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Abstract

Neural processing along the ascending auditory pathway is often associated with a progressive
reduction in characteristic processing rates. For instance, the well-known frequency-following
response (FFR) of the auditory midbrain, as measured with electroencephalography (EEG), is
dominated by frequencies from ~100 Hz to several hundred Hz, phase-locking to the stimulus
waveform at those frequencies. In contrast, cortical responses, whether measured by EEG or
magnetoencephalography (MEG), are typically characterized by frequencies of a few Hz to a few
tens of Hz, time-locking to acoustic envelope features. In this study we investigated a crossover,
cortically generated responses time-locked to continuous speech features at FFR-like rates. Using
MEG, we analyzed high-frequency responses (70-300 Hz) to continuous speech using neural
source-localized reverse correlation and its corresponding temporal response functions (TRFs).
Continuous speech stimuli were presented to 40 subjects (17 younger, 23 older adults) with
clinically normal hearing and their MEG responses were analyzed in the 70-300 Hz band.
Consistent with the insensitivity of MEG to many subcortical structures, the spatiotemporal profile
of these response components indicated a purely cortical origin with ~40 ms peak latency and a
right hemisphere bias. TRF analysis was performed using two separate aspects of the speech
stimuli: a) the 70-300 Hz band of the speech waveform itself, and b) the 70-300 Hz temporal
modulations in the high frequency envelope (300-4000 Hz) of the speech stimulus. The response
was dominantly driven by the high frequency envelope, with a much weaker contribution from the
waveform (carrier) itself. Age-related differences were also analyzed to investigate a reversal
previously seen along the ascending auditory pathway, whereby older listeners show weaker
midbrain FFR responses than younger listeners, but, paradoxically, have stronger cortical low
frequency responses. In contrast to both these earlier results, this study does not find clear age-
related differences in high frequency cortical responses. Finally, these results suggest that EEG
high (FFR-like) frequency responses have distinct and separable contributions from both
subcortical and cortical sources. Cortical responses at FFR-like frequencies share some properties
with midbrain responses at the same frequencies and with cortical responses at much lower

frequencies.
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Highlights
e Cortical MEG responses time-lock at 80-90 Hz to continuous speech.
e Responses are predominantly time-locked to the high frequency envelope of speech.

e Response strength and latency are similar for younger and older subjects.

1. Introduction

The human auditory system time-locks to acoustic features of complex sounds, such as speech,
as it extracts and encodes relevant information. The characteristic frequency of such time-locked
activity is generally thought to decrease along the ascending auditory pathway. For example,
subcortical high frequency activity may encode the pitch information of voiced speech (Krishnan
et al., 2004), while cortical low frequency activity, which time-locks to the slowly varying
envelope of speech, may represent higher level features of language such as phoneme and word
boundaries (Brodbeck et al., 2018a). Prior research has also shown that age-related auditory
temporal processing deficits result in differences in both subcortical and cortical processing for
older and younger listeners (Anderson et al., 2012; Presacco et al., 2016a, 2016b). These effects
have been investigated in human subjects using the complementary non-invasive neural

recording techniques of electroencephalography (EEG) and magnetoencephalography (MEG).

The well-known frequency following response (FFR) is one such phase-locked response (Kraus et
al., 2017), most commonly measured using EEG, and is believed to originate predominantly from
the auditory midbrain (Bidelman, 2015; Smith et al., 1975). The FFR measures the phase-locked
response to the fast steady state oscillation of a stimulus, such as a repeated speech syllable. The
FFR provides insight into the peripheral representation of speech and is a useful tool for
investigating temporal processing deficits (Basu et al., 2010; Hornickel et al., 2012; Kraus et al.,
2017). In addition, the FFR may be used to investigate the robustness of speech representations in

noise or a dual stream paradigm (Yellamsetty and Bidelman, 2019). Much FFR analysis is done
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by averaging responses to stimuli of opposite polarity, in which case the response is actually to the
envelope of the stimulus. However the FFR to the stimulus spectrum itself (also called fine-
structure) can also be analyzed, e.g., by subtracting responses to stimuli of opposite polarity (Aiken
and Picton, 2008; Hornickel et al., 2012). These studies show that high frequency neural responses

are sensitive to both the high frequency envelope of the stimulus, and to its carrier.

The neural origins of the FFR have historically been thought to be mainly subcortical areas such
as the inferior colliculus (Smith et al., 1975). But recent studies with MEG and EEG have shown
that the FFR is not purely generated by subcortical areas, but has contributions from the auditory
cortex as well (Bidelman, 2018; Coffey et al., 2017b, 2017a, 2016; Hartmann and Weisz, 2019;
Puschmann et al., 2019). The dominantly cortical role in the MEG response follows from MEG’s

reduced sensitivity to deep structures such as the auditory midbrain (Baillet, 2017).

However, the repeated speech syllables commonly used to generate the FFR cannot capture the
complexities of natural continuous speech. To understand how the brain represents speech in
naturalistic environments, cortical low frequency responses to continuous speech have been widely
studied (Peelle et al., 2013). The MEG and EEG response to continuous speech can be represented
using Temporal Response Functions (TRFs) (Ding and Simon, 2012; Lalor et al., 2009) which are
linear estimates of time-locked responses to time varying features of the auditory stimulus. The
conventional low-frequency TRF time-locks to the slow (below 10 Hz) envelope of continuous
speech, though the spectrotemporal fine structure of speech can also modulate these cortical low

frequency responses (Ding et al., 2014; Ding and Simon, 2012).

Recently, short latency subcortical EEG responses to continuous speech have been found using
TRF analysis (Maddox and Lee, 2018), proving that it is possible to detect midbrain responses to
continuous speech. High frequency early latency responses that phase lock to the fundamental
frequency of speech have also been found to be modulated by attention (Forte et al., 2017). One
study has also found cortical high frequency MEG responses to speech stimuli, with latencies near
30 ms, that are time-locked to the ~100 Hz variations in the envelope of the even higher frequency
speech spectrum (up to 2 kHz) (Hertrich et al., 2012). This can be seen as analogous to traditional
FFR which follows the envelope of the fundamental frequency. As discussed above, EEG FFR has
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also been found for the spectral carrier. Whether auditory cortex time-locks to the carrier as well

as to the high frequency envelope (HFE) of continuous speech remains unclear.

Further complicating our understanding of the contributions of subcortical and cortical sources to
the MEG response is the impact of age-related changes in the auditory pathway (Peelle and
Wingfield, 2016). The temporal processing of speech can degrade with age, especially in noisy
conditions (Gordon-Salant et al., 2006; He et al., 2008; Hopkins and Moore, 2011). Age-related
differences have been found in both the EEG FFR and the MEG low frequency TRF to speech.
Older adults have weaker, delayed FFRs with lower phase coherence when compared with younger
adults (Anderson et al., 2012; Presacco et al., 2015; Zan et al., 2019). Possible causes include age-
related inhibition-excitation imbalance (Caspary et al., 2008) resulting in a loss of temporal
precision (Anderson et al., 2012). In surprising contrast, older adults’ cortex exhibits exaggerated
low frequency responses (Brodbeck et al., 2018b), even to the point of allowing better stimulus
reconstruction via these low frequency cortical responses than in younger adults (Presacco et al.,
2016a, 2016b). Several possible explanations, not necessarily exclusive, have been advanced to
account for this surprising result, including decrease in inhibition, recruitment of additional brain
regions and central compensatory mechanisms (Brodbeck et al., 2018b; Decruy et al., 2019). The
fact that fast midbrain responses reduce with age while slow cortical responses are enhanced might
indeed be due to anatomical and physiological differences between midbrain and cortex, but a fair
comparison is complicated by the fact that the responses occur at vastly different frequencies.
Hence it is entirely unknown whether high frequency cortical responses would show age-related

reduction or enhancement.

In this study we focused on three main questions. Firstly, do high frequency time-locked MEG
responses to continuous speech in the human auditory system originate from cortical or subcortical
areas? Secondly, are these responses time-locked to the carrier or to the HFE of the speech
stimulus? Thirdly, are there any age-related differences in these responses, and if so, do they show
age-related decrease, like the EEG FFR, or show age-related increase, like the low frequency TRF?
To this end, we analyzed source localized MEG recordings of younger and older subjects listening

to continuous speech (narration by a male speaker). We estimated TRF models, for both the HFE
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and the carrier, and used neural volume source localization to investigate the nature and origin of

these high frequency responses.

2. Methods

2.1 Experiment dataset

The experimental dataset used for this study is described in detail in Presacco et al., 2016a, 2016b,
supplemented with eight additional older adults with clinically normal hearing. The combined
dataset consisted of MEG responses recorded from 17 younger adults (age 18-27, mean 22.3, 3
male) and 23 older adults (age 61-78, mean 67.2, 8 male) with clinically normal hearing while they
listened to 60 second portions of an audiobook recording of The Legend of Sleepy Hollow by
Washington Irving (https://librivox.org/the-legend-of-sleepy-hollow-by-washington-irving). All
participants gave informed consent and were paid for their time. Experimental procedures were
reviewed and approved the Institutional Review Board of the University of Maryland. The audio
was delivered diotically through 50 Q sound tubing (E-A-RTONE 3A) attached to E-A-RLINK
foam earphones inserted into the ear canal at ~70 dB sound pressure level via a sound system with
flat transfer function from 40 to 3000 Hz. The conditions analyzed in this study consist of two
passages of 60 seconds duration presented in quiet (i.e., solo speaker), each of which was repeated
three times, for a total of six minutes of MEG data per subject. Subjects were asked beforehand to
silently count the number of occurrences of a particular word and report it to the experimenter at
the conclusion of each trial, in order to encourage attention to the auditory stimuli. Handedness of
the participants was assessed with the Edinburgh handedness scale (Oldfield, 1971), which can
range from —1 (complete left-dominance) to 1 (complete right-dominance). To exclude
lateralization bias due to handedness, all analyses were rerun excluding the 9 subjects scoring
below 0.5. The only change in the results was a reduction in the number of neural sources showing

right hemispheric dominance in younger subjects (discussed below).

2.2 MEG data collection and preprocessing
MEG data was recorded from a 157 axial gradiometer whole head KIT MEG system while subjects
were resting in supine position in a magnetically shielded room. The data was recorded at a

sampling rate of 1 kHz with an online 200 Hz low pass filter with a wide transition band, and a 60
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Hz notch filter. Data was preprocessed in MATLAB by first automatically excluding saturating
channels and then applying time-shift principal component analysis (de Cheveigné and Simon,
2007) to remove external noise, and sensor noise suppression (de Cheveigné and Simon, 2008) to
suppress channel artifacts. On average, two MEG channels were excluded during these stages. All
subsequent analysis was performed in mne-python 0.17.0 (Gramfort, 2013; Gramfort et al., 2014)
and eelbrain 0.30 (Brodbeck et al., 2019). The MEG data was filtered in the band 70-300 Hz (high
gamma band) using an FIR filter, and six 60 second epochs during which the stimulus was

presented were extracted for analysis.

2.3 Stimulus Representation

As discussed above, prior work on the FFR has shown that time-locked neural responses are
sensitive to both the carrier and the envelope of an auditory stimulus. Similarly, time-locked
responses to speech in the 100 Hz range may be driven either by ~100 Hz modulations in the
waveform (carrier), or by ~100 Hz modulations in the envelope of even higher frequencies.
Accordingly, two distinct representations of the speech stimulus were used as predictors for the
TRF model (see Fig. 1A). For the former case, the carrier predictor was constructed by
downsampling the speech waveform to 1 kHz and bandpass filtering from 70-300 Hz. This carrier
predictor captures the 70-300 Hz modulations in the speech waveform itself. For the latter case,
the HFE predictor was constructed from the ~100 Hz modulations in the envelope of the
highpassed stimulus waveform (envelopes are only well-defined when they modulate carriers of
much higher frequencies than those of the modulations themselves; Rosen, 1992). Specifically,
first the speech was transformed into an auditory spectrogram representation by computing the
acoustic energy in the speech waveform for each frequency bin in the range 300-4000 Hz at
millisecond resolution using a model of the auditory periphery (Yang et al., 1992). This auditory
spectrogram is a 2-dimensional matrix representation of the acoustic envelope over time for
different frequency bins. Each frequency bin component of this spectrogram was then filtered
using the same 70-300 Hz bandpass filter, producing a 70-300 Hz band limited envelope for each
bin. Finally the resulting 2-dimensional matrix was averaged across frequency bins to provide a
single envelope, resulting in the HFE predictor. Thus, this predictor captures the 70-300 Hz
modulations in the 300-4000 Hz envelope of the speech waveform. These two predictors were

used for all further TRF analysis.
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The 70-300 Hz bandpass filter was formed using the default FIR filter in mne-python with an
upper and lower transition bandwidth of 10 Hz, at 1 kHz sampling frequency, but applied twice in
a forward fashion to the data. This resulted in a combined filter of length 661 with a phase delay
of 330 ms. Other bandpass filters were also employed as alternatives, including I[IR minimum-

phase-delay Bessel filters (results not shown); no results depended critically on the filters used.
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Fig. 1. Stimulus Representations and ROIs. A. The stimulus waveform for a representative 500 ms speech
segment is shown along with its auditory spectrogram and the two predictors: carrier and HFE. The predictors
are correlated (Pearson’s » = -0.16) but have noticeably distinct waveforms. B. Regions of Interest. The volume

source space voxels for the cortical and subcortical ROIs are shown.
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2.4 Neural Source localization

Before each MEG recording, the head shape of each subject was digitized using a Polhemus
3SPACE FASTRAK system, after which five marker coils were attached. The marker coil
locations were measured while the subject’s head was positioned in the MEG scanner before and
after the experiment, in order to determine the position of the head with respect to the MEG
sensors. Source localization was performed using the mne-python software package. The marker
coil locations and the digitized head shape were used to coregister the template Freesurfer
‘fsaverage’ brain (Fischl, 2012) using rotation, translation and uniform scaling. A volume source
space was formed by dividing the brain volume into a grid of 7 mm sized voxels. This source space
was used to compute an inverse operator using minimum norm estimation (MNE) (Gramfort et al.,
2014) with a noise covariance matrix estimated from empty room data. This method results in a 3-
dimensional current dipole vector with magnitude and direction at each voxel. The ‘aparc+aseg’
parcellation was used to define cortical and subcortical regions of interest (ROIs) (see Fig. 1B).
The cortical ROI consisted of voxels in the gray and white matter of the brain that were closest to
the temporal lobe parcellations. The subcortical ROI was selected to consist of voxels that were
closest to the ‘Brain-Stem’ parcellation. All brain plots show the maximum intensity projection of
the voxels onto a 2-dimensional plane, with an overlaid average brain outline (implemented in
eelbrain). Minimum norm estimation in volume source space may lead to spatial leakage from the
true neural source to neighboring voxels. In order to characterize this artifactual spatial leakage,
current dipoles in Heschl’s gyrus were simulated using the surface source space, projected into
sensor space, and then projected into volume source space. Additionally, a separate cortical surface
source space model was also used; results obtained using this method were not qualitatively

different than those of the volume space model (see Appendix).

2.5 Temporal Response Functions

The simplest linear model used to estimate the TRF is given by

Ve = Z(det—d) +tn (1)

d

where y; is the response at a neural source for time t, x;_ is the time shifted predictor with a time

lag of d, 74 is the TRF value at lag d and n; is the residual noise. The TRF is the time-dependent
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weight, of a linear combination of current and past samples of the predictor, that best predicts the
current neural response at that neural source (Lalor et al., 2009). Hence the TRF can also be
interpreted as the average time-locked response to a predictor impulse. In this work, a TRF model

with two predictors, HFE and carrier, was used.
Ve = Z(Te,det—d + TeaCe—q) + Mt ()
d

Where e;_, is the delayed HFE (envelope) predictor and 7, 4 the corresponding HFE TRF, c,_4
is the delayed carrier predictor and 7.4 the corresponding carrier TRF. In this model, the two
predictors compete against each other to explain response variance, which results in larger TRFs
for predictors that contribute more to the neural response. TRF estimation, for lags from -40 to 200
ms, was performed with the boosting algorithm and early stopping based on cross validation
(David et al., 2007) as implemented in eelbrain. The boosting algorithm may result in overly sparse
TRFs, and hence an overlapping basis of 4 ms width Hamming windows (spaced 1 ms apart) was
used in order to generate smoothly varying responses. For the volume source space, the neural
response at each voxel is a 3-dimensional current vector. Accordingly, for each voxel, a TRF vector
was computed using the boosting algorithm and was used to predict the neural response vector.
For each voxel, the prediction accuracy was assessed through the average dot product between the
normalized predicted and true response, which varies between zero and one in analogy to the

Pearson correlation coefficient.

2.6 Statistical tests

Statistical tests were performed across subjects by comparing the TRF model to a noise model.
The predictor was circularly shifted in time and TRFs were estimated using this time-shifted
predictor as noise models (Brodbeck et al., 2018a, 2018b). This preserves the local temporal
structure of the predictor while removing the temporal relationship between the predictor and the
response. Circular shifts of duration 15, 30 and 45 seconds were used to form three noise models.
For each voxel, the prediction accuracies of the true model were compared to the average

prediction accuracies of the three noise models as a measure of model fit.

To account for variability in neural source locations due to mapping the responses of individual

subjects onto the ‘fsaverage’ brain, these coefficients were spatially smoothed using a Gaussian

10
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window with 5 mm standard deviation. Nonparametric permutation tests (Nichols and Holmes,
2002) and Threshold Free Cluster Enhancement (TFCE) (Smith and Nichols, 2009) were used to
control for multiple comparisons. This method, as outlined in full in Brodbeck et al. (2018c,
2018a), is implemented in eelbrain, and is briefly recounted here. Firstly, a paired sample z-value
was evaluated for each neural source, across subjects, from the difference of the prediction
accuracies of the true model and the average of the three noise models after rescaling using Fisher’s
z-transform. Then the TFCE algorithm was applied to those #-values, which enhanced continuous
clusters of large values, based on the assumption that significant neural activity would have a larger
spatial spread than spurious noise peaks. This procedure was repeated 10,000 times with random
permutations of the data where the labels of the condition were flipped on a randomly selected
subset of the subjects. A distribution of TFCE values was formed using the maximum TFCE value
of each permutation to correct for multiple comparisons across the brain volume. Any value of the
original TFCE map that exceeded the 95th percentile of the distribution was considered as

significant at the 5% significance level.

The TREF itself was also tested for significance against the noise model in a similar manner. In the
volume source space, a TRF that consists of a 3-dimensional vector which varies with time was
estimated for each voxel, representing the estimated current dipole amplitude and direction at that
voxel. The amplitudes of these TRF vectors for the true model and the average noise model were
used for significance testing. The TRF amplitudes were spatially smoothed using the same
Gaussian window before performing the tests. A one-tailed test was done with paired sample #-
values and TFCE, and the procedure is identical to that outlined previously, with the added
dimension of time (Brodbeck et al., 2018a).

Lateralization tests were performed to check for hemispheric asymmetry. The volume source space
estimates in the cortical ROI were separated into left and right hemispheres and, as above, the
prediction accuracies were spatially smoothed with the same Gaussian window. The prediction
accuracies of the average noise model were subtracted from that of the true model and paired
sample #-values with TFCE in a two-tailed test were used to test for significant differences between

each of the corresponding left and right voxels.

11
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Age-related differences were assessed between the younger and older groups. The difference of
prediction accuracies between the true TRF model and the average of the noise TRF models were
used to form independent sample z-values for each source across age groups after which a two-
tailed test was performed with TFCE. Significant differences in lateralization across age groups
were assessed by subtracting the prediction accuracies of the left hemisphere from the right
hemisphere and then conducting independent samples tests across age groups as described above.
The peak latency of the TRFs was also tested for significant differences across age groups. The
latency of the maximum value of the norm of the TRF vectors in the time range of significant
responses (20-70 ms) was used to test for peak latency differences across age groups using a two-

tailed test with independent sample #-values and TFCE.

In addition, to investigate possible evidence in favor of the null hypothesis (i.e., in support of the
hypothesis that there are no age-related differences), Bayes factor analysis was performed. The

Bayes factor BF), is the ratio of the likelihood of the observations given the null and the alternative

P(D|Hy)

hypothesis; BFy; = POIHY

where D is the set of observations, and H,, H; are the null and

alternative hypotheses. Assuming that H, and H, are equiprobable (P(H,) = P(H,)), the posterior
odds reduce to the Bayes factor:

P(Ho|D) _ P(D|Hy)P(Ho) _ P(H,)
P(H,|D) ~ P(D|H)P(Hy) — °'P(H,)

= BFy, (3)

For example, BFy; = 10 would indicate that, given the data, the null hypothesis is 10 times more
probable than the alternative, whereas BFy; = 0.1 would indicate that the alternative is 10 times
more probable than the null. BFy; > 3 is considered to indicate moderate support for the null
hypothesis (Jarosz and Wiley, 2014). The model prediction accuracy for the competing model was
averaged across sources for each subject and a two-tailed independent sample z-value was
calculated for the older and younger subjects. The method described in Rouder et al., 2009 was
used to transform this t-value into a Bayes factor. To further test for significant differences by age
across both low frequency and high frequency responses, two further models were analyzed; a low
frequency TRF and a high frequency TRF using surface source space. An ANOVA was performed
on the prediction accuracies of these two models with factors TRF frequency (high or low) and

age (young or old) (methods and results in Appendix).

12
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3. Results

3.1 Cortical origins of high frequency responses to continuous speech

High frequency responses were used to estimate per-voxel TRFs in volume source space for the
two ROIs: the temporal lobes, and the brainstem (plus its surrounding volume). The prediction
accuracies of high-frequency responses (mean = 0.02, std = 0.005) were much smaller (factor of
3) than those resulting from low frequency cortical TRFs (Brodbeck et al., 2018a), indicating that
these responses are weaker than slow cortical responses. This is not surprising, as the spectrum of
the MEG response decays with frequency. Noise floor models, used to test for significant
responses, generated corresponding noise model prediction accuracies (mean = 0.0138, std =
0.0016). For each voxel, a one-tailed test with paired sample #-values and TFCE (to account for
multiple comparisons) was used to test for significant increases in the prediction accuracies of the
true model against the noise model across subjects. Almost all of the voxels showed a significant
increase in prediction accuracy (younger subjects tmax = 6.95, p <0.001; older subjects tmax = 6.35,
p <0.001; see Fig. 2A). The disproportionate success of the extent of this result is not unexpected,
however, due to the large spatial spread of MNE volume source space estimates. The prediction
accuracy over the noise model within the cortical ROI was significantly larger than that within the
subcortical ROI for younger subjects (one-tailed paired sample z-test; younger subjects t =2.73, p
=0.007; older subjects t = 1.47, p = 0.078; difference across age not significant).

Lateralization differences were tested using the prediction accuracy at each voxel. The prediction
accuracy of the average noise model was subtracted from that of the true model and a two-tailed
test with paired sample #-values and TFCE was performed for significant differences in the left
and right hemispheres. The tests revealed significantly higher prediction accuracies for younger
subjects in the right hemisphere than in the left (tmax = 6.28, p < 0.01), but only for a subset of
voxels (24%) in the temporal lobe closest to auditory areas (see Fig. 2B). No significant differences
in lateralization were seen for older subjects (tmin = -2.01, tmax = 3.34, p > 0.097), nor was
lateralization significantly different across age groups (independent samples test; tmin = -2.77, tmax
= 1.7, p > 0.33). When the analysis was constrained to only right-handed subjects (13 younger, 18
older; see Methods for details), the only resulting change was that a lower number of voxels were

significantly right lateralized in younger subjects.
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Fig. 2. Prediction Accuracy of Volume Source Localized TRFs. A. Prediction accuracy using the TRF model
for each voxel in the volume source space ROIs averaged across subjects. Only ROI voxels for which model
prediction accuracy significantly increased over the noise model are plotted (p < 0.05). The prediction accuracy
is significantly larger in cortical areas than in subcortical areas for the younger subjects. Plots are of the
maximum intensity projection, with an overlay of the brain. B. An area in the right hemisphere near the auditory
cortex is significantly more predictive than the left hemisphere, but only in the younger subjects. When taking
into account expected MEG volume source localization leakage, these results are consistent with the response

originating solely from cortical areas and with a right hemispheric bias.

The TRFs at each source voxel are represented by a 3-dimensional current vector that varies over
the time lags. Hence for each voxel and time lag, the amplitude of the TRF vector for the true
model was tested for significance against the average of the noise models across subjects using a
one-tailed test with paired sample #-values and TFCE. The TRFs for the HFE predictor in the
cortical ROI were significant (younger tmax = 4.89, p < 0.001; older tmax = 4.54, p < 0.001) starting
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at a time lag of 24 ms, and ending at 62 ms, with an average peak latency of 40 ms (see Fig. 3A).
The subcortical ROI was also analyzed in a similar manner and the TRF showed significance in a
much smaller time range of 36-45 ms (younger tmax = 3.68, p < 0.01; older tmax = 3.43, p < 0.01)
(see Fig 3B). Although the average TRF of the younger subjects has larger amplitude than the
older subjects, this difference is not significant (cortical ROI tmax = 3.81, tmin = -3.87, p > 0.56;
subcortical ROI tmax = 3.71, tmin = -3.24, p > 0.56), and is mainly driven by two individuals in the
younger age group. The TRF responses oscillate at a frequency of 80-90 Hz (see below for a more
detailed spectral analysis). The amplitude of these TRFs was significantly larger in the cortical
ROI than the subcortical ROI (two-tailed test with paired sample t-values on the maximum
amplitudes of the TRFs across subjects: younger t = 5.47, p < 0.001; older t = 6.21, p < 0.001).
Since the subcortical TRFs also have a similar latency and shape to the cortical TRFs, and because
a latency of 40 ms is late for a subcortical response, these subcortical TRFs are consistent with
artifactual leakage from the cortical TRFs due to the spatial spread of MNE source localization.
Simulated volume source estimates for current dipoles originating only in Heschl’s gyrus
generated a spatial distribution of TRF directions consistent with the experimental data (see Fig.
3), i.e. the spatial spread of MNE localized cortical responses resulted in apparent TRF vectors
even in the subcortical ROI. These results seem to indicate that the response originates

predominantly from cortical regions.
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Fig. 3. Volume Source Localized HFE TRFs. The amplitude of the TRF vectors for the HFE predictor averaged
across subjects. Each individual line in the plots is a TRF for a particular voxel. Color encodes the time points
when the TRF showed a significant increase in amplitude over noise (blue: significant left hemisphere, red:
significant right hemisphere, green: significant midline, gray: not significant). The TRF shows a clear response
with a peak latency of 40 ms. The distribution of TRF vectors in the brain at each voxel at the time with the
maximum response are plotted as an inset for each TRF, with color representing response strength and the arrows
representing the TRF directions. The color bar represents the response strength for all 4 brain insets. The response
oscillates around a frequency of 80-90 Hz and is much stronger in the cortical ROI compared to the subcortical
ROIL. Note that since only the TRF amplitude is shown, and not signed current values, signal troughs and peaks
both appear as peaks. Although the younger subjects have a stronger average response in the cortical ROL it is
not significantly larger than the older subjects (p = 0.56). The latency and amplitude of the response suggests a

predominantly cortical origin.

3.2 Responses to the HFE and the carrier

Next, the neural response to the carrier was compared with that to the HFE. The carrier TRF was
also tested for significance using a corresponding noise model (as employed above). The carrier
TRF showed weak responses that were only significant for older subjects in the cortical ROI
between 31-51 ms (tmax = 3.86, p = 0.0014) (see Fig. 4A,B). Two-tailed paired sample ¢-values and
TFCE were used to test for a significant increase of the norm of the HFE TRF when compared to
the carrier TRF in a time window of 20-70 ms in the cortical ROI (see Fig. 5A). This test was
significant for both younger (tmax = 6.97, p < 0.001) and older (tmax = 4.17, p < 0.006) subjects.
However, this test did not find a significant increase in the HFE TRF over the carrier TRF in the
subcortical ROI for either younger (tmax = 1.43, p > 0.46) or older subjects (tmax = 2.66, p > 0.13).
Since the TRF analysis allows both stimulus predictors to directly compete for explaining response

variance, the results strongly indicate that the response is primarily due to the HFE over the carrier.
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Fig. 4. Volume Source Localized Carrier TRFs. The amplitude of the TRF vectors for the carrier predictor
averaged across subjects, analogous to Fig. 3. For comparison, the axis limits and color scale are identical to that
in Fig. 3. The TRF shows a weak response, with a peak latency of 40 ms, that is only significant in the cortical
ROI for older subjects. Comparison with Fig. 3 suggests that the high frequency response is dominated by the

HFE over the carrier.

To further understand the contributions of these predictors to the TRF, the frequency spectrum of
the TRFs and the predictors were compared (see Fig. 5B). The frequency spectrum of the average
TRFs showed a broad peak centered near 80-90 Hz for both predictors and both age groups. In
contrast, the spectral peak of the predictor variables was near 110-120 Hz for the carrier, and near
70-75 Hz for the HFE. Since the TRF peak frequency did not match the peak power in either of
the predictors, this suggests that the TRF oscillatory rate is not directly determined by the stimulus

spectrum.
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Fig. 5. Comparison of Responses to the HFE and to the Carrier. A. The norm of the TRF between 20 ms and 70
ms was larger in the HFE TRF than the carrier TRF for both age groups (*** p <0.001, ** p < 0.01). B. The
frequency spectrum of the TRF reveals that the oscillation has a broad peak around 80-90 Hz. However, the
predictors have peaks at 70-75 Hz (for the HFE) and 110-120 Hz (for the carrier). Although the peak of the HFE
spectrum is near 70-75 Hz, there is still substantial power in the HFE predictor near 80-90 Hz as well, and
similarly for the carrier spectrum. This suggests that the TRF response is not locking to the peak frequency of

the predictor, but to an intrinsic frequency determined internally (neurally) rather than externally.
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3.3 Age-related differences

Statistical tests were performed for age-related differences between older and younger subjects on
both the prediction accuracy and the TRFs. Two tailed tests of prediction accuracy with
independent sample z-values and TFCE indicated no significant difference (cortical ROI tmax =
1.64, tmin = -1.8, p > 0.78; subcortical ROI tmax = -0.6, tmin = -1.33, p > 0.42). Similarly, no voxels
or time points were significantly different in either the HFE TRF (cortical ROI tmax = 3.81, tmin = -
3.87, p > 0.56; subcortical ROI tmax = 3.24, tmin = -3.71, p > 0.56) or the carrier TRF (cortical ROI
tmax = 3.6, tmin = -3.53, p > 0.9; subcortical ROI tmax = 2.4, tmin = -3.38, p > 0.33). In addition, the
cortical ROI TRFs showed no significant differences across age groups in peak latency either (HFE
TRF tmax = 2.23, tmin = -1.86, p > 0.74; carrier TRF tmax = 1.72, tmin =-2.02, p > 0.97). In the above
analysis, it is unclear if the absence of significance is due to older and younger subjects having
similar responses, or merely due to a lack of statistical power. Hence a Bayes factor analysis was
performed on the prediction accuracy by averaging across sources per subject and computing an
independent sample #-value across age groups. This resulted in a Bayes factor of BFo; = 4.21, and
hence provides moderate evidence for the null hypothesis, that there are no differences between
the age groups. An additional analysis was performed using surface source space TRFs as
described in Appendix. Both high and low frequency TRFs were computed in surface source space,
and model prediction accuracy was assessed with an ANOVA with factors TRF frequency and
age. The ANOVA showed a significant frequency x age interaction, suggesting that age related
differences are indeed not consistent across high and low frequency responses (detailed results in

Appendix), i.e. present at low frequencies but not so for high.

4. Discussion

In this study, we investigated high frequency time-locked responses to continuous speech
measured using MEG. Volume source localized TRFs provided evidence that these responses
originated from cortical areas and have a peak response latency of around 40 ms. The responses
showed a significant right hemispheric asymmetry, especially in core auditory areas. These
responses oscillate with a frequency of 80-90 Hz, despite the stimulus predictors having maximum

power outside this frequency range. We also showed that the response is significantly stronger to
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the HFE than the carrier. Surprisingly, there were no significant age-related differences in response
amplitude, latency, localization or predictive power. In fact, Bayes factor analysis provided
moderate support for the null hypothesis, that there is no difference in these responses between
younger and older adults; this is in contrast to age-related differences seen in both the subcortical

EEG FFR (younger > older) and the cortical low frequency TRF (older > younger).

4.1 MEG sensitivity to deep structures

A primary motivation of this study was to investigate the relative contributions of cortical and
subcortical sources to high frequency time-locked activity. Because of the sensitivity to cortical
sources as opposed to subcortical, MEG is an ideal tool to investigate if there are cortical
contributions to the well-known high frequency subcortical responses. MEG is physically
constrained to be less sensitive to deep structures, typically resulting in subcortical MEG responses
being up to 100 times weaker than cortical responses at equivalent current strengths (Attal et al.,
2007; Hillebrand and Barnes, 2002). Several source localization techniques have been proposed
to correct for this inherent bias towards cortical sources (Dale et al., 2000; Krishnaswamy et al.,
2017; Pascual-Marqui, 2002). Some studies were able to resolve MEG responses to the
hippocampus (Cornwell et al., 2012), insula (Park and Tallon-Baudry, 2014), amygdala
(Balderston et al., 2014; Cornwell et al., 2008; Dumas et al., 2013) and thalamus (Roux et al.,
2013). Prior work has also been done using MEG for measuring brainstem responses (Coffey et
al., 2016; Parkkonen et al., 2009). Hence, MEG is technically able to record responses from deep
structures, although simultaneous cortical responses may overpower them (e.g., in FFR studies).
However subcortical responses to continuous speech using TRFs should have a much shorter
latency (< 20 ms) (Maddox and Lee, 2018) than the cortical latencies seen in this work. Therefore,
the amplitude and latency of our volume source localized TRFs suggest that the high frequency

response to speech is primarily cortical.

4.2 Cortical FFRs and high frequency TRFs

Cortical FFRs to repeated single speech syllables have been measured in MEG (Coffey et al.,
2016) and EEG (Bidelman, 2018; Coffey et al., 2017b). Our work shows that cortical TRFs contain
significant responses up to 64 ms, comparable to the long-lasting explanatory power of the auditory

cortex ROI in Coffey et al., 2016. These TRFs are also predominantly from auditory cortex,
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centered around Heschl’s gyrus, and right lateralized similar to the MEG FFR (Coffey et al., 2016).
However, Bidelman (2018) demonstrated that the contribution of cortical sources to the FFR as
measured with EEG is much weaker than when measured with MEG, and rapidly decreases for
stimuli with fundamental frequencies above 100 Hz. In addition, while subcortical FFR is
measurable with EEG for stimulus frequencies up to 1000 Hz, there were no cortical contributions
to the FFR above 150 Hz (Bidelman, 2018). This strengthens the idea that MEG and EEG are
sensitive to different structures in the ascending auditory pathway. Hence MEG can be used in

conjunction with EEG to explore the hierarchical processing of sound.

4.3 Comparison of responses to the envelope vs. the carrier

Previous studies have shown that auditory cortex responds to the slow varying envelope of speech
and is also modulated by the spectrotemporal fine structure of the stimulus (Ding et al., 2014).
Similarly, the subcortical FFR is typically analyzed by averaging across stimulus presentations of
opposite polarity, which results in phase-locked responses to the envelope of the fundamental
frequency. However, subcortical responses to the carrier have also been found by studies that
distinguish between the traditional envelope FFR and the carrier FFR (which is analyzed by
subtracting the responses to stimulus presentations of opposite polarity) (Aiken and Picton, 2008).
Although the EEG FFR follows both the envelope and the carrier, our results indicate that time-
locked high frequency cortical responses to continuous speech are predominantly driven by the

HFE.

4.4 TRF oscillation frequency not strongly driven by stimulus spectrum

The TRF response oscillates with a peak frequency around 80-90 Hz. Cortical auditory phase
locked responses to simple sounds have been measured using MEG (Coffey et al., 2016; Hertrich
et al., 2004; Schoonhoven et al., 2003) at frequencies of up to 111 Hz. For continuous speech
stimuli, such phase locked responses could reflect a cortical mechanism that represents complex
speech features such as modulations in vowel formants, using fluctuations in the fundamental
frequency domain of natural speech. However, the frequency of oscillation of the TRF at 80-90
Hz does not directly reflect the fundamental frequency of the speech at 110-120 Hz, nor spectral
peak of the HFE predictor around 70-75 Hz. Thus, the 80-90 Hz oscillation could be driven by

properties of the auditory system rather than stimulus features. The EEG FFR to triangle waves
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can show oscillatory peaks at 80-90 Hz (Tichko and Skoe, 2017). Auditory steady state response
(ASSR) studies also provide evidence for strong phase locked responses at harmonics of 40 Hz
(Ross et al., 2000; Schoonhoven et al., 2003), which could be a contributing factor in the bias in
TRF responses towards 80 Hz.

4.5 Right lateralization of responses

The TRF model prediction accuracy was significantly right lateralized in younger subjects. Lack
of significant right lateralization among older subjects may not indicate an age related
lateralization difference, but rather a lack of statistical power, since the lateralization was not
significantly different across age groups. Stronger responses in the right auditory cortex have been
observed for ASSR using EEG (Ross et al., 2005) and MEG (Hertrich et al., 2004) as well as in
cortical FFRs using MEG (Coffey et al., 2016). This agrees with prior studies showing that right
auditory cortex is specialized for tonal processing and pitch resolution (Cha et al., 2016; Hyde et

al., 2008; Zatorre, 1988).

4.6 Absence of age-related differences

Temporal precision and synchronized activity decreases in the auditory system with age and is
characterized by age related differences in both subcortical and cortical responses. Older adults
have subcortical FFR responses with smaller amplitudes, longer latencies and reduced phase
coherence, which could be due to an excitation-inhibition imbalance or a lack of neural synchrony
(Hornickel et al., 2012). In contrast, MEG studies have revealed that older adults have larger low
frequency cortical responses that result in better prediction accuracy for reverse correlation
methods (Decruy et al., 2019; Presacco et al., 2016a, 2016b). This opposite effect could be due to
cortical compensatory central mechanisms, lack of inhibition or recruitment of additional neural
areas for redundant processing (Brodbeck et al., 2018b). Contrary to both these cases, we found
no significant age-related differences in high frequency cortical responses. In fact, both Bayes
factor analysis and an ANOVA with factors TRF frequency and age (see Appendix) provided
evidence that this was not merely due to a lack of statistical power, suggesting that older and
younger adults have similar high frequency responses. Although the TRFs averaged across
subjects seemed larger for younger adults on visual inspection, this effect is largely driven by two

outlier younger subjects with very large responses, and does not reflect the population as a whole.
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The high frequency TRF reflects fine-grained time-locked neural activity, similar to the subcortical
FFR, but arising from cortical areas. It is possible that the exaggerated responses in cortical areas
and the lack of neural synchrony at high frequencies (found in subcortical FFRs) in older adults
affect their high frequency responses in opposite directions and obscure otherwise detectable age-

related differences.

4.7 Neural mechanisms for the MEG high frequency response

Given that MEG records the aggregate response over a large population of neurons, the specific
origins of high frequency time-locked responses are not readily apparent. It is possible that the
high frequency TRF reflects the effects of several processing stages along the auditory pathway,
similar to the FFR (Coffey et al., 2019). Electrocorticography (ECoG) studies have seen cortical
phase-locked activity at these high rates (Nourski et al., 2014; Steinschneider et al., 2013).
However, cortical phase-locking at the individual neuron level drastically reduces with increasing
frequency (Lu et al., 2001), and hence cortical neurons may not be the sole contributor to these

high frequency responses.

Such phase locked auditory activity is also compatible with the spiking output of the Medial
Geniculate Body (MGB) (Miller et al., 2002), which are inputs to early auditory cortical areas. The
MEG signal is dominantly driven by dendritic currents (similar to the Local Field Potential)
(Hadmaéldinen et al., 1993), and hence these high frequency responses may be due to the inputs from
the MGB into auditory cortex. Prior work has shown that auditory cortex is able to transiently
time-lock to continuous acoustic features with surprisingly high temporal precision (Elhilali,
2004). Time-locked inputs from MGB may provide a neural substrate for such precise transient
temporal locking to stimulus features. Direct correspondences with age-related changes in
thalamus from animal work are limited (Caspary and Llano, 2019), and hence it is unclear if time-
locked high frequency spiking activity in MGB animal models would be similar across age.
However, invasive neural recordings could help to disentangle the opposite effects of aging in the
brainstem and the cortex seen with M/EEG, leading to a better understanding of time-locked

responses in the aging auditory pathway.
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5. Conclusion

In this study, we found time-locked responses to continuous speech, using MEG, that localize to
auditory cortex, occur with a peak latency of approximately 40 ms, and are stronger in the right
hemisphere. The response function oscillates at approximately 80-90 Hz, which is well below the
fundamental frequency of the speech stimulus, and is predominantly driven by the variations in
the high frequency envelope of the stimulus. Such high frequency time-locked responses may
possibly be due to thalamic inputs to cortical neurons. Because MEG is more sensitive to cortical
sources, it may be able to cleanly detect cortical responses that, in EEG, are strongly mixed with
subcortical responses. Furthermore, there were no significant age-related differences in these high
frequency responses, unlike in both the low frequency cortical TRFs or the subcortical FFRs.
Hence both the neural origin and the frequency domain must be considered when investigating

age-related changes in the auditory system.
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Appendix

Surface source space TRF methods and results

Surface source space estimation was performed using the ‘ico-4’ source space, which consists of
a fourfold icosahedral subdivision of the white matter surface of the brain with dipoles oriented
normal to the surface. The ‘aparc’ parcellation was used to select dipoles in the temporal lobe for
further analysis. In this surface source space analysis, current dipoles have a fixed orientation
normal to the surface, and hence the TRF consists only of signed scalar amplitude variations with
time. The Pearson correlation between the actual and predicted neural response was used as a
measure of prediction accuracy for each neural source. For statistical tests, the TRFs and the
correlation values were first rectified and then spatially smoothed using a Gaussian window with
a standard deviation of 5 mm. The rectified, smoothed TRF of the true model was compared to the
average of that of the three noise models using the same one tailed test with paired sample #-values

and the TFCE procedure outlined in Methods.

Lateralization tests were performed to check for hemispheric asymmetry. The correlation values
at each neural source in both left and right hemisphere were morphed onto the right hemisphere of
the ‘fsaverage sym’ brain as described in (Brodbeck et al., 2018a). This brain model is symmetric
in left and right hemispheres, allowing for comparisons between corresponding neural sources in
both hemispheres. As before, these correlation coefficients were spatially smoothed using the same
Gaussian window. After morphing, the correlation values of the average noise model were
subtracted from that of the true model and a two-tailed test with paired sample #-values and TFCE
was used to assess for significant differences in each of the corresponding left and right current

dipoles.

TRFs were estimated using the cortical surface source space for neural sources in the temporal
lobe, using both the HFE and the carrier predictors in a competing model. Both predictors were
time-shifted to generate noise models. All surface space results were similar to volume source
space results. The prediction accuracies and TRFs are shown in Fig. A1, Fig. A2. The prediction
accuracies were right lateralized but only in younger subjects (tmax = 4.12, p = 0.023). The TRFs
showed a significant response in the range of 24-62 ms for the HFE and 34-47 ms for the carrier.

The HFE TRF was stronger than the carrier TRF using the same tests as in the volume source
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space (younger tmax = 8.63, p < 0.001; older tmax = 4.94, p < 0.001). There were no age-related
differences in surface source space analyses (prediction accuracy tmax = 2.59, tmin =-1.66, p > 0.35;
maximum amplitude of HFE TRF tmax = 3.53, tmin =-3.71, p > 0.69; maximum amplitude of carrier

TREF tmax = 3.71, tmin = -3.64, p > 0.18).

In addition, low frequency TRFs were also estimated to compare age-related differences in both
frequency domains. The stimulus representation for this model was the Hilbert envelope of the
speech waveform filtered at 1-10 Hz with a logarithmic nonlinearity applied. The MEG data was
also filtered at 1-10 Hz and TRFs were estimated using the surface source space. The resulting
TRFs were as expected from prior work (Brodbeck et al., 2018b), with older subjects showing
significantly higher reconstruction accuracies (tmax = 0.93, tmin=-3.45, p = 0.022). The increase in
model prediction accuracies above the noise, for the high frequency TRF and the low frequency
TRF were averaged across neural sources per subject, and a TRF frequency by age ANOVA was
performed. Results indicated a significant main effect of TRF frequency (F(13s) = 125.94, p <
0.001) and interaction of TRF frequency x age (F(1,38) = 7.52, p = 0.009) but no main effect of age
(Fa38)=2.26, p=0.141). This suggests that age-related changes are not consistent across low and
high frequency responses, agreeing with all the above results in support of the null hypothesis that

there are no age-related differences in high frequency cortical responses.
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Fig. A1. Prediction Accuracy of Surface Source Space TRFs. Pearson correlation coefticients between the actual
and predicted response using the TRF model for each source in the surface source space ROI averaged across
subjects. Only the voxels showing a significant increase in prediction accuracy over the noise model are plotted.
Although most neural sources are significantly predictive, the actual prediction accuracy values are larger in
areas near core auditory cortex. One region in auditory cortex is significantly more predictive in the right

hemisphere than the left, but only in younger subjects.
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Fig. A2. Surface Space Source Localized TRFs. The TRF's for the competing model for both predictors averaged
across subjects and masked by significance against the noise model. Unlike the volume source space, the surface
source space comprises of current dipoles with fixed orientation normal to the cortical surface. The signed
magnitudes of these fixed direction dipoles are plotted, allowing for positive and negative values for outward
and inward directions. The distribution of current dipoles in the temporal lobe ROI at the peak of the response

is shown as an inset (orange: positive, purple: negative).
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