bioRxiv preprint doi: https://doi.org/10.1101/2019.12.20.873158; this version posted December 20, 2019. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

© 0o ~NO O~ WNP

A A DOWOWWWWWWWWWNDNDNDNDNNDNDNNNRPEPERPRPRPEPEREPRERPEPRPRELPR
A WONPFPOOONOOUOPA,WDNPFPOOONOOOPAWNPEFPOOONOOOGMMWDNLPE,O

available under aCC-BY-NC-ND 4.0 International license.

prewas: Data pre-processing for more informative bacterial GWAS

Authors: Katie Saund** (0000-0002-6214-6713), Zena Lapp?®* (0000-0003-4674-2176),
Stephanie N. Thiede'* (0000-0003-0173-4324), Ali Pirani* (0000-0001-7810-0982), Evan S.
Snitkin'® (0000-0001-8409-278X)

*equal contribution

Affiliations

'Department of Microbiology and Immunology

’Department of Computational Medicine and Bioinformatics
3Department of Internal Medicine/Division of Infectious Diseases
University of Michigan, Ann Arbor, Michigan

Corresponding Author
Evan S. Snitkin, esnitkin@med.umich.edu

Keywords
software, gwas, multiallelic loci, overlapping genes, reference allele, data pre-processing

ABSTRACT

While variant identification pipelines are becoming increasingly standardized, less attention has
been paid to the pre-processing of variants prior to their use in bacterial genome-wide
association studies (0GWAS). Three nuances of variant pre-processing that impact downstream
identification of genetic associations include the separation of variants at multiallelic sites,
separation of variants in overlapping genes, and referencing of variants relative to ancestral
alleles. Here we demonstrate the importance of these variant pre-processing steps on diverse
bacterial genomic datasets and present prewas, an R package, that standardizes the pre-
processing of multiallelic sites, overlapping genes, and reference alleles before bGWAS. This
package facilitates improved reproducibility and interpretability of bGWAS results. Prewas
enables users to extract maximal information from bGWAS by implementing multi-line
representation for multiallelic sites and variants in overlapping genes. Prewas outputs a binary
SNP matrix that can be used for SNP-based bGWAS and will prevent the masking of minor
alleles during bGWAS analysis. The optional binary gene matrix output can be used for gene-
based bGWAS which will enable users to maximize the power and evolutionary interpretability
of their bGWAS studies. Prewas is available for download from GitHub.
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DATA SUMMARY

1. prewas is available from GitHub under the MIT License (URL.: https://github.com/Snitkin-

Lab-Umich/prewas) and can be installed using the command
devtools::install github ("Snitkin-Lab-Umich/prewas")

2. Code to perform analyses is available from GitHub under the MIT License (URL:
https://github.com/Snitkin-Lab-Umich/prewas_manuscript_analysis)
3. All genomes are publicly available on NCBI (see Table S1 for more details)

IMPACT STATEMENT

In between variant calling and performing bacterial genome-wide association studies (bGWAS)
there are many decisions regarding processing of variants that have the potential to impact
bGWAS results. We discuss the benefits and drawbacks of various variant pre-processing
decisions and present the R package prewas to standardize single nucleotide polymorphism
(SNP) pre-processing, specifically to incorporate multiallelic sites and prepare the data for gene-
based analyses. We demonstrate the importance of these considerations by highlighting the
prevalence of multiallelic sites and SNPs in overlapping genes within diverse bacterial genomes
and the impact of reference allele choice on gene-based analyses.

INTRODUCTION

Bacterial genome-wide association studies (bGWAS) are frequently used to identify genetic
variants associated with variation in microbial phenotypes such as antibiotic resistance, host
specificity, and virulence (1-4). bGWAS methods can be classified into two general categories:
those that use k-length nucleotide sequences (kmers) as features (e.g. (3,5-7)), and those that
use defined variant classes such as single nucleotide polymorphisms (SNPs), gene
presence/absence, or insertions/deletions (indels) as features (e.g. 4,8-12). bGWAS can be
performed using individual variants or by grouping variants into genes or pathways (i.e.
performing a burden test). While there have been efforts to standardize variant identification
protocols (13,14), less attention has been paid to the downstream processing of variants prior to
their use for applications like bGWAS. In this paper, we focus on pre-processing of SNPs
(Figure 1A); however, the ideas and methods we discuss with respect to SNPs can be extended
to other genetic variants.

One aspect of pre-processing for SNP-based bGWAS is handling multiallelic sites. A site in the
genome is considered multiallelic when more than two alleles are present at that locus (Figure
1B). Multiallelic sites do not fit neatly into the framework of most bGWAS methods, which often
require a binary input (e.g. 3,4). Furthermore, the alternative minor alleles at a single site may
impact the encoded protein to different extents, and therefore considering them separately may
allow users to uncover otherwise masked relationships between genotype and phenotype.

Grouping SNPs by genes or metabolic pathways (Figure 1D) prior to performing bGWAS
increases power and reduces collinearity (3,15,16). When performing gene-based analyses, two
pre-processing steps may include choosing a reference allele for each SNP (Figure 1C) and
assigning SNPs in overlapping gene pairs. The reference allele is the nucleotide relative to
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89  which variants are defined. Choice of reference allele is particularly important when grouping
90 SNPs by gene to ensure that the direction of evolution for each SNP is preserved. Additionally,
91 overlapping genes are common in bacteria (17,18). SNPs shared by overlapping gene pairs
92  may be assigned to both genes in a gene-based analysis.
93
94  To determine the importance of variant pre-processing methods for bGWAS, we investigated
95 the prevalence of multiallelic sites, mismatches in reference allele choice, and SNPs in
96 overlapping genes in 9 bacterial datasets. Our analysis indicates that multiallelic sites are
97 common in large, diverse bacterial datasets, there are frequently mismatches between different
98 reference allele choices, and SNPs in overlapping genes often have discordant functional
99 impacts. Therefore, pre-processing decisions have the potential to impact to bGWAS results.
100 We implemented a solution in the R package prewas to handle the nuances of variant pre-
101  processing to enable more robust and reproducible bGWAS analyses (Figure S1). The output of
102  prewas can be directly input into bGWAS tools that require a binary matrix as an input (e.g.
103  (3,4)). Prewas can be downloaded from GitHub.
104
105 METHODS
106  Datasets
107  The collection of datasets we used for data analysis and the corresponding bioprojects are
108 listed in Table S1 (19-30). All of these datasets contain whole-genome sequences of the
109  bacterial isolates.
110
111  Variant calling & tree building
112  SNP calling and phylogenetic tree reconstruction were performed on each dataset as described
113  in (23). The variant calling pipeline can be found on GitHub (https://github.com/Snitkin-Lab-
114  Umich/variant_calling_pipeline). In short, variant calling was performed with samtools v0.1.18
115 (31) using the reference genomes listed in Table S1, and trees were built using IQ-TREE v1.5.5
116  (32).
117
118 Functional impact prediction
119  The functional impact of each SNP was predicted using SnpEff (33). Variants are categorized
120 by SnpEff as low impact (e.g. synonymous mutations), moderate impact (e.g. nonsynonymous
121  mutations), or high impact (e.g. nonsense mutations). Only variants in coding regions were
122  included in analyses.
123
124  Data analysis
125  Statistical analyses and modeling were conducted in R v3.6.1. The analysis code and data are
126  available at: github.com/Snitkin-Lab-Umich/prewas_manuscript_analysis. The R packages we
127  used can be found in the prewas.yaml file on GitHub (github.com/Snitkin-Lab-Umich/prewas;
128  34-43), and can be installed using miniconda (44).
129  Multiallelic sites Linear regressions were modeled with percentage of variants that are
130 multiallelic as the response variable and either number of samples or mean pairwise SNP
131 distance as the predictor. R? values are reported.
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132 Reference alleles For each dataset, the reference genome allele, major allele, and ancestral
133 allele were identified and the number of mismatches between them was quantified. Ancestral
134  reconstruction was performed in R using the ape::ace function with ape v5.3 (34).

135 Allele convergence We recorded the number of times each allele arises on the tree, as

136 inferred from ancestral reconstruction, and then subtracted 1 to calculate the number of

137  convergence events for each allele.

138

139 RESULTS & DISCUSSION

140  To maximize the potential for identifying genetic variation associated with a given phenotype
141  using bGWAS, care must be taken in the pre-processing stage. Here we focus on three aspects
142  of variant pre-processing and evaluate their potential downstream importance for bGWAS

143  analysis. In particular, we report on the prevalence of multiallelic sites, mismatches between
144  reference allele choice, and variants in overlapping genes across 9 bacterial datasets from

145  various species and of varying genetic diversity (Table 1).

146

147  Handling multiallelic sites

148 A multiallelic locus is a site in the genome with more than two alleles present and encompases
149  both triallelic and quadallelic sites. bGWAS typically requires a binary input for each genotype
150 (e.g. 3,4), and multiallelic sites are, by definition, not binary. Thus, special considerations must
151 be taken to use multiallelic sites in bGWAS (see Multi-line representation for multiallelic sites).
152  We assessed the potential relevance of multiallelic SNPs to bGWAS on the basis of 1)

153 frequency, 2) differences in functional impact of alternative alleles at a single site, and 3)

154  convergence of multiallelic sites on phylogenetic tree.

155

156  Multiallelic site frequency

157  We expected that as the sample size increases the number of multiallelic sites would also

158 increase, as seen across human datasets of different sizes (45); however, this was not the case
159  when looking across different bacterial datasets (Figure S2A). We hypothesized that the lack of
160 correlation between the prevalence of multiallelic sites and dataset size was due to differences
161 in genetic diversity among the datasets (Table 1). Indeed, when we subsample from any single
162  dataset, the fraction of multiallelic sites increases as sample size increases until the diversity of
163 the dataset is exhausted (Figure 2A). Furthermore, datasets with higher sample diversity tend to
164  have a larger fraction of multiallelic sites (Figure 2A,2B).

165

166  Differences in functional impact

167  For multiallelic sites, considering each alternative allele at a single site allows for analyses to be
168 performed on alleles based on their predicted functional impact on the encoded protein.

169 Alternative alleles at a single site often have different predicted functional impacts (range across
170 datasets 0-18%, Figure 2C,S1C), and multiallelic sites include alleles with predicted high impact
171  mutations (Figure S2B). In light of these predicted allele-based functional differences, a bGWAS
172  user may want to only run bGWAS on alleles at multiallelic loci that are predicted to have a high
173  impact on the encoded protein.

174

175  Convergence on phylogenetic tree
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176  For convergence-based bGWAS methods, a significant association between an allele and a
177  phenotype requires that the allele converges on the phylogenetic tree (4,8). If alleles at

178  multiallelic sites are convergent on the phylogeny, then they could potentially contribute to

179  genotype-phenotype associations. We found that single alleles from multiallelic sites are

180 convergent on the phylogeny as often as biallelic sites (Figure S1D), indicating that they could
181  potentially associate with phenotypes when using convergence-based bGWAS.

182

183  Multi-line representation for multiallelic sites

184  To use multiallelic sites in bGWAS, these sites typically must be represented as a binary input
185 for each genotype (e.g. 3,4). Three ways multiallelic sites can be handled to fit with the binary
186 framework of bGWAS are: 1) remove them from the dataset prior to analysis, 2) group all minor
187 alleles together, or 3) encode each minor allele separately. Excluding multiallelic sites is

188 problematic if any of these sites determine the phenotype; in these cases, excluding multiallelic
189  sites will result in missed bGWAS hits. Furthermore, coding all minor alleles as one could

190 obscure true associations, particularly if the different minor alleles have dissimilar functional
191  impacts. Multi-line formatting of multiallelic SNPs provides more interpretability, more precise
192 allele classification, and less information loss. For these reasons, multi-line representation is
193 increasingly important in certain human genetics analyses [12] and we propose this same

194  representation for bGWAS studies, particularly for large diverse datasets (Figure 1B).

195

196 Choosing areference allele

197  Another aspect to consider when pre-processing SNPs for bGWAS is the allele referencing
198 method, which is critical for a uniform interpretation of variation at a gene locus when grouping
199 SNPs into genes. Three possible allele referencing methods are: the reference genome allele
200 from variant calling, the major allele, or the ancestral allele (Figure 1C). The reference genome
201 allele is the allele found in the reference genome when using a reference genome-based variant
202 calling approach. The major allele is the most common allele at a given locus in the dataset.
203  Neither of these methods encode the alleles with a consistent evolutionary direction. The

204  ancestral allele is the allele inferred to have existed at the most recent common ancestor of the
205 dataset. Given confident ancestral reconstruction, using the ancestral allele as the reference
206 allele allows for a uniform evolutionary interpretation of variants: there is a consistent direction
207  of evolution in that all mutations have arisen over time. We found that the three different

208 methods for identifying the reference allele frequently identify different alleles (range across
209 datasets 0-58%; Figure 3A). Thus, using the reference genome allele or the major allele as the
210 reference allele will not always maintain a consistent direction of evolution for each allele in a
211 gene, obscuring interpretation when grouping variants into genes.

212

213  Although ancestral reconstruction is the most interpretable option for reference allele choice,
214  this method is not feasible for some datasets. For example, sometimes we cannot confidently
215 predict the most likely ancestral root allele for many loci, as in the Lactobacillus crispatus

216 dataset (Figure 3B); in this case, it is not a reliable method to use to define the reference allele.
217  Other limitations of using the ancestral allele as the reference allele are that ancestral

218  reconstruction requires an accurate phylogenetic tree and may be computationally intensive for
219 large datasets. An alternative approach is to use the major allele as the reference allele as this
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220 method does not require a tree and thus avoids ancestral reconstruction. When the ancestral
221  allele is not feasible, using the major allele is better than using the reference genome allele
222  when grouping variants into genes because using the major allele leads to less masking of

223  variation at the gene level (Figure S3).

224

225 Grouping variants into genes

226  Grouping variants into genes prior to performing bGWAS has two advantages for users: 1)

227  improved power to detect genotype-phenotype relationships due to reduced multiple testing
228  burden, and 2) enhanced interpretability as gene function may be clearer than the function of a
229  SNP. Grouping variants into genes may be a particularly helpful approach to bGWAS for

230 datasets with low penetrance of single variants but with convergence at the gene level (Figure
231 1D). To perform analysis of genomic variants grouped into genes, it is important to consider the
232  choice of reference allele (addressed above), assignment of variants in overlapping genes, and
233  functional impact of the variants.

234

235 Itis important to ensure that variants in overlapping genes are assigned to each gene that the
236 variantis in to prevent information loss and because the functional impact of a SNP in one gene
237  may be different than its impact on the other gene(s). There are many overlapping genes that
238 share SNPs in each genome (Figure S4A,S4B). Furthermore, there are many sites where the
239  SNP has a different functional impact in the two overlapping genes (cumulative range across
240 datasets 50-70%; Figure 4). The functional impact of variants can be used to select what

241  variants to include in a gene-based analysis. For instance, researchers could subset to only
242  those SNPs most likely to affect gene function (e.g. start loss and stop gain mutations).

243

244 PACKAGE DESCRIPTION

245  We developed prewas to standardize the inclusion and representation of multiallelic sites,

246  choice of reference allele, and SNPs in overlapping genes (Figure 1A) for downstream use in
247  bGWAS analyses. Installation may be performed from GitHub (https://github.com/Snitkin-Lab-
248  Umich/prewas). This R package is an easy-to-use tool with a function that minimally takes a
249  multiVCF input file. The multiVCF encodes the variant nucleotide alleles for all samples. The
250  outputs of the prewas function are matrices of variant presence and absence with multi-line
251  representation of multiallelic sites. Multiple optional files may be used as additional inputs to the
252  prewas function: a phylogenetic tree, an outgroup, and a GFF file. The phylogenetic tree may be
253  added when the user wants to identify ancestral alleles for the allele referencing step. The GFF
254  file contains information on gene location in the reference genome used to call variants and is
255  necessary to generate a binary matrix of presence and absence of variants in each gene.

256  Variants in overlapping genes are assigned to both genes. The matrix outputs from prewas can
257  be directly input into bGWAS tools such as treeWAS (4).

258

259  Generating a binary variant matrix including multiallelic sites (Figure 1B)

260 The multiVCF file is read into prewas and converted into an allele matrix with single-line

261 representation of each genomic position. Next, a reference allele is chosen for each variant
262  position (see section below). Then, the reference alleles are used to convert the allele matrix
263  into a binary matrix with multi-line representation of each multiallelic site. For each line in the
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matrix, a 1 represents a single alternate allele, and a O represents either the reference allele or
any other alternate alleles if the position is a multiallelic site. This binary matrix is output by
prewas.

Identifying reference alleles (Figure 1C)
We have implemented two methods to identify appropriate reference alleles (see Results &
Discussion for more details).

Ancestral allele approach. The reference allele may be defined as the ancestral allele at each
genomic position. In this approach, we identify the most likely allele of the most recent common
ancestor of all samples in the dataset by performing ancestral reconstruction. This allele is then
always set to 0 in the binary variant matrix. Here, any 1 in the binary variant matrix represents a
mutation that has arisen over time, assuming confident ancestral reconstruction results.

Major allele approach. The reference allele may also be defined as the major allele at each

genomic position. In this case, the most common allele in the dataset is the reference allele.
This choice improves the performance speed of prewas as compared to using the ancestral
allele at the cost of evolutionary interpretability.

Grouping variants by gene (Figure 1D)

If a GFF file is provided as input to prewas, variants will be grouped by gene. First, variants
found in overlapping genes will be split into multiple lines where each line corresponds to one of
the overlapping genes. This ensures that the variant is assigned to each of the genes in which it
occurs. Next, variants are collapsed into genes such that the output is a binary matrix with each
line corresponding to a single gene and each entry within the matrix is the presence or absence
of any variant within that gene.

Future directions

In a future version of prewas, we plan to implement an option to allow users to select which
SNPs they want to include in the binary output matrices based on SnpEff functional impact (e.g.
only output predicted high functional impact mutations). When considering the predicted
functional impact of each SNP, it is important to use multi-line representation of multiallelic sites
even when grouping SNPs by genes because sometimes different alleles at the same site have
different predicted functional impacts. Furthermore, prewas could also be extended to process
other genomic variants such as indels and structural variants.

CONCLUSION

We have developed prewas, an easy-to-use R package, that handles multiallelic sites and
grouping variants into genes. The prewas package provides a binary SNP matrix output that can
be used for SNP-based bGWAS and will prevent the masking of minor alleles during bGWAS
analysis. The optional binary gene matrix output can be used for gene-based bGWAS which will
enable microbial genomics researchers to maximize the power and interpretability of their
bGWAS.
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464

465 TABLES

466 Table 1: Bacterial datasets

467
Samples  Multiallelic Mean SNP  SNPs in overlapping
Name (Count) Sites (Count) Distance (BP) genes (Count) Reffarence
C. difficile #3 107 3527 18010.4 11511 19
C. difficile #4 247 2460 6840.8 7862 20
E. faecium #1 152 118 2976.5 8 21,22
E. faecalis #1 167 201 5960.1 20 21,22
K. pneumoniae #1 453 920 3825.4 76 23
L. crispatus #1 28 536 9501.5 34 24,25
S. aureus #1 150 296 5195.0 74 26
S. aureus #2 267 391 5561.4 38 21,22
S. maltophilia #1 149 3080 11243.4 32594 27-30
468
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Figure 1: prewas workflow. (A) Overview of the prewas workflow. Grey and colored boxes:
processing steps. White boxes: output generated. (B) Multi-line representation of multiallelic
sites. (C) Possible methods to find a reference allele. The ancestral allele method and the major
allele method are implemented in prewas. (D) Grouping SNPs into genes.
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Figure 2. Prevalence and predicted functional impact of multiallelic sites. (A) The number
of multiallelic sites increases as sample size increases until the total diversity of the dataset is
sampled. (B) More diverse samples have relatively more multiallelic sites. (C) Counts of
predicted functional impact (mis)matches for pairs of alleles at triallelic sites (aggregated across
all datasets). Alternative alleles often differ in impact.
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490 reconstruction sites for each dataset (<87.5% confidence in the ancestral root allele by
491  maximum likelihood).
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495  Figure 4: SNPs in overlapping sites can have distinct functional impacts in each gene of
496 the gene pair. The fraction of overlapping variant positions where the SNP has a different
497  predicted functional impact in each of the two overlapping genes.
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515  Supplementary Figure 1: Detailed prewas workflow.
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516 Convergence Events Per SNP

519 Supplementary Figure 2: Multiallelic Sites (A) Independence observed between sample size
520 and prevalence of multiallelic sites. (B) Prevalence of multiallelic sites compared to variant sites
521  with each subset to the various predicted functional impacts. Any multiallelic site with specific
522  impact is compared to any variant site with the same predicted impact. (C) Multiallelic sites with
523  discordant predicted functional impact among alternative alleles. (D) The relative frequency of
524  the number of times an allele arises on the tree. At multiallelic sites, all minor alleles are treated
525  separately.
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Supplementary Figure 3: Masking variation at the gene level when grouping into genes.
When not confident in the ancestral reconstruction or ancestral reconstruction is not
computationally feasible, we suggest referencing to the major allele. In this example,
referencing to the reference genome allele masks variation at the gene level. When referencing
to the reference genome allele, the variation in Position 2 gets masked by the variation in
Position 1 when grouped by gene, leading to a likely lack of association. However, if instead we
reference to the major allele, the variation in Gene A is maintained, allowing for potential
associations to be detected.
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Supplementary Figure 4. Overlapping genes with SNPs. (A) SNP loci found in positions

shared by overlapping genes. (B) Overlapping genes with SNPs found in the overlapping
positions.
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548
549
Hetarence
Name Dataset Description Bioproject Bioproject_link Genome Ref.
Biosample
C. difficile #3 Clinical infection isolates PRJNAS594943 https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA594943 SAMEA1705932 19
C. difficile #4 Clinical infection isolates PRJNASE1087 https:fiwww.ncbi.nlm.nih.gov/bioproject/?term=PRJNASE 1087 SAMEA1T05932 20
E. fagcium #1 Healthcare-associated  pp nA4as617 hitps:/fwww.ncbi.nim.nih.govibioproject/2term=PRJNA435617 SAMN10039001 21, 22
colonization isolates
E. faecalis #1 Healthcare-associated  pg Nag3s617  hitps:/www.ncbi.nim.ningovibioproject2term=PRINA435617 SAMN10039209 21, 22
colonization isolates
K. pneumoniae #1 “““g:‘:;‘l"i::i‘:;:'ﬂd PRINA415194 hitps://www.ncbi.nlm_nih.gov/bioproject/?term=PRINA415194 SAMNO1057611 23
PRJNASSGTE20, hittps:/fwww.ncbi.nim.nin.gov/bioproject/ fterm=PRJNAS4 f6.20,
PRJNASD0ST, https:/iwww.ncbi.nlm.nih.govibioproject/ Zterm=PRJNAS0051,
PRINASO173, https:/fiwww.ncbi.nim.nih.govibioproject/ Zterm=PRJNAS0173,
PRJNASQ0ST, https:/iwww.ncbi.nim.nih.govibioproject/ 2term=PRJNAS0057,
PRJNASDOGT, hittps:/iwww.ncbi.nlm.nih.govibioproject/ Pterm=PRJNAS0067,
PRJNAS0165, hittps:/fwww.ncbi.nim.nih.govibioproject/ Tterm=PRJNAS0165,
PRJNASO167, https:/fwww.ncbi.nim.nih.govibioproject/ 2term=PRJNAS0167,
. Publicly available PRJNAS0053, https:/iwww.ncbi.nlm.nih.govibioproject/ Pterm=PRJNAS0053,
L. crispatus #1 genomes PRINAS2107, https:/fwww.ncbi.nim.nih.govibioproject term=PRINAS2107, SAMEAZ272191 24,25
PRJNAS2105, https:/fwww.ncbi.nim.nih.govibioproject/ 2term=PRJMAS52105,
PRJNAZZ22257, hittps:/fwww.ncbi.nim.nih.gov/bioproject/ fterm=PRJNAZ222257,
PRJNAZT2101, hittps:/iwww.ncbi.nim.nih.gov/bioproject/ fterm=PRJNAZT 2101,
PRJEBE104, hitps:/fwww.ncbi.nim.nih.govibioproject/?term=PRJEB8&104,
PRJNA316969, hittps:/fwww.ncbi.nim.nih.gov/bioproject/ fterm=PRJNA3 16969,
PRJNA3ITI934, hittps:/fwww.ncbi.nim.nih.gowbioproject/ Zterm=PRJNA379934,
PRIFR22112 httne-lfwwnw nehi nlm nib onufhinnmiect ?term=PR.IFR22112
S. aureus #1 A 121::::;“'“""” PRINA530184 hitps://www.ncbi.nim.nih.gov/bioproject/?term=PRINA530184 SAMND0253845 26
I
S. aureus #2 Healthcare-associated  pp nag3s617  hitpsu/iwww.ncbi nim.nih govibioproject/2term=PRINA435617 SAMN10038895 21, 22
colonization isolates
PRJDB3841, hitps:/iwww.ncbi.nlm.nih.gov/bioproject/?term=PRJDB3841,
PRJNA267549, hitps:/iwww_ncbi.nim.nih.gov/bioproject/?term=PRJNA267549,
PRJNA231221, https:/fwww.ncbi.nim.nih.govibioproject/?term=PRJNA231221,
PRJNA164599, https:/fiwww.ncbi.nim.nih.govibioproject/ term=PRJNA164599,
Public ilabl PRJNA3B0601, hitps:/iwww_ncbi.nim.nih.gov/bioproject/?term=PRJNA3B0601,
S. maltophilia #1 Icly avalable PRJNA350620,  https:/fwww.ncbi.nim.nih.gov/bioproject/?term=PRJNA350620, SAMEA1705934  27-30
genomes PRJNA390523,  https:/fwww.ncbi.nim.nih.govibioproject/?term=PRINA390523,
PRJNA483996, https:/fwww_ncbi.nim.nih.gov/bioproject/ fterm=PRJNA483996,
PRJNA489399, https:/fwww.ncbi.nim.nih.govibioproject/ term=PRJNA489399,
PRJNA268101, https:/iwww.ncbi.nim.nih.govibioproject/ term=PRJNA268101,
5 5 0 PRJNA344912 https:/fiwww ncbi.nlm.nih.gov/bioproject/?term=PRJNA344912
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Samples Multiallelic Mean SNP  SNPs in overlapping Reference

Name (Count) Sites (Count) Distance (BP) genes (Count)
C. difficile #3 107 3527 18010.4 11511 19
C. difficile #4 247 2460 6840.8 7862 20
E. faecium #1 152 118 2976.5 8 21,22
E. faecalis #1 157 201 5960.1 20 21,22
K. pneumoniae #1 453 920 3825.4 76 23
L. crispatus #1 28 536 9501.5 34 24,25
S. aureus #1 150 296 5195.0 74 26
S. aureus #2 267 391 5561.4 38 21, 22

S. maltophilia #1 149 3080 11243.4 32594 27-30
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