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Abstract:

Structural information about protein-protein interactions, often missing at the interactome scale,
is important for mechanistic understanding of cells and rational discovery of therapeutics.
Protein docking provides a computational alternative to predict such information. However,
ranking near-native docked models high among a large number of candidates, often known as the
scoring problem, remains a critical challenge. Moreover, estimating model quality, also known
as the quality assessment problem, is rarely addressed in protein docking.

In this study the two challenging problems in protein docking are regarded as relative and
absolute scoring, respectively, and addressed in one physics-inspired deep learning framework.
We represent proteins and encounter complexes as intra- and inter-molecular residue contact
graphs with atom-resolution node and edge features. And we propose a novel graph
convolutional kernel that pool interacting nodes’ features through edge features so that
generalized interaction energies can be learned directly from graph data. The resulting energy-
based graph convolutional networks (EGCN) with multi-head attention are trained to predict
intra- and inter-molecular energies, binding affinities, and quality measures (interface RMSD)
for encounter complexes. Compared to a state-of-the-art scoring function for model ranking,
EGCN has significantly improved ranking for a CAPRI test set involving homology docking;
and is comparable for Score_set, a CAPRI benchmark set generated by diverse community-wide
docking protocols not known to training data. For Score set quality assessment, EGCN shows
about 27% improvement to our previous efforts. Directly learning from structure data in graph
representation, EGCN represents the first successful development of graph convolutional
networks for protein docking.

INTRODUCTION

Protein-protein interactions (PPIs) underlie many important cellular processes. Structural
information about these interactions often helps reveal their mechanisms, understand diseases,
and develop therapeutics. However, such information is often unavailable at the scale of protein-
protein interactomes ', which calls for computational protein docking methods. Two major tasks
for protein docking are sampling (aiming at generating many near-native models or decoys) and
scoring (aiming at identifying those near-natives among a large number of candidate decoys),
both of which present tremendous challenges .

This study focuses on scoring by filling two gaps in protein docking. First, current scoring
functions for protein docking often aim at relative scoring, in other words, ranking near-natives
high 2. But they do not score the decoy/model quality directly (absolute scoring), which is more
often known as quality estimation or quality assessment (without known native structures) in the
protein-structure community of CASP >, Although quality estimation methods based on
machine learning are emerging for single-protein structure prediction*”, such methods are still
rare for protein-complex structure prediction, i.e., protein docking '°. Second, state-of-the-art
scoring functions (for relative scoring) in protein docking are often based on machine learning
with hand-engineered features, such as physical-energy terms ' ', statistical potentials > '*, and
graph kernels °. These features, heavily relying on domain expertise, are often not specifically
tailored or optimized for scoring purposes. Recently, deep learning has achieved tremendous
success in image recognition and natural language processing ' ', largely due to its automated
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feature/representation learning from raw inputs of image pixels or words. This trend has also
rippled to structural bioinformatics and will be briefly reviewed later.

To fill the aforementioned gaps for scoring in protein docking, we propose a deep learning
framework with automated feature learning to estimate the quality of protein-docking models
(measured by interface RMSD or iRMSD) and to rank them accordingly. In other words, the
framework simultaneously addresses both relative scoring (ranking) and absolute scoring
(quality assessment) using features directly learned from data. To that end, our deep learning
framework predicts binding free energy values of docking models (encounter complexes)
whereas these values are correlated to known binding free energy values of native complexes
according to model quality.

Technical challenges remain for the framework of deep learning: how to represent protein-
complex structure data and learn from such data effectively? Current deep learning methods in
structural bioinformatics often use 3D volumetric representations of molecular structures. For
instance, for protein-structure quality assessment, atom density maps have been used as the raw
input to 3D Convolutional Neural Networks (CNN) '* . For protein-ligand interaction
prediction, the Atomic Convolutional Neural Network (ACNN) *° uses the neighbor matrix as
input and uses radical pooling to simulate the additive pairwise interaction. And for RNA
structure QA, grid representations of the structures are used as the input to 3D CNN .
However, learning features from volumetric data of molecular structures present several
drawbacks *. First, representing the volumetric input data as pixel data through tensors would
require discretization, which may lose some biologically-meaningful features while costing time.
Second, such input data are often sparse, resulting in many convolutional operations for zero-
valued pixels and thus low efficiency. Third, the convolutional operation is not rotation-
invariant, which demands rotational augmentation of training data and increased computational
cost.

To effectively learn features from and predict labels for protein-docking structure models, we
represent proteins and protein-complexes as intra- and inter-molecular residue contact graphs
with atom-resolution node and edge features. Such a representation naturally captures the spatial
relationship of protein-complex structures while overcoming the aforementioned drawbacks of
learning from volumetric data. Moreover, we learn from such graph data by proposing a
physics-inspired graph convolutional kernel that pool interacting nodes’ interactions through
their node and edge features. We use two resulting energy-based graph convolutional networks
(EGCN) of the same architecture but different parameters to predict intra- and inter-molecular
energy potentials for protein-docking models (encounter complexes), which further predicts
these encounter complexes’ binding affinity and quality (iIRMSD) values. Therefore, our EGCN
is capable of both model ranking and quality estimation (or quality assessment without known
native structures). We note the recent surging of graph neural networks in protein modeling,
such as protein interface prediction ** and protein structure classification **. We also note that
this is the first study of graph neural networks for protein docking.

The rest of the paper is organized as follows. In the Methods section, we first describe the data
sets for training, validating, and testing our EGCN models. We proceed to introduce contact
graph representations for proteins and protein complexes and initial features for nodes and edges;
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our energy-based graph convolutional networks as the intra- or inter-molecular energy predictor
for encounter complexes; and additional contents (label, loss function, and optimization) for
training our EGCN. Next we compare in Results EGCN’s performances against a state-of-the-
art scoring function for ranking and against our previous efforts for both ranking and quality
estimation. We also share in Discussion our thoughts on how EGCN can be further improved in
accuracy and training efficiency. Lastly, we summarize major contributions in method
development and major results in method performances in Conclusion.

MATERIALS AND METHODS

Data

Training and Validation Sets

We randomly choose 50 protein-protein pairs from protein benchmark 4.0%* as in our earlier
work ' and split them into training and validation pairs with the ratio 4:1. For each training or
validation pair, we perform rigid docking using ClusPro”, retain the top-1000 decoys according
to ClusPro’s default scoring, and introduce flexible perturbation for each decoy using cNMA'"
2627 In total, we have 40,000 training and 10,000 validation decoys.

Test Sets
We consider three test sets of increasing difficulty levels.

1. The first test set includes the rest 107 protein pairs from the protein benchmark set 4.0%*,
As in the training and validation sets, these unbound protein pairs are rigidly docked
through ClusPro. The top 1000 decoys after scoring are flexibly perturbed through
cNMA, leading to 107,000 decoys.

2. This second test set includes 14 recent CAPRI targets'® undergoing the same protocol
above (ClusPro + cNMA) for 14,000 decoys. Besides unbound docking seen in the
benchmark test set, many of the targets here involve homology-unbound and homology-
homology docking™.

3. The last test set is Score_set, a CAPRI benchmark for scoring™. It includes 13 earlier
CAPRI targets, each of which has 400 to 2,000 flexible decoys generated through various
protocols by the community.

We summarize PDB IDs for training, validation, and the three test sets in the supplementary
Table S1.

Graphs and Features

The structure of a protein or protein complex is represented as a graph G where each residue
corresponds to a node and each intra- or inter-molecular residue-pair defines an edge. Such
intra- and inter-molecular contact graphs can be united under bipartite graphs: the two sets of
nodes correspond to the same protein for intra-molecular graphs and they do to binding partners
for inter-molecular graphs. Atom-resolution features are further introduced for nodes and edges
of such bipartite contact graphs. In other words, to represent G , we have initialized two node
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feature matrices (denoted by X, € RN**M and X5 € RV2*M) and an edge feature tensor (denoted
by A € RN1*N2XKy "where N; or N, denote the number of residues for either protein 4 or B
(which can be the same protein in the case of intra-molecular contact graphs), M the number of
features per node, and K the number of features per edge. As revealed later in our graph
convolutional networks, node feature matrices will be learned, i.e. updated layer after layer, by
interacting with neighboring nodes’ features through the fixed edge tensors.

For node-feature matrix X, we use M = 4 features for each node. Each side chain is represented
as a pseudo atom whose position is the geometric center of the side chain. And the first 3 node
features are the side-chain pseudo atom’s charge, non-bonded radii, and distance-to-C,, as
parameterized in the Rosetta coarse-grained energy model *. The last node feature is the
solvent a%:essible surface area (SASA) of the whole residue, as calculated by the FreeSASA
program ~.

For edge-feature tensor A, we use K = 11 features for each edge. These features are related to
pairwise atomic distances between the two corresponding residues. Specifically, each residue is
a point cloud of 6 atoms, including 5 backbone atoms (N, HN, CA, C, and O as named in
CHARMM27) and 1 side-chain pseudo atom (named SC). For numerical efficiency, we have
picked 11 pairwise distances (including potential hydrogen bonds) out of the total 6X6 = 36 (see
Table I) and used their reciprocals for the edge features. We use a cutoff of 12 A for pairwise
atomic distances and set edge features at zero when corresponding distances are above the cutoff.

Table I. The atom pairs whose distance are converted to edge features. Atom names follow the
convention in CHARMM, except that “SC” corresponds to pseudo-atoms for side chains. Note that the
last two features are set at O for pairs involving prolines (without HN).
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In this study, in order to address input proteins of varying sizes, we consider the maximum
number of residues to be 500 and hence fix N at 500 for contact graphs. Correspondingly,
smaller proteins’ feature matrices/tensors X and A are zero-padded as needed so that feature
matrices/tensors for all input data are of the same sizes: X € RV*Mand A € RV*NV*K,

Energy-based Graph Convolutional Networks
Background on principle-driven energy model
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To score protein-docking models, we try to use machine learning to model AG, the binding
energy of encounter complexes, which can be written as:

AG = Gg — Ggy, — Gpy

where G, Gg,, and G, denote the Gibbs free energies of the complex, unbound receptor and
unbound ligand, respectively. For G, we can further decompose it into the intra-molecular
energies within two individual proteins and the inter-molecular energy between two proteins:

GC:GR+GL+GRL

where Gg, G, Gg;, are the Gibbs free energies within the encountered receptor, within the
encountered ligand and between them, respectively. Therefore, the binding energy in classical
force fields can be written as:

AG:GR+GL_GRH_GLIL+GRL

In flexible docking, unbound and encountered structures of the same protein are often different.
Such protein conformational changes indicate that Gy — Gg,, # 0 and G, — G, # 0.

Extension to data-driven energy model

It is noteworthy that the expression of AG above consists of four terms measuring intra-
molecular free energies of individual proteins and one one term measuring inter-molecular free
energies across two proteins. Therefore, we decide to use two machine-learning models f of the
same neural-network architecture but different parameters to approximate the two types of
energy terms as follows:

AG = Aé = fG(XRJXR'ARR) + fG(XL'XL'ALL) - fB(XRu'XRwARuRu) - fG(XLwXLuIALuLu)
+f0’(XR'XLJARL)

where fg and f are the intra- and inter-molecular energy models (graph convolutional networks
here) parameterized by @ and 0’, respectively. Subscripts are included for node feature matrices
X or edge feature matrices A to indicate identities of molecules or molecular pairs. The
parameters are to be learned from data specifically for the purpose of quality estimation.

The architecture of the neural networks is summarized in Figure 1 whereas individual
components are detailed below.
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Figure 1. The architecture of the proposed graph convolutional network (GCN) models for intra- or inter-
molecular energies. In our work, there are five types of such models together for predicting encounter-
complex binding energy, including 4 intra-molecular models with shared parameters for the unbound or
encountered receptor or ligand as well as 1 inter-molecular model for the encounter complex. In each
type of model, the inputs (to the left of the arrow) include a pair of node-feature matrices (X, and Xp) for
individual protein(s) and an edge-feature tensor (A4) for intra- or inter-molecular contacts. And the inputs
are fed through 3 layers of our energy-based graph convolution layers that learn from training data to
aggregate and transform atomic interactions, followed by multi-head attention module and fully-
connected layers for the output of intra- or inter-molecular energy.

Energy-based Graph Convolutional layer (EGC)
The node matrices (X, and Xz) and the edge tensor A of each contact graph are first fed to three
consecutive graph convolutional layers inspired by physics. Specifically, energy potentials are

often pairwise additive and those between atoms (i and j) are often of the form %, where x;

and x; are atom “features”, 7 is the distance between them, and a is an integer. For instance, X
being a scalar charge and a being 1 lead to a Coulombic potential.

Inspired by the energy form, we propose a novel graph convolutional kernel that “pool” neighbor
features to update protein A’s node features layer by layer:

T
1+1 ] . ) .
xf, ) = LeakyRelu (Z jeB Zfﬂ(w;p* D x! )) Aji (wgpﬂ) x! ))) ,

where subscript i and j are node indices for proteins 4 and B, respectively, p node-feature index,
®

i

and k edge-feature index; superscript (1) and (I + 1) indicate layer indices. Accordingly, x
of size M(Vx1 is the node feature vector for the ith node of protein 4 in layer [, xi(;ﬂ) is the pth

node-feature for the ith node of protein 4 in layer (I + 1) and W,((l; D of size 10xM® is the

trainable weight matrix for the kth edge feature and the pth node feature (p =1,..M (”1)) in
the same layer (I + 1). In this way we sum all the interactions between node i in protein 4 and
all neighboring nodes j in protein B through the 11 edge features. Similarly we update node
features for each node in protein B by following

T
+1 I+1 l z l+1 l
x4+ = LeakyReLU (zjieg Zle(w,(qj ) x}ﬁ)) Ajik(W;(c,,* ) % )))
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where 4y, is an element of 4, a permuted A with the first two dimensions swapped. When

calculating intra-molecular energy within a single protein, the second molecule’s feature update
can be skipped for numerical efficiency.

We only do the convolution on the node features, while keeping the edge features the same
across all the EGC layers. The output node-feature matrices X A(Hl) and X B(Hl) for both
proteins, together with the edge feature tensor A, will be used as the input (after batch
normalization) for the next layer (I + 1). Whereas M(®) = M = 4, we choose M) = 2 and
M® = M®) = 5 without particular optimization.

Multi-head attention and fully-connected layers.

After the 3 EGC layers the output node feature matrices X 4 @ and X B Q) (L = 3 in this study) for
both proteins (or two copies of the single matrix in the intra-molecular case) are concatenated
and fed into a multi-head attention module '®*', whose output subsequently goes through three
fully-connected (FC) layers with 128, 64, and 1 output, respectively. A dropout rate of 20% is
applied to all but the last FC layer.

Label, loss function, and model training

The label here is the binding energy AG although it is not available for encounter complexes.

We thus use the same idea as in our previous work . Specifically, using known k,**>*, binding
affinity of native complexes, or their values predicted from protein sequences > , we estimate k/,
the binding affinity of an encounter complex, to weaken with the worsening quality of the
encounter complex (measured by iRMSD):

k; = kq - exp(a - (iIRMSD)?)

where a and g are hyperparameters optimized using the validation set. Specifically, a is
searched between 0.5 and 10 with a stepsize of 0.5 and g among 0.25, 0.5, 0.75, 1, 1.5, and 2.
The optimized a and q are 1.5 and 0.5, respectively. Therefore, for each sample (corresponding

to an encounter complex or decoy), the predicted label is the previously defined AG, the actual
label is RTIn(ky) = RTIn(ky) + RTa - (iRMSD)Y, and the error is simply the difference
between the two.

We learn parameters 8 and 8’ of two graph convolutional networks of the same architecture, by
minimizing the loss function of mean squared errors (MSE) over samples. Model parameters

include W,(clz), in the EGC layers as well as those in the multi-head attention module and FC

layers. One set of learned parameter values, 8 are shared among all intra-molecular energy
models, and the other set, 8" are for the inter-molecular energy model.

The model is trained for 50 epochs through the optimizer Adam’® with a batch size of 16 and the
learning rate is tuned to be 0.01 using the validation set.
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Assessment Metrics

We are aiming at not only relative scoring (ranking) but also absolute scoring (quality
estimation) of protein-docking models. Two assessment metrics are therefore introduced.

For ranking models for a given protein-protein pair, we use enrichment factor which is the
number of acceptable protein-docking models among the top P% ranked by a scoring function
divided by that ranked by random. Conceptually, enrichment factor measures the fold
improvement of ranking acceptable models high relative to random ranking. Here acceptable
models are defined according to the CAPRI criteria with iRMSD within 4 A.

For quality estimation of all docking models in various quality ranges, we use the root mean
square error (RMSE) between the real iRMSD and our predicted iRMSD (as obtained from our
predicted labels). Conceptually, RMSE measures the proximity between predicted and actual
quality measures.

Baseline Methods

We use two baseline scoring functions here. The first one, only applicable to model ranking, is
IRAD ", one of the top-performing scorers in recent CAPRI. The second one is a Random
Forest (RF) model from our previous work '°, which both ranks models and estimates model
quality. For comparability among models, the RF model is re-trained using the same training
and validation sets in this study.

RESULTS

Relative Scoring (Model Ranking)

We first analyze our model’s performances of relative scoring and compare them to IRAD. For
both benchmark and CAPRI test sets, we note that the proposed EGCN significantly outperforms
both RF and IRAD (Figure 2A and 2B). In particular, for the top-ranked 10% for the benchmark
test set, EGCN achieved an average enrichment factor of 3.5, which represents a nearly 40%
improvement compared to RF (2.6) and nearly 120% improvement against IRAD (1.6). In all
cases, the improvement margins decrease as the top-ranked percentages increase (that is, more
models are retained), due to the fact that limited and relatively few acceptable models are
available among the total available decoys. Although the training/validation set and the
benchmark test set involve unbound docking, the CAPRI test set additionally involves the more
challenging cases of homology docking. Nevertheless, for the more challenging CAPRI test set,
EGCN’s average enrichment factor only slightly dropped from 3.5 to 3.0 in the top-ranked 10%
and did so from 3.1 to 2.3 in the top-ranked 20%.
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Figure 2. Comparing relative scoring (ranking) performances among IRAD, RF, and EGCN. Reported
are enrichments ratios of acceptable models among the first P percentage, top-ranked decoys for (a)
benchmark test set, (b) CAPRI test set, and (c) Score_set, a CAPRI benchmark for scoring.

For Score_set, the CAPRI historical benchmark set, EGCN outperforms RF as shown in Figure
2C. Its average performance is comparable to IRAD although it has considerably lower variance
across targets (Figure 2C). It is noteworthy that, although both the benchmark and CAPRI test
decoys are generated by the same protocol (ClusPro + cNMA) as the training/validation decoys,
Score_set represents completely different and heterogeneous decoy-generating protocols from
the community. Impressively, for the top-ranked 10%, EGCN’s average enrichment factor is
almost the same (nearly 3.0) for Score_set as it is for the CAPRI test set. For the top-ranked
20%, the factor slightly decreased to 2.1 for Score set compared to 2.3 for the CAPRI test set.

Absolute Scoring (Quality Estimation)

We next analyze EGCN’s absolute scoring performances and compare them to our previous RF
model. EGCN significantly outperforms RF in quality estimation across all test sets (Figure 3).
For the benchmark test set, EGCN estimates all docking models’ interface RMSD values with an
error of 1.32 A, 1.43 &, and 1.51 A when the models’ iRMSD values are within 4 A (acceptable),
between 4 A and 7 A, and between 7 A and 10 A, respectively. These values represent 14%-22%
improvement against RF’s iRMSD prediction errors. Both EGCN and RF’s prediction errors
remain relatively flat when models are acceptable or close with iRMSD values within 10 A
whereas they rise out the range when precise quality estimation is no longer desired for those far
incorrect models. This performance trend is partially by chance, reflecting the quality
distribution in the training set. But it can be guaranteed by design through re-weighting training
decoys of different quality ranges, as we did before .
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Figure 3. Comparing absolute scoring (quality estimation) performances among RF and EGCN.
Reported are the RMSE of iRMSD predictions for (a) benchmark test set, (b) CAPRI test set, and (c)
Score_set, a CAPRI benchmark for scoring.

Very similar performances and trends are observed for the CAPRI test set and the CAPRI
Score_set. EGCN’s quality estimation performances only deteriorates slightly in the more
challenging CAPRI test set involving homology docking: an error of 1.42 A, 1.51 A, and 1.80 A
when the models’ iRMSD values are within 4 A, between 4 A and 7 A, and between 7 A and 10
A, respectively. For Score_set involving diverse and distinct decoy generation protocols,
EGCN’s quality-estimation performances further deteriorates slightly to an error of 1.99 A, 2.22
IOX, and 2.61 A when the models’ iRMSD values are within 4 A, between 4 A and 7 A, and
between 7 A and 10 A, respectively, which has shown even more improvements (27%-28%)
relative to RF. It is noteworthy that these two test sets are more challenging than the benchmark
test set for additional reasons. Unlike the case of relative scoring, binding affinities of native
complexes are needed for absolute scoring. But their values have to be predicted for all but one
target pairs in these two test sets (13 out of 14 or 12 out of 14), compared to just 34 out of 107
for the benchmark test set.

Taken together, these results suggest that, learning energy models directly from structures as in
EGCN represents a much more accurate and robust data-driven approach than doing so from
structure-derived energy terms as in RF. The EGCN model performances are less sensitive to
target difficulty than they are to the training versus test data distributions (reflected in the ways
training/test decoys are generated).

DISCUSSION

The accuracy of the EGCN model could be further improved along a few directions. The first
and the foremost important direction is to provide better-quality training data whose distributions
align better to those of the test data. Specifically in our case, this demands more diverse
protocols to generate training decoys (as opposed to the only ClusPro + cNMA protocol used in
the study). Moreover, decoys in different quality ranges could be given different priorities as
well. The second direction is to train deeper models (going beyond L = 3 in this study) and to
include more edge features (for instance, including distances besides their reciprocals so that
internal energies polynomial in distances can be captured). The third direction is to split the two
objectives of relative and absolute ranking. We are training just one model for both model
ranking and quality estimation whereas the loss function is perfectly aligned to quality estimation
alone. Instead, a separate model with its own loss function can be trained just for model ranking.
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The computational cost of training the EGCN model can also be reduced. Currently, we use an
edge feature tensor A € RV*N*X and pool all other nodes’ features to update each node’s feature
vector. However, due to the sparsity of protein contact graphs, the edge feature tensor can enjoy
a sparse representation of A € RNV*N XK where N' is the maximum number of node neighbors
and N’ < N. Here two residues are neighbors if any of the 11 atom-pair distances is below the

threshold (12 A in this study). Accordingly, when updating the feature vector for node i, i.e.
xgl“), we just need to sum over all its neighboring nodes j for an equivalent expression.
CONCLUSION

In this paper, we propose a novel, energy-based graph convolutional network (EGCN) for
scoring protein-docking models in both relative and absolute senses: ranking docking models and
estimating their quality measures (iIRMSD). We represent a protein or an encounter complex as
an intra-molecular or inter-molecular residue contact graph with atom-resolution node features
and edge features. Inspired by physics, we design a novel graph convolutional kernel that maps
the inputs (current node features and fixed edge features) to energy-like outputs (next node
features). Using such energy-based graph convolution layers and state-of-the-art attention
mechanisms, we train two graph convolutional networks of identical architecture and distinct
parameters to predict intra- and inter-molecular free-energy, respectively. The two networks are
trained to together predict an encounter complex’s energy value whereas the true value is
approximated by the corresponding native complex’s energy discounted according to the quality
of the encounter complex.

The first GCN development for protein docking, our EGCN model is tested against three data
sets with increasing difficulty levels: unbound docking with a single decoy-generating
mechanism, unbound and homology docking with the single mechanism, as well as unbound and
homology docking with diverse decoy-generating mechanisms from the community. For ranking
protein-docking models (decoys), EGCN is found to perform better or equally well compared to
a state-of-the-art method (IRAD) that has found great success in CAPRI as well as our previous
RF model'’. For quality estimation which has seen few method developments in the field, EGCN
is again found to outperform our previous RF model. In both cases, EGCN is relatively
insensitive to target difficulty and is of limited sensitivity to training decoys (specifically, the
way they are generated). Compared to our previous RF model that learns indirectly from
structure-derived energy terms, the EGCN model learns directly from structures and thus shows
improved accuracy and robustness.
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TABLE AND FIGURE LEGENDS

Table I. The atom pairs whose distance are converted to edge features. Atom names follow the
convention in CHARMM, except that “SC” corresponds to pseudo-atoms for side chains. Note
that the last two features are set at O for pairs involving prolines (without HN).

Figure 1. The architecture of the proposed graph convolutional network (GCN) models for intra-
or inter-molecular energies. In our work, there are five types of such models together for
predicting encounter-complex binding energy, including 4 intra-molecular models with shared
parameters for the unbound or encountered receptor or ligand as well as 1 inter-molecular model
for the encounter complex. In each type of model, the inputs (to the left of the arrow) include a
pair of node-feature matrices (X, and Xp) for individual protein(s) and an edge-feature tensor
(A) for intra- or inter-molecular contacts. And the inputs are fed through 3 layers of our energy-
based graph convolution layers that learn from training data to aggregate and transform atomic
interactions, followed by multi-head attention module and fully-connected layers for the output
of intra- or inter-molecular energy.

Figure 2. Comparing relative scoring (ranking) performances among IRAD, RF, and EGCN.
Reported are enrichments ratios of acceptable models among the first P percentage, top-ranked
decoys for (a) benchmark test set, (b) CAPRI test set, and (c) Score set, a CAPRI benchmark for
scoring.

Figure 3. Comparing absolute scoring (quality estimation) performances among RF and EGCN.
Reported are the RMSE of iRMSD predictions for (a) benchmark test set, (b) CAPRI test set, and
(c) Score_set, a CAPRI benchmark for scoring.
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