

1

Title

2

Sequence heterochrony led to a gain of functionality in an immature stage of the central complex: a fly-beetle insight

4

Short title: Sequence heterochrony in central complex evolution

5

6 Authors:

7

Max S. Farnworth^{a,c}, Kolja N. Eckermann^{b,c}, Gregor Bucher^{a,*}

8

⁹ ^a Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, GZMB,

¹⁰ University of Göttingen, Göttingen, Germany, ^b Department of Developmental Biology, Johann-Friedrich-
Herbart School, Göttingen, Germany

11 Blumenbach Institute, GZMB, University of Göttingen, Göttingen, Germany, ^c Göttingen Graduate Center for
12 Molecular Biosciences, Neurosciences and Biophysics (GGNB), Göttingen, Germany

12 Molecular Biosciences, Neurosciences and Biophysics (GGNB), Göttingen, Germany

14

14 * Corresponding author: Gregor Bucher

15 Email: gbucher1@uni-goettingen.de

16

17 ORCID: Max S. Farnworth <https://orcid.org/0000-0003-2418-3203>, Gregor Bucher

18 <https://orcid.org/0000-0002-4615-6401>

19

20 Abstract

21 Animal behavior is guided by the brain. Therefore, adaptations of brain structure and function are
22 essential for animal survival, and each species differs in such adaptations. The brain of one
23 individual may even differ between life stages, for instance as adaptation to the divergent needs of
24 larval and adult life of holometabolous insects. All such differences emerge during development
25 but the cellular mechanisms behind the diversification of brains between taxa and life stages
26 remain enigmatic. In this study, we investigated holometabolous insects, where larvae differ
27 dramatically from the adult in both behavior and morphology. As consequence, the central
28 complex, mainly responsible for spatial orientation, is conserved between species at the adult
29 stage, but differs between larvae and adults as well as between larvae of different taxa. We used
30 genome editing and established transgenic lines to visualize cells expressing the conserved
31 transcription factor *retinal homeobox*, thereby marking homologous *genetic neural lineages* in both
32 the fly *Drosophila melanogaster* and the beetle *Tribolium castaneum*. This approach allowed us for
33 the first time to compare the development of homologous neural cells between taxa from embryo
34 to the adult. We found complex heterochronic changes including shifts of developmental events
35 between embryonic and pupal stages. Further, we provide, to our knowledge, the first example of
36 *sequence heterochrony* in brain development, where certain developmental steps changed their
37 position within the ontogenetic progression. We show that through this *sequence heterochrony*, an
38 immature developmental stage of the central complex gains functionality in *Tribolium* larvae. We
39 discuss the bearing of our results on the evolution of holometabolous larval central complexes by
40 regression to a form present in an ancestor.

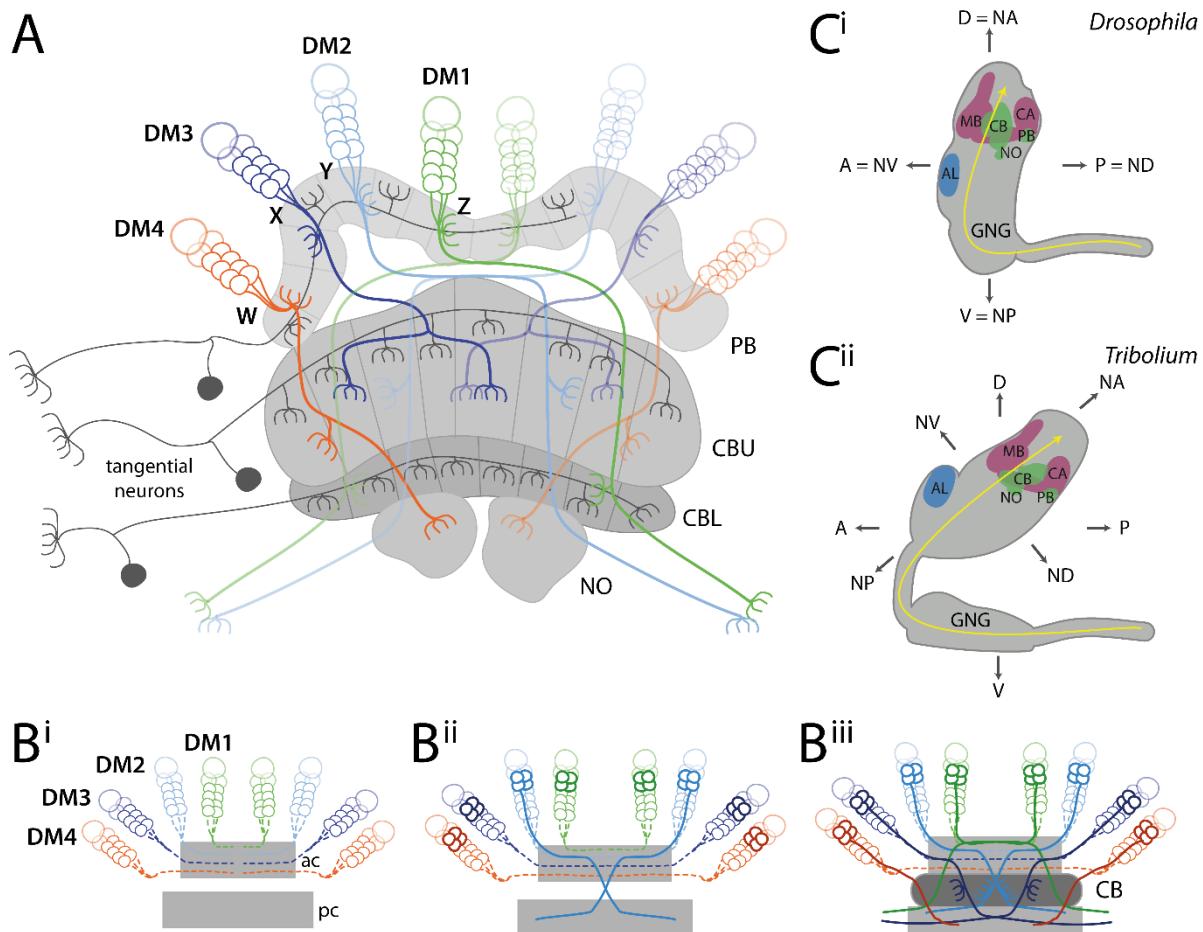
41 Introduction

42 The brain is among the most complex organs of an animal, where sensory inputs and internal
43 states are processed to guide its behavior. Hence, modifications of brain structure and function in
44 response to specific requirements imposed by different life strategies and environmental
45 conditions is paramount for each species' adaptation. Insects represent one of the most diverse
46 animal clades and they have conquered almost every habitat on earth (1–3). Indeed, based on the
47 highly conserved basic bauplan within the insect clade, brains have diversified significantly in size,
48 shape and position of their functional brain units, the neuropils (4–9). For instance, the mushroom
49 bodies required for olfactory learning and memory are enlarged in bees, antennal lobes are
50 reduced in aquatic beetles and the size of the optic lobes is increased in species that navigate in
51 complex environments (9,13–17). In holometabolous insects, where larval stages often differ from
52 the adult in life strategy and habitat, evolutionary adaptation imposes different brain morphologies
53 even on successive life stages of one individual (18–20). Divergent brain morphologies emerge
54 during embryonic and postembryonic ontogeny and, hence, any evolutionary modification depends
55 on a modification of developmental mechanisms. Basic developmental processes appear to be
56 conserved, reflecting the conserved basic architecture of the brain. Homology of neuroblasts and
57 the resulting neurons is assumed (21–23) such that neuroblasts form conserved lineages. Based on
58 this conserved process, evolution of developmental mechanisms is expected to act rather on
59 details like the number of daughter cells formed, truncation of development and modification of
60 lineage parts.

61 The low number of neural cells in insect brains compared to e.g. vertebrates, its basis of
62 conserved lineages building up the brain, together with their experimental accessibility, makes
63 insects an excellent choice to study the mechanisms of brain diversification during development.
64 Despite the brain's central role in insect evolution and the clade's suitability to uncover underlying
65 patterns, developmental mechanisms of brain diversification remain poorly studied.

66 Recent technical advances open the possibility to study such modifications of developmental
67 mechanisms, both, in the classic model organism *Drosophila melanogaster* in order to pioneer the
68 conceptual framework of neural development, and in other insects in order to reveal conserved
69 and divergent aspects. The red flour beetle *Tribolium castaneum* is spearheading comparative
70 functional work in neurogenesis due to its well-developed genetic toolkit and recent advances in
71 neurobiological methods (24–38). Hence, establishing similar tools in *Drosophila* and *Tribolium*
72 helps unravelling the developmental mechanisms of insect brain evolution through comparative
73 developmental studies.

74 An intriguing evolutionary divergence in morphology of the developing brain – and therefore a
75 suitable target for a *Drosophila*–*Tribolium* comparison – was found with respect to the central
76 complex. The central complex is a neuropil that integrates multisensory information and acts
77 predominantly as spatial orientation and locomotor control center (39–41). Related neuropils have
78 been found in Crustaceans and Myriapods and it has even been further homologized to the
79 vertebrate basal ganglia, while the homology of the central complex to the arcuate body of spiders
80 is still discussed (42–46). In adult insects, the central complex is highly conserved consisting of a set
81 of midline-spanning neuropils, the protocerebral bridge (PB), the central body (CB) consisting of an
82 upper (CBU, or fan-shaped body, FB) and lower division (CBL, or ellipsoid body, EB) and the noduli
83 (NO) with stereotypical patterns of innervation (Fig. 1A) (40,47–49).


84 In hemimetabolous insects, all neuropils develop during embryogenesis and already the
85 hatching has an adult-like central complex (50–52). By contrast, in holometabolous insects, the
86 central complex forms partly during embryogenesis and is completed only during metamorphosis.
87 In the tenebrionid beetles *Tenebrio molitor* and *Tribolium castaneum*, for instance, the larval
88 central body consists of only one division, which was suggested to represent the upper division.
89 The lower division was proposed to develop later during pupal stages (20,33,53). In *Drosophila*, no
90 functional central complex neuropils are detectable in the first instar larvae. At that stage, the
91 central complex anlagen consist of commissural tracts lacking neuropil morphology and

92 characteristics of functionality, i.e. synapses and neuromodulator presence (54,55). Only during
93 late larval stages and metamorphosis, the central complex matures into the adult form (55–57).
94 This divergent emergence of the CBU in different species is thought to correlate with the
95 development of walking legs while the presence of the CBL may be linked to the formation of
96 complex eyes (7,51,52,58). Intriguingly, the development at least of the upper division appears to
97 be quite similar between the hemimetabolous desert locust *Schistocerca gregaria* and the fly
98 *Drosophila melanogaster* albeit similar developmental steps occur at different stages (59).

99 This phenomenon represents a case of heterochrony (60,61). Different definitions of this term
100 have been proposed (62,63). We use the term heterochrony to describe a change in developmental
101 timing of a process in one taxon compared to other taxa. Such differences can be found with
102 respect to development of shape, size and the time of maturation (60,64) but also changes in the
103 order of events within a developmental sequence can be interpreted in the framework of
104 heterochrony (sequence heterochrony) (65–67). Heterochrony has strong influence on evolution:
105 For instance, the accelerated frequency of somite formation in snakes contributes to their
106 increased number of segments (68). Another example is the heterochronic extension of the growth
107 phase of the postnatal infant human brain compared to other primates, leading to a relative
108 increase of final brain size (60,69–71). The influence of heterochrony on insect brain evolution has
109 not been thoroughly studied. Specifically, the observation of heterochrony in the central complex
110 lacks detail because it is based on overall neuropil shape at two stages rather than a thorough
111 comparison throughout development.

112 The central complex of the adult insect consists mainly of columnar and tangential neurons
113 (49,52). Tangential neurons connect other brain areas with one central complex neuropil (Fig. 1A)
114 (52,72–74). In contrast, columnar neurons connect the different neuropils of the central complex
115 with each other by projecting as four prominent tracts (the WXYZ tracts) from the protocerebral
116 bridge into CBU, CBL, noduli and other brain structures (Fig. 1A) (47,49,75–78). These neurons are

117 required for the formation of the typical columnar architecture of the central body and
118 protocerebral bridge (47,52,75,79).
119

120
121 **Fig. 1: Structure and development of the central complex, and relationship of neuraxis to body axes.**
122 (A) Tangential neurons (dark grey) connect neuropils of the central complex with other areas. Columnar
123 neurons (coloured) connect the different neuropils of the central complex with each other. Nearly all
124 columnar neurons derive from four type II neuroblasts, DM1-4 (green, light-blue, dark-blue, orange) that
125 project through WXYZ tracts. (B) Central complex development starts with the neurons of the DM1-4 lineage
126 projecting into an anterior commissure (ac) (hatched lines in Bⁱ) where they cross the midline and build up a
127 stack of parallel fibers. Later-born neurons (solid lines in Bⁱⁱ) undergo fascicle switching, i.e. they leave the
128 fascicle at stereotypical locations and re-enter a fascicle of a posterior commissure (pc) forming X-shaped
129 crossings with neurons from the contralateral side (called decussations) (Bⁱⁱ). Decussations occur at different
130 points subdividing the future central body into columns (Bⁱⁱⁱ). PB omitted for simplicity; based on (75,80,81).

131 (C) The *Drosophila* (Cⁱ) and *Tribolium* (Cⁱⁱ) brains differ in their orientation within the head (lateral views).
132 While the *Drosophila* brain is oriented perpendicular to the ventral nerve cord, the *Tribolium* brain is tilted
133 backwards. This leads to discrepancies when using the body axis as reference. For instance, the AL is anterior
134 in *Drosophila*, while it is more dorsal in *Tribolium*. Similarly, the PB is posterior in *Drosophila* but rather
135 ventral in *Tribolium*. To facilitate cross-species comparisons, we use the neuraxis nomenclature as suggested
136 by (82). In this system, the AL are n-ventral (NV) and the PB n-dorsal in both species. Shapes of brains are
137 based on v2.virtualflybrain.org/ and data from this study, while the shape of the *Tribolium* GNG is from (83).
138 Information about cell innervation in A was taken from (72,76,84). Abbreviations: AL antennal lobes, PB
139 protocerebral bridge, CB central body, CBU upper division of the CB, CBL lower division of the CB, NO noduli,
140 MB mushroom body (excluding CA), CA calyx, n neuraxis-referring, D dorsal, A anterior, V ventral, P posterior,
141 GNG gnathal ganglia, DM dorso-medial, ac anterior commissure, pc posterior commissure.
142

143 Important work in *Schistocerca gregaria* and *Drosophila melanogaster* revealed how such a
144 complex innervation architecture is achieved during development (21,50,54,55,59,85,86).
145 Specifically, the development of columnar neurons has been studied in detail: They stem from four
146 neural lineages per hemisphere (Fig. 1A-B), called DM1-4 (alternative names in *Drosophila*:
147 DPMm1, DPMpm1, DPMpm2, CM4 or in *Schistocerca*: ZYXW) (79,87,88). The respective neural
148 stem cells (neuroblasts) are situated in the anterior-median brain close to the protocerebral bridge
149 between brain hemispheres, i.e. in the pars intercerebralis. These lineages are built by type II
150 neuroblasts, which generate approximately four times more cells than type I lineages
151 (55,80,87,89,90). The neurites of these lineages first project ipsilaterally through the WXYZ tracts
152 from the protocerebral bridge to the central body, where they turn and cross the midline forming a
153 stack of parallel fibers (Fig. 1Bⁱ). Subsequent neurites leave the fascicle (de-fasciculation) and enter
154 another fascicle of the brain commissure (re-fasciculation) to continue their growth to the other
155 side of the brain, a process referred to as fascicle switching (81,91). This happens at several
156 stereotypical points along the commissure and symmetrically on both sides, such that neurites
157 cross each other forming X-shaped crossings, which are called decussations (see (7) for distinction

158 between 'decussation' and 'chiasma') (Fig. 1Bⁱⁱ-Bⁱⁱⁱ). These decussations are the developmental basis
159 for the typical columnar architecture particularly of the CBU (Fig 1Bⁱⁱⁱ).

160 Studying such developmental processes of the central complex comparatively has been
161 hampered by the lack of tools to mark homologous cells in two species. The elaborate toolkit of
162 *Drosophila* for individual neural cell marking is not within reach in other organisms (92,93) and
163 even in *Drosophila* it has been challenging to mark neural lineages from embryonic neuroblast to
164 the neurons of the adult brain. Recently, we suggested to compare homologous cells in different
165 taxa by marking what we called *genetic neural lineages*, i.e. cells that express the same conserved
166 transcription factor (33). Essentially, this approach assumes that transcription factors with
167 conserved expression in the neuroectoderm and the brains of most bilateria are likely to mark
168 homologous cells in closely related taxa throughout development. It should be noted, however,
169 that the actual identity of a given neuroblast lineage is not determined by a single transcription
170 factor but by a cocktail of several factors (94). Hence, genetic neural lineages may contain cells of
171 several bona fide neural lineages. *Genetic neural lineages* can be labelled either by classic enhancer
172 trapping, or a targeted genome editing approach, both available in *Tribolium* (28,95).

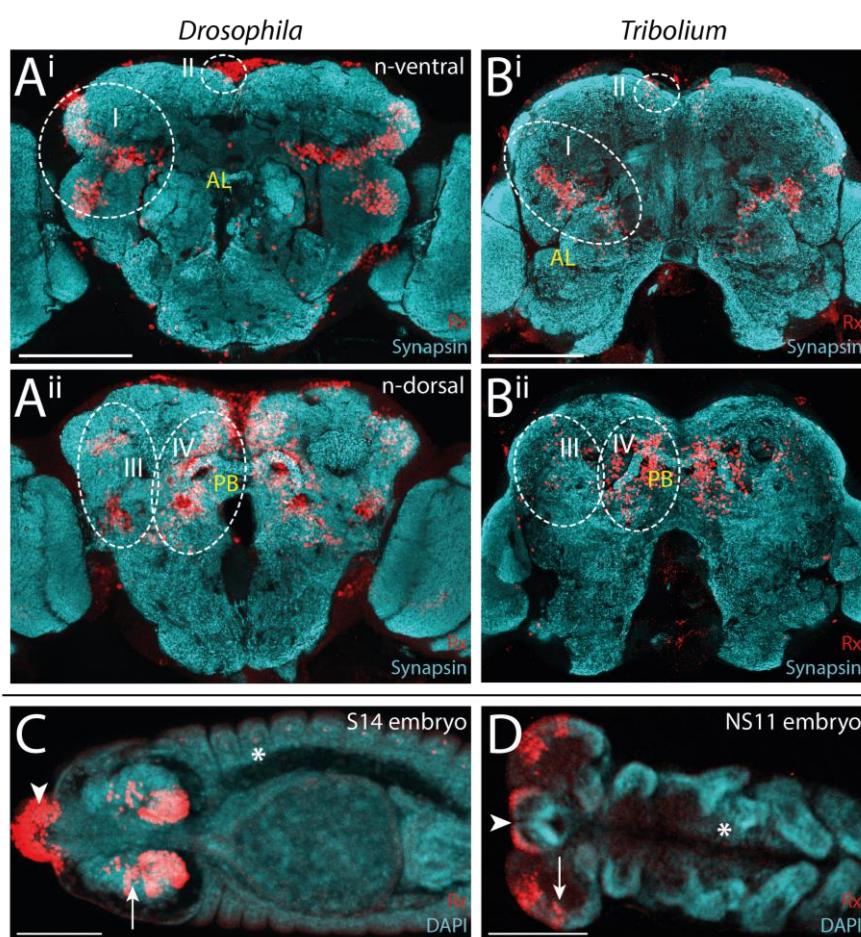
173 In this study, we mark the *retinal homeobox (rx) genetic neural lineage* in both the red flour
174 beetle *Tribolium castaneum* and the vinegar fly *Drosophila melanogaster* by antibodies and
175 transgenic lines. We confirm the marking of homologous cells and subsequently scrutinize their
176 embryonic and postembryonic development. We found a complex pattern of heterochrony
177 underlying differentiation between larval and adult brains including the shift of certain
178 developmental events between life stages. Intriguingly, we found that the order of developmental
179 steps was changed, representing a case of *sequence heterochrony*, which to our knowledge had not
180 been observed in the evolution of brain development before. As consequence, the larval central
181 body of *Tribolium* represents an immature developmental stage, which gained functionality
182 precociously. Apparently, central complex functionality does not require the full connectivity as
183 observed in adult brains.

184 **Results**

185 **Marking the *rx* genetic neural lineage in two species**

186 To compare central complex development between two species, we wanted to mark a subset
187 of homologous neurons that contribute to the central complex. For this purpose, we decided to use
188 the *retinal homeobox (rx) genetic neural lineage* for three reasons: First, *rx* is one of the genes that
189 is expressed almost exclusively in the anterior brain in bilaterians indicating a highly conserved
190 function in many animals (96–104). Second, we had found projections into the central complex in a
191 *Tribolium rx* enhancer trap line and a small subset of central complex projections in *Drosophila rx*
192 VT-GAL4 lines (VDRC, # 220018, # 220016, discarded) (105,106). Third, central complex phenotypes
193 were observed in both *Drosophila* and *Tribolium* in a *Dm-rx* mutant and *Tc-rx* RNAi knock-down,
194 respectively, indicating an essential role in central complex development (98,107).

195 To mark *rx* genetic neural lineages, we first generated and validated an antibody binding the
196 *Tribolium* Rx protein (Tc-Rx, TC009911) (Fig. S1) and used an available *Drosophila* Rx (Dm-Rx,
197 CG10052) antibody (98). Next, we tested an enhancer trap in the *Tc-rx* locus (E01101; *Tc-rx*-EGFP
198 line) (95) and confirmed co-expression of EGFP with Tc-Rx (Fig. S2). The enhancer trap marked a
199 subset of 5-10 % of all Tc-Rx-positive cells in the adult and all EGFP-positive cells were Tc-Rx-
200 positive as well (Fig. S2). For *Drosophila*, we generated an imaging line using CRISPR/Cas9 mediated
201 homology-directed repair (Fig. S3). We replaced the stop codon of the endogenous *rx* locus with a
202 P2A peptide sequence followed by an EGFP coding sequence (28,108,109). The resulting bicistronic
203 mRNA led to translation of non-fused Dm-Rx and EGFP proteins (*Dm-rx*-EGFP; Fig. S3), and so, our
204 analysis revealed complete co-expression of Dm-Rx and EGFP. Based on both antibodies and
205 transgenic lines we tested the labelled cells for homology.


206

207 **Similar location of *rx*-positive neural cell groups in both species**

208 To get an overview on the conservation of Rx expression between *Drosophila* and *Tribolium*, we
209 first compared the location of Rx-positive cells in adult brains and embryos. Note that the axes of

210 the brain relative to the body axes are not conserved in insects. Therefore, we describe the location
211 according to the 'neuraxis' for both species, where '*Drosophila* posterior' becomes neuraxis-dorsal
212 (n-dorsal) while '*Drosophila* dorsal' equals neuraxis-anterior (n-anterior) (see explanation in Fig.
213 1C). We found four major domains of Rx-positive cells (I-IV) located in similar regions in both
214 species (Fig. 2A-B; see stacks and videos of all projections shown in this paper on figshare:
215 figshare.com/account/home#/projects/64799). Specifically, cells of cluster IV surrounded the
216 protocerebral bridge in both species in a pattern similar to DM1-4 lineages. In embryos of both
217 species, Rx was expressed in the labrum (arrowheads in Fig. 2C-D) as well as in corresponding
218 regions of the anterior-lateral part of the neuroectoderm (arrows in Fig. 2C-D).

219

220

221 **Fig. 2: Rx expression is conserved in *Drosophila* and *Tribolium* adult brains and embryos. (A-B)**
222 Immunostainings against Rx and synapsin in both species revealed four domains of Rx-positive cells (I-IV,
223 dotted white lines) with similar shape and position within the brain. Shown are n-ventral (i) and n-dorsal

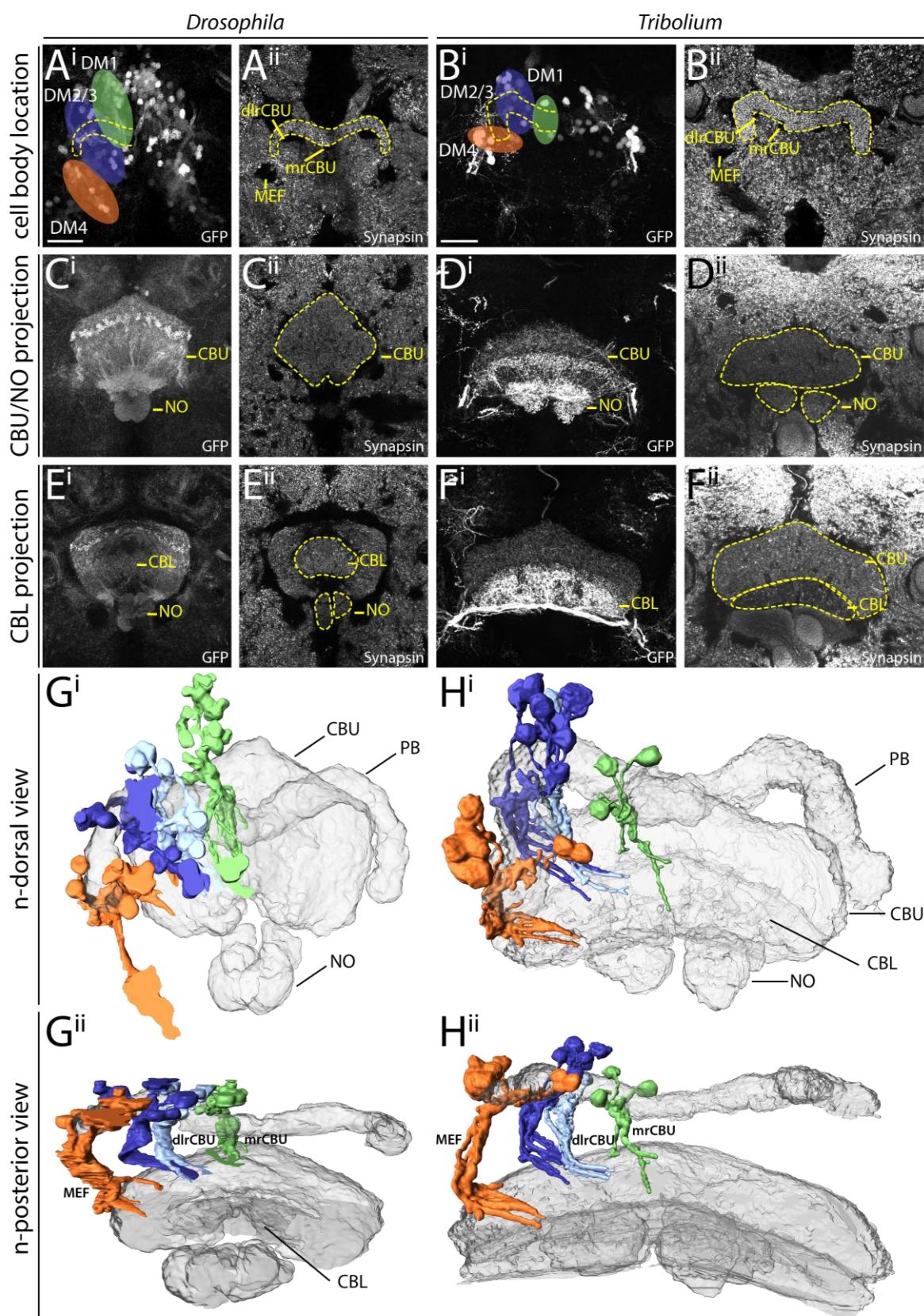
224 views (ii) (Fig. S4). **(C-D)** In *Drosophila* (S14) and *Tribolium* (NS11) embryos Rx was expressed in the labrum
225 (arrowhead) and in similar regions of the lateral head neuroectoderm (arrows). In addition, single cells of the
226 peripheral nervous system and ventral nerve cord were labelled in each segment (asterisk; Fig. S1). Note that
227 the head lobes of *Tribolium* embryos are shown as flat preparations while the *Drosophila* head was imaged
228 within the egg. According to the *bend and zipper model* of head morphogenesis, the expression patterns are
229 very similar (110). Abbreviations like in Fig. 1. Scale bars represent 100 μ m.

230

231 Next, we asked to which lineages these domains of the adult brain belong. To this end, we
232 related Rx-positive cell groups to maps of neural lineages of the *Drosophila* brain (111,112) and
233 tentatively transferred the nomenclature to *Tribolium* (Fig. S4). For this, we also included
234 prominent projections of Rx-positive cells marked by the transgenic lines, to substantiate our
235 assignments (Figs. S2-4). Rx-positive cell groups likely belonged to eleven neural lineages (Fig. S4,
236 Table S1 and Supporting Results). Four of these (DM1-4) were prominently marked in the imaging
237 lines of both species. Because DM1-4 are known to contribute to the central complex we focused
238 on the comparison of Rx-positive cell clusters of these lineages.

239

240 **Central complex Rx-positive cell clusters are homologous between *Drosophila* and *Tribolium***


241 To corroborate the homology of Rx-positive DM1-4 neurons, we examined the location and
242 projection pattern of these cell clusters in detail. We indeed found similar cell body locations
243 around the protocerebral bridge (Fig. 3A-B) and similar projection patterns into the CBU (Fig. 3C-D),
244 CBL and noduli (Fig. 3E-F) in both species. The similarity relative to central complex neuropils was
245 visualized in 3D reconstructions (Fig. 3G-H, see videos on Figshare) and allowed us to define
246 homologous cell clusters. Given the lack of a detailed map and homology assessments for the
247 *Tribolium* brain, we assigned the fiber bundles MEF, dlrCBU and mrCBU (dlrFB, mrFB, see e.g. (54))
248 based on their similarity to the *Drosophila* brain and the novel lineage information gained in this
249 study (Fig. S4, Supporting Results). Specifically, in both species, DM4 cell bodies lay around the
250 lateral tip of the protocerebral bridge and their axons projected through the medial equatorial

251 fascicle (MEF) (orange in Fig. 3). Cell bodies of DM2/3 (light and dark blue, respectively, in Fig. 3)
252 were close to each other at the n-anterior bend of the protocerebral bridge. Their axons projected
253 into distinct tracts through the dorsal root of the CBU (dlrCBU). DM1 cell bodies (green in Fig. 3) lay
254 near the midline and their axons projected through the medial root of the CBU (mrCBU).

255 Our classification of these Rx expressing cell clusters to lineages DM1-4 was corroborated in
256 *Drosophila* by Rx immunostainings in the R45F08-GAL4 line, a *pointed* GAL4 enhancer construct
257 that was suggested to label a large subset of neurons of the DM1-3 and 6 lineages (55). Moreover,
258 we crossed the *Dm-rx*-EGFP line to the R45F08-GAL4 line. We found that approximately 90 % of
259 R45F08-GAL4 marked cells also expressed Rx (Fig. S5A-B). In addition, a substantial part of the
260 midline projections overlapped between both transgenic lines (Fig. S5C).

261 Note that the *Dm-rx*-EGFP line marked all Dm-Rx-positive cells while the *Tc-rx*-EGFP line marked
262 only a subset of Rx-positive cell bodies (Figs. S2 vs. S3). This resulted in more prominently marked
263 tracts in *Drosophila* compared to *Tribolium*. However, during development, the number of EGFP-
264 positive DM1-4 cells increased in *Tribolium* resulting in thicker projections (Fig. S2). Especially, the
265 *Tribolium* DM4 Rx expressing group showed a very high EGFP expression, such that the respective
266 projections into the CBU, noduli and CBL as well as the connections to the lateral accessory lobes
267 appeared much stronger than in *Drosophila* (Fig. 3 B/D/F). This divergence of intensity was likely a
268 particularity of the *Tribolium* enhancer trap.

269

270

271 **Fig. 3: Homologous Rx cell clusters contribute to the adult central complex columnar neurons of lineages**

272 **DM1-4.** A to F depict substacks of *Drosophila* (left columns) and *Tribolium* (right columns) adult brains on

273 which the 3D reconstructions in G and H are based. Homology of cell clusters and DM1-4 lineages was based
274 on three criteria: Rx expression (i.e. being part of the *rx genetic neural lineage*), similar cell body location and
275 similar projection patterns. **(A-B)** Cell groups of lineages DM1-4 (coloured areas) around the protocerebral
276 bridge (yellow dotted lines) are shown for *Drosophila* (A) and *Tribolium* (B). **(C-D)** Projection pattern of GFP
277 expressing neurites of these cell groups in the CBU and NO fraction. **(E-F)** Much less signal was found in the
278 CBL fraction. Note that the *Tribolium* DM4 group had a very high GFP expression level, such that those
279 projections were particularly visible in the CBL (see Figs. S2-3 for transgenic line information). **(G-H)** 3D
280 reconstructions of synapsin staining (grey-transparent) and the EGFP marked cells of DM1-4 lineages. Gⁱ/Hⁱ
281 depicts the n-dorsal view shown in A-F. Gⁱⁱ/Hⁱⁱ is rotated to an n-posterior view with the central complex
282 coming to the front to judge similarity of the tract architecture. Similar stereotypical positions were found in
283 both species for DM1 (green), DM2/3 (blue shades – sharing a fiber bundle) and DM4 (orange). Due to the
284 large number of labelled cells within the CB, the projections could not be followed further. GFP channels (i)
285 are maximum intensity projections, while synapsin channels (ii) are SMEs (113). Abbreviations as in Fig. 1.
286 dlrCBU dorsal root of the CBU (synonym: dlrFB), mrCBU medial root of the CBU (mrFB), MEF medial
287 equatorial fascicle. Scale bars represent 25 μ m and apply to all panels of each species.

288

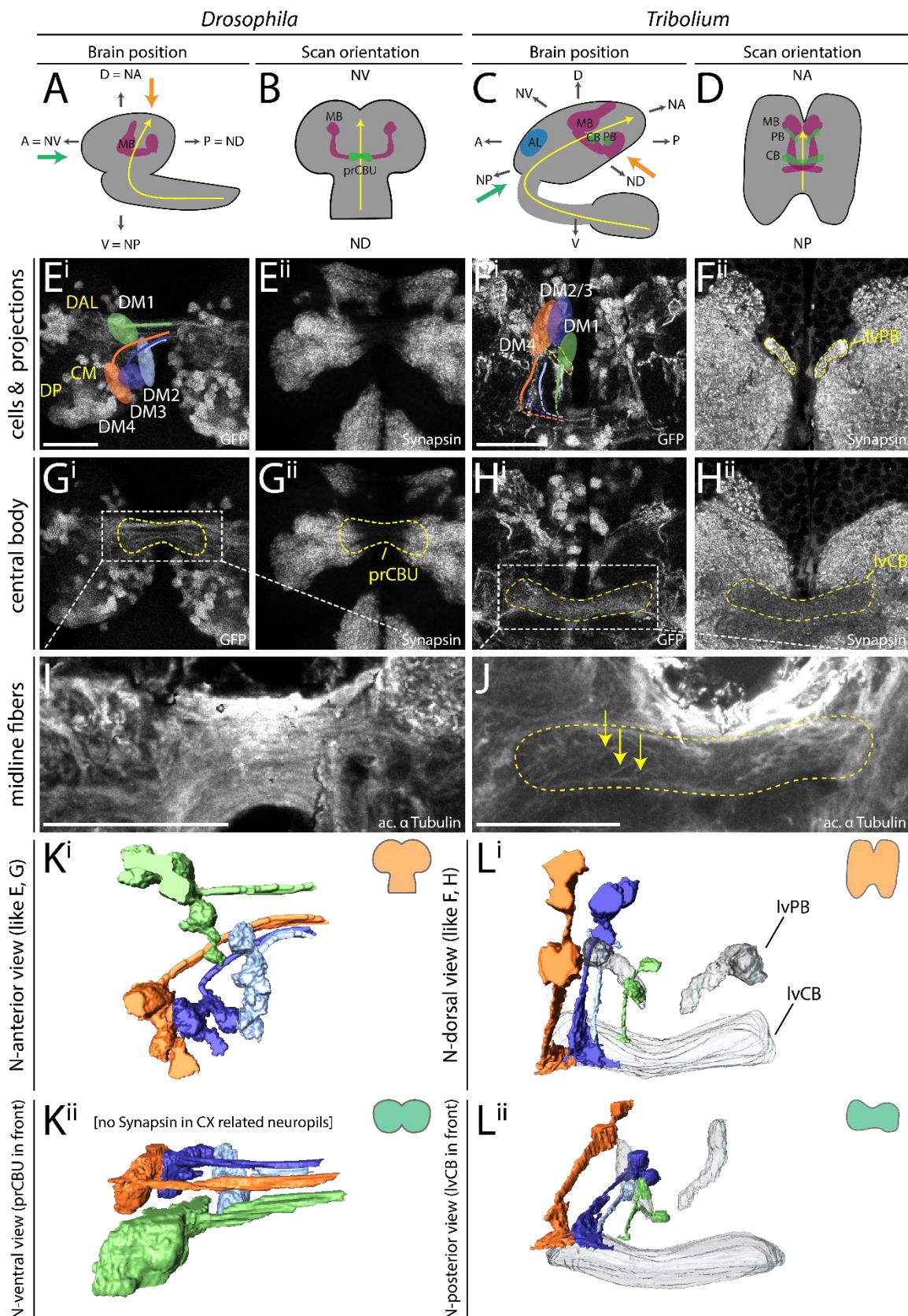
289 In summary, we assume homology of the Rx-positive cells of the DM1-4 lineages of *Drosophila* and
290 *Tribolium* based on the shared expression of a highly conserved brain regulator and the specific
291 similarity of cell body location of the DM1-4 lineages relative to the protocerebral bridge and their
292 similar projection patterns in adult brains. Note that *rx* is expressed in most but probably not all
293 cells of the DM1-4 lineages and in addition is expressed in cells contributing to other brain regions
294 like the mushroom bodies, which were not examined here. The DM1-4 lineages are key
295 components of the central complex, providing nearly all columnar neurons (54,59,114). Therefore,
296 the *rx genetic neural lineage* is an excellent marker to compare central complex development
297 between fly and beetle.

298

299 **Divergent central complex structures in the L1 larva of *Drosophila* and *Tribolium***

300 Next, we examined central complex structures in the first instar larval (L1) brain of both species,
301 since the strongest divergence between *Drosophila* and *Tribolium* seemed to occur at the larval
302 stage. Here, tenebrionid beetle larvae have a partial central complex neuropil already at the larval
303 stage (20,33) while in *Drosophila* L1 larvae any central complex neuropil is missing (54). Our
304 imaging lines allowed us to compare DM1-4 innervation and resulting central complex structures at
305 the L1 stage of both species complemented by synapsin and acetylated α -tubulin staining (115) to
306 reveal functionality and underlying tract architecture, respectively (Fig. 4).

307 The position of the brains within the L1 larva differs between the species, which has to be
308 considered when comparing them (see scheme in Fig. 4A-D). As previously described (54), we
309 found no functional (i.e. synapsin-positive) central complex neuropil in *Drosophila* L1 (neither
310 protocerebral bridge, central body nor noduli; Fig. 4Eⁱⁱ,Gⁱⁱ). In *Tribolium*, in contrast, we observed a
311 protocerebral bridge, which in synapsin stainings was non-fused (Fig. 4Fⁱⁱ). Further, we found a
312 larval central body (lvCB), which showed no morphological sign of subdivision into upper or lower
313 division (Fig. 4Hⁱⁱ). Moreover, neither neuropil displayed a columnar structure in anti-synapsin or
314 anti-GFP stainings (Fig. 4Fⁱⁱ/H). Hence, the lvCB appeared as a simple bar-shaped neuropil.


315 The analysis of Rx expressing DM1-4 cells in *Drosophila* revealed that the spatial arrangement
316 of marked cell bodies and their projections in the L1 differed from the adult (Fig. 4Eⁱ – compare to
317 Fig. 3A). The cell clusters differed both, in their position within the brain and with respect to each
318 other. To correctly assign their identities to DM1-4 despite such divergence, we used their
319 projections across the midline as hint and compared the location of the marked cell bodies with
320 recent lineage classifications based on EM data (54). Most strikingly, the cell bodies of the DM2/3
321 lineages were not yet located between DM1 and DM4 (Fig. 4Eⁱ/Kⁱ). In *Tribolium*, in contrast, the
322 DM1-4 cell clusters had an arrangement along the larval protocerebral bridge like the adult
323 situation (Fig. 4Fⁱ/Lⁱ).

324 The projection patterns of the *rx*-positive DM1-4 lineages differed between the two species, as
325 well. In *Drosophila*, they formed a straight common projection across the midline in a bundle of
326 parallel fascicles as described before (Fig. 4Eⁱ/Gⁱ/I) (54). Decussation was not found, neither on the
327 level of EGFP signal nor based on acetylated α -tubulin staining (Fig. 4Gⁱ/I). In *Tribolium*, in contrast,
328 the neurites projected first parallel to the midline towards n-posterior, projecting through (in the
329 case of DM1-3) or passing by the protocerebral bridge (DM4). Then, they described a sharp turn
330 towards the midline projecting medially into the lvCB neuropil towards the other side (Fig. 4F/H/L).
331 Basically, this pattern resembled the adult one (compare Fig. 4Lⁱ with 3H). In contrast to *Drosophila*
332 L1, acetylated α -tubulin staining (but not EGFP signal) revealed a system of crossing, i.e. decussated
333 fascicles in the region of the lvCB (Fig 4J). This pattern of decussation differs strongly from that
334 found in the pupa in that it is built by less prominent fascicles and not visible with the *Tc-rx*-EGFP
335 line (Fig. 9).

336 In summary, we confirm that *Tribolium* but not *Drosophila* has a functional (i.e. synapsin-
337 positive) central body and protocerebral bridge at the L1 stage. We further show that the DM1-4
338 lineages of *Tribolium* larvae already resemble the adult pattern including some decussations, while
339 this is not the case in *Drosophila*. We note that, despite the presence of four adult-like WXYZ tracts
340 and first decussations in the *Tribolium* L1, the lvCB is not visibly divided into columns. This contrasts
341 with *Drosophila* where the presence of adult-like tracts and the start of decussation coincides with
342 the division into columns in the early pupa (Fig. 8). Hence, heterochrony is found with respect to
343 the gain of functionality at the L1 stage and with respect to the development of the underlying
344 neural lineages.

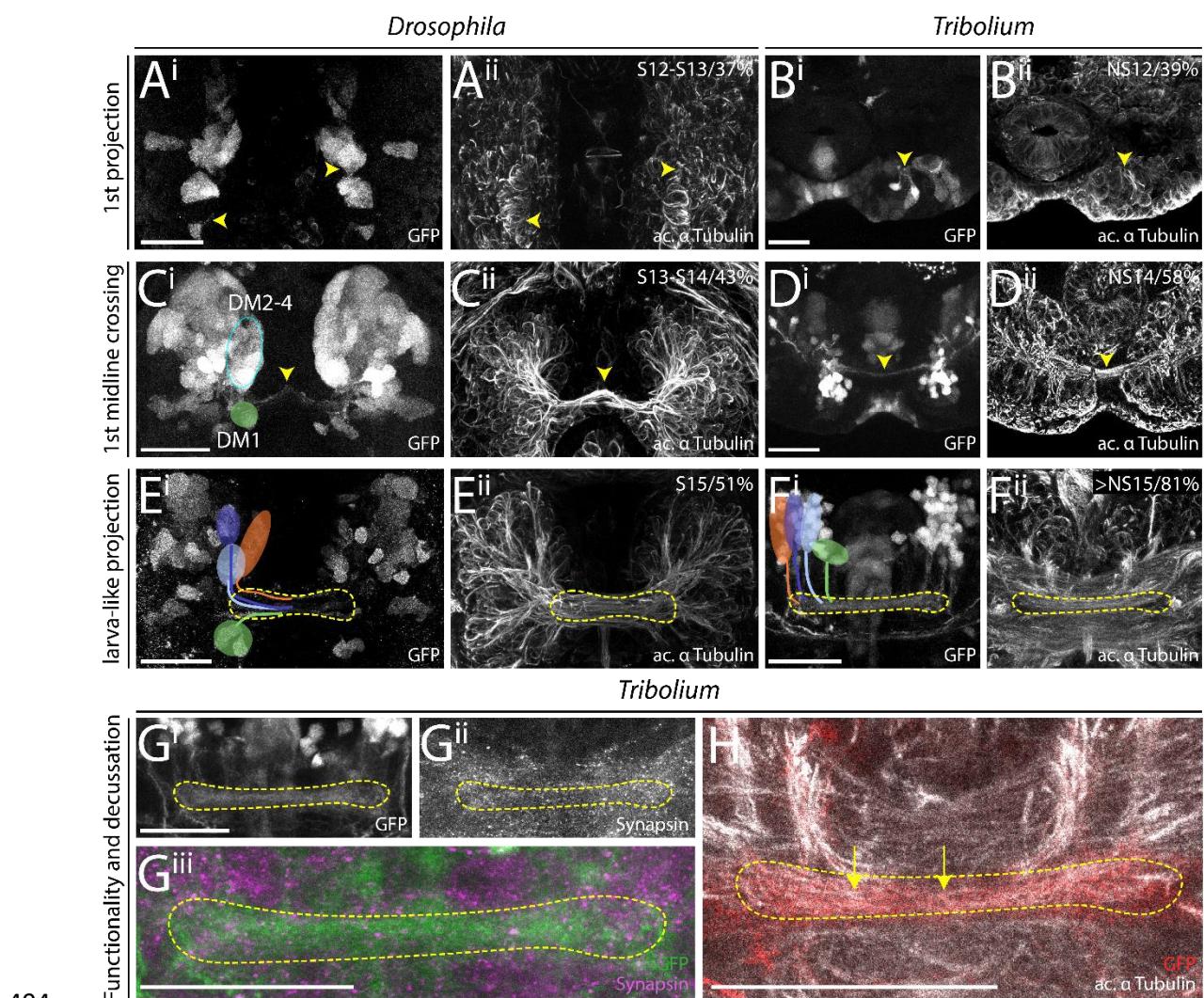
345 Importantly, the functional *Tribolium* larval central body did not represent an adult-like upper
346 division. Rather, it morphologically corresponded to a developmental step found in other species.
347 Specifically, the initiating decussations within a tract of largely parallel fibers mirrors the situation
348 seen in an embryonic stage of the grasshopper (59,114). Hence, the *Tribolium* larval central body

349 represents a case of heterochronic gain of functionality of an immature developmental stage rather
350 than a heterochronic shift of the development of an adult-like structure.

352 **Fig. 4: Different patterns of DM1-4 projection and central complex morphology at the first larval stage.**

353 **(A+C)** The *Drosophila* (left columns) and *Tribolium* (right columns) L1 brains are positioned differently within
354 the head, visualized by lateral views in A and C. Indicated are the denominators for anterior, posterior, dorsal
355 and ventral (A,P,D,V) for both body axes and neuraxes (with prefix N). Further shown are the curved neuraxis
356 (yellow) and the larval neuropils MB (magenta), AL (blue), CB and PB (green). The orange arrows indicate the
357 different directions of the performed scans. The green arrows indicate the orientation displayed in K/Lⁱⁱ
358 where central complex structures are best visible for both species. **(B+D)** The brains are depicted as they
359 were scanned in E-J (i.e. from the angle of the orange arrow). **(E-H)** Differences between species were
360 observed in cell cluster position and projection patterns as well as neuropil architecture. In *Tribolium*,
361 arrangement and projection were already similar to the adult (compare L with Fig. 3) although the PB was still
362 split. In *Drosophila* it differed dramatically: No central complex neuropils were detected and the DM1-4
363 lineages projected straight across the midline. In Eⁱ the approximate position of other lineages of the
364 *Drosophila* brain are shown, i.e. dorso-anterio-lateral (DAL), dorso-posterior (DP) and centro-medial (CM)
365 lineages (yellow). **(I-J)** Anti-acetylated- α -Tubulin immunostaining revealed that in *Drosophila* midline-
366 spanning fibers build up a simple stack of fascicles, containing the primordial central body. In *Tribolium*, in
367 contrast, the functional central body contains already some decussated fibers. **(K-L)** 3D reconstructions
368 visualize the spatial relationship between the lineages and highlight the differences between the species.
369 Upper panels (i) reflect the orientation shown in E-H, while in the lower panels (ii) are oriented such that the
370 prCBU and lvCBU are in front, i.e. the central complex is shown in a comparable perspective (see green arrow
371 in A and C). Abbreviations like in previous figures. lv larval. Scale bars represent 25 μ m.
372

373 **Embryonic central complex development proceeds faster in *Drosophila***


374 We next asked whether the observed differences were explained by simple temporal shifts
375 within a conserved developmental series or whether certain steps changed their position in the
376 series (i.e. sequence heterochrony). For this we compared discrete developmental events of the
377 central complex in both *Tribolium* and *Drosophila*. We made use of our rx imaging lines to compare
378 the development of homologous cells by defining three events identifiable in embryos of both
379 species. These were the first axon projection emerging from marked cells, the first midline-crossing

380 projection and the stage, when a larva-like projection pattern was reached. Further, the emergence
381 of functional central body and protocerebral bridge as judged by synapsin staining was examined.
382 Given the large differences in absolute developmental time between *Tribolium* and *Drosophila* we
383 used relative developmental time.

384 The first axons of the *rx* *genetic neural lineages* formed at a similar relative timing in both
385 species (*Drosophila* 37 % developmental time, *Tribolium* 39 %; Fig. 5A-B, see Material and Methods
386 and Supporting Information for all staging details). The appearance of the first midline-crossing
387 projection appeared earlier in *Drosophila* than in *Tribolium* (*Drosophila* 43 %, *Tribolium* 58 %; Fig.
388 5C-D). Likewise, the ‘final’ larval-like pattern was reached much earlier in *Drosophila* (51 %,
389 *Tribolium* 81 %; Fig. 5E-F). However, at this stage the tracts of DM1-4 in *Tribolium* were already in
390 similar spatial orientation and projection pattern as found in the adult. Moreover, despite this
391 slower pace of development, *Tribolium* performed two more steps during embryogenesis, which in
392 *Drosophila* were postembryonic: We found weak decussations and gain of functionality in the
393 prospective central body region (i.e. synapsin staining), in late stage *Tribolium* embryos at
394 approximately 81% (Fig. 5G-H). A distinct protocerebral bridge or central body that was clearly
395 differentiated from other areas was not detectable in the embryo, however.

396 We conclude that both species initiated development of the *rx* *genetic neural lineage* at a
397 comparable time of development, that *Tribolium* proceeds slower but eventually includes two
398 more developmental steps in embryogenesis. This represented a pronounced heterochronic shift of
399 conserved developmental steps between different life stages. More strikingly, certain steps of the
400 developmental series switched their order representing a case of *sequence heterochrony* in brain
401 diversification (Fig. 6). Specifically, the decussation and an adult-like tract organisation occurred
402 before the larval growth phase of the LvCB in *Tribolium* but after that stage in *Drosophila*.

403

404

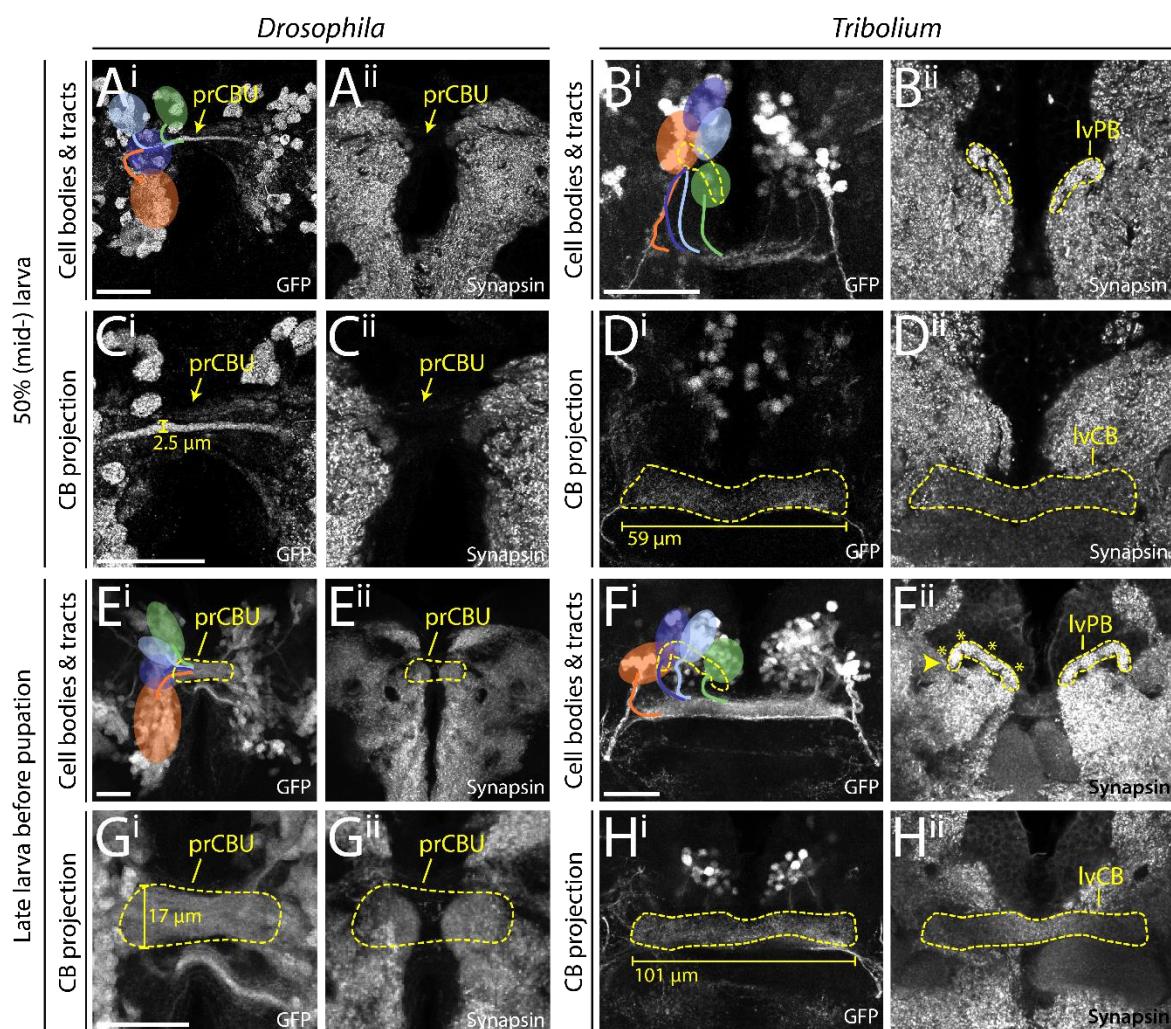
405 **Fig. 5: Key events of central complex development occur during late embryogenesis in *Tribolium* but not**

406 ***Drosophila*.**

407 Comparable steps of central complex development are shown in one row for both species, the respective
 408 stage/relative time of development are shown in panels ii. The analysis was based on EGFP-labelled neurons
 409 (panels i) while acetylated α -tubulin staining is shown for reference (panels ii). **(A-B)** The development of the
 410 first axons happened at a similar time in *Drosophila* and *Tribolium*. **(C-D)** First midline-crossing fibers
 411 appeared earlier in *Drosophila*. **(E-F)** Likewise, the larva-like projection pattern was reached earlier in
 412 *Drosophila*. **(G-H)** The late-stage embryonic central complex of *Tribolium* is already faintly synapsin-positive
 413 (Gii, magenta in Giii) while the *Drosophila* IvCB remains synapsin-negative (not shown). In *Tribolium*, first
 414 decussations were visible as well (H, yellow arrows). Note that the assignment of Rx-positive cell clusters to
 415 the DM1-4 lineage groups was not unambiguous before mid-embryogenesis. Tentatively, we indicated the
 416 location of DM1 (green) and DM2-4 cells (blue oval form) in C. Later, the groups could be assigned to DM1-4

417 lineages (E-F). Stages in *Drosophila* correspond to (116) and in *Tribolium* to (25). Posterior is up, except in
418 panels F, G and H where dorsal is up. Scale bars represent 25 μ m.

419


420 **In the larva, central complex structures grow but do not change basic morphology**

421 Next, we asked how central complex structures changed during the larval period from the starting
422 L1 architecture. We examined the position of cell clusters and their projections at 50 % (Fig. 6A-D)
423 and at the end of the larval period (~ 95 %) (Fig. 6E-H). In *Drosophila*, the primordium of the CBU
424 increased in thickness, particularly after 50 % of larval development (compare Fig. 6Cⁱ to Gⁱ) but it
425 remained devoid of synapsin (Fig. 6Cⁱⁱ/Gⁱⁱ). In line with the literature we detected no decussations
426 during larval stages. However, the position of DM1-4 cell clusters changed in *Drosophila*. Until 50 %
427 of larval development, DM2 and DM3 cell bodies shifted n-ventrally, taking a position between
428 DM1 and DM4 (compare Fig. 4E with Fig. 6Aⁱ). Towards the end of larval development, cell clusters
429 became arranged in a straight line along the neuraxis, DM1 most n-ventral, DM4 most n-dorsal (Fig.
430 6 Eⁱ).

431 In *Tribolium*, the central body grew in length and thickness as well (compare Fig. 6Dⁱ with Hⁱ). In
432 addition, the position and shape of the protocerebral bridge changed. In L1 and 50 % larval brains,
433 the separate parts of the protocerebral bridge were still oriented along the n-anterior/posterior
434 axis. In late larval brains, however, they shifted into a position more perpendicular to the neuraxis.
435 Accordingly, the positions of the marked cell clusters remained constant in the first half of larval
436 development (Fig. 6 Bⁱ/Hⁱ). However, from 50 % to the end of the larval period they became
437 arranged in one line along the protocerebral bridge. We also identified the presence of a columnar
438 architecture in the protocerebral bridge in the late larva as judged by anti-synapsin staining, hence,
439 there were four distinguishable sub-areas per hemisphere, likely reflecting a localized innervation
440 near each of the four tracts. In both species' larval brains, we qualitatively observed an increase in
441 cell number of the DM1-4 rx-positive cell bodies.

442 We conclude that the larval period of central complex development is characterised mainly by
443 growth of the central complex neuropils in both species. Apart from some shifts of cell body
444 location, the structure established during embryogenesis was mostly maintained during the larval
445 period. Importantly, the *Drosophila* central complex precursor remained synapsin-negative while in
446 *Tribolium* both the IvCB and IvPB remained synapsin-positive, thus still resembling an immature
447 structure throughout the larval period.

448

449

450 **Fig. 6: In both species, the rx genetic neural lineage shows substantial growth.** During larval stages the
451 identified cell clusters and their projections retained their position, but proliferated so that larger cell clusters
452 and thicker and larger projections were built. **(A-D)** Depicted are projections at mid-larval stages (50 % of
453 larval developmental time) where cell number and projections have qualitatively increased in number and

454 size, respectively. **(E-H)** Shown are late larval stages before pupation, where cell numbers and projection sizes
455 have increased greatly from 50 %. The late LvPB of *Tribolium* can be divided into discrete columns already,
456 indicated by four asterisks on one hemisphere. Bars in C, D, G and H indicate the size increase of midline
457 structures. In *Drosophila*, the prCBU increased in width from 2.5 to 17 μm from 50 to 95 % of larval
458 development. In L1, the prCBU is non-distinguishable using the *rx*-GFP line. The central body of the *Tribolium*
459 L1 brain displayed in Fig. 4 was 51.6 μm long, the mid-larval LvCB was 58.7 μm and the late larval LvCB was
460 100.9 μm long. For *Drosophila* n-ventral and for *Tribolium* n-anterior is up (see Fig. 4 for details).
461 Abbreviations like in previous figures; pr primordium. Scale bars represent 25 μm and apply to panels i and ii
462 and in case of *Tribolium* to D and H, respectively.

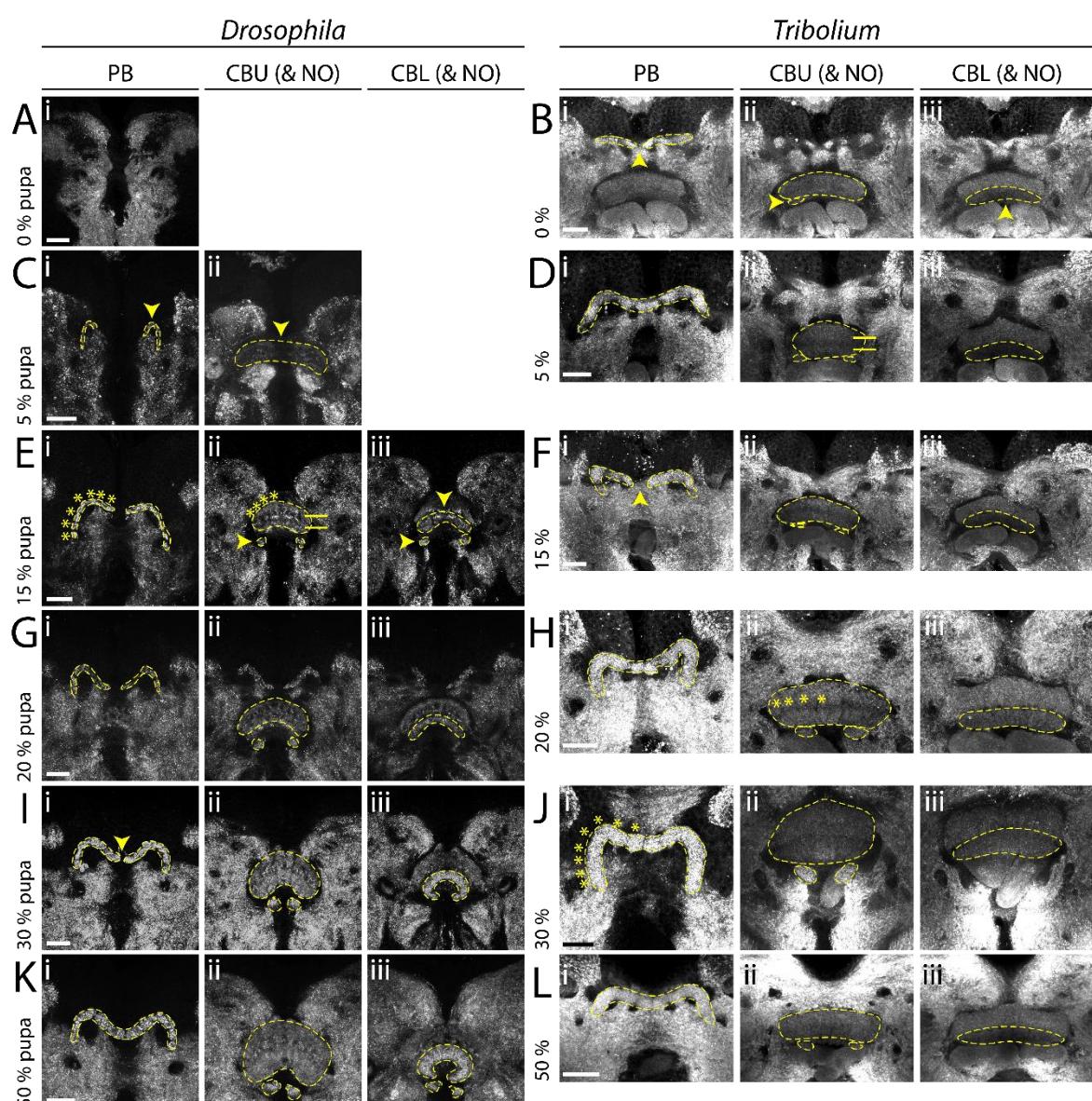
463

464 **The *Drosophila* central complex acquires functionality at later stages of pupal development**

465 Last, we examined pupal stages to reveal when heterochronic divergence in early central
466 complex development was eventually levelled out to reach the conserved adult structure. We
467 stained brains of 0 (prepupal stage), 5, 15, 20, 30 and 50 % of pupal development (see Supporting
468 Material and Methods for staging) for EGFP and synapsin. In *Drosophila*, the protocerebral bridge
469 appeared at 5 % of pupal development (Fig. 7Cⁱ), grew subsequently and fused medially between
470 30 and 50 % of pupation (Fig. 7I/Kⁱ). Columns became visible at 15 % (Fig. 7Eⁱ). The upper division of
471 the *Drosophila* central body appeared first at 5 % of pupal development (Fig. 7Cⁱⁱ). Strength of
472 synapsin staining increased at 15 %, coinciding with the emergence of layers and columns
473 structuring the CBU (arrows and bars, respectively, Fig. 7Eⁱⁱ). This coincided with *Dm-rx*-EGFP
474 projections forming a columnar division (Fig. 8Cⁱⁱⁱ). Thickness increased from 30 % onwards resulting
475 in the fan-like structure typical for the *Drosophila* CBU (Fig. 7G/I/Kⁱⁱ). The *Drosophila* CBL emerged
476 later at 15 % pupation, (Fig. 7Eⁱⁱⁱ) and continued bending until it formed the typical toroid form that
477 was nearly closed at 50 % pupation (Fig. 7Kⁱⁱⁱ). Noduli appeared at the same time as the CBL as one
478 paired subunit at 15 % of pupation (Fig. 7Eⁱⁱ), and only at 50 % an additional subunit was detected
479 (Fig. 7Kⁱⁱ). Note that adult noduli are eventually comprised of three to six subunits, which
480 apparently developed after 50 % development (78).

481 In *Tribolium*, the larval protocerebral bridge developed further and fused between 5 and 20 %
482 (Fig. 7D/F/Hⁱ; note that we observed a higher heterogeneity in our *Tribolium* dataset with respect
483 to protocerebral bridge fusion and other events). A division into eight columns typical for the adult
484 neuropil became visible at 30 % on the level of synapses (Fig 7Jⁱ). However, based on the synapsin
485 and EGFP signal of the *Tc-rx*-EGFP line, a division of the central body into columns was less visible at
486 any developmental stage compared to *Drosophila*. This is in line with previous observations that
487 central complex columnar architecture can be visible to quite different degrees in different taxa
488 (12). Separate upper and lower divisions of the central body became visible already at the
489 beginning of pupation (Fig. 7B^{ii/iii}). The CBU increased in size, and at least two layers became visible
490 at 5 % (Fig. 7Dⁱⁱ). The subdivision into columns was faintly visible from 20 % onwards (asterisks in
491 Fig. 7Hⁱⁱ). The CBL appeared right at the beginning of pupation with weak synapsin signal intensity
492 (Fig. 7Bⁱⁱⁱ), which increased from 15 to 20 % of pupation (Fig. 7F/Hⁱⁱⁱ). Noduli appeared at the
493 prepupal stage (Fig. 7Bⁱⁱ). They thickened considerably at 20 % pupation (Fig. 7Hⁱⁱ) building two
494 subunits between 30 and 50 % (Fig. 7J/Lⁱⁱ) eventually showing three subunits in the adult (not
495 shown).

496 We concluded that protocerebral bridge, central body and noduli emerge later in the
497 *Drosophila* pupal brain compared to *Tribolium*. Importantly, during pupation, the *Tribolium* larval
498 central body matures significantly becoming quite different from its larval appearance
499 corroborating that in larvae, the central complex is an immature but functional developmental
500 stage.


501

502 **The *rx* genetic neural lineages contribute in a similar way to build the central complex during**
503 **metamorphosis in both species**

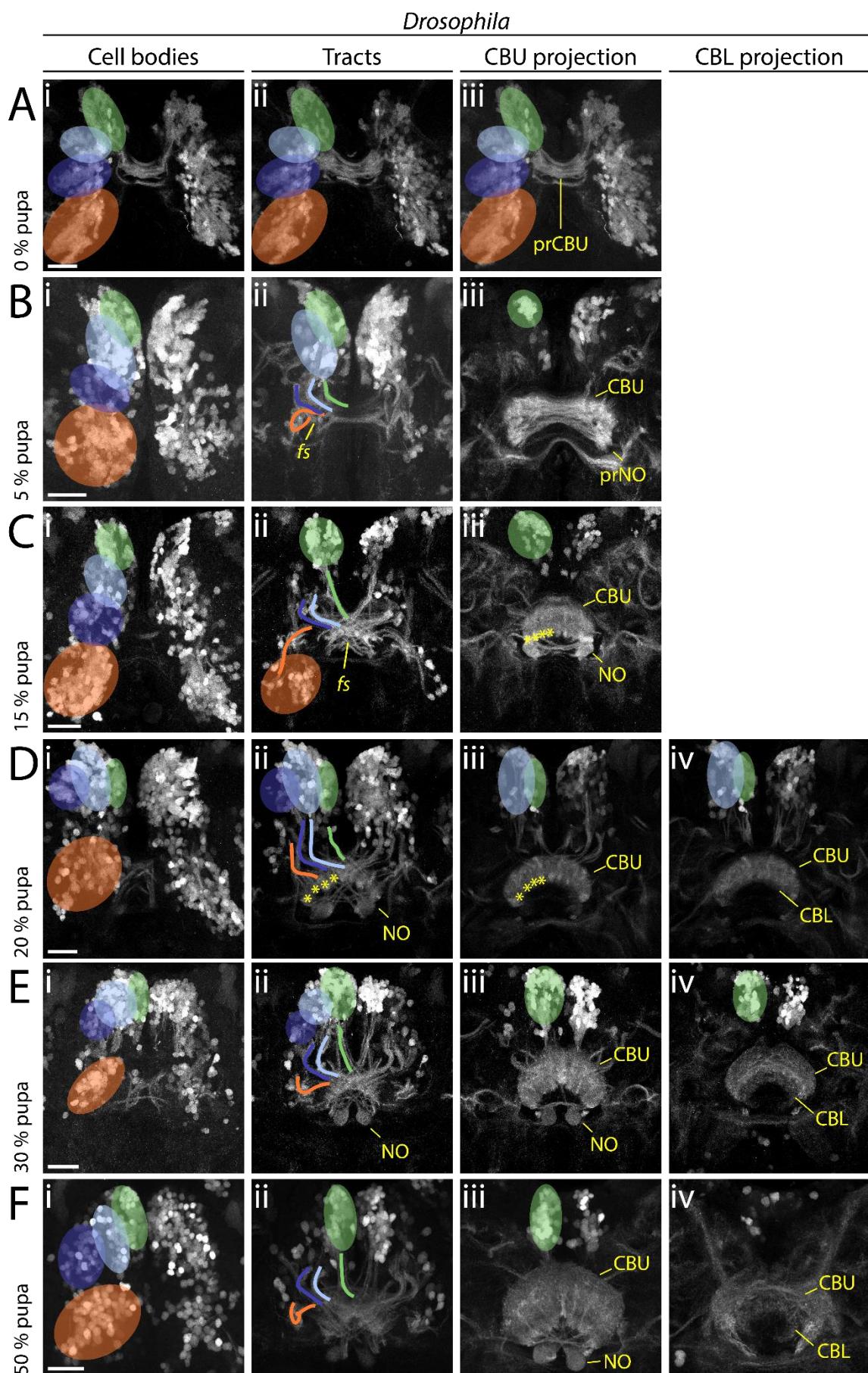
504 Given the overall heterochronic development of the central complex we asked in how far the
505 development of the *rx* genetic neural lineage reflected these differences during metamorphosis.

506 In *Drosophila* pupal brains, the array of DM1-4 cell clusters turned from their straight
507 orientation along the midline into a bent configuration following the protocerebral bridge (Fig. 8A-
508 Fⁱ). The corresponding tracts underwent massive rearrangement, with typical bends similar to an
509 adult configuration already visible at 5 % pupation. Most notably, decussations were created by
510 fascicle switching of the DM1-3 tracts starting at 5 % of pupal development (Fig. 8Bⁱⁱ) and became
511 prominent from 15 % onwards (Fig. 8Cⁱⁱ). This resulted in a parallel columnar organisation of the
512 CBU at 15 % (Fig. 8Cⁱⁱⁱ) and the marked tracts at 20 % (Fig. 8Dⁱⁱ).

513

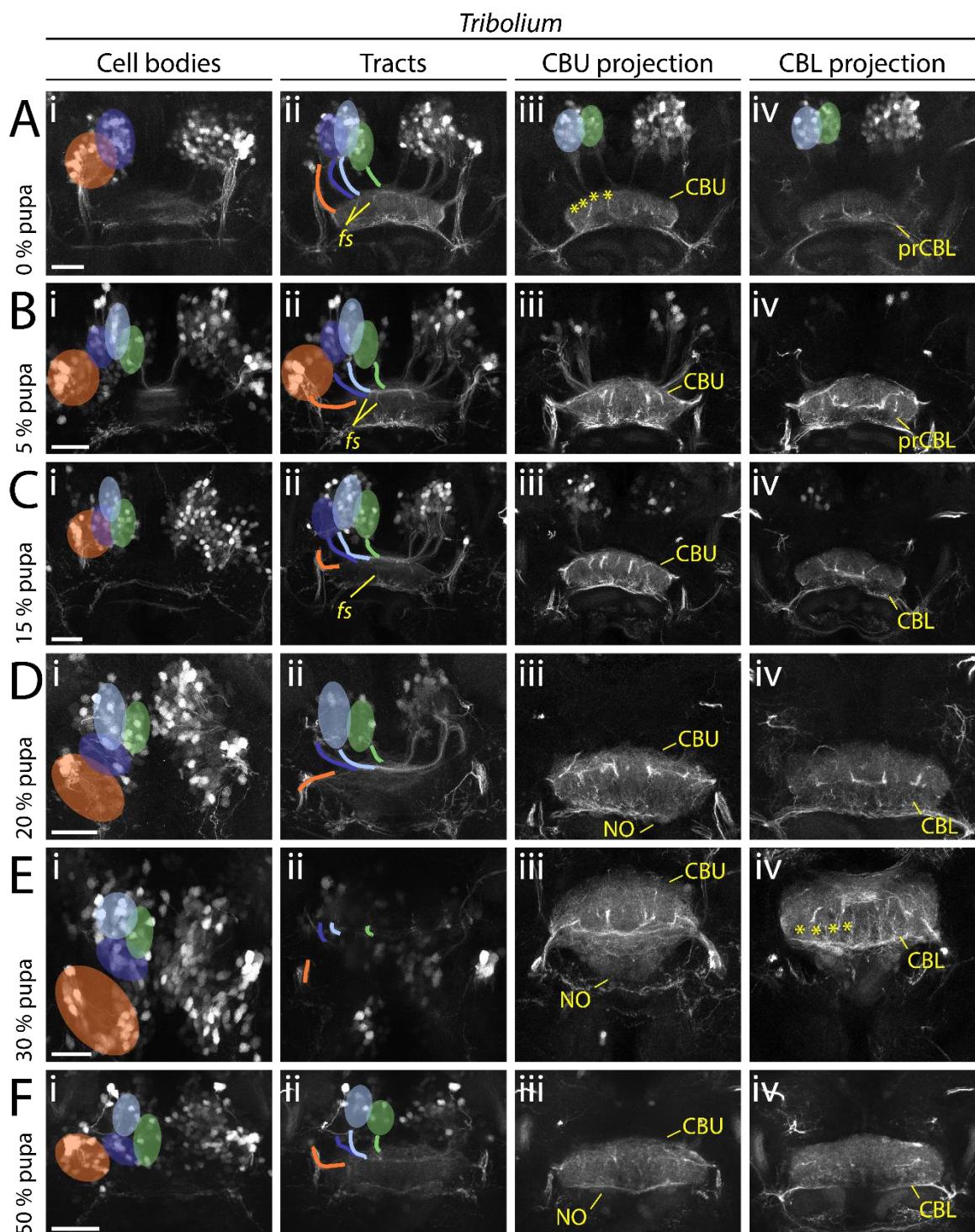
514

515 **Fig. 7: Pupal central complex development of *Drosophila* is delayed compared to *Tribolium*.** Displayed are
516 substack projections of an anti-synapsin staining of the same preparations used for tracing Rx-positive cell
517 clusters in Figs. 8-9. **(A-D)** At 0-5 % pupation, in *Drosophila* the first functional neuropils have appeared, while
518 in *Tribolium* NO and CBL have appeared and the CBU developed layers. **(E-H)** At 15-20 % pupation, the
519 *Drosophila* central complex develops columns and layers, and NO and EB appear. In *Tribolium*, columns
520 develop and the PB fuses. **(I-L)** At 30-50 % pupation, central complex structures resemble the adult, as the PB
521 develops columns and fuses. Note that through slight deviations in positioning of the pupal brains, the CBU
522 appears thicker in some stages than in others (e.g. H versus J). Following *Drosophila* events are highlighted by
523 yellow arrowheads: Appearance of a functional PB (Cⁱ), CBU (Cⁱⁱ), NO (E^{ii/iii}) and CBL (Eⁱⁱⁱ), and last stage of an
524 unfused PB (Iⁱ). Following *Tribolium* events are highlighted by yellow arrowheads: The last stage of an unfused
525 PB (Bⁱ, Fⁱ, note the variability in the timing of fusion), appearance of NO (Bⁱⁱ) and CBL (Bⁱⁱⁱ). A division into
526 distinct layers in the CBU are marked by horizontal bars. A division into columns in the PB and CBU is marked
527 by asterisks. Abbreviations like in previous figures. Scale bars represent 25 μ m.


528

529 First EGFP signal clearly corresponding to a CBU was found at 15 and 20 % (Fig. 8C/Dⁱⁱⁱ)
530 coinciding with the emergence of synapsin staining (Fig. 7Fⁱⁱ/Hⁱⁱ). We detected no pronounced
531 projection into the CBL until 20 % while later projections remained low in intensity (Fig. 8F^{iv}).
532 Strong projections into the noduli were detectable from 15 % onwards (Fig. 8Cⁱⁱⁱ). Following single
533 tracts within the central complex was not possible.

534 In *Tribolium* pupal brains, the cell bodies of the Rx expressing DM1-4 groups remained
535 comparably similar because they had undergone the respective re-arrangement already mostly in
536 the embryo, and partially in the larva. From 0-15 % onwards, DM1-4 cells formed tracts, which
537 underwent pronounced fascicle switching (Fig. 9A-Cⁱⁱ). The resulting division into columns became
538 visible by the presence of strongly marked tracts from 0 % onwards in the CBU (Fig. 9Aⁱⁱⁱ) and from
539 30 % in the CBL (Fig. 9E^{iv}).


540 Hence, we note an interesting pattern of decussation in the *Tribolium* L1 and pupal brains:
541 While a decussated pattern was found in *Tribolium* L1 based on acetylated α -tubulin staining, it was

542 not yet visible with the *Tc-rx*-EGFP line. In contrast, in the pupa, decussations of the *rx genetic*
543 *neural lineages* became clearly visible in both species. It is therefore possible that the *rx genetic*
544 *neural lineage* performs decapsulation postembryonically in both species, while other lineages
545 perform this process already in the *Tribolium* embryo. We cannot exclude, however, that
546 decussations of single neurites may not have been resolvable by the *Tc-rx*-EGFP line.

548 **Fig. 8: In *Drosophila*, the main developmental event of fascicle switching with resulting columnar fiber**

549 **organisation occurs in the pupa.** Displayed are sub-projections of an anti-GFP staining of the same brain per
550 time point, to display the development and positioning of cell clusters (i) belonging to the DM1-4 lineage and
551 their tracts (ii) (DM1 green, DM2 light blue, DM3 dark blue, DM4 orange) and final projections into the
552 developing central complex neuropils (CBU iii, CBL iv). **(A-C)** Fascicle switching starts at 5 % and is very visible
553 at 15 % pupation with the CBU and NO developing as result. **(D-F)** Fascicle switching continues, with the CBL
554 developing. Also, the cell bodies get shifted, resembling the shape of the PB as result in later pupal stages.
555 Following events are highlighted: Fascicle switching (*fs*) of DM1-3 was visible from 5 % onwards (Bⁱⁱ, Cⁱⁱ), with
556 the formation of four columns of the CBU per hemisphere (asterisks in Cⁱⁱⁱ Dⁱⁱ, Dⁱⁱⁱ). Abbreviations like in
557 previous figures; *fs* fascicle switching event. Scale bars represent 25 μ m.

558

559 **Fig. 9: *Tribolium* pupal development illustrates how the adult central body becomes distinct from the larval**

560 form. Displayed are sub-projections of an anti-GFP staining of the same brain per time point, to display the

561 development and positioning of cell clusters (i) belonging to the DM1-4 lineage and their tracts (ii) (DM1

562 green, DM2 light blue, DM3 dark blue, DM4 orange) and final projections into the developing central complex

563 neuromorphs (CBU iii, CBL iv). (A-C) Fascicle switching becomes immediately prominently visible at 0 % and shows

564 a columnar division of the CBU, and increases in later stages. **(D-F)** In later pupal stages, decussated
565 projections go into the NO, and a column divided CBL. Following events are particularly highlighted: Fascicle
566 switching (*fs*) of DM1-3 was visible from 0 % onwards (Aⁱⁱ, Bⁱⁱ, Cⁱⁱ), with a resulting formation of four columns
567 of the CBU and CBL per hemisphere (earliest visible in Aⁱⁱⁱ and E^{iv}, marked by asterisks). Abbreviations like in
568 previous figures. Scale bars represent 25 μ m.

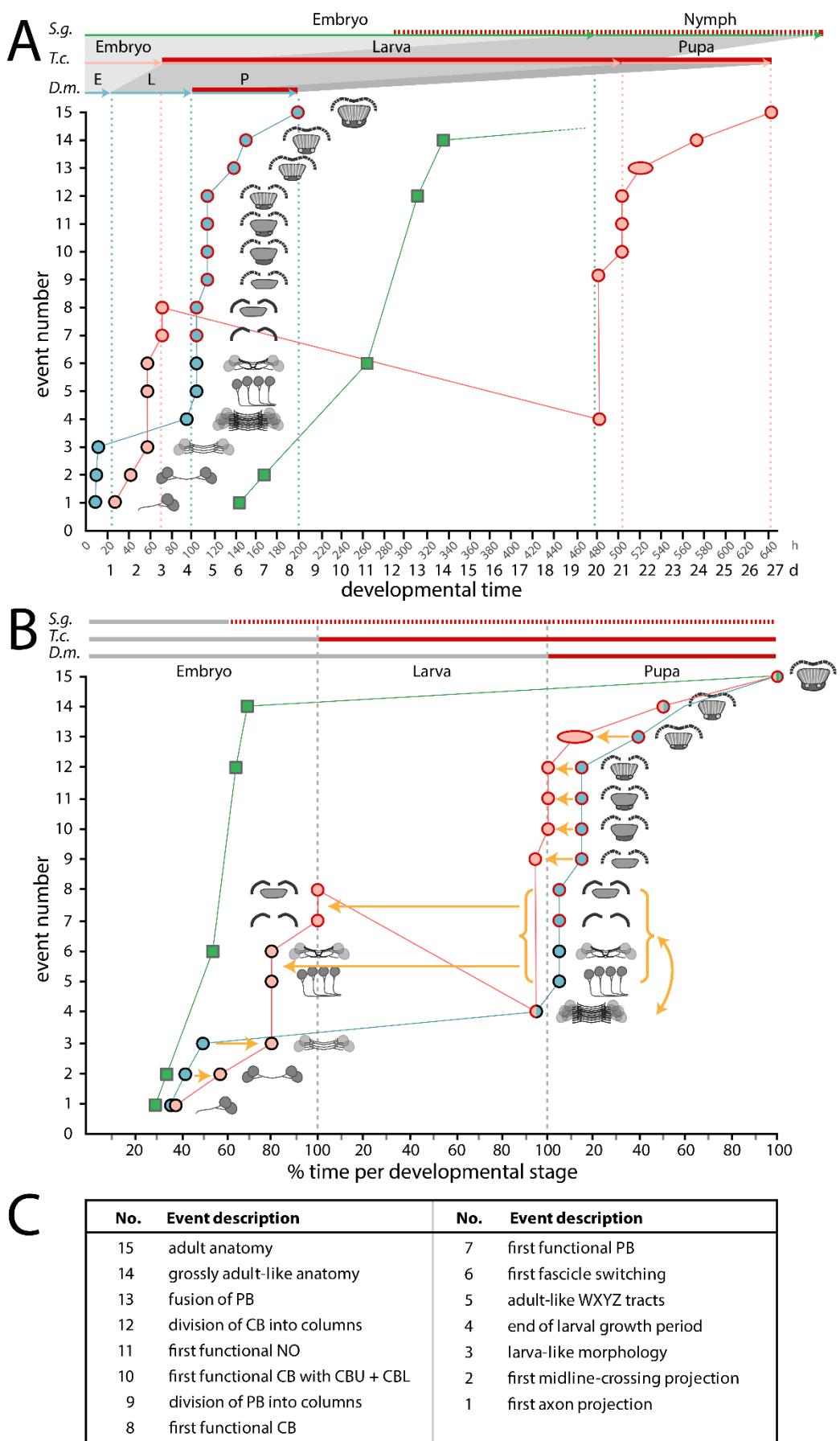
569 Discussion

570 Complex pattern of heterochronies and paedomorphocline of central complex development

571 Initially, the term *heterochrony* described differences in size and shape emerging mainly from
572 different growth parameters such as rate and duration of growth (60,64). *Sequence heterochrony*
573 was introduced for cases where certain developmental steps change their position within a
574 developmental sequence (65,67). To assess the nature and complexity of central complex
575 heterochrony, we used fifteen events of central complex differentiation for which we determined
576 the absolute and relative timing in *Drosophila* and *Tribolium* development (Fig. 10), a two-
577 dimensional approach of events and time, as previously proposed (67).

578 We find a complex pattern of heterochronies, most of which reflect simple shifts in timing of
579 differentiation events (orange arrows in Fig. 10). Interestingly though, some events occur earlier in
580 *Drosophila* (e.g. first embryonic steps 1-3 – see Fig. 10 and Table S5) while with respect to others,
581 *Tribolium* develops faster (steps 9 to 13). Importantly, some steps are even shifted between life
582 stages: Formation of adult-like WXYZ tracts, first decussation and gain of functionality of the
583 protocerebral bridge and central body are embryonic events in *Tribolium* but metamorphic events
584 in *Drosophila* (steps 5-8).

585 We observe that 'growth heterochrony' (i.e. different timing, reduction or prolongation of
586 growth, (64)) may not play a major role in central complex evolution because most of the growth
587 happens at similar phases in both species (i.e. during early embryogenesis and during the larval
588 stage). This contrasts with the crucial role that growth heterochrony was shown to play in the
589 evolution of brains in other contexts. For instance, in humans, postnatal growth of the brain is
590 strongly increased compared to chimpanzees (70). Across Mammalia an increase of proliferation
591 rates probably led to gyration (folding) of the cortex (117,118). An intraspecific case of growth
592 heterochrony has been noticed in insect castes, where bee queen brains develop faster and are
593 larger as a result than worker bee brains (119).


594 Overall, the observed heterochronies reflect a paedomorphocline, i.e. an evolutionary
595 juvenilization along the clades investigated (61). The *Schistocerca* central complex represents the
596 ancestral situation while the *Tribolium* L1 central complex is paedomorphic as it shows similarity to
597 a stage at 60% embryogenesis in *Schistocerca* where decussations have just initiated (81). Likewise,
598 the *Drosophila* L1 central complex is paedomorphic to the *Schistocerca* neuropil, but its primordium
599 equals an even earlier embryonic stage of about 45 to 50% (81), consisting of parallel fibers only.

600

601 **An example for sequence heterochrony in brain development**

602 One of our key findings is the presence of sequence heterochrony that contributes to the
603 different forms of larval central complex primordia in *Tribolium* versus *Drosophila*. Specifically,
604 adult-like WXYZ tracts, fascicle switching and gain of functionality of protocerebral bridge and
605 central body (steps 5-8) occur before main net growth of the central body in larvae of *Tribolium*
606 while they occur after this larval growth period in *Drosophila*. To our knowledge, this is the first
607 example of sequence heterochrony contributing to the evolution of brain diversity. Sequence
608 heterochrony was previously described with respect to processes where sequences covered for
609 example the entire development of crustaceans (120) or the different order of events of central
610 nervous system, skeletal and muscular development in Metatheria and Eutheria (121).

611 The cell behavior underlying sequence heterochrony may be reflected in the development of
612 *pointed*-positive DM1-4 cells in *Drosophila* (54,55): During embryogenesis, their parallel midline-
613 crossing neurites form the larval FB primordium where they arrest development. Only during late
614 larval and early pupal stages, they continue development building decussations and projections
615 into columns within the FB, forming pontine neurons. Hence, the homologous cells of *Tribolium*
616 would just need to overcome the developmental arrest in order to form first decussations in the
617 embryo. Imaging lines marking the *pointed* genetic neural lineage tailored by genome editing (28)
618 would allow testing this hypothesis.

620 **Figure 10: Schematic summarizing the timing of developmental events of central complex heterochrony.**

621 Developmental time is depicted on the x axis as absolute time in hours and days (A) or relative time in %
622 development of the respective life stages (B). Fifteen discrete events of central complex development
623 (description in C and definition in Table S5) are depicted on the y axis and visualized with small sketches. The
624 sequence of events reflects *Drosophila* development. The developmental trajectory shown for *Drosophila*
625 (*D.m.*, blue) and *Tribolium* (*T.c.*, orange) is based on this work while *Schistocerca* (*S.g.*, green) is based on
626 (81,114,122,123). Red contours of the circles and red lines on the top axes indicate presence of synapsin as
627 a proxy for functionality of the central complex. Synapsin expression data was not available for *Schistocerca*,
628 therefore neuromodulator expression was used instead (red hatched line).

629 **(A)** A comparison on an absolute time scale highlights the large differences in actual time between species,
630 and the resulting divergences over which period a respective animal has a functional central complex
631 neuropil. *Drosophila* has the shortest generation time with the embryonic stage 33 %, the larval stage 17 %
632 and the pupal stage being 71 % of the *Tribolium* time (32°C in *Tribolium*, 25°C in *Drosophila*). *Schistocerca*
633 (~31°C) embryonic central complex development takes more than double of the time of entire *Drosophila*
634 central complex development (480 h versus 200 h). **(B)** Initial embryonic development leads to a
635 heterochronic delay in *Tribolium* (orange arrows of events 2 and 3). In *Drosophila*, the larval growth phase
636 follows (4) before in the pupa WXYZ tracts, decussation and gain of synapsin in PB and CB occur (5-8).
637 Strikingly, these latter events are shifted into *Tribolium* embryogenesis. Further, we observed a sequence
638 heterochrony, where the *Tribolium* larval growth phase occurs after events 5-8 instead of before like in
639 *Drosophila* (curved yellow arrow and red line with negative slope). Pupal events 9 to 13 are heterochronically
640 shifted to earlier stages of development in *Tribolium*. **(C)** Events are shortly described here and defined in
641 Table S5.

642

643 **An immature developmental stage of the central complex gained functionality in**
644 **holometabolous larvae**

645 It has been assumed that the larval central body of Tenebrionid beetles corresponds to the
646 upper division (CBU, FB) of the adult. This assumption was based on its bar shape, the presence of
647 tracts presumably prefiguring the lower division and some neuromodulator expression (20,33,51).

648 We find that the functional central body of the L1 does not reflect any adult structure but is like a
649 developmental stage that gained functionality (as defined by synapsin expression). It is immature
650 with respect to the size and number of neurites of the neuropil, the pattern of decussation, the lack
651 of columns and layers and in that the protocerebral bridge is not yet fused at the midline. Hence,
652 *Tribolium* has two distinct forms of a functional central complex, one for the larval and one for the
653 adult life stage. It should be noted that we cannot exclude that precursors of central complex
654 neuropils could be present at earlier stages in form of synapsin-positive areas fused with other
655 brain neuropils or as simple tracts that are not yet functional but present. However, given that
656 central complex function is based on the intricate pattern of interconnections between central
657 complex neuropils, we assume that a similar set of neuropils is required for a functional central
658 complex.

659 How can a developmental stage become functional? Our data indicates that a connection of
660 protocerebral bridge and central body by WXYZ tracts and some degree of decussation are required
661 because all these events are specifically shifted into embryogenesis in *Tribolium*. This would be in
662 line with current views on the function of the adult central complex where the intricate pattern of
663 interconnections by columnar neurons, their decussations and resulting projections are required
664 for integrative central complex functions like sky compass orientation (39,40,44,91). However,
665 basic functionality does appear not to require the separation of upper and lower division of the
666 central body nor a prominent columnar architecture. The question remains in how far the larval
667 central complex function actually mimics the adult one. It is plausible that the simplified
668 architecture leads to a less complex functionality.

669

670 **Evolutionary scenario – gain of a larval central complex in holometabolous larvae?**

671 Hemimetabolous insects like *Schistocerca* reflect the ancestral situation where the entire central
672 complex develops during embryogenesis. It was suggested that the situation in beetles and other
673 holometabolous insect larvae (with their partial central complex) was less derived than the one of

674 *Drosophila*, where a functional central complex emerges only during metamorphosis (33).
675 However, our results reveal that *Tribolium* diverges from the other two in that its central complex
676 gains functionality at an immature developmental stage.

677 This unexpected pattern may be explained by two different scenarios: First, a simple
678 comparison between these three species would indicate that flies have retained the ancestral
679 condition while beetle and other holometabolous insect larvae have gained functionality as
680 evolutionary novelty. However, the larvae of beetles, which move and orient in an environment
681 using eyes and legs are thought to be more similar to the ancestral holometabolous insect larva
682 than the *Drosophila* maggot with its reduction of legs, eyes and head (124). Further, this scenario
683 requires assuming independent gains of functionality of developmental stages in several
684 holometabolous insect taxa. We prefer a second scenario, which puts the evolution of a functional
685 larval central complex at the basis of the evolution of Holometabola. The holometabolous larva is an
686 immature but functional life stage. This is reflected by a number of immature organs like simplified
687 legs, antennae and eyes while other organs lack completely (e.g. wings) (124). Minimal
688 functionality of the central complex might have been required for the evolution of the larval stage
689 for guiding at least some basic behavior involving eyes and legs. In this scenario, the distribution of
690 larval functional central complexes in several taxa would reflect conservation while the lack in
691 *Drosophila* larva would reflect a loss as evolutionary divergence. Indeed, the fly maggot may need
692 less elaborate orientation behavior because it hatches within the food source which usually
693 supports its entire development. Unfortunately, data on embryonic central complex development
694 is missing for most taxa calling for respective studies in order to test our scenario (20,51,125,126).
695

696 **Does the larval central complex recycle phylogeny?**

697 Similarity has been noted between the larval central complex of *Tenebrio molitor* and the larval
698 structure in the Branchiopod *Triops cancriformis* with its rudimentary protocerebral bridge and
699 non-columnar central body (12,127). Moreover, there is a striking similarity of the *Tribolium* larval

700 central complex as we describe it with the adult crayfish central complex, with its bilateral WXYZ
701 tracts projecting into a uniform non-layered, non-columnar central body, and its V-shaped, only
702 slightly fused protocerebral bridge (128,129), as well as with some shrimp central complexes (131).
703 Hence, the holometabolous larval central complex could reflect a phylogenetic intermediate that
704 occurred in the evolution towards the insect central complex. However, in that case, ontogeny does
705 not simply reflect phylogeny. Rather, the functional larval central complex of holometabolous
706 larvae represents a regression to an evolutionary precursor. 100 years after Haeckel's death one
707 might be inclined to state 'ontogeny reflects – or recycles – phylogeny' and heterochrony may be a
708 driving force.

709 Material and Methods

710 General considerations

711 We adhered to the nomenclature presented in (82), except for our reference to the DM4
712 ipsilateral fascicle as tract, which we remain with the term W tract (75). In addition, we referred to
713 central body divisions as upper and lower division, instead of fan-shaped and ellipsoid, because
714 these terms were used in classical literature and the lower division has an ellipsoid shape only in a
715 few species. Similarly, we use the traditional term 'columns' for vertical subdivisions in the central
716 complex while 'slices' has been suggested as synonym (82).

717 Animals were kept at 32°C for *Tribolium castaneum* and 25°C for *Drosophila melanogaster*
718 under respective standard conditions (132,133). Except for embryos and young larvae where sexing
719 was not possible, females were selected for stainings. Besides in Fig. 5G (N=1), Fig. 5H (N=2) and
720 Fig. 6B-D (N=2), the dataset consisted of at least N=3 tissues. All stacks from which figures were
721 created and films in .avi format thereof can be found under figshare
722 (<https://figshare.com/account/home#/projects/64799>). All *Drosophila* and *Tribolium* stocks,
723 antibodies and dyes, as well as primers are documented in Tables S2-S4. Detailed information on all
724 methods used can be found in the Supporting Material and Methods.

725

726 Tc-Rx antibody generation and verification

727 The anti-*Drosophila* Rx antibody was kindly gifted by Dr. Uwe Walldorf (98). No cross reactivity
728 to the Tc-Rx protein was found. Hence, we generated an antibody against Tc-Rx by cloning the
729 region N-terminal to the homeobox domain into a GoldenGate vector containing a SUMO peptide
730 (KNE001, Supporting Material and Methods), expressing it in BL21-DE3 Rosetta bacteria and
731 purifying it by immobilized metal ion affinity chromatography. A guinea pig antibody was then
732 raised against the purified peptide by Eurogentec (Kaneka Eurogentec S.A., Belgium). Finally,
733 specificity of the antibody was verified by in situ hybridisation against *rx* RNA combined with Tc-Rx
734 immunostaining as well as immunostaining of *Tc-rx* RNAi-mediated knockdown embryos (Fig. S1).

735

736 ***rx-EGFP* transgenic lines**

737 For *Drosophila*, a transgenic line marking large parts of *rx* expression was not available.

738 Therefore, we generated a bicistronic line by CRISPR/Cas9 mediated homology-directed repair (Fig.

739 S3)(28). Towards this end, we removed the endogenous STOP codon of the *rx* ORF to generate an

740 in-frame *rx-EGFP* fusion gene. In addition, we included a sequence encoding for the P2A peptide

741 between the *rx* ORF and *EGFP* CDS to ensure that two distinct proteins from a common RNA will

742 have been translated (for information on the P2A peptide see (108,109)). We also included an eye

743 marker allowing us to screen G_1 positives with ease. The repair template was cloned using the

744 Gibson assembly kit (New England Biolabs, MA, USA). Suitable target sites without off-targets were

745 identified using the CRISPR Optimal Target Finder (134)

746 (<http://targetfinder.flycrispr.neuro.brown.edu/>). Respective guides were cloned into an U6:3-*BbsI*

747 vector and subsequently tested by a T7 Endonuclease I assay. The repair template and guideRNA

748 containing plasmids were co-injected into *Act5C-Cas9, DNAlig4*[169] embryos (135). Surviving G_0

749 animals were crossed individually to w^- virgins of the opposite sex and the G_1 generation was

750 screened for eye marker and EGFP reporter. The overlap of EGFP and Rx was determined by double

751 immunostainings in adults and embryos. Indeed, we found that each cell expressing Rx now also

752 expressed EGFP, largely located in the cytoplasm.

753 For *Tribolium*, we identified a suitable transgenic line in the GEKU base website where its

754 insertion had been mapped to the upstream region of *Tc-rx* (# E01101, [http://www.geku-base.uni-](http://www.geku-base.uni-goettingen.de/)

755 goettingen.de/, Fig. S2)(136). This *Tc-rx-EGFP* line was verified by Rx/GFP co-immunostainings

756 which revealed that all EGFP expressing cells also expressed Rx (with the exception of the eye

757 transformation marker).

758 Both, *Dm-rx-EGFP* and *Tc-rx-EGFP*, were made homozygous and all data used derives from

759 homozygous stocks.

760

761 **Comparative staging and determining central complex events**

762 A description of the stages that we defined are documented in the Supporting Material and
763 Methods and Table S5. Exact values for the timing of central complex developmental events
764 displayed in Fig. 10 are found in Table S5.

765

766 **Fixation, staining, imaging and image processing**

767 Fixation, in situ hybridization and immunostainings were performed as described in (27,32) with
768 details in the Supporting Information. Images were taken with a Leica SP8 confocal microscope
769 (Wetzlar, Germany) with standard settings. Images were examined using Fiji software (137). 3D
770 reconstructions were performed using Amira 5.4.1 (Visage Imaging, Fürth, Germany) and figures
771 created using Adobe Illustrator CS5 (Adobe Systems, San José, CA, USA).

772 Author contributions

773 GB and MSF designed experiments, analyzed the data and wrote the paper. MSF conducted
774 most experiments. GB conceived of the project idea. KNE and MSF designed and conducted
775 experiments with respect to antibody production and transgenic line generation. All authors
776 approved the final version of the manuscript.

777

778 Acknowledgements

779 Dr. Felix Quade helped with 3D reconstructions and Lara Markus provided some embryonic and
780 larval immunostainings. We thank Prof. Uwe Walldorf for providing the Dm-Rx antibody, and Prof.
781 Christian Wegener for providing the anti-synapsin antibody. Dr. Achim Dickmanns supported
782 protein expression and purification. Analyses of brain anatomy and homologous cell group
783 identification were supported by Prof. Volker Hartenstein. We want to further thank Dr. Stephen H.
784 Montgomery and Prof. Robert A. Barton for fruitful discussions. We thank Drs. Marita Buescher and
785 Nico Posnien for valuable discussions as well as Stefan Dippel for sharing unpublished data on
786 pupal staging, Elke Küster and Claudia Hinnens for technical support and Dr. Elisa Buchberger for
787 helpful corrections of the manuscript. MSF and KNE were supported by the Göttingen Graduate
788 Center for Molecular Biosciences, Neurosciences and Biophysics (GGNB).

789

790 References

- 791 1. Grimaldi DA, Engel MS. Evolution of the insects. Cambridge [U.K.]; New York: Cambridge University Press; 2005.
792 755.
- 793 2. Stork NE, McBroom J, Gely C, Hamilton AJ. New approaches narrow global species estimates for beetles, insects,
794 and terrestrial arthropods. PNAS. 2015 Jun 16;112(24):7519–23.
- 795 3. Whitfield JB, Doyen JT, Purcell AH, Daly HV. Daly and Doyen's introduction to insect biology and diversity. 3rd ed.
796 New York: Oxford University Press; 2013. 734.
- 797 4. Hanström B. Vergleichende Anatomie des Nervensystems der Wirbellosen Tiere unter Berücksichtigung seiner
798 Funktion. Berlin: Springer-Verlag; 1928.
- 799 5. Holmgren NF. Zur vergleichenden Anatomie des Gehirns von Polychaeten, Onychophoren, Xiphosuren, Arachniden,
800 Crustaceen, Myriapoden, und Insekten. Vorstudien zu einer Phylogenie der Arthropoden. Kungl Svenska
801 Vetenskapsakad Handlingar. 1916;56:1–303.
- 802 6. Snodgrass RE. Principles of Insect Morphology. New York: McGraw Hill; 1935.
- 803 7. Strausfeld NJ. Arthropod brains: evolution, functional elegance, and historical significance. Cambridge, Mass:
804 Harvard University Press; 2012. 830 p.
- 805 8. Strausfeld NJ. Brain organization and the origin of insects: an assessment. Proc R Soc B. 2009 Jan 1;rspb.2008.1471.
- 806 9. Strausfeld NJ, Sinakevitch I, Brown SM, Farris SM. Ground plan of the insect mushroom body: Functional and
807 evolutionary implications. J Comp Neurol. 2009 Mar 20;513(3):265–91.
- 808 10. Harzsch S. Neurophylogeny: Architecture of the nervous system and a fresh view on arthropod phylogeny. Integr
809 Comp Biol. 2006 Apr;46(2):162–94.
- 810 11. Holmgren N. Points of View Concerning Fore-Brain Morphology in Higher Vertebrates. Acta Zoologica.
811 1925;6(3):413–59.
- 812 12. Strausfeld NJ. Arthropod Brains: Evolution, functional elegance, and historical significance. The Belknap Press of
813 Harvard University Press; 2012.
- 814 13. Farris SM. Evolution of Complex Higher Brain Centers and Behaviors: Behavioral Correlates of Mushroom Body
815 Elaboration in Insects. BBE. 2013;82(1):9–18.
- 816 14. Keesey IW, Grabe V, Gruber L, Koerte S, Obiero GF, Bolton G, et al. Inverse resource allocation between vision and
817 olfaction across the genus *Drosophila*. Nat Commun. 2019 Dec;10(1):1162.
- 818 15. Keesey IW, Grabe V, Knaden M, Hansson BS. Niche partitioning as a selective pressure for the evolution of the
819 *Drosophila* nervous system. bioRxiv. 2019 Jul 4;690529.
- 820 16. Montgomery SH, Merrill RM. Divergence in brain composition during the early stages of ecological specialisation in
821 *Heliconius* butterflies. J Evol Biol. 2016 Dec; <http://doi.wiley.com/10.1111/jeb.13027>
- 822 17. Stöckl A, Heinze S, Charalabidis A, el Jundi B, Warrant E, Kelber A. Differential investment in visual and olfactory
823 brain areas reflects behavioural choices in hawk moths. Scientific Reports. 2016 May 17;6:26041.
- 824 18. Panov AA. Structure of the insect brain at successive stages of postembryonic development. II. the central body.
825 Entomol Rev. 1959;38:276–83.
- 826 19. Stocker RF. The olfactory pathway of adult and larval *Drosophila*: conservation or adaptation to stage-specific
827 needs? Ann N Y Acad Sci. 2009 Jul;1170:482–6.
- 828 20. Wegerhoff R, Breidbach O. Structure and development of the larval central complex in a holometabolous insect,
829 the beetle *Tenebrio molitor*. Cell Tissue Res. 1992;268:341–58.
- 830 21. Thomas JB, Bastiani MJ, Bate M, Goodman CS. From grasshopper to *Drosophila*: a common plan for neuronal
831 development. Nature. 1984 Jul;310(5974):203–7.
- 832 22. Urbach R, Technau GM. Early steps in building the insect brain: neuroblast formation and segmental patterning in
833 the developing brain of different insect species. Arthropod Struct Dev. 2003;32:103–23.
- 834 23. Ungerer P, Scholtz G. Filling the gap between identified neuroblasts and neurons in crustaceans adds new support
835 for Tetraconata. Proc Biol Sci. 2008 Feb 22;275(1633):369–76.
- 836 24. Berghammer AJ, Klingler M, Wimmer EA. A universal marker for transgenic insects. Nature. 1999
837 Nov;402(6760):370.

838 25. Biffar L, Stollewerk A. Conservation and evolutionary modifications of neuroblast expression patterns in insects.
839 Developmental Biology. 2014 Apr;388(1):103–16.

840 26. Bucher G, Scholten J, Klingler M. Parental RNAi in *Tribolium* (Coleoptera). Current Biology. 2002 Feb;12(3):R85–6.

841 27. Buescher M, Oberhofer G, Garcia-Perez NC, Bucher G. A Protocol for Double Fluorescent In Situ Hybridization and
842 Immunohistochemistry for the Study of Embryonic Brain Development in *Tribolium castaneum*. In: Sprecher SG,
843 editor. Brain Development. New York, NY: Springer New York; 2020. p. 219–32.
844 http://link.springer.com/10.1007/978-1-4939-9732-9_12

845 28. Farnworth MS, Eckermann KN, Ahmed HMM, Mühlen DS, He B, Bucher G. The Red Flour Beetle as Model for
846 Comparative Neural Development: Genome Editing to Mark Neural Cells in *Tribolium* Brain Development. In:
847 Sprecher SG, editor. Brain Development. New York, NY: Springer New York; 2020. p. 191–217.
848 http://link.springer.com/10.1007/978-1-4939-9732-9_11

849 29. Gilles AF, Schinko JB, Schacht MI, Enjolras C, Averof M. Clonal analysis by tunable CRISPR-mediated excision.
850 Development. 2019 Jan 1;146(1):dev170969.

851 30. Gilles AF, Schinko JB, Averof M. Efficient CRISPR-mediated gene targeting and transgene replacement in the beetle
852 *Tribolium castaneum*. Development. 2015 Aug 15;142(16):2832–9.

853 31. He B, Buescher M, Farnworth MS, Strobl F, Stelzer EH, Koniszewski ND, et al. An ancestral apical brain region
854 contributes to the central complex under the control of foxQ2 in the beetle *Tribolium*. eLife. 2019 Oct 18;8:
855 <https://elifesciences.org/articles/49065>

856 32. Hunnekuhl VS, Siemanowski J, Farnworth MS, He B, Bucher G. Immunohistochemistry and Fluorescent Whole
857 Mount RNA In Situ Hybridization in Larval and Adult Brains of *Tribolium*. In: Sprecher SG, editor. Brain
858 Development. New York, NY: Springer New York; 2020. p. 233–51. http://link.springer.com/10.1007/978-1-4939-9732-9_13

860 33. Koniszewski NDB, Kollmann M, Bigham M, Farnworth M, He B, Büscher M, et al. The insect central complex as
861 model for heterochronic brain development—background, concepts, and tools. Dev Genes Evol. 2016 Apr
862 7;226(3):209–19.

863 34. Kux K, Kiparaki M, Delidakis C. The two *Tribolium* E(spl) genes show evolutionarily conserved expression and
864 function during embryonic neurogenesis. Mech Dev. 2013 May;130(4–5):207–25.

865 35. Schinko JB, Weber M, Viktorinova I, Kiupakis A, Averof M, Klingler M, et al. Functionality of the GAL4/UAS system in
866 *Tribolium* requires the use of endogenous core promoters. BMC Dev Biol. 2010;10(1):53.

867 36. Schmitt-Engel C, Schultheis D, Schwirz J, Ströhlein N, Troelenberg N, Majumdar U, et al. The iBeetle large-scale
868 RNAi screen reveals gene functions for insect development and physiology. Nature Communications. 2015 Jul
869 28;6:7822.

870 37. Wheeler SR, Carrico ML, Wilson BA, Skeath JB. The *Tribolium* columnar genes reveal conservation and plasticity in
871 neural precursor patterning along the embryonic dorsal-ventral axis. Dev Biol. 2005 Mar 15;279:491–500.

872 38. Wheeler SR, Carrico ML, Wilson BA, Brown SJ, Skeath JB. The expression and function of the *achaete-scute* genes in
873 *Tribolium castaneum* reveals conservation and variation in neural pattern formation and cell fate specification.
874 Development. 2003 Sep;130:4373–81.

875 39. Heinze S, Homberg U. Maplike representation of celestial E-vector orientations in the brain of an insect. Science.
876 2007 Feb 16;315(5814):995–7.

877 40. Honkanen A, Adden A, Freitas J da S, Heinze S. The insect central complex and the neural basis of navigational
878 strategies. Journal of Experimental Biology. 2019 Feb 6;222(Suppl 1):jeb188854.

879 41. Ilius M, Wolf R, Heisenberg M. The central complex of *Drosophila melanogaster* is involved in flight control: studies
880 on mutants and mosaics of the gene ellipsoid body open. J Neurogenet. 1994 Jul;9(3):189–206.

881 42. Hunnekuhl VS, Akam M. An anterior medial cell population with an apical-organ-like transcriptional profile that
882 pioneers the central nervous system in the centipede *Strigamia maritima*. Dev Biol. 2014 Dec 1;396(1):136–49.

883 43. Loesel R, Seyfarth E-A, Bräunig P, Agricola H-J. Neuroarchitecture of the arcuate body in the brain of the spider
884 *Cupiennius salei* (Araneae, Chelicerata) revealed by allatostatin-, proctolin-, and CCAP-immunocytochemistry and
885 its evolutionary implications. Arthropod Struct Dev. 2011 May;40(3):210–20.

886 44. Loesel R, Nässel DR, Strausfeld NJ. Common design in a unique midline neuropil in the brains of arthropods.
887 Arthropod Structure & Development. 2002 Sep 1;31(1):77–91.

888 45. Strausfeld NJ, Hirth F. Deep Homology of Arthropod Central Complex and Vertebrate Basal Ganglia. Science. 2013
889 Apr 12;340(6129):157–61.

890 46. Thoen HH, Marshall J, Wolff GH, Strausfeld NJ. Insect-Like Organization of the Stomatopod Central Complex:
891 Functional and Phylogenetic Implications. *Front Behav Neurosci.* 2017;11:
892 <https://www.frontiersin.org/articles/10.3389/fnbeh.2017.00012/full>

893 47. Hanesch U, Fischbach K-F, Heisenberg M. Neuronal architecture of the central complex in *Drosophila*
894 *melanogaster*. *Cell Tissue Res.* 1989 Jan 1;257(2):343–66.

895 48. Homberg U. Interneurons of the central complex in the bee brain *Apis mellifera*. *J Insect Physiol.* 1985;31:251–264.

896 49. Williams JLD. Anatomical studies of the insect central nervous system: a ground plan of the midbrain and an
897 introduction to the central complex in the locust *Schistocerca gregaria* (Orthoptera). *Journal of Zoology*.
898 1975;204:1269–80.

899 50. Boyan G, Williams L. Embryonic development of the insect central complex: insights from lineages in the
900 grasshopper and *Drosophila*. *Arthropod Struct Dev.* 2011 Jul;40(4):334–48.

901 51. Panov AA. Structure of the insect brain at successive stages of postembryonic development. II. the central body.
902 *Entomol Rev.* 1959;38:276–83.

903 52. Pfeiffer K, Homberg U. Organization and Functional Roles of the Central Complex in the Insect Brain. *Annual Review*
904 of Entomology. 2014 Jan 7;59(1):165–84.

905 53. Wegerhoff R, Breidbach O, Lobemeier M. Development of locustatachakinin immunopositive neurons in the central
906 complex of the beetle *Tenebrio molitor*. *J Comp Neurol.* 1996 Nov 4;375(1):157–66.

907 54. Andrade IV, Riebli N, Nguyen B-CM, Omoto JJ, Cardona A, Hartenstein V. Developmentally Arrested Precursors of
908 Pontine Neurons Establish an Embryonic Blueprint of the *Drosophila* Central Complex. *Current Biology*. 2019 Jan
909 17;0(0). [https://www.cell.com/current-biology/abstract/S0960-9822\(18\)31613-0](https://www.cell.com/current-biology/abstract/S0960-9822(18)31613-0)

910 55. Riebli N, Viktorin G, Reichert H. Early-born neurons in type II neuroblast lineages establish a larval primordium and
911 integrate into adult circuitry during central complex development in *Drosophila*. *Neural Dev.* 2013 Apr 23;8:6.

912 56. Pereanu W, Younossi-Hartenstein A, Lovick J, Spindler S, Hartenstein V. Lineage-based analysis of the development
913 of the central complex of the *Drosophila* brain. *J Comp Neurol.* 2011 Mar 1;519:661–89.

914 57. Young JM, Armstrong JD. Building the central complex in *Drosophila*: the generation and development of distinct
915 neural subsets. *J Comp Neurol.* 2010 May 1;518:1525–41.

916 58. Strausfeld NJ. A brain region in insects that supervises walking. *Prog Brain Res.* 1999;123:273–84.

917 59. Boyan G, Liu Y, Khalsa SK, Hartenstein V. A conserved plan for wiring up the fan-shaped body in the grasshopper
918 and *Drosophila*. *Dev Genes Evol.* 2017 Jul;227(4):253–69.

919 60. Gould SJ. *Ontogeny and Phylogeny*. Harvard: Harvard University Press; 1977.

920 61. McNamara KJ. Heterochrony: the Evolution of Development. *Evolution: Education and Outreach*. 2012
921 Jun;5(2):203–18.

922 62. Godfrey LR, Sutherland MR. Paradox of peramorphic paedomorphosis: heterochrony and human evolution. *Am J*
923 *Phys Anthropol.* 1996 Jan;99(1):17–42.

924 63. Gould SJ. Of coiled oysters and big brains: how to rescue the terminology of heterochrony, now gone astray.
925 *Evolution & Development*. 2000;2(5):241–8.

926 64. Alberch P, Gould SJ, Oster GF, Wake DB. Size and shape in ontogeny and phylogeny. *Paleobiology*. 1979
927 ed;5(3):296–317.

928 65. De Beer G, Sir, 1899-1972. *Embryos and ancestors*. 1951; <http://agris.fao.org/agris-search/search.do?recordID=US201300730273>

930 66. Keyte AL, Smith KK. Heterochrony and developmental timing mechanisms: Changing ontogenies in evolution.
931 *Semin Cell Dev Biol.* 2014 Oct 1;34:99–107.

932 67. Smith KK. Heterochrony revisited: the evolution of developmental sequences. *Biol J Linn Soc.* 2001 Jun 1;73(2):169–
933 86.

934 68. Gomez C, Özbudak EM, Wunderlich J, Baumann D, Lewis J, Pourquié O. Control of segment number in vertebrate
935 embryos. *Nature*. 2008 Jul;454(7202):335–9.

936 69. Langer J. The Heterochronic Evolution of Primate Cognitive Development. *Biological Theory*. 2006 Mar;1(1):41–3.

937 70. Leigh SR. Brain growth, life history, and cognition in primate and human evolution. *American Journal of*
938 *Primateology*. 2004 Mar;62(3):139–64.

939 71. Somel M, Franz H, Yan Z, Lorenc A, Guo S, Giger T, et al. Transcriptional neoteny in the human brain. *PNAS*.
940 2009;106(14):5743–5748.

941 72. el Jundi B, Warrant EJ, Pfeiffer K, Dacke M. Neuroarchitecture of the dung beetle central complex. *J Comp Neurol.* 2018 Aug 23;50(0). <https://onlinelibrary.wiley.com/doi/full/10.1002/cne.24520>

943 73. Hadeln J, Hensgen R, Bockhorst T, Rosner R, Heidasch R, Pegel U, et al. Neuroarchitecture of the central complex of the desert locust: Tangential neurons. *J Comp Neurol.* 2019 Oct 18; <https://onlinelibrary.wiley.com/doi/abs/10.1002/cne.24796>

946 74. Omoto JJ, Keleş MF, Nguyen B-CM, Bolanos C, Lovick JK, Frye MA, et al. Visual Input to the *Drosophila* Central Complex by Developmentally and Functionally Distinct Neuronal Populations. *Current Biology.* 2017 Apr 24;27(8):1098–110.

949 75. Boyan G, Liu Y, Khalsa SK, Hartenstein V. A conserved plan for wiring up the fan-shaped body in the grasshopper and *Drosophila*. *Dev Genes Evol.* 2017 Jul 1;227(4):253–69.

951 76. Heinze S, Homberg U. Neuroarchitecture of the central complex of the desert locust: Intrinsic and columnar neurons. *J Comp Neurol.* 2008 Oct 3;511(4):454–78.

953 77. Wolff T, Iyer NA, Rubin GM. Neuroarchitecture and neuroanatomy of the *Drosophila* central complex: A GAL4-based dissection of protocerebral bridge neurons and circuits. *J Comp Neurol.* 2015;523(7):997–1037.

955 78. Wolff T, Rubin GM. Neuroarchitecture of the *Drosophila* central complex: A catalog of nodulus and asymmetrical body neurons and a revision of the protocerebral bridge catalog. *J Comp Neurol.* 2018 Nov 1;526(16):2585–611.

957 79. Williams JL, Boyan GS. Building the central complex of the grasshopper *Schistocerca gregaria*: axons pioneering the w, x, y, z tracts project onto the primary commissural fascicle of the brain. *Arthropod Struct Dev.* 2008 Mar;37:129–40.

960 80. Boyan G, Williams L, Legl A, Herbert Z. Proliferative cell types in embryonic lineages of the central complex of the grasshopper *Schistocerca gregaria*. *Cell Tissue Res.* 2010 Aug;341(2):259–77.

962 81. Boyan GS, Williams JLD, Herbert Z. Fascicle switching generates a chiasmal neuroarchitecture in the embryonic central body of the grasshopper *Schistocerca gregaria*. *Arthropod Struct Dev.* 2008 Nov 1;37(6):539–44.

964 82. Ito K, Shinomiya K, Ito M, Armstrong JD, Boyan G, Hartenstein V, et al. A Systematic Nomenclature for the Insect Brain. *Neuron.* 2014 Feb;81(4):755–65.

966 83. Dippel S, Kollmann M, Oberhofer G, Montino A, Knoll C, Krala M, et al. Morphological and Transcriptomic Analysis of a Beetle Chemosensory System Reveals a Gnathal Olfactory Center. *BMC Biology.* 2016 Dec;14(1). <http://bmcbiol.biomedcentral.com/articles/10.1186/s12915-016-0304-z>

969 84. Homberg Uwe, Heinze Stanley, Pfeiffer Keram, Kinoshita Michiyo, el Jundi Basil. Central neural coding of sky polarization in insects. *Philos T R Soc B.* 2011 Mar 12;366(1565):680–7.

971 85. Boyan GS, Reichert H. Mechanisms for complexity in the brain: Generating the insect central complex. Vol. 34, *Trends in Neurosciences.* Elsevier Ltd; 2011. p. 247–57.

973 86. Walsh KT, Doe CQ. *Drosophila* embryonic type II neuroblasts: origin, temporal patterning, and contribution to the adult central complex. *Development.* 2017 Dec 15;144(24):4552–62.

975 87. Bello BC, Izergina N, Caussinus E, Reichert H. Amplification of neural stem cell proliferation by intermediate progenitor cells in *Drosophila* brain development. *Neural Dev.* 2008;3:5.

977 88. Pereanu W, Hartenstein V. Neural lineages of the *Drosophila* brain: a three-dimensional digital atlas of the pattern of lineage location and projection at the late larval stage. *J Neurosci.* 2006 May 17;26(20):5534–53.

979 89. Boone JQ, Doe CQ. Identification of *Drosophila* type II neuroblast lineages containing transit amplifying ganglion mother cells. *Dev Neurobiol.* 2008;68(9):1185–95.

981 90. Walsh KT, Doe CQ. *Drosophila* embryonic type II neuroblasts: origin, temporal patterning, and contribution to the adult central complex. *Development.* 2017 Dec 15;144(24):4552–62.

983 91. Boyan G, Williams L, Liu Y. Conserved patterns of axogenesis in the panarthropod brain. *Arthropod Structure & Development.* 2015 Mar 1;44(2):101–12.

985 92. Bridi JC, Ludlow ZN, Hirth F. Lineage-specific determination of ring neuron circuitry in the central complex of *Drosophila*. *Biology Open.* 2019 Jul 15;8(7):bio045062.

987 93. Jenett A, Rubin GM, Ngo T-TB, Shepherd D, Murphy C, Dionne H, et al. A GAL4-Driver Line Resource for *Drosophila* Neurobiology. *Cell Reports.* 2012 Oct 25;2(4):991–1001.

989 94. Urbach R, Technau GM. Molecular markers for identified neuroblasts in the developing brain of *Drosophila*. *Development.* 2003 Aug;130:3621–37.

991 95. Trauner J, Schinko J, Lorenzen MD, Shippy TD, Wimmer EA, Beeman RW, et al. Large-scale insertional mutagenesis
992 of a coleopteran stored grain pest, the red flour beetle *Tribolium castaneum*, identifies embryonic lethal mutations
993 and enhancer traps. *BMC Biol.* 2009;7:73.

994 96. Arendt D. The evolution of cell types in animals: emerging principles from molecular studies. *Nature Reviews
995 Genetics.* 2008 Nov;9(11):868–82.

996 97. Arendt D, Tessmar-Raible K, Snyman H, Dorresteijn AW, Wittbrodt J. Ciliary Photoreceptors with a Vertebrate-Type
997 Opsin in an Invertebrate Brain. *Science.* 2004 Oct 29;306(5697):869–71.

998 98. Davis RJ, Tavsanli BC, Dittrich C, Walldorf U, Mardon G. *Drosophila retinal homeobox (drx)* is not required for
999 establishment of the visual system, but is required for brain and clypeus development. *Developmental Biology.*
1000 2003 Jul;259(2):272–87.

1001 99. de Velasco B, Erclik T, Shy D, Sclafani J, Lipshitz H, McInnes R, et al. Specification and development of the pars
1002 intercerebralis and pars lateralis, neuroendocrine command centers in the *Drosophila* brain. *Developmental
1003 Biology.* 2007 Feb 1;302(1):309–23.

1004 100. Eggert T, Hauck B, Hildebrandt N, Gehring WJ, Walldorf U. Isolation of a *Drosophila* homolog of the vertebrate
1005 homeobox gene Rx and its possible role in brain and eye development. *PNAS.* 1998 Mar 3;95(5):2343–8.

1006 101. Janssen R. Comparative analysis of gene expression patterns in the arthropod labrum and the onychophoran
1007 frontal appendages, and its implications for the arthropod head problem. *EvoDevo.* 2017 Jan 3;8(1):1.

1008 102. Mathers PH, Grinberg A, Mahon KA, Jamrich M. The Rx homeobox gene is essential for vertebrate eye
1009 development. *Nature.* 1997 Jun 5;387(6633):603–7.

1010 103. Mazza ME, Pang K, Reitzel AM, Martindale MQ, Finnerty JR. A conserved cluster of three PRD-class homeobox
1011 genes (*homeobrain*, *rx* and *orthopedia*) in the Cnidaria and Protostomia. *EvoDevo.* 2010;1(1):3.

1012 104. Posnien N, Koniszewski NDB, Hein HJ, Bucher G. Candidate Gene Screen in the Red Flour Beetle *Tribolium* Reveals
1013 Six3 as Ancient Regulator of Anterior Median Head and Central Complex Development. *PLoS Genetics.* 2011 Dec
1014 22;7(12):e1002416.

1015 105. Kvon EZ, Kazmar T, Stampfel G, Yáñez-Cuna JO, Pagani M, Schernhuber K, et al. Genome-scale functional
1016 characterization of *Drosophila* developmental enhancers in vivo. *Nature.* 2014 Aug 7;512(7512):91–5.

1017 106. Tirian L, Dickson BJ. The VT GAL4, LexA, and split-GAL4 driver line collections for targeted expression in the nervous
1018 system. *bioRxiv.* 2017 Oct 5; <http://biorxiv.org/lookup/doi/10.1101/198648>

1019 107. Koniszewski N. Functional analysis of embryonic brain development in *Tribolium castaneum*. 2011.
1020 <http://hdl.handle.net/11858/00-1735-0000-0006-AE25-0>

1021 108. Kim JH, Lee S-R, Li L-H, Park H-J, Park J-H, Lee KY, et al. High Cleavage Efficiency of a 2A Peptide Derived from
1022 Porcine Teschovirus-1 in Human Cell Lines, Zebrafish and Mice. *PLOS ONE.* 2011 Apr 29;6(4):e18556.

1023 109. Szymczak-Workman AL, Vignali KM, Vignali DAA. Design and Construction of 2A Peptide-Linked Multicistronic
1024 Vectors. *Cold Spring Harb. Protoc.* 2012 Feb 1;2012(2):pdb.ip067876-pdb.ip067876.

1025 110. Posnien N, Schinko JB, Kittelmann S, Bucher G. Genetics, development and composition of the insect head - A
1026 beetle's view. *Arthropod Struct & Dev.* 2010;39(6):399–410.

1027 111. Lovick JK, Ngo KT, Omoto JJ, Wong DC, Nguyen JD, Hartenstein V. Postembryonic lineages of the *Drosophila* brain: I.
1028 Development of the lineage-associated fiber tracts. *Developmental Biology.* 2013 Dec 15;384(2):228–57.

1029 112. Wong DC, Lovick JK, Ngo KT, Borisuthirattana W, Omoto JJ, Hartenstein V. Postembryonic lineages of the
1030 *Drosophila* brain: II. Identification of lineage projection patterns based on MARCM clones. *Developmental Biology.*
1031 2013 Dec 15;384(2):258–89.

1032 113. Shihavuddin A, Basu S, Rexhepaj E, Delestro F, Menezes N, Sigoillot SM, et al. Smooth 2D manifold extraction from
1033 3D image stack. *Nature Communications.* 2017 May 31;8:15554.

1034 114. Boyan G, Williams L. Embryonic development of the insect central complex: Insights from lineages in the
1035 grasshopper and *Drosophila*. *Arthropod Struct & Dev.* 2011 Jul 1;40(4):334–48.

1036 115. Janke C, Kneussel M. Tubulin post-translational modifications: encoding functions on the neuronal microtubule
1037 cytoskeleton. *Trends in Neurosciences.* 2010 Aug 1;33(8):362–72.

1038 116. Campos-Ortega JA, Hartenstein V. The Embryonic Development of *Drosophila melanogaster*. New York: Springer-
1039 Verlag; 1985.

1040 117. Borrell V, Reillo I. Emerging roles of neural stem cells in cerebral cortex development and evolution. *Developmental
1041 Neurobiology.* 2012 Jul;72(7):955–71.

1042 118. Reillo I, de Juan Romero C, García-Cabezas MÁ, Borrell V. A Role for Intermediate Radial Glia in the Tangential
1043 Expansion of the Mammalian Cerebral Cortex. *Cerebral Cortex*. 2011 Jul;21(7):1674–94.

1044 119. Moda LM, Vieira J, Freire ACG, Bonatti V, Bomtorin AD, Barchuk AR, et al. Nutritionally Driven Differential Gene
1045 Expression Leads to Heterochronic Brain Development in Honeybee Castes. *PLOS ONE*. 2013 May 30;8(5):e64815.

1046 120. Fritsch M, Bininda-Emonds OR, Richter S. Unraveling the origin of Cladocera by identifying heterochrony in the
1047 developmental sequences of Branchiopoda. *Frontiers in Zoology*. 2013;10(1):35.

1048 121. Smith KK. Comparative patterns of craniofacial development in Eutherian and Metatherian mammals. *Evolution*.
1049 1997 Oct;51(5):1663–78.

1050 122. Bentley D, Keshishian H, Shankland M, Toroian-Raymond A. Quantitative staging of embryonic development of the
1051 grasshopper, *Schistocerca nitens*. *Development*. 1979 Dec 1;54(1):47–74.

1052 123. Williams JL, Güntner M, Boyan G. Building the central complex of the grasshopper *Schistocerca gregaria*: temporal
1053 topology organizes the neuroarchitecture of the w, x, y, z tracts. *Arthropod Struct Dev*. 2005;34:97–110.

1054 124. Peters RS, Meusemann K, Petersen M, Mayer C, Wilbrandt J, Ziesmann T, et al. The evolutionary history of
1055 holometabolous insects inferred from transcriptome-based phylogeny and comprehensive morphological data.
1056 *BMC Evolutionary Biology*. 2014 Mar 20;14(1):52.

1057 125. Huetteroth W, El Jundi B, El Jundi S, Schachtner J. 3D-Reconstructions and Virtual 4D-Visualization to Study
1058 Metamorphic Brain Development in the Sphinx Moth *Manduca Sexta*. *Front Syst Neurosci*. 2010;4:7.

1059 126. Hähnlein I, Bicker G. Glial patterning during postembryonic development of central neuropiles in the brain of the
1060 honeybee. *Dev Gene Evol*. 1997 May 1;207(1):29–41.

1061 127. Fritsch M, Richter S. The formation of the nervous system during larval development in *Triops cancriformis* (Bosc)
1062 (crustacea, Branchiopoda): An immunohistochemical survey. *Journal of Morphology*. 2010;271(12):1457–81.

1063 128. Homberg U. Evolution of the central complex in the arthropod brain with respect to the visual system. *Arthropod
1064 Struct & Dev*. 2008 Sep;37(5):347–62.

1065 129. Utting M, Agricola H-J, Sandeman R, Sandeman D. Central complex in the brain of crayfish and its possible
1066 homology with that of insects. *J Comp Neurol*. 2000 Jan 10;416(2):245–61.

1067 130. Sandeman DC, Sandeman RE, Aitken AR. Atlas of serotonin-containing neurons in the optic lobes and brain of the
1068 crayfish, *Cherax destructor*. *J Comp Neurol*. 1988 Mar 22;269(4):465–78.

1069 131. Krieger J, Hörnig MK, Sandeman RE, Sandeman DC, Harzsch S. Masters of communication: The brain of the banded
1070 cleaner shrimp *Stenopus hispidus* (Olivier, 1811) with an emphasis on sensory processing areas. *J Comp Neurol*.
1071 2019 Dec 2; <https://onlinelibrary.wiley.com/doi/10.1002/cne.24831>

1072 132. Brown SJ, Shippy TD, Miller S, Bolognesi R, Beeman RW, Lorenzen MD, et al. The red flour beetle, *Tribolium
1073 castaneum* (Coleoptera): a model for studies of development and pest biology. *Cold Spring Harb Protoc*. 2009
1074 Aug;2009(8):pdb.emo126.

1075 133. Roberts DB, editor. *Drosophila*: a practical approach. 2nd ed. Oxford, [Eng.] ; New York: IRL Press at Oxford
1076 University Press; 1998. 389 p. (Practical approach series).

1077 134. Gratz SJ, Ukkenn FP, Rubinstein CD, Thiede G, Donohue LK, Cummings AM, et al. Highly Specific and Efficient
1078 CRISPR/Cas9-Catalyzed Homology-Directed Repair in *Drosophila*. *Genetics*. 2014 Apr 1;196(4):961–71.

1079 135. Zhang X, Koolhaas WH, Schnorrer F. A Versatile Two-Step CRISPR- and RMCE-Based Strategy for Efficient Genome
1080 Engineering in *Drosophila*. *G3: Genes, Genomes, Genetics*. 2014 Dec 1;4(12):2409–18.

1081 136. Trauner J, Schinko J, Lorenzen MD, Shippy TD, Wimmer EA, Beeman RW, et al. Large-scale insertional mutagenesis
1082 of a coleopteran stored grain pest, the red flour beetle *Tribolium castaneum*, identifies embryonic lethal mutations
1083 and enhancer traps. *BMC Biology*. 2009 Nov 5;7(1):73.

1084 137. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: an open-source platform for
1085 biological-image analysis. *Nat Methods*. 2012 Jul;9(7):676–82.

1086