bioRxiv preprint doi: https://doi.org/10.1101/2019.12.20.883553; this version posted December 20, 2019. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

A sub+cortical fMRI-based surface parcellation

John D. Lewis* 2, Gleb Bezgin*#, Vladimir S. Fonov?,
D. Louis Collins*, Alan C. Evans®

@ Montreal Neurological Institute, McGill University, Montreal, Canada

Abstract

Both the cortex and the subcortical structures are organized into a large
number of distinct areas reflecting functional and cytoarchitectonic differ-
ences. Mapping these areas is of fundamental importance to neuroscience.
A central obstacle to this task is the inaccuracy associated with mapping re-
sults from individuals into a common space. The vast individual differences
in morphology pose a serious problem for volumetric registration. Surface-
based approaches fare substantially better, but have thus far been used only
for cortical parcellation. We extend this surface-based approach to include
also the subcortical deep gray-matter structures. Using the life-span data
from the Enhanced Nathan Klein Institute - Rockland Sample, comprised
of data from 590 individuals from 6 to 85 years of age, we generate a func-
tional parcellation of both the cortical and subcortical surfaces. To assess
this extended parcellation, we show that our extended functional parcella-

tion provides greater homogeneity of functional connectivity patterns than
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do arbitrary parcellations matching in the number and size of parcels. We
also show that our subcortical parcels align with known subnuclei. Further,
we show that this parcellation is appropriate for use with data from other
modalities; we generate cortical and subcortical white/gray contrast mea-
sures for this same dataset, and draw on the fact that areal differences are
evident in the relation of white/gray contrast to age, to sex, to brain volume,
and to interactions of these terms; we show that our extended functional par-
cellation provides an improved fit to the complexity of the life-span changes
in the white/gray contrast data compared to arbitrary parcellations match-
ing in the number and size of parcels. We provide our extended functional

parcellation for the use of the neuroimaging community.

Keywords: cortical parcellation, subcortical parcellation, functional

connectivity, boundary mapping, white/gray contrast, model fitting

1. Introduction

Cortical and subcortical gray matter, alike, comprise a large number of areas
with distinct functional and structural characteristics. A substantial litera-
ture is dedicated to how best to identify these areas. Researchers have divided
the cortex into regions that are relatively homogenous with respect to cy-
toarchitecture (Brodmann, 1909; Hirai and Jones, 1989; Amunts et al., 2005;
Zilles and Amunts, 2009, 2010); regions based on morphometry (Tzourio-

Mazoyer et al., 2002); regions that are relatively homogeneous with respect
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to connectivity patterns (Klein et al., 2007; Wig et al., 2013; Gordon et al.,
2014); and regions that are relatively homogenous across multiple modal-
ities (Glasser et al., 2016). Each of these approaches has advantages and
limitations. One of the most serious limitations, and one that is shared
across these parcellation schemes, is the difficulty of mapping the individual
results to a common space. Many of these parcellation schemes have relied
on volumetric registration techniques to do this. But the normal individ-
ual anatomical variability in brain morphology is problematic, particularly
when the age-range of the data is large, when both males and females are
included, or when abnormalities are present. Moreover, to overcome the fail-
ings of volume-based registration methods, the data are often blurred before
assessing correlation structure; but this blurs data across tissue classes, and
will have very different effects in cortical areas with narrow sulci than in
cortical areas with wide sulci, or in gray-matter structures of different sizes;
and it blurs areal boundaries. To better deal with the limitations of volume
based registration methods, some recent parcellation methods have turned to
surface-based registration approaches. Surface-based approaches are signifi-
cantly more accurate in mapping cortical regions to a common space (Fischl
et al., 2007; Lyttelton et al., 2007; Anticevic et al., 2008; Klein et al., 2010).
However, to the best of our knowledge, surface-based parcellation approaches
have been restricted to the cortex, with subcortical parcellations remaining at
the voxel level. But, some of the issues with registration that a surface-based

analysis overcomes, e.g. differences in the size and shape of the ventricles, are
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also issues for registration of the subcortical structures; perhaps even more
S0.

Accurate registration of the subcortical deep gray-matter structures is
notoriously difficult, and inaccurate registration in structures comprised of
numerous sub-nuclei will confound parcellation methods; and for structures
that are adjacent to the ventricles, like the thalamus and caudate, such inac-
curacies will have an even greater impact. Fortunately, recent developments
have allowed surfaces to be fitted to the subcortical structures (e.g. Lewis
et al., 2019). The creation of the cortical surfaces relies on accurate tis-
sue segmentation; but this approach does not work well for the subcortical
structures. A multi-atlas label-fusion approach has been shown to fare far
better (Aljabar et al., 2009; Collins and Pruessner, 2010; Lotjonen et al.,
2010; Coupé et al., 2011; Pipitone et al., 2014). This approach uses a library
of labelled atlases, and registers either all of, or a subset of, these atlases
to a target image. The registered labels are then fused via e.g. patch-based
label fusion to produce labels for the target structure. Lewis et al. (2019)
used such a method to label the thalamus, caudate, pallidus, and putamen,
and then fitted surfaces to these labels. We draw on those methods to ex-
tend surface-based parcellation to include those subcortical deep gray-matter
structures, as well as the cortex.

Cohen et al. (2008) observed that rs-fMRI connectivity patterns show
sharp transitions, which potentially identify areal boundaries. It has since

been shown that such transitions correspond to boundaries defined by pat-
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terns of cyto- and myeloarchitectonics (Wig et al., 2014; Gordon et al., 2014;
Glasser et al., 2016). Gordon et al. (2014) mapped rs-fMRI data to the
cortical surface, and built on Cohen et al.’s work to produce all connectivity-
based areal boundaries on the cortical surface, and based on these, a cortical
parcellation. But Gordon et al. (2014) represented the subcortical deep gray-
matter structures in volumetric space. We draw on the methods of Lewis
et al. (2019) to extend Gordon et al.’s work to include surface-based repre-
sentations of the subcortical deep gray-matter structures as well as the cortex.
We refer to this cortical+subcortical rs-fMRI connectivity-based parcellation
as the Bezgin-Lewis extended Gordon (BLeG) parcellation.

Gordon et al. (2014) assessed their parcellation in multiple ways, including
in terms of the homogeneity of the functional connectivity patterns within the
parcels in comparison to the same for random variants of that parcellation, as
well as the fit of their parcellation to the existing data on cytoarchitectonic
boundaries. We extend this assessment to the subcortical structures, and
further extend it by drawing on the fact that brain regions show differential
relations to age, sex, brain volume, etc. for a variety of morphometric mea-
sures (Raz et al., 1997; Goldstein et al., 2001; Allen et al., 2005; Raz et al.,
2005; Raz and Rodrigue, 2006; Sowell et al., 2006; Kennedy et al., 2009;
Storsve et al., 2014); particularly for subcortical structures (@Dstby et al.,
2009; Goddings et al., 2014). The white/gray contrast measure of Lewis
et al. (2018; 2019) provided the basis for a test of this sort of expected within-

parcel homogeneity for our cortical+subcortical parcellation. This measure
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is a ratio of the intensities in the white matter and the adjacent gray mat-
ter. Thus it, in part, reflects the integrity of the white matter adjacent to
the gray matter, and, in part, the cellular complexity of the gray matter
and the degree of myelination within it, including from invading myelinated
fibers. And critically, this measure can be produced for cortex and all sub-
cortical structures. Here, the linear model that provided the best fit to the
white/gray contrast measures at each vertex was determined for life-span
data, as well as the complexity of that model; the homogeneity of model
complexity was then computed for every parcel of our extended functional
parcellation, BLeG, and the mean of this parcel-wise homogeneity of model
complexity provided a measure of how well the overall parcellation aligned
with the white/gray contrast data over the life-span. This test was repeated
for parcellations based on arbitrary divisions of the surface meshes matching
in the number and size of parcels. We show that our extended functional
parcellation, BLeG, provides an improved fit to the complexity of the life-
span changes in the white/gray contrast data compared to these random

parcellations.

2. Materials and Methods
2.1. Data
The data used here were from the publicly available Enhanced Nathan-Klein

Institute - Rockland Sample (Nooner et al., 2012) — commonly known as

the NKI-RS data. Data collection received ethics approval through both the
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Nathan Klein Institute and Montclair State University. Written informed
consent was obtained from all participants, and in the case of minors, also
from their legal guardians. All imaging data were acquired from the same
scanner (Siemens Magnetom TrioTim, 3.0 T). T1-weighted images were ac-
quired with an MPRAGE sequence (TR = 1900 ms; TE = 2.52 ms; voxel
size = 1 mm isotropic). Resting state fMRI data were acquired in multiple
ways for each subject, varying in temporal and spatial resolution. We utilized
the high spatial resolution multiplexed data (TR = 1400 ms; TE = 30 ms;
voxel size = 2 mm isotropic). We included all subjects for which there were
both usable T1-weighted data and fMRI data. There were 590 such individ-

uals, ranging from 6 to 85 years of age. 64% of these were female.

2.2. Data processing

The T1-weighted volumes were processed to derive surfaces onto which the
fMRI data could be projected, and from which surface-based measures of
white/gray contrast could be computed. These various surfaces are derived
from the surfaces that lie at the gray-white boundary and the gray-CSF
boundary; the processing that produces these surfaces is described next.
The derivation of the surfaces onto which the fMRI is projected is described
in section 2.2.1.3 together with a description of the fMRI processing. The
derivation of the surfaces from which the measures of white/gray contrast
are computed is described in section 2.3.3.1 together with a description of

how those measures are computed.
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2.2.1. Surface extraction

2.2.1.1. Cortical surface extraction

The T1-weighted volumes were denoised (Manjén et al., 2010) and then pro-
cessed with CIVET (version 2.1 ; 2016), a fully automated structural image
analysis pipeline developed at the Montreal Neurological Institute!. CIVET
corrects intensity non-uniformities using N3 (Sled et al., 1998); aligns the
input volumes to the Talairach-like ICBM-152-nl template (Collins et al.,
1994); classifies the image into white matter, gray matter, cerebrospinal
fluid, and background (Zijdenbos et al., 2002; Tohka et al., 2004) ; extracts
the white-matter and pial surfaces (Kim et al., 2005) ; and maps these to a

common surface template (Lyttelton et al., 2007).

2.2.1.2. Subcortical surface extraction

Subcortical segmentation into left and right caudate, putamen, globus pal-
lidus, and thalamus was done using a label-fusion-based labeling technique
based on Coupé et al. (2011) and further developed by Weier et al. (2014)
and by Lewis et al. (2019). The approach uses a population-specific template
library. The library was constructed by clustering (as described in Lewis
et al., 2019) the deformation fields from the non-linear transforms produced
by CIVET, and using the central-most subject of each cluster to construct

the entries in the template library. The number of clusters was specified as

! https://github.com/aces/CIVET_Full_Project
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the square of the natural log of the number of subjects. To create the library
entry for a cluster, the non-linear transform for the central-most subject is
inverted and used to warp the ICBM-152-nl template together with the sub-
cortical segmentation defined on it; this pair is then added to the template
library. The template library is thus a set of warped copies of the ICBM-
152-nl template together with their correspondingly warped segmentations,
and represents the range of deformations found in the population. Once the
template library has been created, each subject in the population is non-
linearly registered to the n closest templates in the library (here, n = 7), and
the resulting transforms are used to warp their corresponding segmentations
to the subject; the final labelling is then established via patch-based label
fusion.

Once the subcortical structures for a subject are labeled, surfaces defined
on the ICBM-152-nl template are fitted to these labels. These model surfaces
are warped to each individual based on the transforms derived from the label-
fusion-based labeling stage, and then adjusted to the final labels by moving
vertices along a distance map created for each label. The surfaces for each
structure are then registered to their corresponding common surface template

to ensure cross-subject vertex correspondence, as per the cortical surfaces.

2.2.1.3. rs-fMRI surfaces

Based on these surfaces at the gray-white boundary and gray-CSF boundary,

several additional surfaces were created to allow for the surface-based TMRI
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analysis. The fMRI data were preprocessed (as described in section 2.2.2.1)
and then projected onto the cortical midsurface, a surface falling half way
between the surface at the cortical gray-white boundary and the surface at
the gray-CSF boundary, and onto surfaces 2 mm inside of the surfaces at
the white-gray boundary of the subcortical structures. These choices avoid
partial volume effects, to the extent possible. These surfaces are shown in
Figure 1.

To create the surfaces 2 mm inside of the surfaces at the gray-white
boundary of the subcortical structures, a distance map was created from
those surfaces, smoothed with a Gaussian kernel, and used to create a gra-
dient vector field. The subcortical white surfaces were then moved 2 mm
along this vector field into the subcortical gray matter to produce the sub-
cortical supra-white surfaces. The procedure is described in detail in Lewis

et al. (2019).

2.2.2. rs-fMRI processing
2.2.2.1. rs-fMRI preprocessing

The rs-fMRI data were minimally preprocessed before loading the data onto
the surfaces. First, slice-timing correction was applied with FSL’s slice-
timer (Smith et al., 2004), with the timings for each slice in the multi-band
acquisition provided. FSL’s motion correction algorithm, mcflirt (Jenkinson
et al., 2002) was then used to register all volumes to a reference functional

volume. As well as producing the motion-corrected fMRI data, this pro-

10
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Figure 1: An example of the surfaces that the preprocessed fMRI time-series data are
projected onto. The coronal slice shows the cortical midsurface in red, as well as the
supra-white surfaces within the subcortical gray matter; the fMRI data are projected onto
these surfaces. For reference, the surfaces at the gray-white boundary are shown in green.
The insets show the top and front views of the subcortical surfaces, with the areas of the
thalamus and caudate that are adjacent to the ventricles shown in black. Note that the
spatial aspect of the subcortical structures has been manipulated to provide a view of each
structure in each orientation.

cedure identified motion-contaminated volumes by frame-by-frame displace-
ment (Power et al., 2012). The fMRI images were then corrected for the
distortions associated with echo-planar imaging using large deformation dif-
feomorphic metric mapping (Miller et al., 2005) based on the T1-weighted

volume, with the deformation restricted to the phase encoding direction of

11
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the fMRI acquisition. The surfaces described above were then transformed
to overlay the distortion-corrected rs-fMRI, and the rs-fMRI data were read
onto them, i.e. onto the cortical midsurface and the subcortical supra-white

surfaces.

2.2.2.2. Connectivity-based parcellation

The connectivity-based parcellation of the rs-fMRI is based on the meth-
ods described in Gordon et al. (2014), which builds on the work of Cohen
et al. (2008). Cohen et al. (2008) observed that rs-fMRI connectivity pat-
terns show sharp transitions, which potentially identify areal boundaries.
Gordon et al. (2014) extended Cohen et al.’s work to produce all cortical
connectivity-based areal boundaries, and based on these, a parcellation of
the cortex. We further extend this work by including surfaces for the cau-
date, globus pallidus, putamen, and thalamus, in addition to those for the
cortex, producing a parcellation for all of these surfaces. To achieve this,
we adapt the code provided by Gordon et al. (2014). We convert the cor-
tical midsurfaces and subcortical supra-white surfaces, with their associated
rs-fMRI time courses, to CIFTI, and as per Gordon et al. (2014), for each
subject, correlate the time course of each surface vertex (both cortical and
subcortical) with that from every other surface vertex. The resultant corre-
lation maps are then transformed using Fisher’s r-to-z transformation. The
pairwise correlations between entries in each subject’s correlation map com-
prise that subject’s similarity matrix. A set of gradient maps that identify

positions of abrupt changes in connectivity patterns are then generated by

12
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taking the first spatial derivative in each subject’s similarity matrix. The
gradient maps are then averaged across subjects, and the average gradient
maps subjected to Beucher’s (1979) “watershed by flooding” algorithm to
identify potential areal boundaries. The resulting boundary maps are then
averaged to yield a map of the frequency with which each vertex is identified
as a potential boundary vertex. The resulting boundary map for the NKI-RS
data is shown in Figure 2 together with its associated parcellation, derived
as described below.

The local minima in the boundary map are seeds for parcel creation.
Parcels are expanded outward from these seeds until they either meet another
parcel or reach a height threshold on the boundary map. Adjacent parcels
are then merged, if they are too similar. Additionally, parcels containing
fewer than 30 cortical vertices are merged with the adjacent parcel with the
lowest boundary map values separating the two. Lastly, vertices with high
boundary map values (defined as the top quartile of values in the boundary
map) were eliminatd from parcels, and treated as transition zones between

parcels.

2.3. Assessing the parcellation

Gordon et al. (2014) assessed their parcellation in multiple ways, e.g. in
terms of the within-parcel homogeneity of functional connectivity patterns,
and by visually comparing parcel alignment with known cytoarchitectonic ar-
eas. We extend these assessments to include the subcortical structures, and

further, to data from another modality. We assess our parcellation in terms

13
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Figure 2: The connectivity-based boundary map (left) and the resulting BLeG parcella-
tion (right). The top half of the figure shows the cortical results; the bottom half shows
the subcortical results, with the same set of orientations as the cortical results. Note that
the spatial aspect of the subcortical structures has been manipulated to reveal the map
of each structure in each orientation; but the position of each structure is nonetheless ap-
proximately correct. Notice that the watershed boundaries are generally quite clear and
translate directly to the parcel boundaries.

of the within-parcel homogeneity of the complexity of the models required
to best-fit white/gray contrast measures (Lewis et al., 2018, 2019). We use
white/gray contrast measures because they span both the cortical and the

subcortical structures and have been shown to be sensitive to age, sex, and

brain size. We determine the linear models that best fit the data at each ver-
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tex, and the complexity of those models, and then assess the within-parcel
homogeneity of model complexity. The mean of this parcel-wise homogeneity
of model complexity provides a measure of how well the overall connectivity-
based parcellation aligns with the age, sex, and brain size related differences
in white/gray contrast measures. Both assessments of within-parcel homo-
geneity are done for the BLeG parcellation in comparison to parcellations
based on arbitrary divisions of the surface meshes but with the same number

of parcels and same mean parcel size as the BLeG parcellation.

2.3.1. Assessment of BLeG with fMRI connectivity patterns

For each parcellation, we determined the parcel-wise homogeneity of the
fMRI connectivity patterns. We define the homogeneity of fMRI connectivity
for a parcel p to be the the mean of the correlations between the connectivity
patterns of all pairs of vertices within parcel p, across subjects. We define the
within-parcel homogeneity of fMRI connectivity for the overall parcellation
as the mean of the parcel-wise homogeneity.

We assess the homogeneity of fMRI connectivity for our BLeG parcella-
tion and for parcellations based on arbitrary divisions of the surface meshes.
We generated 100 parcellations with random parcels. These were random
in terms of the placement of the parcels, but each random parcellation had
the same number of parcels in each structure as does the BLeG parcellation,
and was constructed such that the mean size of the parcels did not differ sig-
nificantly from the BLeG parcellation. This is shown in Figure 3. We then

compute the mean and standard deviation of the within-parcel homogeneity

15
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of fMRI connectivity across the 100 random parcellations, and the relation
of the BLeG parcellation to these random parcellations in terms of standard

deviations from the mean of the random parcellations.

"
T

Mean Parcel Size (stdevs)
A o
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Random parcellation
Figure 3: Two examples of random parcellations and a comparison of the mean parcel
size of all 100 random parcellations to that of the BLeG parcellation. The mean parcel

size of the BLeG parcellation (red dot) is cleary not significantly different from that of the
random parcellations (blue dots).

2.3.2. Comparison of BLeG subcortical parcels to known anatomy

Gordon et al. (2014) demonstrated that these methods produce a parcellation
that, at least for the cortex, aligns well with known cytoarchitectonic areas.
They visually compared several cortical parcels to the probabilistic borders
of cortical areas that were mapped by Van Essen et al. (2011) based on
cytoarchitectonic maps produced by Fischl et al. (2007). We extend this ap-
proach to the subcortical structures; but lacking probabilistic maps for these

structures, we rely on pictorial descriptions of the anatomy of the structures.
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A consensus description is available only for the thalamus; we compare our

BLeG parcellation of the thalamus to that.

2.8.83. Assessment of BLeG with white/gray contrast

2.8.8.1. White/gray contrast measurements

In order to generate the white/gray contrast measures, two additional sur-
faces were created from each of the surfaces at the gray-white boundary: a
supra-white surface inside the gray matter, and a sub-white surface inside the
white matter. The T1-weighted intensities were then projected onto these
surfaces, and at each vertex, the value on the sub-white surface was divided
by the value on the supra-white surface. For the cortex, the sub-white sur-
face was placed 1 mm beneath the surface at the inner edge of the cortical
gray matter and the supra-white surface was placed 35% of the way from the
surface at the gray-white boundary to the surface at the gray-CSF boundary.
For the subcortical structures, because of the lesser spatial constraints, the
sub-white surfaces were placed 2 mm outside of the surfaces at the gray-white
boundaries, and the supra-white surfaces were placed 2 mm inside of the sur-
faces at the gray-white boundaries. These surfaces are shown in Figure 4. To
create the surfaces on either side of the gray-white boundary, a distance map
was created from the surfaces at the gray-white boundary (both cortical and
subcortical), smoothed with a Gaussian kernel, and used to create a gradient
vector field. The cortical white surface was moved Imm inward along this

gradient vector field to produce a sub-white surface, and outward 35% of
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Figure 4: An example of the surfaces used to form the the white/gray contrast measures.
The surface at the gray-white boundary is shown in green. Copies of these surfaces were
moved into gray matter (red) and white matter (blue) along the gradient vectors of a
distance map based on the surface at the gray-white boundary. Gray matter and white
matter intensity were then measured at each of the vertices of these derivative surfaces, and
the white/gray contrast measure formed as the ratio of white intensity to gray intensity at
corresponding vertices of the two surfaces. Note that in areas with thin strands of white
matter subwhite surfaces abutt rather than cross. Note also that areas of the subwhite
surface of the caudate and thalamus fall in the ventricles; measures in these areas are
invalid and must be masked.

the distance to the gray surface to produce a supra-white surface. The same

procedure produced the contrast measures for the subcortical surfaces, but
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moving inward and outward 2 mm. This procedure ensures that the subwhite
surfaces in regions with thin strands of white matter will not cross, and so
will provide the best possible approximation of white matter. This can be
seen in Figure 4 between subcortical structures and within thin gyri. Notice,
however, that areas of the subwhite surfaces of the caudate and thalamus
fall within the ventricles rather than white matter, and thus the white/gray
contrast measures in these areas will not be valid and must be masked. This
is, of course, also the case for the brain stem and midsagittal cuts.

The intensity values on the T1-weighted image were sampled at each ver-
tex of both the supra-white surfaces and the sub-white surfaces, smoothed
with a 10 mm FWHM blurring kernel to reduce measurement noise without
excessively blending measures from different brain regions, and the ratio was
formed by dividing the value at each vertex of the sub-white surface by the
value at the corresponding vertex of the supra-white surface. The intensity
values were sampled in stereotaxic space, with the T1-weighted volume up-
sampled to 0.5 mm iso, with no non-uniformity correction or normalization.
This avoids, to the extent possible, issues arising from differences in brain

size, while leaving the intensity values essentially unchanged.

2.3.3.2. Within-parcel complexity homogeneity of BLeG

At each vertex, we determined the best-fit model to the contrast data from all
models comprised of terms including any of ‘AGE’, ‘SEX’, and ‘BRAINVOL’ (to-

tal), as well as any of the composite terms ‘AGE?, ‘AGE®’, ‘AGE"’ and the in-
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teraction terms for any of ‘SEX’, ‘BRAINVOL’, and ‘AGE!*’. The best-fit model
was determined by searching all possible models and choosing the one with
the lowest value for the Akaike information criterion (AIC) (Akaike, 1976).
Each model was evaluated using the SurfStat toolbox?. We then determined
the complexity of the best-fit model at each vertex. We defined model com-
plexity as the sum of the number of terms, with composite terms counted
as the number of base terms in the composite term raised to the power 0.5,
capturing the intuition that e.g. ‘1 + AGE + AGE? should be more complex
than ‘1 + AGE + SEX’, but less complex than ‘1 + AGE + SEX + BRAINVOL’.
This yielded the map in Figure 5. For each parcellation, we determined the
parcel-wise homogeneity of model complexity. We define the homogeneity of
model complexity for a parcel p to be 1/(1 + std(mc,)), where mc, is the
vector comprised of the model complexity at each vertex within parcel p.
We define the homogeneity of model complexity of the overall parcellation
as the mean of the parcel-wise homogeneity of model complexity. We assess
the homogeneity of model complexity for our BLeG parcellation and for the
parcellations based on arbitrary divisions of the surface meshes described
in section 2.3.1. We then compute the mean and standard deviation of the
homogeneity of model complexity across the 100 random parcellations, and
the relation of the BLeG parcellation to these random parcellations in terms

of standard deviations from the mean of the random parcellations.

2 SurfStat is available at http://www.math.mcgill.ca/keith/surfstat/
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White/Gray Contrast

White/Gray Contrast

Model Complexity
| o—

Figure 5: The map of the complexity of the best-fit models at each vertex. Note that
the spatial aspect of the subcortical structures has been manipulated to provide a view of
each structure in each orientation. Notice that model complexity varies greatly over the
cortex, and even more so in the subcortical structures. The scatter plots to the right show
the white/gray contrast data plotted against age at the points indicated, with female data
shown in magenta and male data shown in blue.

3. Results
3.1. Assessment of BLeG with fMRI connectivity patterns
The results of the test of the homogeneity of within-parcel fMRI connectivity

based patterns for the BLeG parcellation is shown in Figure 6. The BLeG
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Figure 6: fMRI connectivity homogeneity. The left subfigure shows the comparison of
mean within-parcel homogeneity of fMRI connectivity for the BLeG parcellation (red)
vs random parcellations (blue). The BLeG parcellation shows mean within-parcel homo-
geneity more than 27 standard deviations greater than that for the random parcellations.
The subfigure on the right shows the pattern of the increased homogeneity in the BLeG
parcellation.

parcellation shows mean within-parcel fMRI connectivity homogeneity more
than 27 standard deviations greater than that for the mean of random par-
cellations with the same number of parcels in each structure and a mean
parcel size that is not different from the BLeG parcellation. As shown in
the right subfigure of Figure 6, this greater mean within-parcel homogeneity
of model complexity corresponds to broadly increased within-parcel homo-

geneity of fMRI connectivity patterns, with substantially greater increased
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homogeneity present in subcortical structures. Thus, the BLeG parcellation
captures the patterns of functional connectivity to a far greater extent than
would be expected from the size of the parcels alone, and this is true for

parcels throughout the cortex and the subcortical structures.

3.2. Comparison of BLeG subcortical parcels to known anatomy

The comparison of our BLeG parcellation to the pictorial description of the
consensus anatomy of the thalamus is shown in Figure 7. Our BLeG parcel-
lation excludes the portion of the thalamus adjacent to the ventricles, which
is approximately the region medial to the internal medullary lamina, and so
the comparison applies only to the lateral nuclei. This comparison yields a
good correspondence. The consensus anatomy shows eight subnuclei internal
to the thalamus; each of these can be directly mapped to the eight thalamic
BLeG parcels. Note also the symmetry of the left and right thalami; this
also agrees with the literature. The lateral and medial geniculate nucleus are
not represented in the BLeG parcellation, since the fMRI data were sampled
2mm inside the surface of the thalamus, and so not inside these very small

structures that protrude from the thalamus.

3.3. Assessment of BLeG with white/gray contrast

The results of the test of the alignment of our BLeG parcellation with the
map of the model complexity for the white/gray contrast data are shown
in Figure 8. The BLeG parcellation shows mean within-parcel model com-

plexity homogeneity almost 10 standard deviations greater than that for the
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Figure 7: Comparison of the BLeG parcellation of the thalamus to the pictorial description
of its consensus anatomy. Note that the pictorial description of the thalamus is viewed
from above in order to show the midline thalamic nuclei and the medial nuclear group,
whereas our BLeG parcellation masks the portion of the thalamus adjacent to the ven-
tricles, essentially discarding the areas medial to the internal medullary lamina, and so
is shown in a lateral view. Comparing the BLeG parcellation to the consensus anatomy
for the portion of the thalamus lateral to the internal medullary lamina shows a perfect
correspondence. Note that the fMRI data are measured 2mm inside the thalamic surface,
and so activity in the lateral and medial geniculate nuclei is not measured.

mean of random parcellations with the same number of parcels in each struc-
ture and a mean parcel size that is not different from the BLeG parcellation.
As shown in the right subfigure of Figure 8, this greater mean within-parcel
homogeneity of model complexity corresponds to broadly increased within-

parcel model homogeneity, with substantially greater increased homogeneity

present in subcortical structures. Thus, the BLeG parcellation captures the
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Figure 8: White/gray contrast model complexity homogeneity. The left subfigure shows
the comparison of mean within-parcel homogeneity of the white/gray contrast model com-
plexity for the BLeG parcellation (red) vs random parcellations (blue). The BLeG parcel-
lation shows mean within-parcel homogeneity that is almost 10 standard deviations greater
than that for the random parcellations. The subfigure on the right shows the pattern of
the increased homogeneity in the BLeG parcellation.

patterns of model complexity within the white/gray contrast data to a far
greater extent than would be expected from the size of the parcels alone, and

this is true for parcels throughout the cortex and the subcortical structures.

4. Discussion
Drawing on our recent work using label-based fusion methods to identify

the thalamus, caudate, putamen, and globus pallidus, which we then fitted
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surfaces to, we extended Gordon et al.’s (2014) surface-based rs-fMRI parcel-
lation approach to include also these deep gray-matter structures. We gen-
erated a functional parcellation of both the cortical and subcortical surfaces
using the life-span data from the Enhanced Nathan Klein Institute - Rock-
land Sample (Nooner et al., 2012), comprised of data from 590 individuals
from 6 to 85 years of age. We call this the Bezgin-Lewis extended Gor-
don (BLeG) parcellation, and we provide it for the use of the neuroimaging
community 3.

The cortical portion of our BLeG parcellation, unsurprisingly, is similar
to Gordon’s parcellation; the methods are, for the most part, identical, other
than the subcortical structures here being represented as surfaces rather than
volumes. But there are differences in the cortical parcellations. There are
316 cortical BLeG regions (left 160; right 156). The Gordon parcellation
has 356 parcels (178 in each hemisphere). There are a number of possi-
ble reasons for our slightly coarser parcellation. First, the age range of the
NKI-RS data is 6 to 85 years, whereas the Gordon parcellation was based on
data from young adults. Functional connectivity patterns are known to be
similar across the life-span, but there are some age-related differences (Han
et al., 2018); such differences might essentially blur some of the watershed
boundaries. Our sample size was also substantially larger than that used by

Gordon et al. (2014). Whereas Gordon et al. used a dataset comprised of

3http://mcin.ca/research/ — Once the paper is accepted.
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data from 120 subjects, and a verification dataset comprised of data from 108
subjects, we used the available NKI-RS data, which constituted 590 subjects.
Moreover, the NKI-RS data are from a single run, whereas the Gordon data
combines multiple runs. Further, there are substantial differences in the res-
olution of the data: the Gordon et al. (2014) data having a spatial resolution
of either 4x4x4 mm or 3x3x3.5 mm, and a temporal resolution of 2.5 s; the
NKI-RS sample was acquired at a spatial resolution of 2x2x2 mm, with a
temporal resolution of 1400 ms. It is unclear to what extent those differences
should yield a coarser or finer parcellation. But the higher spatial resolu-
tion of the NKI-RS data used here compared to the data used by Gordon
et al. most likely explains another difference between the BLeG parcella-
tion and the Gordon parcellation. Gordon et al. excluded parcels considered
unreliable due to low-SNR (Wig et al., 2014). We saw no evidence to sup-
port this type of exclusion for our cortical+subcortical approach with the
NKI-RS data; the watershed boundaries in those areas excluded by Gordon
et al. appeared no less strong than in regions included by Gordon et al.
The watershed boundaries in the subcortical portion of our BLeG par-
cellation were also clear. There are 16 thalamic BLeG regions (8 in either
hemisphere); 18 putamenal BLeG regions (9 in either hemisphere); 6 pallidal
BLeG regions (3 in either hemisphere); and 14 caudatal BLeG regions (left
8; right 6). As per Gordon et al. (2014), but for the subcortical structures,
we assessed our BLeG parcellation in comparison to the known anatomy of

these structures. As shown by the example of the thalamus in section 3.2,
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our BLeG subcortical parcels seem to be well-aligned with the consensus
anatomy. For the thalamus, there was a direct correspondence between the
known anatomy and the BLeG parcels. A more thorough comparison of
the BLeG parcellation and cytoarchitectonically defined regions would, of
course, be better, but the cytoarchitectonic data are lacking for such a com-
parison. Nonetheless, there are points of apparent disagreement that are
worth consideration. The globus pallidus, for instance, appears to comprise
two anatomical structures: the globus pallidus internal and external. The
BLeG parcellation instead divides the globus pallidus into three regions. But
recent work suggests that the globus pallidus does, in fact, divide into three
regions: the external segment, the lateral internal segment, and the medial
internal segment (Kita, 2010).

Gordon et al. (2014) also previously showed increased within-parcel homo-
geneity of functional connectivity patterns for their parcellation compared to
spatially randomized variants of it. Our analysis repeats that assessment and
extends it to include the subcortical parcels. We verify that there is increased
within-parcel homogeneity of functional connectivity patterns for our corti-
cal+subcortical BLeG parcellation, and that the subcortical structures also
show this increased within-parcel homogeneity. Further, our analysis adds to
that a demonstration that the BLeG functional parcels align better with the
patterns of the complexity of the models that best fit the white/gray contrast
measures at each vertex than do randomly generated parcellations with the

same number of parcels and the same mean parcel size, i.e. the BLeG par-

28


https://doi.org/10.1101/2019.12.20.883553
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.20.883553; this version posted December 20, 2019. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

cellation showed generally greater within-parcel white/gray contrast model
complexity homogeneity compared with such randomly generated parcella-
tions. This was also true for both the cortical and subcortical parcels.

This cross-modal demonstration provides a verification of the validity of
the BLeG parcellation in that different brain regions mature at different rates,
show different patterns of structural and functional connectivity, show sexual
dimorphism to differing degrees, etc. (Raz et al., 1997; Goldstein et al., 2001;
Allen et al., 2005; Raz et al., 2005; Raz and Rodrigue, 2006; Sowell et al.,
2006; Kennedy et al., 2009; Storsve et al., 2014; ODstby et al., 2009; Goddings
et al., 2014). Thus, we expect that the models that provide the best-fit
to the data will be similar within brain regions, and so show high within-
parcel model complexity homogeneity. This cross-modal demonstration also
provides evidence of the usefulness of the BLeG parcellation for analyses of
data derived from other than fMRI.

Additionally, the BLeG parcellation may provide a bridge between studies
using samples with different age ranges. As noted by Han et al. (2018), par-
cellations based on samples from different time periods across the life-span
show far more similarities than differences, but the differences preclude direct
comparisons. And the changes in morphology over the life-span make a vol-
umetric approach untenable (Anticevic et al., 2008; Klein et al., 2010). Sulci
are narrow in children, with blood vessels encased by sulcal walls, whereas
in the elderly the sulci are generally more open, with blood vessels adjacent

to one or the other sulcal wall. Volumetric blurring in children is thus sub-
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stantially different than it is in the elderly. Surface-based approaches are
less impacted by these differences, as the data are read onto the surface and
smoothing is along the 2D manifold. Thus the BLeG parcellation, based on
data from 6 to 85 years of life is arguably a good parcellation to use to allow
results from different samples to be compared.

But some caveats should be noted. Though there are certainly gains made
by using a surface-based approach in terms of registration (Fischl et al., 2007;
Lyttelton et al., 2007; Anticevic et al., 2008; Klein et al., 2010), there are
also potentially losses. Whereas the cortex is fairly indisputably, at least at
the resolution of fMRI, a 2D structure, that is less clear for the deep gray
matter. There is a potentially important third dimension to the deep gray-
matter structures. The intralaminar nuclei of the thalamus, for instance, are
potentially lost in a surface-based analysis. This could, of course, be dealt
with by generating surfaces at multiple depths within the deep gray-matter
structures; but we have not done this here. There are also deep gray-matter
structures that are difficult to fit surfaces to, e.g. the hippocampus; and we
have not. Likewise, the cerebellum has such fine structure in terms of gray-
matter folds that it is exceedingly difficult to perform tissue segmentation
on, and to fit surfaces to; and we have not.

In summary, building on Gordon et al.’s (2014) surface-based rs-fMRI
parcellation approach, and on Lewis et al.’s (2019) methods for labelling and
putting surfaces on the subcortical material, we have extended Gordon et al.’s

method to include the deep structures as well as the cortex. We have applied
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this extended methodology to the life-span data from the Enhanced Nathan
Klein Institute - Rockland Sample (Nooner et al., 2012), comprised of data
from 590 individuals from 6 to 85 years of age, and generated the Bezgin-
Lewis extended Gordon (BLeG) parcellation. We have shown that our BLeG
parcellation has much higher within-parcel rs-fMRI connectivity homogeneity
than should be expected based on parcel size alone. We have shown that the
subcortical parcels of the BLeG parcellation align with the known anatomy
of the subcortical structures. And we have shown that within-parcel model
complexity homogeneity for gray /white contrast is much higher for the BLeG
parcellation than should be expected based on parcel size alone. We provide
the BLeG parcellation for the use of the neuroimaging community with the

hope that it proves useful.
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