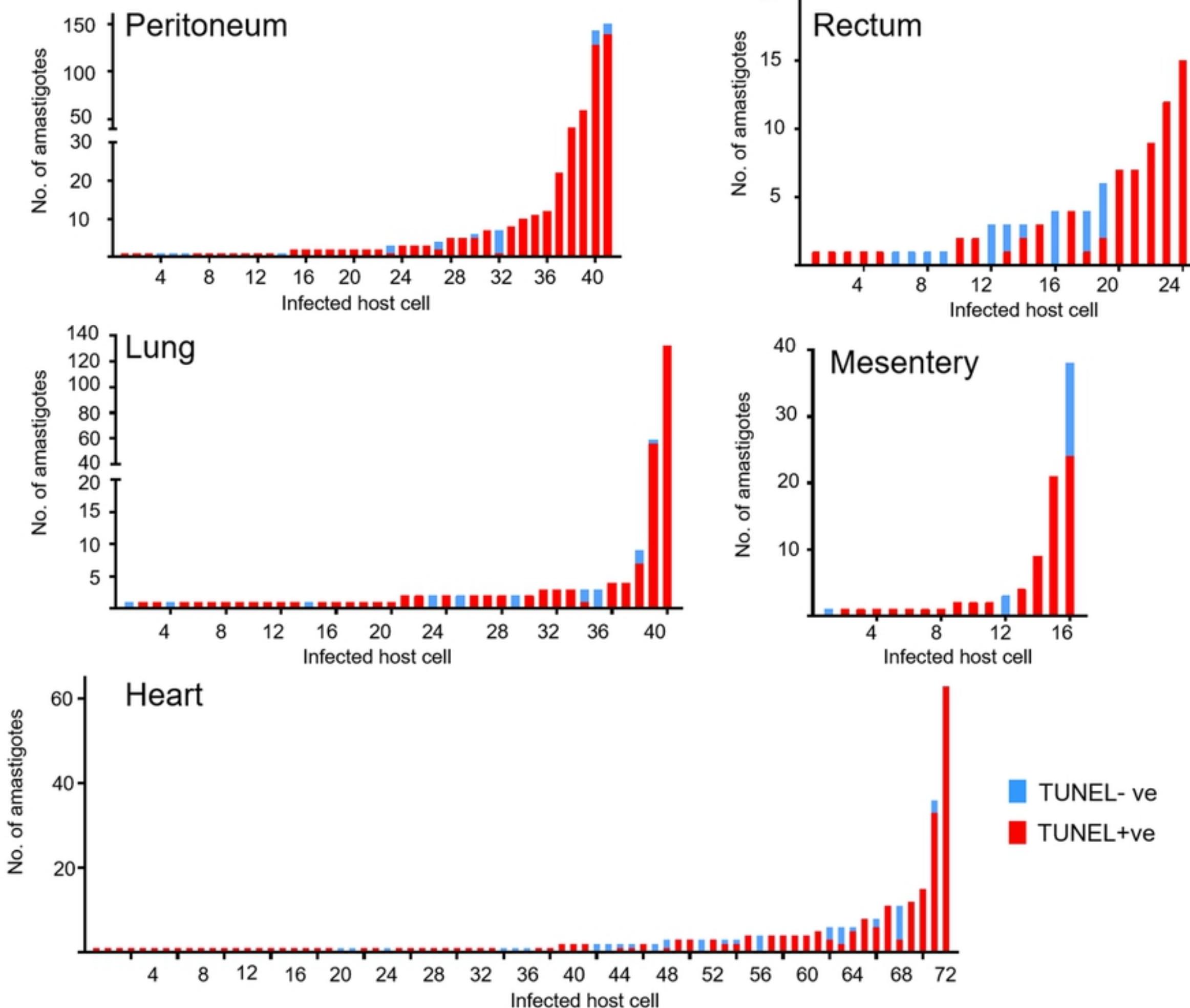
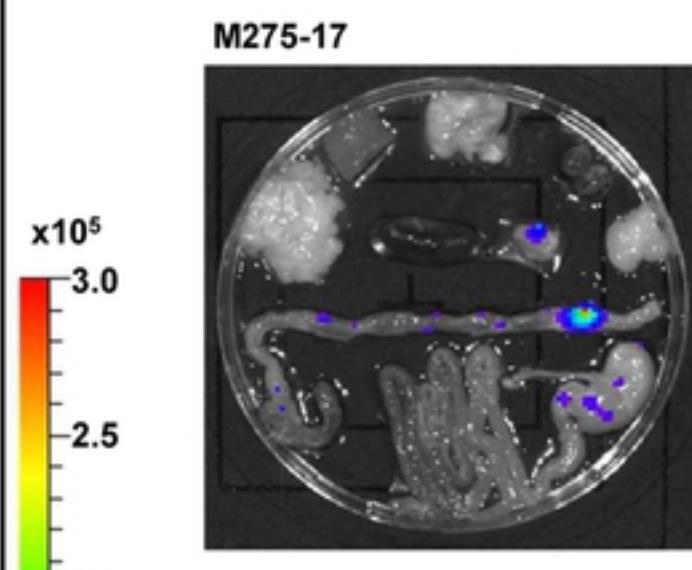
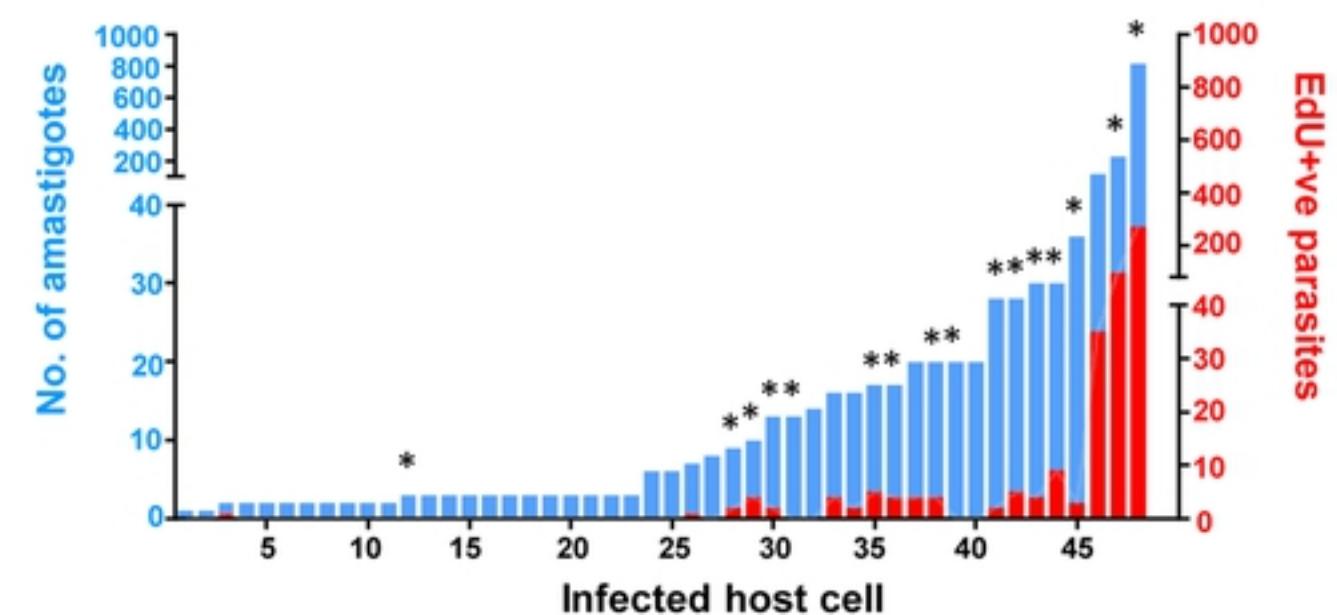
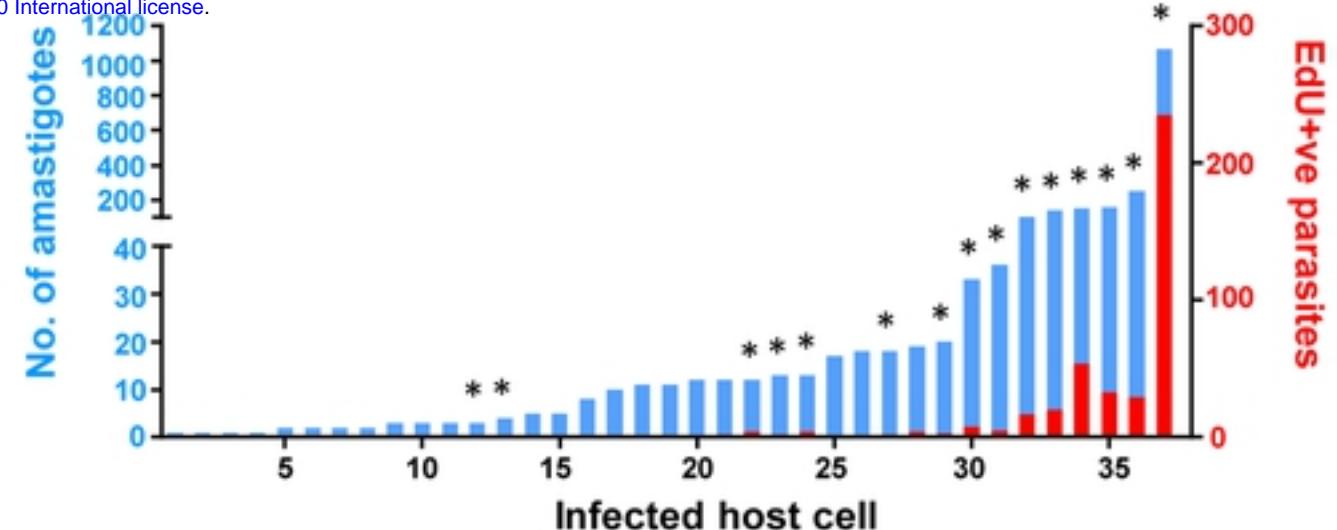
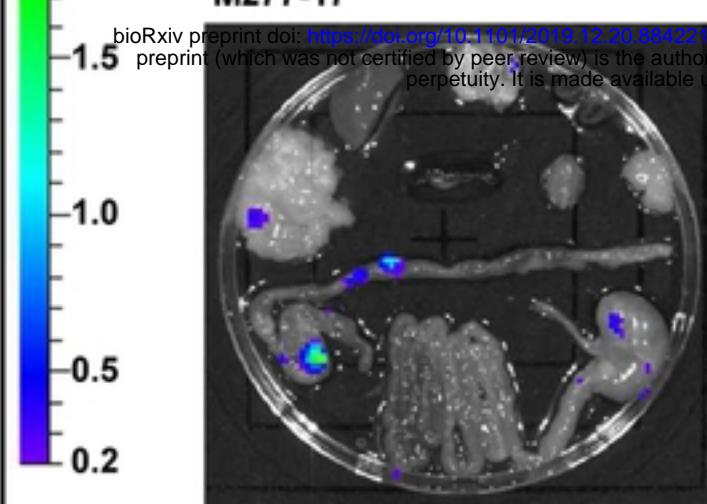
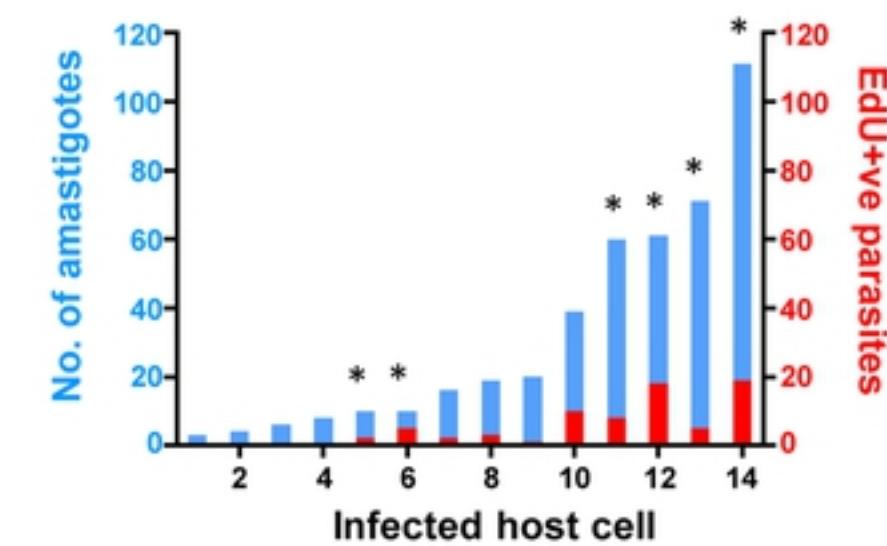
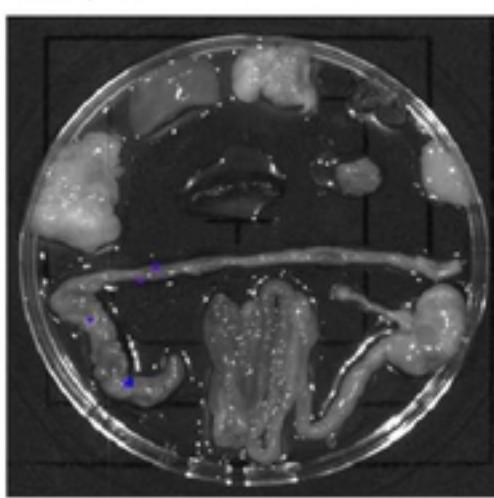




Figure 3





(a)

(b)

M277-17

bioRxiv preprint doi: <https://doi.org/10.1101/2019.12.20.884221>; this version posted December 20, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

M279-17

(c)

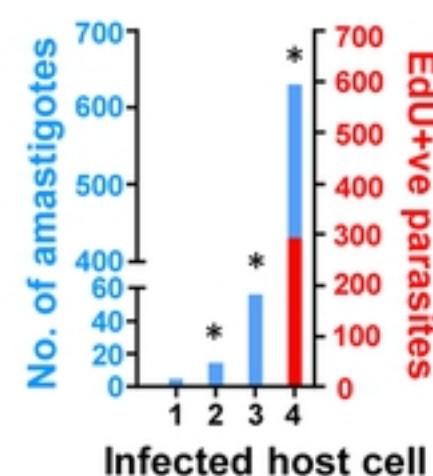
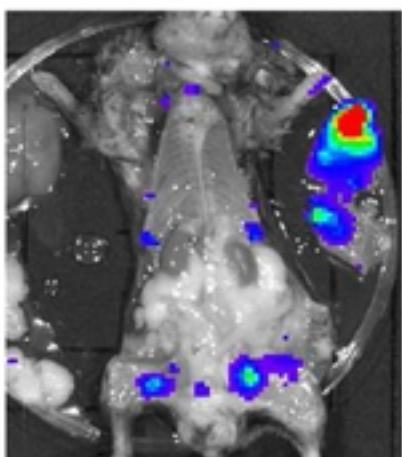
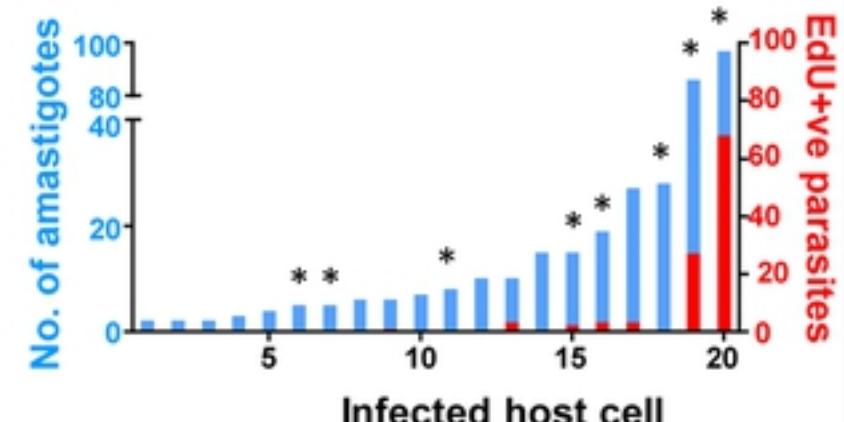
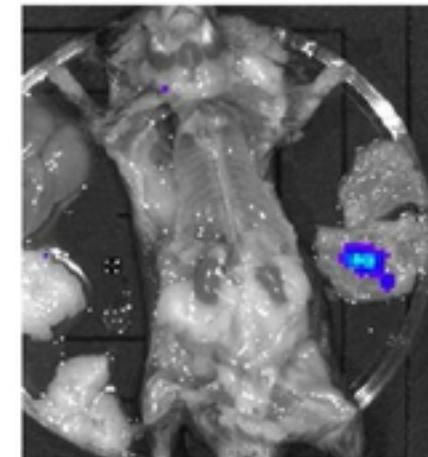




M275-17**M279-17**

Figure 5