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Abstract

Phenotypic delay – the time delay between genetic mutation and expression of the corre-
sponding phenotype – is generally neglected in evolutionary models, yet recent work suggests
that it may be more common than previously assumed. Here, we use computer simulations
and theory to investigate the significance of phenotypic delay for the evolution of bacterial
resistance to antibiotics. We consider three mechanisms which could potentially cause pheno-
typic delay: effective polyploidy, dilution of antibiotic-sensitive molecules and accumulation of
resistance-enhancing molecules. We find that the accumulation of resistant molecules is rele-
vant only within a narrow parameter range, but both the dilution of sensitive molecules and
effective polyploidy can cause phenotypic delay over a wide range of parameters. We further
investigate whether these mechanisms could affect population survival under drug treatment
and thereby explain observed discrepancies in mutation rates estimated by Luria-Delbrück fluc-
tuation tests. While the effective polyploidy mechanism does not affect population survival,
the dilution of sensitive molecules leads both to decreased probability of survival under drug
treatment and underestimation of mutation rates in fluctuation tests. The dilution mechanism
also changes the shape of the Luria-Delbrück distribution of mutant numbers, and we show this
modified distribution provides an improved explanation of previously published experimental
data.

1 Introduction
The emergence of resistance to drugs is a significant problem in the treatment of diseases such as
cancer [1], and viral [2] and bacterial infections [3]. In the case of infectious diseases, treatment
failure can often be attributed to the infecting organism being resistant [4]. However, resistance
can also be caused by new genetic mutations in infections with sufficiently high pathogen load [5].
Such de novo resistance has been observed in infections caused by Staphylococcus aureus during
endocarditis [6, 7], Burkholderia dolosa [8, 5] and Pseudomonas aeruginosa [9, 10] during cystic
fibrosis, Escherichia coli during asymptomatic bacteriuria [11], and Helicobacter pylori [12, 13].

The emergence and spreading of resistant variants in populations of pathogenic cells has received
much experimental [14, 15, 16, 17, 18] and theoretical attention [19, 20, 21, 22]. However, most
mathematical models assume that a genetic mutation immediately transforms a sensitive cell into
a resistant cell [23, 24, 25, 26, 27, 28]. In reality, a new allele (genetic variant) must be expressed to
a sufficient level before the cell becomes phenotypically resistant. The time between the occurrence
of a genetic mutation and its phenotypic expression is called phenotypic delay and is also referred
to as delayed phenotypic expression, phenotypic lag, cytoplasmic lag or phenomic lag.
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Phenotypic delay was first observed in 1934 by Sonnenborn and Lynch [29] when studying
the effect of conjugation on the fission rate of Paramecium aurelia. It was observed that, even
though the fission rate is determined genetically, the new hybrids initially assumed the fission
rates of the parent with whom they shared their cytoplasm, and the new genotype manifested
phenotypically only after a few generations. Phenotypic delays were studied during the 1940s and
1950s, both theoretically [30] and experimentally [31, 32]. Interestingly, in their hallmark work
on the randomness of mutations in bacteria [33], Luria and Delbrück discussed the possible effect
of a phenotypic delay on the estimation of mutation rates. The interest in phenotypic delays
waned for the next fifty years, mostly because experimental data failed to reveal their presence
[34, 33]. However, Sun et al. [35] recently demonstrated the existence of a phenotypic delay of
3-4 generations in the evolution of resistance of Escherichia coli to antibiotics rifampicin, nalidixic
acid and streptomycin. Sun et al. attributed this delay to effective polyploidy (see below) and
argued that not accounting for a phenotypic delay can cause an underestimation of the mutation
rate in fluctuation tests [33, 36].

Here, we generalize these observations and investigate other reasons that may lead to phenotypic
delay. We consider three mechanisms: (i) effective polyploidy as in [35], (ii) the dilution of sensitive
molecules targeted by the drug, and (iii) the accumulation of resistance-enhancing molecules.

Effective polyploidy refers to the fact that a single cell can contain multiple copies of a given
gene. This can be due to gene duplication events or carriage of multicopy plasmids; it also occurs in
fast-growing bacteria, which initiate new rounds of DNA replication before the previous round has
finished, allowing for a shorter generation time than the time needed to replicate the chromosome
[37, 38, 39]. Since a de novo resistance mutation happens in only one of the multiple gene copies,
it may take several generations before a cell emerges in which all gene copies contain the mutated
allele. Until then, sensitive and resistant variants of the target protein coexist in the cell. A
phenotypic delay occurs when the resistance mutation is recessive, i.e., the sensitive variant must
be replaced by the resistant variant for the cell to become resistant. This is the case for antibiotics
which form toxic adducts with their targets [40, 41]. Examples are quinolones that lock the enzyme
DNA gyrase onto the DNA and prevent DNA replication [42], and polymixins that bind to lipids
in the outer membrane which causes membrane perforation [43, 44].

The dilution mechanism also assumes the mutation to be recessive, but in contrast to the
polyploidy mechanism it focuses on the removal of the sensitive target protein through the process
of cell growth and division. As a mutated cell grows, resistant version of the protein accumulates;
a subsequent division creates two cells in which the fraction of the sensitive variant is less than
in the parent cell. A single copy of the gene may therefore still cause a considerable delay if the
number of sensitive proteins to dilute out is large before resistance can be established.

The accumulation mechanism posits that sufficiently many resistant variants of the protein must
be produced to cause resistance. This applies to mutations that enhance the expression of drug
efflux pumps [45], β-lactamase enzymes that hydrolyze β-lactam antibiotics [46, 47], or mutations
that protect ribosomes from tetracycline [48] which restores the active ribosome pool [49]. In
these cases, a phenotypic delay could emerge due to the time required for the resistance-enhancing
molecule to accumulate in the cell to a level high enough to cause resistance.

We first analyse the three mechanisms using computer simulations and analytic calculations. We
find that the accumulation of resistant-enhancing molecules only leads to phenotypic delay within
a limited parameter range, while effective polyploidy and the dilution of sensitive molecules lead to
phenotypic delay for a broad range of parameters. We then show that while the effective polyploidy
mechanism does not affect the probability that a population survives antibiotic challenge, dilution
of sensitive protein leads to decreased probability of survival under drug treatment.

We then investigate the possibility of detecting a phenotypic delay experimentally. We first
show that the dilution mechanism would cause an underestimation of mutation rates in fluctuation
tests compared to the true genetic rate of mutations. In a fluctuation test, one measures the
distribution of mutant numbers in replicate populations that have been allowed to grow and evolve
for a fixed number of generations. The mutation rate is then estimated by fitting a population
dynamics model to the experimental distribution [33, 50]. In agreement with our prediction, the
mutation rate of Escherichia coli obtained in fluctuation tests has been found to be an order of
magnitude smaller than the rate obtained by DNA sequencing [51].

We also show that the dilution mechanism subtly alters the shape of the Luria-Delbrück distri-
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bution of mutant numbers. Discrepancies between the shapes of the experimental and theoretically
predicted mutant number distributions have been observed since the original experiments of Luria
and Delbrück [33, 34, 30, 52], but have never been satisfactorily explained. Using the experimen-
tal data set from Boe et al. [52] for fluoroquinolone antibiotics, we show that a mathematical
model that includes the dilution mechanism fits the data better than the no-delay Luria-Delbrück
model, thus providing indirect evidence for the existence of this type of phenotypic delay in de
novo evolution of resistance to fluoroquinolones.

2 Results

2.1 Modeling the emergence of phenotypic delay
To explore the characteristic features of the three different phenotypic delay mechanisms – dilution
of sensitive molecules, effective polyploidy, and accumulation of the resistant variant – we first
simulate an idealised mutagenesis experiment (figure 1a). A population of sensitive bacteria is
exposed to a mutagen (e.g., UV radiation [53, 54]) which instantaneously induces mutations in
a small fraction of the cells [55, 56], thus providing a well-defined reference point from which we
count time. Cells immediately begin to express the mutated allele, but because of the existence
of phenotypic delay, they remain sensitive to the antibiotic for some time; phenotypically resistant
cells emerge only after a few generations.

We shall investigate the emergence of resistance in two different ways. The first way is to follow
a random lineage, starting from a single mutant bacterium (i.e., at each division we follow one of the
randomly selected daughter cells) and we measure the waiting time before a phenotypically resistant
cell emerges in that lineage (SI figure S1). The second way is to track the entire population post
mutagenesis, and examine the waiting time before the first phenotypically resistant cell emerges
in the whole population (figure 1).

Dilution of antibiotic-sensitive molecules: If the resistance mutation is recessive, such
that a small number of sensitive target molecules are enough to cause antibiotic sensitivity, a
phenotypic delay can arise from the time taken to replace sensitive target molecules by resistant
ones. To model this, we assume that each cell has a fixed number n of target molecules, that can
be either sensitive or resistant. Initially, all n molecules are sensitive but once a mutation has
happened, the cell starts to produce resistant molecules. We suppose that, upon cell division, the
n molecules are partitioned stochastically without bias between the two daughter cells, and new
molecules are produced to bring the total back to n per cell (figure 1b). For simplicity, cells are
considered phenotypically resistant only when they contain no sensitive molecules.

For this mechanism, the length of the phenotypic delay increases approximately logarithmically
with the number n of sensitive molecules that need to be diluted for resistance to emerge (figure
1c). To understand this, suppose momentarily that n is a power of 2 and stochasticity can be
neglected so that each daughter cell receives exactly half the number of molecules of the parent
cell. Then for any lineage stemming from a genotypically mutant cell, the number of inherited
sensitive molcules will be 2n−1, 2n−2, . . ., as the generations progress. After log2 n generations all
cells will have a single sensitive molecule and hence the first phenotypically resistant cell will then
emerge after 1 + log2 n generations. In this deterministic setting this will also be the time for the
population to become resistant.

In the more realistic case of stochastic segregation of molecules, the probability of resistance
along a random lineage after g generations is approximately exp(−n2−g) (see SI Section 1.1).
Hence the probability of resistance emerging in a lineage is negligible until generation g set by
2g ≈ n, when the probability rapidly rises to 1. Therefore, in line with our deterministic reasoning,
resistance along a random lineage will emerge after g ≈ log2 n generations. Interestingly, however,
we obtain a different result for the probability that the population produces at least one resistant
cell. If we start from x genotypically mutant cells in the population, the first phenotypically
resistant cell in the population emerges, on average, after an approximate time 1+log2(n/ log(xn))
(SI Section 1.1). We can also calculate the resistance probability through a recursion relation (SI
Section 1.1); the results fully reproduce the simulation (figure 1c.). The emergence of resistance at
the population level is thus accelerated compared to what one would obtain based on deterministic
dilution. An extended model in which molecules are distributed in a biased way between the two
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Figure 1: Models of phenotypic delay. (a) Schematic representation of a simulated experiment,
in which a mutagen (e.g., UV radiation) induces resistant mutations at a particular moment in
time. Mutated cells remain sensitive to the antibiotic until after a few generations (phenotypic
delay). (b) The dilution mechanism: blue/brown dots denote sensitive/resistant variants of the
target molecule. Cells are initially sensitive (green) and become resistant (red) when all sensi-
tive molecules are diluted out. (c) Probability that at least one cell in an exponentially growing
population starting with 100 newly genetically mutated cells is phenotypically resistant (dilution
model) as a function of the number of generations since the genetic mutation (dots: simulation;
lines: theory). Phenotypic delay increases with the number of molecules n to be diluted. (d)
The effective polyploidy mechanism: chromosomes are represented as black ellipses, with a sensi-
tive/resistant allele marked blue/red. (e) Same as in (c) but for the effective polyploidy mechanism.
Phenotypic delay increases with ploidy c. (f) The accumulation mechanism: blue/red dots denote
sensitive/resistant mutants of the resistant-enhancing molecule. Cells become resistant (red) when
the cell contains enough resistant molecules. (g) Same as in (c) but for the accumulation model.
Phenotypic delay decreases with increasing ratio m of the number of molecules produced during
cell cycle and the number of molecules required for resistance.
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daughter cells, inspired by recent evidence on accumulation of membrane proteins in the daughter
cell with the older pole [57, 58, 59, 60], leads to a similar result (SI Section 3). However, the bias
decreases slightly the phenotypic delay at a population level (SI figure S3). This is because the
bias creates lineages which will be low in the number of resistant molecules.

Effective polyploidy: Rapidly dividing bacteria can become effectively polyploid when they
initiate a round of DNA replication before the previous round has finished; this leads to the presence
of multiple copies of at least some parts of the chromosome [37] (figure 1d). Crucially, the degree
of polyploidy (number of gene copies) depends on the bacterial growth rate, as well as on other
factors such as the genetic locus. To model phenotypic delay caused by effective polyploidy, we
assume that each cell has a given number c of chromosome copies that is growth-rate dependent
according to the well-established Cooper-Helmstetter model of E.coli chromosome replication [37]
(Methods). Each chromosome copy contains a single allele, encoding the antibiotic target, that can
be either sensitive or resistant. Initially all chromosomes have the sensitive allele but a mutation
changes one allele from sensitive to resistant. We then simulate the process of DNA replication
and cell division, taking account of the fact that duplicated resistant alleles are co-inherited – for
example, if a cell has two chromosome copies, one with a resistant allele and the other with a
sensitive allele, then upon replication and division, one daughter cell will have two sensitive alleles
and the other daughter cell will have two resistant alleles [38] (Methods). We assume that a cell
becomes phenotypically resistant when none of its chromosomes contain the sensitive allele (i.e.,
the resistant allele is assumed to be recessive). In this model, the waiting time until a cell acquires
a full suite of resistant chromosomes, i.e. the phenotypic delay, is log2 c generations (figure 1e).
This delay time is the same whether we track a given lineage or the entire population (since it is
deterministic). However, resistance will not occur in all lineages; of the c lineages descended from
the original mutant cell, resistance will eventually occur in only one of them [35] (SI figure S1).

We note that effective polyploidy genrally causes a shorter delay than dilution of sensitive
molecules: 2 to 3 generations for rapidly growing bacteria (c = 4 or 8 [37, 35]), versus 5 gener-
ations for the dilution mechanism (assuming n ≈ 500 typical for the gyrase enzyme targeted by
fluoroquinolones [61, 62]). Transition in the probability of resistance is also sharper than for the
dilution mechanism in which stochasticity of the segregation process smoothens out the transition
(compare figures 1a and e). Finally, for effective polyploidy, we expect only one in every c lineages
to become resistant, while for dilution of sensitive molecules, effectively all lineages will eventually
become resistant.

Accumulation of resistance-enhancing molecules: Phenotypic delay can also emerge due
to the time needed to accumulate resistance-enhancing molecules to a sufficiently high level (figure
1f). To model this mechanism, we suppose that during each cell cycle a genotypically resistant cell
produces Mp resistance-enhancing molecules, which are randomly distributed between daughter
cells at division. A cell becomes resistant when it has Mr or more resistance-enhancing molecules.
Interestingly, considering either a single lineage (SI figure S1) or the entire population (figure 1g),
we find that phenotypic delay emerges only within a limited parameter range: 1 . m . 2, where
m =

Mp

Mr
is the ratio of the number of molecules produced during a cell cycle and the number of

molecules needed for resistance. The origin of this limited parameter range is most easily explained
by considering a single lineage. Tracking a lineage arising from a single mutant cell, the cell in
the gth generation will be born with an average of Mp(1 − 2−g) molecules (SI Section 1.2). The
steady-state number of molecules (found by taking g → ∞) is Mp. Thus if m < 1, the steady
state number of molecules will be always smaller than the minimum required number Mr, and the
lineage will never become phenotypically resistant. Conversely, if m > 1, phenotypic resistance
will emerge after approximately τ = − log2(1 − 1/m) generations when the average number of
resistance-enhancing molecules exceeds Mr. But for the delay to be detectable – at least one
generation (τ ≥ 1) – we require m ≤ 2. Considering now the scenario where we track the entire
population, we again expect the steady-state molecule number Mp to be rapidly reached for all
cells, so that there will be no phenotypic resistance for m < 1. Further, if resistance does emerge
(for m > 1), it will do so more quickly in the entire population than along the random lineage (as
resistance may be acquired in any lineage). We thus expect an even tighter upper bound on the
value of m for phenotypic delay to manifest itself on the population level.

Since our analysis shows that, for this mechanism, phenotypic delay only emerges in a narrow
parameter range, we conclude that the accumulation of resistance-enhancing molecules is unlikely
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to be biologically relevant in causing phenotypic delay. Therefore we do not explore this mechanism
further.

2.2 Combining effective polyploidy and dilution
In reality, for a recessive resistance mutation, we expect both the effective polyploidy and dilution
mechanisms to contribute to the phenotypic delay. To see this, we simulated a model combining
the two mechanisms, tracking the emergence of resistance at a single-cell and population level.
Our simulations predict a phenotypic delay with characteristics of both mechanisms (figure 2).

Focusing first on a single lineage (figure 2a,b), we observe that the long-term probability of
phenotypic resistance depends on the ploidy c, tending approximately to 1/c, as expected for the
effective polyploidy mechanism, while the approach to this value is gradual as expected for the
dilution mechanism. Combining both mechanisms increases the length of the delay compared to
either mechanism acting in isolation. Following Sun et al. [35], we also calculate the phenotypic
penetrance defined as the proportion of genetic mutants which are phenotypically resistant, in the
entire population. The expected phenotypic penetrance is (see SI for derivation Section 1.3):{

0 0 ≤ g < log2 c,
(1− 2−g)n

∏log2 c−1
i=0 (1− 2−(g−i))n(1−2

i/c) log2 c ≤ g.
(1)

Note that n = 0 corresponds to only the effective polyploidy mechanism, while c = 1 corresponds
to only the dilution mechanism being present. The piecewise form of Eq. (1) arises because no
cell can become phenotypically resistant until all its chromosomes have the resistant allele. Figure
2d shows that the phenotypic penetrance predicted by Eq. (1) increases gradually with time
(characteristic of the dilution mechanism) but with a delay determined by effective polyploidy.

We now return to computer simulations to study the emergence of resistance on the population
level following mutagenesis (figure 1). In general, both the ploidy c and the number of antibiotic
target molecules per cell n will depend on the doubling time td (or growth rate) of cells. To be
more specific, we consider resistance of E. coli to fluoroquinolone antibiotics that arises through
mutations in the DNA gyrase (protein targeted by the antibiotic). Gyrase abundance as a fraction
of the proteome has been found to be independent of the growth rate [63]. We therefore assume
that the number n of gyrases per cell is proportional to the cell volume V . We model the volume
as V ∝ 2λ/λ0 , where λ = (ln 2)/td is the growth rate and λ0 = 1h−1 [64, 65, 66, 67], and polyploidy
using the Cooper-Helmstetter model [37] (see Methods and Model for details). We find for slow-
growing cells (td = 60min) that c = 2 and n = 20, while for fast-growing cells (td = 30min), c = 4
and n = 40. Note that here we do not assume realistic values of n because the minimum number
nr of poisoned sensitive gyrase molecules required to inhibit growth is probably much higher than
nr = 1 assumed in the model. n should be therefore interpreted more correctly as the number of
“units” of gyrase, with one unit equivalent to nr molecules. Figure 2c shows that the phenotypic
delay is longer for the fast-growing population, and that this is mostly caused by the increase in
the number of molecules n (SI figure S4). We also observe that protein dilution leads to a smoother
transition between sensitivity and resistance than the transition due to effective polyploidy alone.

2.3 Dilution mechanism, but not effective polyploidy, affects the prob-
ability of clearing an infection

To understand better the practical significance of phenotypic delay, we simulated antibiotic treat-
ment of an idealised bacterial infection (figure 3). We assume that, before treatment, the population
of bacteria grows exponentially in discrete generations, and cells mutate with probability µ = 10−7

per cell per replication. When the population size reaches 107, an antibiotic is introduced; this
causes all phenotypically sensitive bacteria to die, leaving only phenotypically resistant cells (fig-
ure 3b). We are interested in the probability that the bacterial infection survives the antibiotic
treatment, a concept closely related to evolutionary rescue probability, i.e., the probability that
cells can survive a sudden environmental change thanks to an adaptive mutation [68, 35, 69]. Since
sensitive cells do not reproduce in our simulations in the presence of the antibiotic, survival can
only be due to pre-existing mutations (standing genetic variation).
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Figure 2: Joint effect of the dilution and effective polyploidy mechanisms. (a-b) Prob-
ability of resistance of a single mutated cell. While the long-term probability is defined by the
effective polyploidy, short-term behaviour is determined by the dilution mechanism, leading to
longer phenotypic delays than the effective polyploidy mechanism would do. (c) Population-level
probability of resistance versus the number of generations from the mutation event, for n = 20. The
combined mechanism leads to smoother curves than the effective polyploidy mechanism and longer
delays than for both mechanism individually. (d) Phenotypic penetrance (ratio of phenotypically
resistant to genotypically resistant cells, obtained from Eq. (1)) for the different mechanisms, for
c = 8, n = 8. The dashed red line indicates when the phenotypic penetrance surpasses 1/2, which
is the threshold used by Sun et al. [35] to define the emergence of phenotypic resistance. With
this definition, the dilution mechanism plus effective polyploidy doubles the delay (generation 6 as
opposed to generation 3).

7

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 20, 2019. ; https://doi.org/10.1101/2019.12.19.883132doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.19.883132
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 3: Phenotypic delay decreases the probability of a bacterial infection surviving
antibiotic treatment (a-b) A schematic of the simulated infection: a population of exponentially
replicating sensitive cells is exposed to an antibiotic when the population reaches 107 cells. Only
phenotypically resistant cells survive the antibiotic. Time and antibiotic concentration in panel
(b) have arbitrary units. (c) The probability of survival for the effective polyploidy mechanism
is independent of the doubling time (and hence the ploidy). (d) For the dilution mechanism,
the probability of survival decreases with the number of molecules n which need to be diluted
out before the cell becomes phenotypically resistant. (e) In a combined dilution-and-effective
polyploidy model, the survival probability increases with the doubling time.

8

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 20, 2019. ; https://doi.org/10.1101/2019.12.19.883132doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.19.883132
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 4: The dilution model affects the probability distribution of the number of
resistant cells. The frequency of mutants for a simulated fluctuation test with 10,000 samples,
for the model with n = 0 (no delay) and n = 16. (a) Distributions for both models for a fixed
µ = 10−7. (b) Distributions for the case when µ in the dilution model has been adjusted to
minimize the difference to the no-delay model (values in the inset).

We first consider the effective polyploidy model, with ploidy c controlled by the doubling time
td. In agreement with Sun et al. [35], we find that td has no effect on the survival probability (figure
3c). This is due to a cancellation of two effects: the increased number of gene copies increases
the per-cell chance of genetic mutation, but also increases the length of the phenotypic delay. In
contrast, phenotypic delay caused by the dilution of sensitive molecules does affect the survival
probability (figure 3d). The survival probability strongly depends on n, and decreases significantly
from 0.69 for n = 0 to 0.06 for n = 100.

We also simulated a mixed case where both the effective polyploidy and dilution mechanisms
combined, with ploidy c and molecule number n determined by the doubling time td as described
in Sec. 2.2. In this case the survival probability does depend on the doubling time (figure 3e; blue
line). This is mostly caused by the change in the molecular number n as a function of doubling
time. If we neglect the dependence of n on td, the effect is much smaller, although there is still
some dependence on td because the rate of resistant protein production depends on the resistant
gene copy number, which increases en route to the full suite of resistant chromosomes (SI figure
S4).

2.4 Phenotypic delay due to dilution changes the Luria-Delbrück distri-
bution and biases mutation rate estimates

The scenario discussed in the previous section is equivalent to the Luria-Delbrück fluctuation test
[33, 70], which has been extensively studied theoretically [71, 72, 73, 50, 74, 75, 76, 77, 78]. A small
number of sensitive bacteria are allowed to grow until the population reaches a certain size. The
cells are then plated on a selective medium (often an antibiotic) to reveal the number of mutated
bacteria in the population. The distribution of the number of mutants (measured over replicate
experiments) is termed the Luria-Delbrück distribution. This distribution has a power-law tail
caused by mutational “jackpot" events [33, 70, 77] in which rare, early-occurring mutants produce
many descendants in the population. The fluctuation test and the corresponding mathematical
model have been used to estimate mutation rates in bacteria. Here, we discuss the effect of
phenotypic delay on the Luria-Delbrück distribution and on the resulting mutation rate estimate.

First, we note that phenotypic delay caused by effective polyploidy alone does not affect the
Luria-Delbrück distribution. As discussed in the previous section, this is due to an exact cancel-
lation of two effects: increased ploidy leads to more mutations per bacterium but also a longer
phenotypic delay [35]. In contrast, the dilution model does alter the Luria-Delbrück distribution.
Figure 4a shows that, for a fixed mutation probability µ and initial and final population sizes, phe-
notypic delay due to dilution causes an increase in the number of replicate experiments yielding
zero resistant mutants, and a decrease in the number of experiments yielding intermediate numbers
of resistant mutants. The number of experiments yielding very large numbers of mutants (>200),
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due to jackpot events, is unaffected by the delay – this is because mutants that arise early will
have had sufficient time to dilute out all sensitive molecules before being exposed to the antibiotic.

From a practical point of view, the mutation probability is often unknown and the fluctuation
test is used to estimate it. To investigate the effect of phenotypic delay on the measured mutation
probability, we simulated the fluctuation test for the dilution model with n = 16, for a range of
mutation probabilities. We compared the resulting mutant number distributions to that obtained
in an equivalent simulation without phenotypic delay, with mutation probability µ = 10−7. Using a
genetic algorithm [79] to minimize the L2 norm between the distributions with and without pheno-
typic delay, we found that the phenotypic delay model required a much larger mutation probability
(µ = 8× 10−7) to reproduce the distribution of the no-delay model. This suggests that neglecting
phenotypic delay when fitting theory to fluctuation test data could significantly underestimate the
true mutation probability. We also note that the “closest match" distributions with and without
phenotypic delay are not exactly identical (figure 4b). The model with phenotypic delay leads to
a larger number of jackpot events (as might be expected since the mutation probability is higher)
and a reduced number of replicates with few mutants, consistent with suppression of late-occuring
mutants by the phenotypic delay.

Our result explains the apparent discrepancy between mutations probabilities estimated through
different methods. Lee et al. measured the mutation probability of E. coli using both fluctuation
tests (fluoroquinolone nalidixic acid as selective agent) and whole-genome sequencing [51]. The
fluctuation test underestimated the mutation probability by a factor of 9.5; Lee et al. suggested
that this could be caused by phenotypic delay [51]. To see whether our dilution model could explain
this, we simulated the 40-replicate, 20 generation fluctuation test experiment of Lee et al. [51],
using the mutation probability as estimated by whole-genome sequencing (µ = 3.98× 10−9, total
for all mutations givins sufficient resistance to nalidixic acid), for differing values of the number n
of target “units” (gyrase molecules). For each n we simulated 1000 realisations of the 40-replicate
experiment, and for each realisation we estimated the mutation probability under the no-delay
model using the maximum likelihood method [50] (the same as used by Lee et al.) implemented
in the package flan [80]. This procedure correctly reproduced the mutation probability for data
from simulations without delay (n = 0; SI Fig. S6). For the model with delay, the maximum
likelihood fit returned a mutation probability that was lower than the true one (figure 5a); the
discrepancy increased with the phenotypic delay. To obtain an apparent mutation probability that
is underestimated by a factor of 9.5, as observed by Lee et al. [51], we require n ≈ 30; i.e. roughly
30 sensitive ‘units’ of the antibiotic target must be diluted out before a cell becomes phenotypically
resistant. Thus, while our simulations do not prove that phenotypic delay is responsible for the
discrepancy observed by Lee et al., they suggest that it is a plausible explanation.

2.5 Mutant number distributions may support the existence of pheno-
typic delay

Our results suggest that a phenotypic delay caused by dilution produces a characteristic (though
small) change in the shape of the observed mutant number distribution (figure 4b). This deviation
should be in principle detectable in experiments. To check this, we used the dataset of Boe
et al. [52] for a 1104-replicate fluctuation test, the bacterium E. coli and the fluoroquinolone
antibiotic nalidixic acid as the selective agent. As explained in Sec. 2.2, we expect that a small
number of wild-type DNA gyrases should be enough for the cell to be sensitive, suggesting that
phenotypic delay via gyrase dilution may be likely. Boe et al. [52] report an unsatisfactory fit of
their mutant number distribution data to the theoretical predictions of two different variants of
the Luria-Delbrück model (the Lea-Coulson and Haldane models); in comparison to theory, Boe
et al. observed too many experiments yielding either no mutants or a high number of mutants
(greater than 16), and a dearth of experiments resulting in intermediate mutant counts (1-16).
Qualitatively, this seems to be consistent with our expectations for the dilution model (figure 4a).

To see if the dilution model of phenotypic delay indeed provides a superior fit to Boe et al’s data,
we used an approximate Bayesian computation (ABC) approach [81] (Methods). We simulated a
1104-replicate fluctuation experiment 104 times, for both the model with and without delay, with
initial and final population sizes of 1.2× 104 and 1.2× 109 matching those of Boe et al. [52]. We
then determined the posterior Bayesian probability that the experimental data is generated by the
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Figure 5: Phenotypic delay due to the dilution mechanism explains observed discrep-
ancy in mutation rates and provides superior fit to fluctuation experiment data. (a)
We simulated the fluctuation experiment of Ref. [51], where the authors report a factor of 9.5
difference between µ obtained by DNA sequencing and fluctuation tests. For each n we simulated
1000 experiments with the sequencing-derived mutation probability µ = 3.98 × 10−9 and then
used the same estimation procedure as Ref. [51] to infer µ assuming no delay exists. n = 30
sensitive molecules are required to account for the discrepancy observed. Error bars are 1.96 ×
standard error. (b) The experimental cumulative mutant frequency distribution reported by Boe
et al. [52] (black points) and the best-fit simulated distribution (green line) for the dilution phe-
notypic delay model. (c) Histograms of the probability of the delay model obtained by applying
the approximate Bayesian computation scheme to simulated data. Our classification algorithm
correctly discriminates between the models.
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delay model as opposed to the no-delay model. We also examined the validity of our approach on
synthetic data, see figure 5c and Methods and models for details. We obtain that the probability of
the experimental data coming from the model with phenotypic delay is 0.97. We thus conclude that
the Boe et al. data supports the existence of phenotypic delay caused by the dilution mechanism.

3 Discussion
Quantitative models for de novo evolution of drug resistance are an important tool in tackling
bacterial antimicrobial resistance, as well as viral infections and cancer. However, our quantitative
understanding of how resistance emerges is still limited. The possibility of a phenotypic delay
between the occurrence of a genetic mutation and its phenotypic expression has long been discussed
[29, 30, 31, 32, 33], but its relevance for bacteria evolution has been questioned until recently [35].
Here, we have used computer simulations and theory to study the effects of phenotypic delay on the
emergence of bacterial resistance to antibiotics. We investigated three different mechanisms that
could lead to phenotypic delay: (i) dilution of antibiotic-sensitive molecules, (ii) effective polyploidy,
and (iii) accumulation of resistance-enhancing molecules. We observe that the third mechanism
only leads to phenotypic delay under a limited range of parameters, which makes it unlikely to be
biologically relevant. The other two mechanisms have different “control parameters" (the degree of
ploidy c versus the number of target molecules n) and different effects on the population dynamics.
In particular, we show that protein dilution, but not effective polyploidy, can affect the probability
that a growing population survives antibiotic treatment. The same mechanism is responsible for
biasing the estimated mutation rate in a Luria-Delbrück fluctuation test. Effective polyploidy does
not play a role here because of two cancelling effects: increased ploidy increases the number of
mutations per cell in the growing population, but also increases the length of the phenotypic delay.
These effects counterbalance such that the Luria-Delbrück distribution remains unaffected [35].

Effect of the dilution mechanism on fluctuation test data. Luria-Delbrück fluctuation
tests are the standard microbiological method still being used for estimating mutation rates, yet
it has often been noted that the measured distributions of mutant numbers do not quite fit the
theoretical distribution [33, 30, 34, 52]. A comparison with a more direct approach (DNA sequenc-
ing) suggests that fluctuation tests can significantly underestimate mutation rates [51]. Although
phenotypic delay has been suggested as a possible explanation for these effects [33, 51], our study
is the first to investigate in detail how specific mechanisms of phenotypic delay alter the shape of
the Luria-Delbrück distribution, and to demonstrate that it can indeed produce a biased muta-
tion rate estimate of the same order of magnitude as that observed experimentally [51]. We also
show that the simulated distribution from the dilution model fits the experimental fluctuation test
data of Boe et al.[52] better than the standard model without phenotypic delay. We note that
this result should however be taken cautiously. Boe et al.’s experimental protocol is not ideal for
detecting phenotypic delay: for example, their bacterial cultures were allowed to reach stationary
phase before plating. Moreover, our work shows that while phenotypic delay due to dilution af-
fects the mutant number distribution, the change is subtle, requiring many replicate experiments
to produce statistically significant results. While the usual number of replicates in a fluctuation
test is less than 100, recent developments in automated culture methods should make it possible
to run fluctuation tests with many more replicates, which may provide a way to probe the effects
of phenotypic delay on the Luria-Delbrück distribution in more detail.

From molecular detail to evolutionary population dynamics. Our work presents an
example of how molecular details at the intracellular level (here, protein dilution and the details
of DNA replication) can have a direct effect on evolution at the population level [82, 83, 84].
This observation complements other works showing that, for example, molecular processes such
as transcription and translation affect population-level distributions of protein numbers [85, 86]
and that noise in gene expression can directly affect the survival of populations in a fluctuating
environment [87].

Importantly, both the effective polyploidy mechanism and the dilution mechanism cause a
phenotypic delay only if the resistance mutation is recessive. For effective polyploidy this implies
that a cell must contain only resistant alleles in order to be phenotypically resistant, while for the
dilution mechanism we have assumed that sensitive target molecules need to be diluted out (or
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otherwise removed). This implies that we would expect to see phenotypic delay in the evolution of
resistance to some antibiotics, but not to others. In particular, we would expect phenotypic delay
due to dilution if the antibiotic acts by binding to its molecular target to make a toxic adduct, and
resistance involves production of a resistant target. This is the case for fluoroquinolone antibiotics,
which bind to DNA gyrase, causing DNA double-strand breaks; resistance is caused by production
of mutant gyrase that no longer binds the antibiotic [88]. The fact that both Boe et al. [52] and
Lee et al. [51] observed discrepancies in fluctuation test data for resistance to the fluoroquinolone
nalidixic acid, is consistent with this expectation.

Assumptions of the model. Our simulations and theoretical calculations have involved a
number of simplifying assumptions. Firstly, we ignore any possible fitness costs of mutations,
assuming equal growth rates for wild-type and mutant cells in the absence of the antibiotic. While
many resistance mutations incur a fitness costs [89, 90], many clinically-relevant mutations have
either no cost or even a small growth advantage [90, 91].

For the molecular dilution mechanism, we have assumed that the degradation rate of target
molecules is negligible, so that sensitive molecules can only be removed through cell division and
dilution. While this seems to be (mostly) the case for bacterial enzymes targeted by antibiotics
[92, 93], it does not have to be the case for mammalian cells in which degradation plays a bigger
role than dilution [94].

We have also assumed that in the dilution mechanism, all sensitive molecules need to be removed
for the cell to become phenotypically resistant. In reality, resistance is likely to gradually increase
as the number of sensitive molecules decreases. Our general conclusions remain valid in this
case, however the mutant distribution may change. To construct more accurate models, we need
measurements of the degree of antibiotic sensitivity as a function of the intracellular numbers of
resistant and sensitive antibiotic targets. While technically challenging, such measurements could
be carried out e.g. by fluorescently labelling target molecules [62].

Experimental tests for phenotypic delay Our work suggests that, at least in principle, the
mutant number distribution could be used to detect the existence of a phenotypic delay caused
by molecular dilution, although this would require many replicate experiments. Sun et al. have
demonstrated phenotypic delay due to effective polyploidy more directly by tracking expression of a
genetically engineered fluorescent marker in bacterial lineages [35]. Another approach would be an
experiment similar to that from figure 1, in which a mutagen such as UV irradiation creates a burst
of mutants. Other signatures of phenotypic delay may be detected in experiments where the timing
of antibiotic exposure, and of resistance evolution, can be precisely controlled in turbidostat-like
continuous culture devices [95].

Broader significance of phenotypic delay We have shown here that phenotypic delay
(caused by molecular dilution) can affect mutation rate estimates from fluctuation tests, as well as
the probability that a bacterial infection survives antibiotic treatment. Phenotypic delay may also
affect other processes. For example, it was recently shown that a delay in evolutionary adaptation
can lead to coexistence of spatial populations, in cases where immediate adaptation would eradicate
coexistence [96, 97]. In another example, it was suggested that in order to explain the effect of
antibiotic pulses of different lengths on the probability of emergence of antibiotic resistance, a
delay in evolutionary adaptation (called physiological memory by the authors) must be taken into
account [98].

4 Methods and models
In all our simulations we use an agent-based model to simulate how mutated cells gain phenotypic
resistance. Each cell has a number of attributes depending on the studied mechanism, such as the
numbers of sensitive and mutated DNA copies, and the numbers of sensitive and resistant proteins,
as specified below. Cells divide after time td since last division.

For the population-level simulations (section 2.1), we simulate 100 cells which have just be-
come genotypically resistant. Population-level simulations are repeated 1,000 times and single-cell
simulations are repeated 10,000 times.
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4.1 Modelling effective polyploidy
To describe how the copy number (ploidy) c changes during cell growth and division we use the
Cooper-Helmstetter model [37]. We assume that it takes t1 = 40min for a DNA replication fork to
travel from the origin of replication to the replication terminus, and that the cell divides t2 = 20min
after DNA replication terminated (t1 = C and t2 = D in the original nomenclature of Ref. [37];
values representative for Escherichia coli strain B/r). During balanced (“steady state”) growth
assumed in this work, the number of chromosomes must double during the time td between cell
divisions (population doubling time). This means that for any td < t1 + t2 = 60min, the cell
must have multiple replication forks and more than one copy of the chromosome. The number
of chromosomes will fluctuate during cell growth: it will double some time before the division,
and decrease by a half just after the division. If tini is the time since last division at which new
replication forks are initiated, we must have (tini+ t1) mod td = td− t2. This equation states that
the time when a replication round initiated in the parent cell finishes in the offspring cell ((tini+t1)
mod td) must be the same as the time td − t2 when the cell division process (lasting t2 min) is
initiated. It can be shown that this gives tini = td− (t1+ t2) mod td. We proceed in a similar way
to determine the time trep at which a gene which confers resistance is replicated. If the gene is
located in the middle of the genome, as is the case for the gyrA gene relevant for fluoroquinolone
resistance, it will be copied t1/2 minutes after chromosome replication initiation. This implies that

trep = td −
((

t2 +
t1
2

)
mod td

)
. (2)

At this time point during the cell cycle the copy number of the gene of interest will double. The
effective polyploidy immediately after this event is maximal and equal to

c = 2
d t1/2+t2

td
e
, (3)

where d. . . e denotes the ceiling function. We use c from Eq. (3) as the control variable in simula-
tions of the polyploidy model.

To simulate a cell or a population of cells with effective polyploidy we use the following al-
gorithm. We initialize the simulation with all cells having c/2 sensitive alleles. Cells replicate in
discrete generations every td minutes. The number of allele copies double at trep (Eq. (2)) since the
last division in such a way that a sensitive/resistant allele gives rise to a sensitive/resistant copy,
respectively. Sensitive alleles have a probability µ of mutating to a resistant allele. When a cell
divides, the copies are split between the two daughter cells, with those linked by the most recent
replication fork ending up in the same cell. We assume that the resistant mutation is recessive,
which implies that a cell becomes resistant when all of its gene copies are resistant.

4.2 Modelling the dilution of sensitive molecules
For the dilution mechanism, we track the number of sensitive target molecules in each cell. We
assume that at time zero, all cells have n sensitive target molecules and no resistant ones. When
a mutation happens, the mutated cell begins to produce resistant target molecules and ceases to
produce new sensitive molecules. At cell division, the sensitive molecules are partitioned between
the two daughter cells following a binomial distribution with probability 0.5. We consider that a
cell becomes phenotypically resistant when it contains no sensitive molecules. In the supplementary
information we relax this assumption and study the case where a cell is considered resistant when
the number of sensitive molecules falls below a (non-zero) threshold value (SI figure S5).

4.3 Modelling the accumulation of resistance-enhancing molecules
To model the accumulation of resistance-enhancing molecules, we explicitly simulate the production
of Mp resistance-enhancing molecules per cell cycle and their stochastic division between daughter
cells, via a binomial distribution, at cell division. A cell is considered resistant when it contains
more than Mr resistance-enhancing molecules. In all simulations we fix Mr = 1000 and vary Mp

to explore a range of m =
Mp

Mr
between 0.5 and 2.
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4.4 Combining effective polyploidy and molecular dilution
To include both effective polyploidy and molecular dilution, we track explicitly the total gene
copies, the resistant gene copies and the number of sensitive proteins, as explained in Secs. 4.1 and
4.2. We assume that the number of resistant proteins produced in one cell cycle is proportional
to the ratio of resistant to total gene copies. Both types of proteins (sensitive and resistant) are
partitioned at cell division following a binomial distribution with probability 0.5. We consider that
a cell becomes phenotypically resistant when it contains no sensitive molecules.

4.5 Simulating a growing infection
We start our simulations with 100 sensitive bacteria. Bacteria reproduce in discrete generations
with doubling time td. Upon reproduction, each bacterium can mutate with probability µ = 10−7.
When the population reaches 107 cells, all phenotypically sensitive cells are removed (killed);
this represent antimicrobial therapy. We repeat the simulation 1000 times to obtain the survival
probability as a fraction of simulations in which phenotypically resistant cells emerge before the
population dies out.

4.6 Simulating Luria-Delbrück fluctuation tests
To generate mutant size distributions for realistically large population sizes of sensitive cells re-
quired for comparing the model with experimental data, we use an algorithm based on the Çinlar’s
method [99, 100]. The algorithm does not simulate the sensitive population explicitly, but it gen-
erates a set of times {ti} at which mutants emerge from the exponentially growing sensitive pop-
ulation (formally, ti is the time generated from a Poisson process with probability µλseλs(1−µ)ti):

Algorithm 1:
1 Initialize t = 0, s = 0 ti = [];
2 while t ≤ tf do
3 s← s− log(U(0, 1)) ;

4 t← 1
λs

log
(

1−µ
µNi

s+ 1
)
;

5 ti.extend(t)
6 end
7 return ti

Here tf =
ln(Nf/Ni)

λs
is the final time, Nf is the final population size, Ni is the initial population

size, λs =
ln(2)
td

(1− µ) is the growth rate of the sensitive bacteria, td is the doubling time, µ is the
mutation probability and U(0, 1) is a random variable uniformly distributed between 0 and 1.

For each ti, we then calculate the number of generations until the final time tf as

gi =
tf − ti
td

. (4)

For all of the simulations in sections 2.4 and 2.5, we assume td = 60min. We then simulate each
clone for gi generations, including dilution of sensitive target molecules, and measure the number
of resistant cells for each clone. Finally, we measure the number of resistant cells for each replicate
by summing up over all clones.

4.7 Approximate Bayesian computation
We use an approximate Bayesian computation method to determine posterior probabilities of
the non-delay and the dilution model. Briefly, the method relies on generating many (here: 104)
independent samples of the simulated experiment mimicking Boe et al. [52] for both models. Model
parameters are sampled from suitable prior distributions, we then select samples that approximate
well the real data, and calculate the fraction of best-fit samples corresponding to each model.

A single sample corresponds to 1104 simulated replicates of the fluctuation experiment at
fixed parameters, for a given model. For each sample, parameters are randomly chosen from the
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following prior distributions: log10(µ) uniform on [−10,−8], and log2(n) uniform on [0, 8] (for the
delay model). The tail cumulative mutation function1

F (k) = Number of experiments yielding ≥ k mutants, 0 ≤ k ≤ 513, (5)

is calculated for each sample i (Fi), and also for the experimental data from Boe et al. [52]
(Fobs). We then select 100 out of the 2 × 104 (104 from each model) generated samples with the
smallest Euclidean distance ||Fi−Fobs||2 (simulated distributions closest to the experimental data).
The proportion of these which come from the phenotypic delay model is an approximation of the
posterior probability that the experimental data was generated by the delay model (under the
assumption that the experimental data was generated by one of the models). In reality the data
generation process is likely to be far more complex than our idealised models, but the posterior
probability of 0.97 implies the delay model provides a superior explanation to the model with no
delay.

To examine the validity of our approach, we performed cross validation. For each model we
randomly chose one sample corresponding to that model. We then computed the probability the
simulated data was generated by the model with phenotypic delay, via the approximate method
detailed above. This was carried out 500 times for each model. The proportion of simulations that
were misclassified (as being with delay when they were not, or vice versa) was low (0.006, figure
5c), showing that our model selection framework is able to discriminate between the two models.
We provide a further sensitivity analysis of this inference method in Section 7 of the SI.
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