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Abstract 
Neural processing along the ascending auditory pathway is often associated with a progressive 

reduction in characteristic processing rates. For instance, the well-known frequency-following 

response (FFR) of the auditory midbrain, as measured with electroencephalography (EEG), is 

dominated by frequencies from ~100 Hz to several hundred Hz, phase-locking to the stimulus 

waveform at those frequencies. In contrast, cortical responses, whether measured by EEG or 

magnetoencephalography (MEG), are typically characterized by frequencies of a few Hz to a few 

tens of Hz, time-locking to acoustic envelope features.  In this study we investigated a crossover, 

cortically generated responses time-locked to continuous speech features at FFR-like rates. Using 

MEG, we analyzed high-frequency responses (70-300 Hz) to continuous speech using neural 

source-localized reverse correlation and its corresponding temporal response functions (TRFs). 

Continuous speech stimuli were presented to 40 subjects (17 younger, 23 older adults) with 

clinically normal hearing and their MEG responses were analyzed in the 70-300 Hz band. 

Consistent with the insensitivity of MEG to many subcortical structures, the spatiotemporal profile 

of these response components indicated a purely cortical origin with ~40 ms peak latency and a 

right hemisphere bias. TRF analysis was performed using two separate aspects of the speech 

stimuli: a) the 70-300 Hz band of the speech waveform itself, and b) the 70-300 Hz temporal 

modulations in the high frequency envelope (300-4000 Hz) of the speech stimulus. The response 

was dominantly driven by the high frequency envelope, with a much weaker contribution from the 

waveform (carrier) itself. Age-related differences were also analyzed to investigate a reversal 

previously seen along the ascending auditory pathway, whereby older listeners show weaker 

midbrain FFR responses than younger listeners, but, paradoxically, have stronger cortical low 

frequency responses. In contrast to both these earlier results, this study does not find clear age-

related differences in high frequency cortical responses. Finally, these results suggest that EEG 

high (FFR-like) frequency responses have distinct and separable contributions from both 

subcortical and cortical sources. Cortical responses at FFR-like frequencies share some properties 

with midbrain responses at the same frequencies and with cortical responses at much lower 

frequencies. 
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Highlights 
• Cortical MEG responses time-lock at 80-90 Hz to continuous speech. 

• Responses are predominantly time-locked to the high frequency envelope of speech. 

• Response strength and latency are similar for younger and older subjects. 

 

1. Introduction 
The human auditory system time-locks to acoustic features of complex sounds, such as speech, 

as it extracts and encodes relevant information. The characteristic frequency of such time-locked 

activity is generally thought to decrease along the ascending auditory pathway. For example, 

subcortical high frequency activity may encode the pitch information of voiced speech (Krishnan 

et al., 2004), while cortical low frequency activity, which time-locks to the slowly varying 

envelope of speech, may represent higher level features of language such as phoneme and word 

boundaries (Brodbeck et al., 2018a). Prior research has also shown that age-related auditory 

temporal processing deficits result in differences in both subcortical and cortical processing for 

older and younger listeners (Anderson et al., 2012; Presacco et al., 2016a, 2016b). These effects 

have been investigated in human subjects using the complementary non-invasive neural 

recording techniques of electroencephalography (EEG) and magnetoencephalography (MEG). 

 

The well-known frequency following response (FFR) is one such phase-locked response (Kraus et 

al., 2017), most commonly measured using EEG, and is believed to originate predominantly from 

the auditory midbrain (Bidelman, 2015; Smith et al., 1975). The FFR measures the phase-locked 

response to the fast steady state oscillation of a stimulus, such as a repeated speech syllable. The 

FFR provides insight into the peripheral representation of speech and is a useful tool for 

investigating temporal processing deficits (Basu et al., 2010; Hornickel et al., 2012; Kraus et al., 

2017). In addition, the FFR may be used to investigate the robustness of speech representations in 

noise or a dual stream paradigm (Yellamsetty and Bidelman, 2019). Much FFR analysis is done 
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by averaging responses to stimuli of opposite polarity, in which case the response is actually to the 

envelope of the stimulus. However the FFR to the stimulus spectrum itself (also called fine-

structure) can also be analyzed, e.g., by subtracting responses to stimuli of opposite polarity (Aiken 

and Picton, 2008; Hornickel et al., 2012). These studies show that high frequency neural responses 

are sensitive to both the high frequency envelope of the stimulus, and to its carrier. 

 

The neural origins of the FFR have historically been thought to be mainly subcortical areas such 

as the inferior colliculus (Smith et al., 1975). But recent studies with MEG and EEG have shown 

that the FFR is not purely generated by subcortical areas, but has contributions from the auditory 

cortex as well (Bidelman, 2018; Coffey et al., 2017b, 2017a, 2016; Hartmann and Weisz, 2019; 

Puschmann et al., 2019). The dominantly cortical role in the MEG response follows from MEG’s 

reduced sensitivity to deep structures such as the auditory midbrain (Baillet, 2017).  

 

However, the repeated speech syllables commonly used to generate the FFR cannot capture the 

complexities of natural continuous speech. To understand how the brain represents speech in 

naturalistic environments, cortical low frequency responses to continuous speech have been widely 

studied (Peelle et al., 2013). The MEG and EEG response to continuous speech can be represented 

using Temporal Response Functions (TRFs) (Ding and Simon, 2012; Lalor et al., 2009) which are 

linear estimates of time-locked responses to time varying features of the auditory stimulus. The 

conventional low-frequency TRF time-locks to the slow (below 10 Hz) envelope of continuous 

speech, though the spectrotemporal fine structure of speech can also modulate these cortical low 

frequency responses (Ding et al., 2014; Ding and Simon, 2012).  

 

Recently, short latency subcortical EEG responses to continuous speech have been found using 

TRF analysis (Maddox and Lee, 2018), proving that it is possible to detect midbrain responses to 

continuous speech. High frequency early latency responses that phase lock to the fundamental 

frequency of speech have also been found to be modulated by attention (Forte et al., 2017). One 

study has also found cortical high frequency MEG responses to speech stimuli, with latencies near 

30 ms, that are time-locked to the ~100 Hz variations in the envelope of the even higher frequency 

speech spectrum (up to 2 kHz) (Hertrich et al., 2012). This can be seen as analogous to traditional 

FFR which follows the envelope of the fundamental frequency. As discussed above, EEG FFR has 
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also been found for the spectral carrier. Whether auditory cortex time-locks to the carrier as well 

as to the high frequency envelope (HFE) of continuous speech remains unclear. 

 

Further complicating our understanding of the contributions of subcortical and cortical sources to 

the MEG response is the impact of age-related changes in the auditory pathway (Peelle and 

Wingfield, 2016). The temporal processing of speech can degrade with age, especially in noisy 

conditions (Gordon-Salant et al., 2006; He et al., 2008; Hopkins and Moore, 2011). Age-related 

differences have been found in both the EEG FFR and the MEG low frequency TRF to speech. 

Older adults have weaker, delayed FFRs with lower phase coherence when compared with younger 

adults (Anderson et al., 2012; Presacco et al., 2015; Zan et al., 2019). Possible causes include age-

related inhibition-excitation imbalance (Caspary et al., 2008) resulting in a loss of temporal 

precision (Anderson et al., 2012). In surprising contrast, older adults’ cortex exhibits exaggerated 

low frequency responses (Brodbeck et al., 2018b), even to the point of allowing better stimulus 

reconstruction via these low frequency cortical responses than in younger adults (Presacco et al., 

2016a, 2016b). Several possible explanations, not necessarily exclusive, have been advanced to 

account for this surprising result, including decrease in inhibition, recruitment of additional brain 

regions and central compensatory mechanisms (Brodbeck et al., 2018b; Decruy et al., 2019). The 

fact that fast midbrain responses reduce with age while slow cortical responses are enhanced might 

indeed be due to anatomical and physiological differences between midbrain and cortex, but a fair 

comparison is complicated by the fact that the responses occur at vastly different frequencies. 

Hence it is entirely unknown whether high frequency cortical responses would show age-related 

reduction or enhancement. 

 

In this study we focused on three main questions. Firstly, do high frequency time-locked MEG 

responses to continuous speech in the human auditory system originate from cortical or subcortical 

areas? Secondly, are these responses time-locked to the carrier or to the HFE of the speech 

stimulus? Thirdly, are there any age-related differences in these responses, and if so, do they show 

age-related decrease, like the EEG FFR, or show age-related increase, like the low frequency TRF? 

To this end, we analyzed source localized MEG recordings of younger and older subjects listening 

to continuous speech (narration by a male speaker). We estimated TRF models, for both the HFE 
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and the carrier, and used neural volume source localization to investigate the nature and origin of 

these high frequency responses. 

 

 

2. Methods 
2.1 Experiment dataset 

The experimental dataset used for this study is described in detail in Presacco et al., 2016a, 2016b, 

supplemented with eight additional older adults with clinically normal hearing. The combined 

dataset consisted of MEG responses recorded from 17 younger adults (age 18-27, mean 22.3, 3 

male) and 23 older adults (age 61-78, mean 67.2, 8 male) with clinically normal hearing while they 

listened to 60 second portions of an audiobook recording of The Legend of Sleepy Hollow by 

Washington Irving (https://librivox.org/the-legend-of-sleepy-hollow-by-washington-irving). All 

participants gave informed consent and were paid for their time. Experimental procedures were 

reviewed and approved the Institutional Review Board of the University of Maryland. The audio 

was delivered diotically through 50 W sound tubing (E-A-RTONE 3A) attached to E-A-RLINK 

foam earphones inserted into the ear canal at ~70 dB sound pressure level via a sound system with 

flat transfer function from 40 to 3000 Hz. The conditions analyzed in this study consist of two 

passages of 60 seconds duration presented in quiet (i.e., solo speaker), each of which was repeated 

three times, for a total of six minutes of MEG data per subject. Subjects were asked beforehand to 

silently count the number of occurrences of a particular word and report it to the experimenter at 

the conclusion of each trial, in order to encourage attention to the auditory stimuli. Handedness of 

the participants was assessed with the Edinburgh handedness scale (Oldfield, 1971), which can 

range from –1 (complete left-dominance) to 1 (complete right-dominance). To exclude 

lateralization bias due to handedness, all analyses were rerun excluding the 9 subjects scoring 

below 0.5. The only change in the results was a reduction in the number of neural sources showing 

right hemispheric dominance in younger subjects (discussed below). 

 

2.2 MEG data collection and preprocessing 

MEG data was recorded from a 157 axial gradiometer whole head KIT MEG system while subjects 

were resting in supine position in a magnetically shielded room. The data was recorded at a 

sampling rate of 1 kHz with an online 200 Hz low pass filter with a wide transition band, and a 60 
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Hz notch filter. Data was preprocessed in MATLAB by first automatically excluding saturating 

channels and then applying time-shift principal component analysis (de Cheveigné and Simon, 

2007) to remove external noise, and sensor noise suppression (de Cheveigné and Simon, 2008) to 

suppress channel artifacts. On average, two MEG channels were excluded during these stages. All 

subsequent analysis was performed in mne-python 0.17.0 (Gramfort, 2013; Gramfort et al., 2014) 

and eelbrain 0.30 (Brodbeck et al., 2019). The MEG data was filtered in the band 70-300 Hz (high 

gamma band) using an FIR filter, and six 60 second epochs during which the stimulus was 

presented were extracted for analysis.  

 

2.3 Stimulus Representation 

As discussed above, prior work on the FFR has shown that time-locked neural responses are 

sensitive to both the carrier and the envelope of an auditory stimulus. Similarly, time-locked 

responses to speech in the 100 Hz range may be driven either by ~100 Hz modulations in the 

waveform (carrier), or by ~100 Hz modulations in the envelope of even higher frequencies. 

Accordingly, two distinct representations of the speech stimulus were used as predictors for the 

TRF model (see Fig. 1A). For the former case, the carrier predictor was constructed by 

downsampling the speech waveform to 1 kHz and bandpass filtering from 70-300 Hz. This carrier 

predictor captures the 70-300 Hz modulations in the speech waveform itself. For the latter case, 

the HFE predictor was constructed from the ~100 Hz modulations in the envelope of the 

highpassed stimulus waveform (envelopes are only well-defined when they modulate carriers of 

much higher frequencies than those of the modulations themselves; Rosen, 1992). Specifically, 

first the speech was transformed into an auditory spectrogram representation by computing the 

acoustic energy in the speech waveform for each frequency bin in the range 300-4000 Hz at 

millisecond resolution using  a model of the auditory periphery (Yang et al., 1992). This auditory 

spectrogram is a 2-dimensional matrix representation of the acoustic envelope over time for 

different frequency bins. Each frequency bin component of this spectrogram was then filtered 

using the same 70-300 Hz bandpass filter, producing a 70-300 Hz band limited envelope for each 

bin. Finally the resulting 2-dimensional matrix was averaged across frequency bins to provide a 

single envelope, resulting in the HFE predictor. Thus, this predictor captures the 70-300 Hz 

modulations in the 300-4000 Hz envelope of the speech waveform.  These two predictors were 

used for all further TRF analysis. 
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The 70-300 Hz bandpass filter was formed using the default FIR filter in mne-python with an 

upper and lower transition bandwidth of 10 Hz, at 1 kHz sampling frequency, but applied twice in 

a forward fashion to the data. This resulted in a combined filter of length 661 with a phase delay 

of 330 ms. Other bandpass filters were also employed as alternatives, including IIR minimum-

phase-delay Bessel filters (results not shown); no results depended critically on the filters used. 

 
Fig. 1. Stimulus Representations and ROIs. A. The stimulus waveform for a representative 500 ms speech 

segment is shown along with its auditory spectrogram and the two predictors: carrier and HFE. The predictors 

are correlated (Pearson’s r = -0.16) but have noticeably distinct waveforms. B. Regions of Interest. The volume 

source space voxels for the cortical and subcortical ROIs are shown. 
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2.4 Neural Source localization 

Before each MEG recording, the head shape of each subject was digitized using a Polhemus 

3SPACE FASTRAK system, after which five marker coils were attached. The marker coil 

locations were measured while the subject’s head was positioned in the MEG scanner before and 

after the experiment, in order to determine the position of the head with respect to the MEG 

sensors. Source localization was performed using the mne-python software package. The marker 

coil locations and the digitized head shape were used to coregister the template Freesurfer 

‘fsaverage’ brain (Fischl, 2012) using rotation, translation and uniform scaling. A volume source 

space was formed by dividing the brain volume into a grid of 7 mm sized voxels. This source space 

was used to compute an inverse operator using minimum norm estimation (MNE) (Gramfort et al., 

2014) with a noise covariance matrix estimated from empty room data. This method results in a 3-

dimensional current dipole vector with magnitude and direction at each voxel. The ‘aparc+aseg’ 

parcellation was used to define cortical and subcortical regions of interest (ROIs) (see Fig. 1B). 

The cortical ROI consisted of voxels in the gray and white matter of the brain that were closest to 

the temporal lobe parcellations. The subcortical ROI was selected to consist of voxels that were 

closest to the ‘Brain-Stem’ parcellation. All brain plots show the maximum intensity projection of 

the voxels onto a 2-dimensional plane, with an overlaid average brain outline (implemented in 

eelbrain). Minimum norm estimation in volume source space may lead to spatial leakage from the 

true neural source to neighboring voxels. In order to characterize this artifactual spatial leakage, 

current dipoles in Heschl’s gyrus were simulated using the surface source space, projected into 

sensor space, and then projected into volume source space. Additionally, a separate cortical surface 

source space model was also used; results obtained using this method were not qualitatively 

different than those of the volume space model (see Appendix). 

 

2.5 Temporal Response Functions 

The simplest linear model used to estimate the TRF is given by 

 

 𝑦" = 	%(𝜏(𝑥"*(
(

) + 𝑛" (1) 

where 𝑦" is the response at a neural source for time 𝑡, 𝑥"*( is the time shifted predictor with a time 

lag of 𝑑, 𝜏( is the TRF value at lag 𝑑 and 𝑛"	is the residual noise. The TRF is the time-dependent 
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weight, of a linear combination of current and past samples of the predictor, that best predicts the 

current neural response at that neural source (Lalor et al., 2009). Hence the TRF can also be 

interpreted as the average time-locked response to a predictor impulse. In this work, a TRF model 

with two predictors, HFE and carrier, was used.  

𝑦" = 	%(𝜏0,(𝑒"*( + 𝜏3,(𝑐"*()
(

+ 𝑛" (2) 

Where 𝑒"*( is the delayed HFE (envelope) predictor and 𝜏0,( the corresponding HFE TRF, 𝑐"*(  

is the delayed carrier predictor and 𝜏3,( the corresponding carrier TRF. In this model, the two 

predictors compete against each other to explain response variance, which results in larger TRFs 

for predictors that contribute more to the neural response. TRF estimation, for lags from -40 to 200 

ms, was performed with the boosting algorithm and early stopping based on cross validation 

(David et al., 2007) as implemented in eelbrain. The boosting algorithm may result in overly sparse 

TRFs, and hence an overlapping basis of 4 ms width Hamming windows (spaced 1 ms apart) was 

used in order to generate smoothly varying responses. For the volume source space, the neural 

response at each voxel is a 3-dimensional current vector. Accordingly, for each voxel, a TRF vector 

was computed using the boosting algorithm and was used to predict the neural response vector. 

For each voxel, the prediction accuracy was assessed through the average dot product between the 

normalized predicted and true response, which varies between zero and one in analogy to the 

Pearson correlation coefficient. 

 

2.6 Statistical tests 

Statistical tests were performed across subjects by comparing the TRF model to a noise model. 

The predictor was circularly shifted in time and TRFs were estimated using this time-shifted 

predictor as noise models (Brodbeck et al., 2018a, 2018b). This preserves the local temporal 

structure of the predictor while removing the temporal relationship between the predictor and the 

response. Circular shifts of duration 15, 30 and 45 seconds were used to form three noise models. 

For each voxel, the prediction accuracies of the true model were compared to the average 

prediction accuracies of the three noise models as a measure of model fit.  

 

To account for variability in neural source locations due to mapping the responses of individual 

subjects onto the ‘fsaverage’ brain, these coefficients were spatially smoothed using a Gaussian 
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window with 5 mm standard deviation. Nonparametric permutation tests (Nichols and Holmes, 

2002) and Threshold Free Cluster Enhancement (TFCE) (Smith and Nichols, 2009) were used to 

control for multiple comparisons. This method, as outlined in full in Brodbeck et al. (2018c, 

2018a), is implemented in eelbrain, and is briefly recounted here. Firstly, a paired sample t-value 

was evaluated for each neural source, across subjects, from the difference of the prediction 

accuracies of the true model and the average of the three noise models after rescaling using Fisher’s 

z-transform. Then the TFCE algorithm was applied to those t-values, which enhanced continuous 

clusters of large values, based on the assumption that significant neural activity would have a larger 

spatial spread than spurious noise peaks. This procedure was repeated 10,000 times with random 

permutations of the data where the labels of the condition were flipped on a randomly selected 

subset of the subjects. A distribution of TFCE values was formed using the maximum TFCE value 

of each permutation to correct for multiple comparisons across the brain volume. Any value of the 

original TFCE map that exceeded the 95th percentile of the distribution was considered as 

significant at the 5% significance level. 

 

The TRF itself was also tested for significance against the noise model in a similar manner. In the 

volume source space, a TRF that consists of a 3-dimensional vector which varies with time was 

estimated for each voxel, representing the estimated current dipole amplitude and direction at that 

voxel. The amplitudes of these TRF vectors for the true model and the average noise model were 

used for significance testing. The TRF amplitudes were spatially smoothed using the same 

Gaussian window before performing the tests. A one-tailed test was done with paired sample t-

values and TFCE, and the procedure is identical to that outlined previously, with the added 

dimension of time (Brodbeck et al., 2018a).  

 

Lateralization tests were performed to check for hemispheric asymmetry. The volume source space 

estimates in the cortical ROI were separated into left and right hemispheres and, as above, the 

prediction accuracies were spatially smoothed with the same Gaussian window. The prediction 

accuracies of the average noise model were subtracted from that of the true model and paired 

sample t-values with TFCE in a two-tailed test were used to test for significant differences between 

each of the corresponding left and right voxels.  
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Age-related differences were assessed between the younger and older groups. The difference of 

prediction accuracies between the true TRF model and the average of the noise TRF models were 

used to form independent sample t-values for each source across age groups after which a two-

tailed test was performed with TFCE. Significant differences in lateralization across age groups 

were assessed by subtracting the prediction accuracies of the left hemisphere from the right 

hemisphere and then conducting independent samples tests across age groups as described above. 

The peak latency of the TRFs was also tested for significant differences across age groups. The 

latency of the maximum value of the norm of the TRF vectors in the time range of significant 

responses (20-70 ms) was used to test for peak latency differences across age groups using a two-

tailed test with independent sample t-values and TFCE.  

 

In addition, to investigate possible evidence in favor of the null hypothesis (i.e., in support of the 

hypothesis that there are no age-related differences), Bayes factor analysis was performed. The 

Bayes factor	𝐵𝐹78 is the ratio of the likelihood of the observations given the null and the alternative 

hypothesis; 𝐵𝐹78 = 	
9(:|<=)
9(:|<>)

	 where 𝐷 is the set of observations, and 𝐻7,𝐻8 are the null and 

alternative hypotheses. Assuming that 𝐻7 and 𝐻8 are equiprobable (𝑃(𝐻7) = 𝑃(𝐻8)), the posterior 

odds reduce to the Bayes factor:  

𝑃(𝐻7|𝐷)
𝑃(𝐻8|𝐷)

=
𝑃(𝐷|𝐻7)𝑃(𝐻7)
𝑃(𝐷|𝐻8)𝑃(𝐻8)

= 𝐵𝐹78
𝑃(𝐻7)
𝑃(𝐻8)

= 𝐵𝐹78 (3) 

For example, 𝐵𝐹78 = 10 would indicate that, given the data, the null hypothesis is 10 times more 

probable than the alternative, whereas 𝐵𝐹78 = 0.1 would indicate that the alternative is 10 times 

more probable than the null. 𝐵𝐹78 > 3 is considered to indicate moderate support for the null 

hypothesis (Jarosz and Wiley, 2014). The model prediction accuracy for the competing model was 

averaged across sources for each subject and a two-tailed independent sample t-value was 

calculated for the older and younger subjects. The method described in Rouder et al., 2009 was 

used to transform this t-value into a Bayes factor. To further test for significant differences by age 

across both low frequency and high frequency responses, two further models were analyzed; a low 

frequency TRF and a high frequency TRF using surface source space. An ANOVA was performed 

on the prediction accuracies of these two models with factors TRF frequency (high or low) and 

age (young or old) (methods and results in Appendix). 
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3. Results 
3.1 Cortical origins of high frequency responses to continuous speech 

High frequency responses were used to estimate per-voxel TRFs in volume source space for the 

two ROIs: the temporal lobes, and the brainstem (plus its surrounding volume). The prediction 

accuracies of high-frequency responses  (mean = 0.02, std = 0.005) were much smaller (factor of 

3) than those resulting from low frequency cortical TRFs (Brodbeck et al., 2018a), indicating that 

these responses are weaker than slow cortical responses. This is not surprising, as the spectrum of 

the MEG response decays with frequency. Noise floor models, used to test for significant 

responses, generated corresponding noise model prediction accuracies (mean = 0.0138, std = 

0.0016). For each voxel, a one-tailed test with paired sample t-values and TFCE (to account for 

multiple comparisons) was used to test for significant increases in the prediction accuracies of the 

true model against the noise model across subjects. Almost all of the voxels showed a significant 

increase in prediction accuracy (younger subjects tmax = 6.95, p < 0.001; older subjects tmax = 6.35, 

p < 0.001; see Fig. 2A).  The disproportionate success of the extent of this result is not unexpected, 

however, due to the large spatial spread of MNE volume source space estimates. The prediction 

accuracy over the noise model within the cortical ROI was significantly larger than that within the 

subcortical ROI for younger subjects (one-tailed paired sample t-test; younger subjects t = 2.73, p  

= 0.007; older subjects t = 1.47, p = 0.078; difference across age not significant). 

 

Lateralization differences were tested using the prediction accuracy at each voxel. The prediction 

accuracy of the average noise model was subtracted from that of the true model and a two-tailed 

test with paired sample t-values and TFCE was performed for significant differences in the left 

and right hemispheres. The tests revealed significantly higher prediction accuracies for younger 

subjects in the right hemisphere than in the left (tmax = 6.28, p < 0.01), but only for a subset of 

voxels (24%) in the temporal lobe closest to auditory areas (see Fig. 2B). No significant differences 

in lateralization were seen for older subjects (tmin = -2.01, tmax = 3.34, p > 0.097), nor was 

lateralization significantly different across age groups (independent samples test; tmin = -2.77, tmax 

= 1.7, p > 0.33). When the analysis was constrained to only right-handed subjects (13 younger, 18 

older; see Methods for details), the only resulting change was that a lower number of voxels were 

significantly right lateralized in younger subjects. 
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Fig. 2. Prediction Accuracy of Volume Source Localized TRFs. A. Prediction accuracy using the TRF model 

for each voxel in the volume source space ROIs averaged across subjects. Only ROI voxels for which model 

prediction accuracy significantly increased over the noise model are plotted (p < 0.05). The prediction accuracy 

is significantly larger in cortical areas than in subcortical areas for the younger subjects. Plots are of the 

maximum intensity projection, with an overlay of the brain. B. An area in the right hemisphere near the auditory 

cortex is significantly more predictive than the left hemisphere, but only in the younger subjects. When taking 

into account expected MEG volume source localization leakage, these results are consistent with the response 

originating solely from cortical areas and with a right hemispheric bias. 

 

The TRFs at each source voxel are represented by a 3-dimensional current vector that varies over 

the time lags. Hence for each voxel and time lag, the amplitude of the TRF vector for the true 

model was tested for significance against the average of the noise models across subjects using a 

one-tailed test with paired sample t-values and TFCE. The TRFs for the HFE predictor in the 

cortical ROI were significant (younger tmax = 4.89, p < 0.001; older tmax = 4.54, p < 0.001) starting 
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at a time lag of 24 ms, and ending at 62 ms, with an average peak latency of 40 ms (see Fig. 3A). 

The subcortical ROI was also analyzed in a similar manner and the TRF showed significance in a 

much smaller time range of 36-45 ms (younger tmax = 3.68, p < 0.01; older tmax = 3.43, p < 0.01) 

(see Fig 3B). Although the average TRF of the younger subjects has larger amplitude than the 

older subjects, this difference is not significant (cortical ROI tmax = 3.81, tmin = -3.87, p > 0.56; 

subcortical ROI tmax = 3.71, tmin = -3.24, p > 0.56), and is mainly driven by two individuals in the 

younger age group. The TRF responses oscillate at a frequency of 80-90 Hz (see below for a more 

detailed spectral analysis). The amplitude of these TRFs was significantly larger in the cortical 

ROI than the subcortical ROI (two-tailed test with paired sample t-values on the maximum 

amplitudes of the TRFs across subjects: younger t = 5.47, p < 0.001; older t = 6.21, p < 0.001). 

Since the subcortical TRFs also have a similar latency and shape to the cortical TRFs, and because 

a latency of 40 ms is late for a subcortical response, these subcortical TRFs are consistent with 

artifactual leakage from the cortical TRFs due to the spatial spread of MNE source localization. 

Simulated volume source estimates for current dipoles originating only in Heschl’s gyrus 

generated a spatial distribution of TRF directions consistent with the experimental data (see Fig. 

3), i.e. the spatial spread of MNE localized cortical responses resulted in apparent TRF vectors 

even in the subcortical ROI. These results seem to indicate that the response originates 

predominantly from cortical regions.  
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Fig. 3. Volume Source Localized HFE TRFs. The amplitude of the TRF vectors for the HFE predictor averaged 

across subjects. Each individual line in the plots is a TRF for a particular voxel. Color encodes the time points 

when the TRF showed a significant increase in amplitude over noise (blue: significant left hemisphere, red: 

significant right hemisphere, green: significant midline, gray: not significant). The TRF shows a clear response 

with a peak latency of 40 ms. The distribution of TRF vectors in the brain at each voxel at the time with the 

maximum response are plotted as an inset for each TRF, with color representing response strength and the arrows 

representing the TRF directions. The color bar represents the response strength for all 4 brain insets. The response 

oscillates around a frequency of 80-90 Hz and is much stronger in the cortical ROI compared to the subcortical 

ROI. Note that since only the TRF amplitude is shown, and not signed current values, signal troughs and peaks 

both appear as peaks. Although the younger subjects have a stronger average response in the cortical ROI, it is 

not significantly larger than the older subjects (p = 0.56). The latency and amplitude of the response suggests a 

predominantly cortical origin. 

 

3.2 Responses to the HFE and the carrier 

Next, the neural response to the carrier was compared with that to the HFE. The carrier TRF was 

also tested for significance using a corresponding noise model (as employed above). The carrier 

TRF showed weak responses that were only significant for older subjects in the cortical ROI 

between 31-51 ms (tmax = 3.86, p = 0.0014) (see Fig. 4A,B). Two-tailed paired sample t-values and 

TFCE were used to test for a significant increase of the norm of the HFE TRF when compared to 

the carrier TRF in a time window of 20-70 ms in the cortical ROI (see Fig. 5A). This test was 

significant for both younger (tmax = 6.97, p < 0.001) and older (tmax = 4.17, p < 0.006) subjects. 

However, this test did not find a significant increase in the HFE TRF over the carrier TRF in the 

subcortical ROI for either younger (tmax = 1.43, p > 0.46) or older subjects (tmax = 2.66, p > 0.13). 

Since the TRF analysis allows both stimulus predictors to directly compete for explaining response 

variance, the results strongly indicate that the response is primarily due to the HFE over the carrier. 

 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 20, 2019. ; https://doi.org/10.1101/2019.12.19.883314doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.19.883314
http://creativecommons.org/licenses/by-nc/4.0/


 17 

 
Fig. 4. Volume Source Localized Carrier TRFs. The amplitude of the TRF vectors for the carrier predictor 

averaged across subjects, analogous to Fig. 3. For comparison, the axis limits and color scale are identical to that 

in Fig. 3. The TRF shows a weak response, with a peak latency of 40 ms, that is only significant in the cortical 

ROI for older subjects. Comparison with Fig. 3 suggests that the high frequency response is dominated by the 

HFE over the carrier. 

 

To further understand the contributions of these predictors to the TRF, the frequency spectrum of 

the TRFs and the predictors were compared (see Fig. 5B). The frequency spectrum of the average 

TRFs showed a broad peak centered near 80-90 Hz for both predictors and both age groups. In 

contrast, the spectral peak of the predictor variables was near 110-120 Hz for the carrier, and near 

70-75 Hz for the HFE. Since the TRF peak frequency did not match the peak power in either of 

the predictors, this suggests that the TRF oscillatory rate is not directly determined by the stimulus 

spectrum. 

 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 20, 2019. ; https://doi.org/10.1101/2019.12.19.883314doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.19.883314
http://creativecommons.org/licenses/by-nc/4.0/


 18 

 
Fig. 5. Comparison of Responses to the HFE and to the Carrier. A. The norm of the TRF between 20 ms and 70 

ms was larger in the HFE TRF than the carrier TRF for both age groups (*** p < 0.001, ** p < 0.01). B. The 

frequency spectrum of the TRF reveals that the oscillation has a broad peak around 80-90 Hz. However, the 

predictors have peaks at 70-75 Hz (for the HFE) and 110-120 Hz (for the carrier). Although the peak of the HFE 

spectrum is near 70-75 Hz, there is still substantial power in the HFE predictor near 80-90 Hz as well, and 

similarly for the carrier spectrum. This suggests that the TRF response is not locking to the peak frequency of 

the predictor, but to an intrinsic frequency determined internally (neurally) rather than externally. 
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3.3 Age-related differences 

Statistical tests were performed for age-related differences between older and younger subjects on 

both the prediction accuracy and the TRFs. Two tailed tests of prediction accuracy with 

independent sample t-values and TFCE indicated no significant difference (cortical ROI tmax = 

1.64, tmin = -1.8, p > 0.78; subcortical ROI tmax = -0.6, tmin = -1.33, p > 0.42). Similarly, no voxels 

or time points were significantly different in either the HFE TRF (cortical ROI tmax = 3.81, tmin = -

3.87, p > 0.56; subcortical ROI tmax = 3.24, tmin = -3.71, p > 0.56) or the carrier TRF (cortical ROI 

tmax = 3.6, tmin = -3.53, p > 0.9; subcortical ROI tmax = 2.4, tmin = -3.38, p > 0.33). In addition, the 

cortical ROI TRFs showed no significant differences across age groups in peak latency either (HFE 

TRF tmax = 2.23, tmin = -1.86, p > 0.74; carrier TRF tmax = 1.72, tmin = -2.02, p > 0.97). In the above 

analysis, it is unclear if the absence of significance is due to older and younger subjects having 

similar responses, or merely due to a lack of statistical power. Hence a Bayes factor analysis was 

performed on the prediction accuracy by averaging across sources per subject and computing an 

independent sample t-value across age groups. This resulted in a Bayes factor of BF01 = 4.21, and 

hence provides moderate evidence for the null hypothesis, that there are no differences between 

the age groups. An additional analysis was performed using surface source space TRFs as 

described in Appendix. Both high and low frequency TRFs were computed in surface source space, 

and model prediction accuracy was assessed with an ANOVA with factors TRF frequency and 

age. The ANOVA showed a significant frequency ´ age interaction, suggesting that age related 

differences are indeed not consistent across high and low frequency responses (detailed results in 

Appendix), i.e. present at low frequencies but not so for high. 

 

 

4. Discussion 
In this study, we investigated high frequency time-locked responses to continuous speech 

measured using MEG. Volume source localized TRFs provided evidence that these responses 

originated from cortical areas and have a peak response latency of around 40 ms. The responses 

showed a significant right hemispheric asymmetry, especially in core auditory areas. These 

responses oscillate with a frequency of 80-90 Hz, despite the stimulus predictors having maximum 

power outside this frequency range. We also showed that the response is significantly stronger to 
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the HFE than the carrier. Surprisingly, there were no significant age-related differences in response 

amplitude, latency, localization or predictive power. In fact, Bayes factor analysis provided 

moderate support for the null hypothesis, that there is no difference in these responses between 

younger and older adults; this is in contrast to age-related differences seen in both the subcortical 

EEG FFR (younger > older) and the cortical low frequency TRF (older > younger).  

 

4.1 MEG sensitivity to deep structures 

A primary motivation of this study was to investigate the relative contributions of cortical and 

subcortical sources to high frequency time-locked activity. Because of the sensitivity to cortical 

sources as opposed to subcortical, MEG is an ideal tool to investigate if there are cortical 

contributions to the well-known high frequency subcortical responses. MEG is physically 

constrained to be less sensitive to deep structures, typically resulting in subcortical MEG responses 

being up to 100 times weaker than cortical responses at equivalent current strengths (Attal et al., 

2007; Hillebrand and Barnes, 2002). Several source localization techniques have been proposed 

to correct for this inherent bias towards cortical sources (Dale et al., 2000; Krishnaswamy et al., 

2017; Pascual-Marqui, 2002). Some studies were able to resolve MEG responses to the 

hippocampus (Cornwell et al., 2012), insula (Park and Tallon-Baudry, 2014), amygdala 

(Balderston et al., 2014; Cornwell et al., 2008; Dumas et al., 2013) and thalamus (Roux et al., 

2013). Prior work has also been done using MEG for measuring brainstem responses (Coffey et 

al., 2016; Parkkonen et al., 2009). Hence, MEG is technically able to record responses from deep 

structures, although simultaneous cortical responses may overpower them (e.g., in FFR studies). 

However subcortical responses to continuous speech using TRFs should have a much shorter 

latency (< 20 ms) (Maddox and Lee, 2018) than the cortical latencies seen in this work. Therefore, 

the amplitude and latency of our volume source localized TRFs suggest that the high frequency 

response to speech is primarily cortical. 

 

4.2 Cortical FFRs and high frequency TRFs 

Cortical FFRs to repeated single speech syllables have been measured in MEG (Coffey et al., 

2016) and EEG (Bidelman, 2018; Coffey et al., 2017b). Our work shows that cortical TRFs contain 

significant responses up to 64 ms, comparable to the long-lasting explanatory power of the auditory 

cortex ROI in Coffey et al., 2016. These TRFs are also predominantly from auditory cortex, 
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centered around Heschl’s gyrus, and right lateralized similar to the MEG FFR (Coffey et al., 2016). 

However, Bidelman (2018) demonstrated that the contribution of cortical sources to the FFR as 

measured with EEG is much weaker than when measured with MEG, and rapidly decreases for 

stimuli with fundamental frequencies above 100 Hz. In addition, while subcortical FFR is 

measurable with EEG for stimulus frequencies up to 1000 Hz, there were no cortical contributions 

to the FFR above 150 Hz (Bidelman, 2018). This strengthens the idea that MEG and EEG are 

sensitive to different structures in the ascending auditory pathway. Hence MEG can be used in 

conjunction with EEG to explore the hierarchical processing of sound. 

 

4.3 Comparison of responses to the envelope vs. the carrier 

Previous studies have shown that auditory cortex responds to the slow varying envelope of speech 

and is also modulated by the spectrotemporal fine structure of the stimulus (Ding et al., 2014). 

Similarly, the subcortical FFR is typically analyzed by averaging across stimulus presentations of 

opposite polarity, which results in phase-locked responses to the envelope of the fundamental 

frequency. However, subcortical responses to the carrier have also been found by studies that 

distinguish between the traditional envelope FFR and the carrier FFR (which is analyzed by 

subtracting the responses to stimulus presentations of opposite polarity) (Aiken and Picton, 2008). 

Although the EEG FFR follows both the envelope and the carrier, our results indicate that time-

locked high frequency cortical responses to continuous speech are predominantly driven by the 

HFE.  

 

4.4 TRF oscillation frequency not strongly driven by stimulus spectrum 

The TRF response oscillates with a peak frequency around 80-90 Hz. Cortical auditory phase 

locked responses to simple sounds have been measured using MEG (Coffey et al., 2016; Hertrich 

et al., 2004; Schoonhoven et al., 2003) at frequencies of up to 111 Hz. For continuous speech 

stimuli, such phase locked responses could reflect a cortical mechanism that represents complex 

speech features such as modulations in vowel formants, using fluctuations in the fundamental 

frequency domain of natural speech.  However, the frequency of oscillation of the TRF at 80-90 

Hz does not directly reflect the fundamental frequency of the speech at 110-120 Hz, nor spectral 

peak of the HFE predictor around 70-75 Hz. Thus, the 80-90 Hz oscillation could be driven by 

properties of the auditory system rather than stimulus features. The EEG FFR to triangle waves 
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can show oscillatory peaks at 80-90 Hz (Tichko and Skoe, 2017). Auditory steady state response 

(ASSR) studies also provide evidence for strong phase locked responses at harmonics of 40 Hz 

(Ross et al., 2000; Schoonhoven et al., 2003), which could be a contributing factor in the bias in 

TRF responses towards 80 Hz.   

 

4.5 Right lateralization of responses 

The TRF model prediction accuracy was significantly right lateralized in younger subjects. Lack 

of significant right lateralization among older subjects may not indicate an age related 

lateralization difference, but rather a lack of statistical power, since the lateralization was not 

significantly different across age groups. Stronger responses in the right auditory cortex have been 

observed for ASSR using EEG (Ross et al., 2005) and MEG (Hertrich et al., 2004) as well as in 

cortical FFRs using MEG (Coffey et al., 2016). This agrees with prior studies showing that right 

auditory cortex is specialized for tonal processing and pitch resolution (Cha et al., 2016; Hyde et 

al., 2008; Zatorre, 1988).  

 

4.6 Absence of age-related differences 

Temporal precision and synchronized activity decreases in the auditory system with age and is 

characterized by age related differences in both subcortical and cortical responses. Older adults 

have subcortical FFR responses with smaller amplitudes, longer latencies and reduced phase 

coherence, which could be due to an excitation-inhibition imbalance or a lack of neural synchrony 

(Hornickel et al., 2012). In contrast, MEG studies have revealed that older adults have larger low 

frequency cortical responses that result in better prediction accuracy for reverse correlation 

methods (Decruy et al., 2019; Presacco et al., 2016a, 2016b). This opposite effect could be due to 

cortical compensatory central mechanisms, lack of inhibition or recruitment of additional neural 

areas for redundant processing (Brodbeck et al., 2018b). Contrary to both these cases, we found 

no significant age-related differences in high frequency cortical responses. In fact, both Bayes 

factor analysis and an ANOVA with factors TRF frequency and age (see Appendix) provided 

evidence that this was not merely due to a lack of statistical power, suggesting that older and 

younger adults have similar high frequency responses. Although the TRFs averaged across 

subjects seemed larger for younger adults on visual inspection, this effect is largely driven by two 

outlier younger subjects with very large responses, and does not reflect the population as a whole. 
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The high frequency TRF reflects fine-grained time-locked neural activity, similar to the subcortical 

FFR, but arising from cortical areas. It is possible that the exaggerated responses in cortical areas 

and the lack of neural synchrony at high frequencies (found in subcortical FFRs) in older adults 

affect their high frequency responses in opposite directions and obscure otherwise detectable age-

related differences.   

 

4.7 Neural mechanisms for the MEG high frequency response 

Given that MEG records the aggregate response over a large population of neurons, the specific 

origins of high frequency time-locked responses are not readily apparent. It is possible that the 

high frequency TRF reflects the effects of several processing stages along the auditory pathway, 

similar to the FFR (Coffey et al., 2019). Electrocorticography (ECoG) studies have seen cortical 

phase-locked activity at these high rates (Nourski et al., 2014; Steinschneider et al., 2013). 

However, cortical phase-locking at the individual neuron level drastically reduces with increasing 

frequency (Lu et al., 2001), and hence cortical neurons may not be the sole contributor to these 

high frequency responses.  

 

Such phase locked auditory activity is also compatible with the spiking output of the Medial 

Geniculate Body (MGB) (Miller et al., 2002), which are inputs to early auditory cortical areas. The 

MEG signal is dominantly driven by dendritic currents (similar to the Local Field Potential) 

(Hämäläinen et al., 1993), and hence these high frequency responses may be due to the inputs from 

the MGB into auditory cortex. Prior work has shown that auditory cortex is able to transiently 

time-lock to continuous acoustic features with surprisingly high temporal precision (Elhilali, 

2004). Time-locked inputs from MGB may provide a neural substrate for such precise transient 

temporal locking to stimulus features. Direct correspondences with age-related changes in 

thalamus from animal work are limited (Caspary and Llano, 2019), and hence it is unclear if time-

locked high frequency spiking activity in MGB animal models would be similar across age. 

However, invasive neural recordings could help to disentangle the opposite effects of aging in the 

brainstem and the cortex seen with M/EEG, leading to a better understanding of time-locked 

responses in the aging auditory pathway.   
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5. Conclusion 
In this study, we found time-locked responses to continuous speech, using MEG, that localize to 

auditory cortex, occur with a peak latency of approximately 40 ms, and are stronger in the right 

hemisphere. The response function oscillates at approximately 80-90 Hz, which is well below the 

fundamental frequency of the speech stimulus, and is predominantly driven by the variations in 

the high frequency envelope of the stimulus. Such high frequency time-locked responses may 

possibly be due to thalamic inputs to cortical neurons. Because MEG is more sensitive to cortical 

sources, it may be able to cleanly detect cortical responses that, in EEG, are strongly mixed with 

subcortical responses. Furthermore, there were no significant age-related differences in these high 

frequency responses, unlike in both the low frequency cortical TRFs or the subcortical FFRs. 

Hence both the neural origin and the frequency domain must be considered when investigating 

age-related changes in the auditory system. 
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Appendix 
Surface source space TRF methods and results 
Surface source space estimation was performed using the ‘ico-4’ source space, which consists of 

a fourfold icosahedral subdivision of the white matter surface of the brain with dipoles oriented 

normal to the surface. The ‘aparc’ parcellation was used to select dipoles in the temporal lobe for 

further analysis. In this surface source space analysis, current dipoles have a fixed orientation 

normal to the surface, and hence the TRF consists only of signed scalar amplitude variations with 

time. The Pearson correlation between the actual and predicted neural response was used as a 

measure of prediction accuracy for each neural source. For statistical tests, the TRFs and the 

correlation values were first rectified and then spatially smoothed using a Gaussian window with 

a standard deviation of 5 mm. The rectified, smoothed TRF of the true model was compared to the 

average of that of the three noise models using the same one tailed test with paired sample t-values 

and the TFCE procedure outlined in Methods. 

 

Lateralization tests were performed to check for hemispheric asymmetry. The correlation values 

at each neural source in both left and right hemisphere were morphed onto the right hemisphere of 

the ‘fsaverage_sym’ brain as described in (Brodbeck et al., 2018a). This brain model is symmetric 

in left and right hemispheres, allowing for comparisons between corresponding neural sources in 

both hemispheres. As before, these correlation coefficients were spatially smoothed using the same 

Gaussian window. After morphing, the correlation values of the average noise model were 

subtracted from that of the true model and a two-tailed test with paired sample t-values and TFCE 

was used to assess for significant differences in each of the corresponding left and right current 

dipoles.  

 

TRFs were estimated using the cortical surface source space for neural sources in the temporal 

lobe, using both the HFE and the carrier predictors in a competing model. Both predictors were 

time-shifted to generate noise models. All surface space results were similar to volume source 

space results. The prediction accuracies and TRFs are shown in Fig. A1, Fig. A2. The prediction 

accuracies were right lateralized but only in younger subjects (tmax = 4.12, p = 0.023). The TRFs 

showed a significant response in the range of 24-62 ms for the HFE and 34-47 ms for the carrier. 

The HFE TRF was stronger than the carrier TRF using the same tests as in the volume source 
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space (younger tmax = 8.63, p < 0.001; older tmax = 4.94, p < 0.001). There were no age-related 

differences in surface source space analyses (prediction accuracy tmax = 2.59, tmin = -1.66, p > 0.35; 

maximum amplitude of HFE TRF tmax = 3.53, tmin = -3.71, p > 0.69; maximum amplitude of carrier 

TRF tmax = 3.71, tmin = -3.64, p > 0.18). 

 

In addition, low frequency TRFs were also estimated to compare age-related differences in both 

frequency domains. The stimulus representation for this model was the Hilbert envelope of the 

speech waveform filtered at 1-10 Hz with a logarithmic nonlinearity applied. The MEG data was 

also filtered at 1-10 Hz and TRFs were estimated using the surface source space. The resulting 

TRFs were as expected from prior work (Brodbeck et al., 2018b), with older subjects showing 

significantly higher reconstruction accuracies (tmax = 0.93, tmin = -3.45, p = 0.022). The increase in 

model prediction accuracies above the noise, for the high frequency TRF and the low frequency 

TRF were averaged across neural sources per subject, and a TRF frequency by age ANOVA was 

performed. Results indicated a significant main effect of TRF frequency (F(1,38) = 125.94, p < 

0.001) and interaction of TRF frequency x age (F(1,38) = 7.52, p = 0.009) but no main effect of age 

(F(1,38) = 2.26, p = 0.141). This suggests that age-related changes are not consistent across low and 

high frequency responses, agreeing with all the above results in support of the null hypothesis that 

there are no age-related differences in high frequency cortical responses.  

 

 

 

 

 

 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 20, 2019. ; https://doi.org/10.1101/2019.12.19.883314doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.19.883314
http://creativecommons.org/licenses/by-nc/4.0/


 27 

 
 
Fig. A1. Prediction Accuracy of Surface Source Space TRFs. Pearson correlation coefficients between the actual 

and predicted response using the TRF model for each source in the surface source space ROI averaged across 

subjects. Only the voxels showing a significant increase in prediction accuracy over the noise model are plotted. 

Although most neural sources are significantly predictive, the actual prediction accuracy values are larger in 

areas near core auditory cortex.  One region in auditory cortex is significantly more predictive in the right 

hemisphere than the left, but only in younger subjects.  
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Fig. A2. Surface Space Source Localized TRFs. The TRFs for the competing model for both predictors averaged 

across subjects and masked by significance against the noise model. Unlike the volume source space, the surface 

source space comprises of current dipoles with fixed orientation normal to the cortical surface. The signed 

magnitudes of these fixed direction dipoles are plotted, allowing for positive and negative values for outward 

and inward directions. The distribution of current dipoles in the temporal lobe ROI at the peak of the response 

is shown as an inset (orange: positive, purple: negative). 
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