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Abstract

The white matter contains long-range connections between different brain regions and
the organization of these connections holds important implications for brain function in
health and disease. Tractometry uses diffusion-weighted magnetic resonance imaging
(dMRI) data to quantify tissue properties (e.g. fractional anisotropy (FA), mean
diffusivity (MD), etc.), along the trajectories of these connections [1]. Statistical
inference from tractometry usually either (a) averages these quantities along the length
of each bundle in each individual, or (b) performs analysis point-by-point along each
bundle, with group comparisons or regression models computed separately for each
point along every one of the bundles. These approaches are limited in their sensitivity,
in the former case, or in their statistical power, in the latter. In the present work, we
developed a method based on the sparse group lasso (SGL) [2] that takes into account
tissue properties measured along all of the bundles, and selects informative features by
enforcing sparsity, not only at the level of individual bundles, but also across the entire
set of bundles and all of the measured tissue properties. The sparsity penalties for each
of these constraints is identified using a nested cross-validation scheme that guards
against over-fitting and simultaneously identifies the correct level of sparsity. We
demonstrate the accuracy of the method in two settings: i) In a classification setting,
patients with amyotrophic lateral sclerosis (ALS) are accurately distinguished from
matched controls [3]. Furthermore, SGL automatically identifies FA in the corticospinal
tract as important for this classification – correctly finding the parts of the white matter
known to be affected by the disease. ii) In a regression setting, dMRI is used to
accurately predict “brain age” [4,5]. In this case, the weights are distributed throughout
the white matter indicating that many different regions of the white matter change with
development and contribute to the prediction of age. Thus, SGL makes it possible to
leverage the multivariate relationship between diffusion properties measured along
multiple bundles to make accurate predictions of subject characteristics while
simultaneously discovering the most relevant features of the white matter for the
characteristic of interest.

December 19, 2019 1/18

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 20, 2019. ; https://doi.org/10.1101/2019.12.19.882928doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.19.882928
http://creativecommons.org/licenses/by/4.0/


Introduction 1

Diffusion-weighted Magnetic Resonance Imaging (dMRI) provides a unique view into 2

the physical properties of the connections that comprise the brain white matter. While 3

the measurements are usually conducted with voxels at the millimeter scale, water 4

molecules within each voxel diffuse with characteristic lengths at the micrometer scale, 5

providing aggregate information about the physical structure of the white matter, 6

including the density of axons and distribution of fiber orientations within each voxel [6]. 7

Even though metrics derived from diffusion measurements are ambiguous in terms of 8

their underlying biological interpretation [7], analyzing the variance in these properties 9

has proven useful in characterizing individual differences in cognitive function, 10

characterizing differences between populations and detecting brain abnormalities 11

associated with disease [8]. 12

To relate the diffusion in each voxel to the macro-structure of long-range connections 13

between different brain regions, methods for computational tract-tracing from diffusion 14

MRI, or tractography, combine the estimates of fiber orientations in each voxel to form 15

streamlines that traverse the volume of the white matter [9, 10]. These methods have 16

been under increased scrutiny and several lines of investigation have raised critiques of 17

their validity [11,12]. On the other hand, there have been efforts to shore up the 18

inferences made with these methods [13–18]. Importantly, though discovering novel 19

tracts requires extraordinary evidence, and delineating the exact cortical termination of 20

the streamlines in the gray matter is still prone to error, there is little dispute that 21

tractography can accurately define the location of several major white matter tracts 22

that are known to exist within the core of the white matter [11,19]. 23

Leveraging this fact, one of the most powerful methods currently available to put 24

macro- and micro-structure together is tractometry : assessment of the physical 25

properties of the white matter along specific tracts [20]. Though there are several 26

different available implementations of this overall idea, the principles are 27

similar [1, 21–23]: tractometry begins by delineating the parts of the white matter that 28

belong to different major “tracts” (i.e. anatomical or functional groups of white matter 29

fibers), such as the corticospinal tract or arcuate fasciculus, assigning tractography 30

generated streamlines to “bundles,” which approximate the anatomical tracts, and 31

sampling biophysical properties (such as fractional anisotropy or mean diffusivity) along 32

the length of these bundles. the parts of the white matter that belong to different major 33

tracts (i.e. anatomical or functional groups of white matter fibers), such as the 34

corticospinal tract or arcuate fasciculus, assigning tractography generated streamlines to 35

“bundles,” which approximate the anatomical tracts, and sampling biophysical properties 36

(such as fractional anisotropy or mean diffusivity) along the length of these bundles. In 37

some previous tractometry-based studies, tissue properties along the length of each tract 38

were summarized by taking the mean along each bundle, but there is a large body of 39

evidence showing that there is systematic variability in the values of diffusion metrics 40

along the trajectory of each bundle. This justifies retaining the individual samples along 41

the length of each bundle [1, 23,24]. While this retains important information about 42

each individual’s white matter, it also presents statistical challenges due to the 43

dimensionality of the data. Based on tractometry, researchers may choose to compare 44

different individuals to each other. This is usually done according to one of the 45

following approaches: 46

1. Mass univariate approaches: In this approach comparisons between groups or 47

across individuals are done independently at each node of each bundle, for each 48

one of the diffusion metrics available at that point. This approach is exhaustive, 49

but statistical power is compromised by a multiple comparison problem. Different 50

approaches can be taken to resolving this challenge. For example, Colby and 51
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colleagues [24] used a non-parametric resmapling approach to correct for 52

family-wise error across the different possible comparisons [25,26]. 53

2. Region of interest(ROI)-based approaches: An alternative that circumvents the 54

multiple comparison problem is to select just a few tracts to compare in each 55

individual, or even focusing on particular segments of these tracts based on a 56

priori hypotheses. This approach is very powerful when the biological basis of the 57

process of interest is relatively well understood (for a recent example, see [27]). 58

3. ROI-based selection, followed by multivariate analysis: Here, an ROI is selected 59

based on a priori knowledge, and all the nodes or voxels in the ROI are used 60

together to fit a model that can predict differences between individuals. An 61

example of that is the “profilometry” framework, in which different diffusion 62

metrics from a single tract are combined together to provide input to a 63

multivariate analysis of covariance, and linear discriminant analysis [28]. 64

Generally speaking, analysis methods should balance predictive accuracy with 65

descriptive power [29,30]. Accordingly, tractometry analysis should simultaneously 66

capitalize on all the data across all tracts to make the best possible prediction, while 67

also retaining and elucidating spatial information about the locations that are most 68

informative for a prediction. In the present work, we developed a novel framework for 69

analysis of tractometry that simultaneously selects the features for analysis, and fits a 70

model to these features. We use a linear modeling approach, which aims to predict 71

phenotypical variance in a group of subjects, based on a linear combination of the 72

features estimated with tractometry. 73

Using this approach, we first need to deal with the large and asymmetric 74

dimensionality of the data: tractometry data usually has many more features (i.e., 75

number of measurements per individual) than samples (number of subjects), which 76

makes inferences from the data about phenotypical differences between individuals 77

ill-posed. This regime is the target of several statistical learning techniques, and is often 78

solved by various forms of regularization. For example, Tikhonov regularization shrinks 79

the solution such that the sum of squared contributions from the individual features are 80

minimized [31]. Another solution to the problem is provided by the Lasso algorithm, 81

which instead minimizes the sum of the absolute values of contributions of each 82

feature [32]. This tends to shrink to zero the contributions of many of the features, 83

providing results that are both accurate and interpretable. When additional structure is 84

available in the organization of the data, regularization algorithms can take advantage 85

of this structure. For example, if the features lend themselves to a natural division into 86

different groups, the group lasso (GL) can be used to select groups of features, rather 87

than individual features [33]. The Sparse Group Lasso (SGL) elaborates on this idea by 88

providing control both of group sparsity, as well as overall sparsity of the solutions [34]. 89

Because the features measured with tractomery lend themselves to grouping based on 90

the tracts from which each measurement is taken, GL and SGL could provide a useful 91

tool for linear model fitting in problems of this form. Here we, first, develop an 92

implementation of SGL that is well suited to the analysis of tractometry data and, 93

second, demonstrate the power and flexibility of this approach by applying it to both 94

classification (disease diagnosis) and continuous prediction (age) problems from 95

previously published studies [3, 4]. 96

Materials and methods 97

Data 98

Two different previously-published datasets were used here: 99
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1. Diffusion MRI from a previous study of the corticospinal tract (CST) in patients 100

with amyotrophic lateral sclerosis (ALS [3]), containing data from 24 ALS patients 101

and 24 demographically matched healthy controls. These data were measured in a 102

GE Discovery 750 3T MRI scanner at the Institute of Bioimaging and Molecular 103

Physiology in Catanzaro. Informed consent was provided as approved by the 104

Ethical Committee of the University “Magna Graecia” of Catanzaro. Voxel 105

resolution was 2× 2× 2 mm3 and 27 non-colinear directions were measured with 106

a b = 1000 sec
mm2 . Data was preprocessed to correct for subject motion and for 107

eddy currents. The diffusion tensor model [35] was fit in every voxel. We will refer 108

to this dataset as ALS. 109

2. Diffusion MRI data from a previous study of properties of the white matter across 110

the lifespan [4], containing dMRI data from 76 subjects with ages 6-50. These 111

data were measured in a GE Discovery 750 3T MRI scanner at the Stanford 112

Center for Cognitive and Neurobiological Imaging. The Stanford University IRB 113

approved the procedures of this study. Informed consent was obtained from each 114

adult participant, and assent for participation was provided by parents/guardians 115

for children. Voxel resolution was 2× 2× 2mm3 with 96 non-colinear directions 116

measured with a b = 2000 sec
mm2 and 30 non-colinear directions measured with a 117

b = 1000 sec
mm2 . These data were acquired using a dual spin echo sequence, in which 118

there is sufficient time for eddy currents to subside between the application of the 119

gradients and the image acquisition, so no eddy current correction was applied, 120

but motion correction was applied before fitting the diffusion tensor model [35] in 121

every voxel using a robust fit [36]. We will refer to this dataset as WH. 122

Data from both of these studies was processed in a similar manner, using the Matlab 123

Automated Fiber Quantification toolbox (AFQ) [1]: streamlines representing fascicles of 124

white matter tracts were generated using a determinstic tractography algorithm that 125

follows the prinicpal diffusion direction of the diffusion tensor in each voxel (STT) [37]. 126

Major tracts were identified using multiple criteria: streamlines are selected as 127

candidates for inclusion in a bundle of streamlines that represents a tract if they pass 128

through known inclusion ROIs and do not pass through exclusion ROIs [38]. In 129

addition, a probabilistic atlas is used to exclude streamlines which are unlikely to be 130

part of a tract [39]. Each streamline is resampled to 100 nodes and the robust mean at 131

each location is calculated by estimating the 3D covariance of the location of each node 132

and excluding streamlines that are more than 5 standard deviations from the mean 133

location in any node. Finally, a bundle profile of tissue properties in each bundle was 134

created by interpolating the value of MRI maps of these tissue properties to the location 135

of the nodes of the resampled streamlines designated to each bundle. In each of 100 136

nodes, the values are summed across streamlines, weighting the contribution of each 137

streamline by the inverse of the mahalnobis distance of the node from the average of 138

that node across streamlines. This means that streamlines that are more representative 139

of the tract contribute more to the bundle profile, relative to streamlines that are on the 140

edge of the tract. 141

This process creates bundle profiles, in which diffusion measures are quantified and 142

averaged along twenty major fiber tracts. Here, we use only the mean diffusivity (MD) 143

and the fractional anisotropy (FA) of the diffusion tensor, but additional dMRI-based 144

maps or maps based on other quantitative MRI measurements can also be used. These 145

bundle profiles, along with the phenotypical data we wish to explain or predict, form 146

the input to the SGL algorithm. In a domain-agnostic machine learning context, the 147

phenotypical data comprise the target variables while the bundle profiles form the 148

feature or predictor variables (See Fig 1). 149
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Sparse Group Lasso 150

Before fitting a model to the data, imputation and standardization are performed. 151

Missing node values (e.g., in cases where AFQ designates a node as not-a-number) are 152

imputed via linear interpolation. Care is taken not to interpolate across the boundaries 153

between different bundles. Some diffusion metrics will have naturally larger variance 154

than others and may therefore dominate the objective function and make the SGL 155

estimator unable to learn from the lower variance metrics. For example, fractional 156

anisotropy (FA) is bounded between zero and one and could be overwhelmed by an 157

unscaled higher-variance metric like the mean diffusivity (MD). To prevent this we 158

remove each feature’s mean and scale it to unit variance (z-score) using the 159

StandardScaler from scikit-learn [40]. Scaling is performed separately within each 160

cross-validation set’s training or testing data to prevent leakage of information between 161

the testing and training sets [41]. 162

After scaling and imputation, the tractometry data and target phenotypical data can 163

be organized in a linear model: 164

y = Xβ + ε, (1)

where y is the phenotype – categorical, such as a clinical diagnosis, or continuous 165

numerical, such as the subject’s age. The tractometry data is represented in the feature 166

matrix X, with rows corresponding to different subjects, and columns corresponding to 167

diffusion measures at different nodes within each bundle. The relationship between 168

tractometric features and the phenotypic target is characterized by the coefficients in β. 169

The error term, ε is an unobserved random variable that captures the error in the model. 170

We denote our prediction of the targer phenotype as ŷ and the coefficients that produce 171

this prediction as β̂, so that 172

ŷ = Xβ̂, (2)

without the error term, ε. In general, the feature matrix X has dimensions 173

S × (B ×N ×M), where S is the number of subjects, B is the number of white matter 174

bundles, N is the number of nodes in each bundle, and M is the number of diffusion 175

metrics calculated at each node. Typically, B = 20, N = 100, and 2 ≤M ≤ 8, resulting 176

in ∼ 4, 000− 16, 000 features. Conversely, many dMRI studies have between a few dozen 177

and a few hundred subjects, yielding a feature matrix that is wide and short. Even in 178

cases where more than a thousand subjects are measured (e.g., in the Human 179

Connectome Project, where 1,200 subjects were measured [42]), the problem is ill-posed: 180

the high dimensionality of this data requires regularization to avoid overfitting and 181

generate interpretable results. 182

Here, we propose that in addition to regularizing the coefficients in β̂, we can also 183

capitalize on our knowledge of the group structure of the bundle profile features in X. 184

The bundle-metric combinations form a natural grouping. For example, we expect that 185

MD features within the left arcuate fasciculus will co-vary across individuals. Likewise 186

for FA values within the right corticospinal tract (CST) and so on. This group structure 187

is represented in Fig 1, which depicts the linear model ŷ = Xβ̂. Thus, we seek a 188

regularization approach that will fit a linear model with anatomically-grouped 189

covariates, where we expect to observe both groupwise sparsity, where the number of 190

groups (bundle/metric combinations) with at least one non-zero coefficients is small, as 191

well as within-group sparsity, where the number of non-zero coefficients within each 192

non-zero group is small. The sparse group lasso (SGL) is a penalized regression 193

technique that satisfies exactly these criteria [2]. It solves for a coefficient vector β̂ that 194

satisfies 195

β̂ = min
β

1

2
||y −

G∑
`=1

X(`)β(`)||22 + λ1

G∑
`=1

√
p`||β(`)||2 + λ2||β||1, (3)
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where G is the number of groups X(`) is the submatrix of X corresponding to group `, 196

β(`) is the coefficient vector for group ` and p` is the length of β(`). In the tractomtetry 197

setting, G = T ×M and ∀` : p` = 100. The first term is the mean square error loss, 198

Lmse, as in the standard linear regression framework. The second and third terms 199

encourage groupwise sparsity and overall sparsity, respectively. If λ1 = 0 and λ2 = 1, 200

the SGL reduces to the traditional lasso [43]. Conversely, if λ1 = 1 and λ2 = 0, the SGL 201

reduces to the group lasso [44]. 202

Fig 1. dMRI group structure. The phenotypical target data and tractometric
features can be organized into a linear model, ŷ = Xβ̂. The feature matrix X is
color-coded to reveal a natural group structure: the left (orange) group contains k
features from the inferior fronto-occipital fascicle (IFOF), the middle (green) group
contains k features from the corpus callosum, and the right (blue) group contains k

features from the uncinate. The coefficients in β̂ follow the same natural grouping.
Fascicle image reproduced with permission from Ref [1] Figure 1.

Incorporating transformations on y 203

Often, the target variable y is not in the domain in which the linear model can be best 204

fit to it. Equation (2) can be slightly modified as: 205

ŷ = f−1(Xβ̂), (4)

where the transformation function f−1 characterizes the transform applied to the data 206

before fitting the linear coefficients. For example, an often-used transform is the 207

logarithmic transform: 208

f(ŷ) = logn(ŷ) (5)

In this case, the model is parametrized by one additional fit parameter, n. 209

Classification of categorical y 210

When the phenotypical target variable is categorical, as in the case of explaining or 211

predicting the presence of a clinical diagnosis, the SGL is readily adapted to logistic 212

regression, where the probability of a target variable belonging to an arbitrary defined 213

“true” class is the logistic function of the result of the linear model, 214

p(ŷ = 1) =
1

1 + exp(Xβ̂)
, (6)
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or equivalently, the mean squared error loss function in Eq (3) is replaced with the 215

cross-entropy loss, which for binary classification is the negative log likelihood of the 216

SGL classifier giving the “true” label: 217

Lmse → Llog = − (y log(p) + (1− y) log(1− p)) . (7)

Implementation, cross-validation and metaparameter 218

optimization 219

For given values of λ1 and λ2, the cost function in Eq (3) can be optimized using 220

proximal gradient descent methods [45] here implemented as a custom proximal 221

operator that is then optimized using the C-OPT library [46]. This supplies an estimate 222

of the optimal β̂ given a particular set of values for the meta-parameters λ1 and λ2. 223

To objectively evaluate the model and guard against over-fitting, we used a nested 224

cross-validation scheme, depicted in Fig 2 for the categorical classification case. The 225

subjects (i.e. rows of the feature matrix X in Fig 1 and Eq (1)) are shuffled and then 226

decomposed into k batches, hereafter referred to as folds. For the ALS dataset we used 227

k = 10 and for the WH dataset k = 5. For each unique fold, we hold that fold out as 228

the testouter set and let the remaining data comprise the trainouter set, with the 229

subscript indicating the depth of the nested decomposition. We further decompose each 230

trainouter set into three folds, and again for each unique fold, we hold out that fold as 231

the testinner set and let the remaining data comprise the traininner set. At level-1 of the 232

decomposition, we fit an SGL model using fixed regularization meta-parameters λ1 and 233

λ2, training the model using traininner and evaluating the fit on testinner. We find the 234

optimal values for λ1 and λ2 using hyperoptimization, implemented using the hyperopt 235

library’s fmin function [47] with a tree of Parzen estimators search algorithm [48]. For 236

continuous numerical y, fmin searches for meta-parameter values that minimize the 237

median absolute error. This can also be done minimizing the root of the mean squared 238

error (RMSE) or to maximizing the coefficient of determination (R2). For binary 239

categorical y fmin seeks to maximize the classification accuracy. This can also be done 240

maximizing the area under the receiver operating curve (ROC AUC) or the average 241

precision. Using hyperoptimization, we find optimal regularization parameters and β̂ for 242

each trainouter set and then use those to predict values for data in testouter. Thus each 243

subject in the dataset has a predicted phenotype derived from a model that never saw 244

its particular subject’s data. 245

The above procedure describes k-fold cross validation. In fact, we use repeated 246

k-fold cross validation on the outer level of the decomposition, so that the input data is 247

decomposed into k folds, three times. Thus, each subject has three predicted phenotypes. 248

We then take the mean predicted value to summarize the performance of the model. In 249

the classification case, the shuffling into folds is stratified such that each fold has a 250

population that preserves the percentage of each class found in the larger input data. 251

Software implementation 252

The full software implementation of the SGL approach presented here is available in a 253

Python software package called AFQ-Insight, which is developed publicly in 254

https://github.com/richford/afq-insight. The version of the code used to 255

produce the results herein is also available in 256

https://doi.org/10.5281/zenodo.3585942. AFQ-Insight reads the target and 257

feature data that has been processed by AFQ from comma separated value (CSV) files 258

conforming to the AFQ-Browser data format [49] and represents them internally as 259

DataFrame objects from the pandas Python library [50]. The software provides 260

different options for imputing missing data in the feature matrix. Missing interior nodes 261
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Fig 2. Nested k-fold cross-validation scheme. We evaluate model quality using a
nested k-fold cross validation scheme. At level-0, the input data is decomposed three
times into k shuffled groups and optimal hyperparameters are found for the level-0
training set. Optimization of these hyperparameters requires the use of the hyperopt
library and many repeated evaluations of an SGL model over a search space of possible
regularization parameters. These evaluations take place at level-1 of the decomposition,
where the level-0 training set is further decomposed into three shuffled groups. For the
ALS data, k = 10. For the WH data, k = 5.

are imputed using linear interpolation. For missing exterior nodes, the user may choose 262

between linear extrapolation and constant forward(back)-fill. Imputation uses only 263

values from adjacent nodes in the same white matter bundle in the same subject so 264

there is no danger of data leakage from other subjects. It uses the scikit-learn [40] 265

library to decompose input data into separate test and train datasets, to scale each 266

feature to have zero mean and unit variance, and to evaluate each fit in the 267

hyperparameter search using appropriate classification and regression metrics such as 268

accuracy, area under the receiver operating curve (AUC ROC), and coefficient of 269

determination (R2). For each set of hyperparameters, we solve the SGL using a custom 270

proximal operator supplied to the C-OPT library [46]. Appropriate hyperparameters 271

are found using the hyperopt library [47]. 272

Results and discussion 273

We developed a method for analyzing dMRI tractometry data with SGL. We 274

demonstrate the use of this method on two previously published datasets in both a 275

classification setting and a regression setting. 276

SGL accurately detects ALS in tractometry data in a 277

classification setting 278

Using data from a previous study of the corticospinal tract (CST) profile and ALS [3], 279

we tested the performance of SGL in a classification setting. The previous study 280

predicted ALS status with a mean accuracy of 80% using a random forest algorithm 281

based on a priori selection of features within the corticospinal tract. SGL delivers 282

competitive predictive performance (mean 93% ± 2% accuracy, 0.978 ± 0.006 ROC 283

AUC) without the need for a priori feature engineering. The results of the classification 284

prediction are shown in Figure 3 with “ground-truth” ALS status separated into 285

columns, and predicted ALS status encoded by color. In addition to this classification 286

performance, SGL also identifies the white matter tracts most important for ALS 287
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classification. The relative importance of white matter features is captured in the β 288

coefficients from Eq (3). Figure 4 depicts these coefficients along the right CST, plotted 289

over the FA values for the control and ALS subject groups. We find that SGL selects 290

FA metrics in the corticospinal tract and particularly in the right corticospinal tract as 291

most important to ALS classification, confirming previous findings [51–60] and 292

identifying the portions of the brain that were selected a priori in the previous study 293

from which we collected our data [3]. 294

Analyzing the ways in which the model mislabels individuals may also provide 295

insight. We found that mislabelled subjects are outliers relative to their group with 296

respect to diffusion features of the CST. Figure 5 depicts the group FA values along 297

with FA values of mislabelled subjects, two false negatives and one false-positive. The 298

false negative classifications have high FA in one of the two sections of the CST where 299

||β̂|| > 0 in Figure 4. The false positive subject has an FA that oscillates between the 300

two group means. Thus, the SGL method fails comprehensibly. 301

Fig 3. SGL accurately predicts ALS. Left: Classification probabilities for each
subject’s ALS diagnosis. Controls are on the left while patients are on the right.
Predicted controls are in blue and predicted patients are in red. Thus, false positive are
represented as red dots on the left, while false negatives are represented as blue dots on
the right. The SGL algorithm achieves 93% ± 2% accuracy,with 0.978 ± 0.006 ROC
AUC. Right: SGL coefficients are presented on a skeleton of the major tracts. The
brain is oriented with the right hemisphere to our left and anterior out of the page. As
expected large negative coefficients are in the FA of the CST (and particularly in the
right hemisphere, here to the left)

SGL accurately predicts age from tractometry data in a 302

regression setting 303

To test the performance of SGL with tractometry data in a continuous regression task, 304

we focus here on the prediction of biological age based on tractometry data. Prediction 305

of “brain age” is a commonly undertaken task. This is both because it operates on a 306

natural scale, with meaningful and easily understood units, as well as because 307

predictions of brain age, and deviations from accurate prediction are diagnostic of 308

overall brain health (for a recent review, see [61]). The WH dataset used here contains 309

data from 76 healthy subjects, ranging between 6 years and 50 years of age [4]. In this 310

case, biological age was used as the predicted variable (y in Eq (1)). SGL was fit to 311

tractometry-extracted features: FA and MD in 20 major brain tracts, with each tract 312

divided into 100 nodes. To evaluate the fit of the model, we used a nested 313

cross-validation procedure. In this procedure, batches of subjects are held out. For each 314
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Fig 4. Model coefficients mirror FA differences. The places along the length of
the CST where β̂ coefficients for FA (dashed line, right axis) have large negative values
correspond to the locations of substantial differences between the ALS (green) and
control (orange) FA (shaded area indicates standard error of the mean).

batch (or fold), the model is fully fit without this data. Then, once the parameters are 315

fixed, the model is inverted to predict the ages of held out subjects based on the linear 316

coeffiecients and the static non-linearity. This scheme automatically finds the right level 317

of regularization (i.e., sparseness) and fits the coefficients to the ill-posed linear model, 318

while guarding against overfitting. SGL accurately predicts the age of the subjects in 319

this procedure, with a mean absolute error of 3.6 years (Figure 6, left panel). This is 320

lower than the results of a recent study that predicted age in a large sample, based on 321

diffusion MRI features [62]. Nevertheless, older subjects have higher residual variance, 322

reflecting the automatically-chosen log-transformation and implying that brain age 323

becomes more difficult to predict as we age chronologically (6, right panel). The model 324

weights are distributed over many different tracts and dMRI tissue properties (Figure 7 325

left). This demonstrates that SGL is not coerced to produce overly sparse results when 326

a more accurate model requires a dense selection of features. Furthermore, looking 327

closer at a selection of tracts where high coefficients are found demonstrates that 328

diffusion properties (FA, in this case) are different in different age groups in parts of the 329

tracts where these higher coefficients are found (Figure 7 right). 330

Conclusion 331

We present here a novel method for analysis of dMRI tractometry data that relies on 332

the Sparse Group Lasso [2] to (a) make accurate predictions of phenotypic properties of 333

individual subjects while, simultaneously, (b) identifying the features of the white 334

matter that are most important for this prediction in a completely data-driven 335

approach. The method is broadly applicable to a wide range of research questions: it 336

performs well in predicting both continuous variables, such as biological age, as well as 337

categorical variables, such as whether a person is a patient or a healthy control. In both 338

of these cases, SGL out-performs previous algorithms that have been developed for 339

these tasks [3, 62]. The nested cross-validation approach used to fit the model and make 340

both predictions and inferences from the model guards against overfitting and tunes the 341

degree of sparseness required by the algorithm. This means that SGL can accurately 342

describe phenomena that are locally confined to a particular anatomical location or 343

diffusion property (e.g., FA in the CST) as well as phenomena that are widely 344
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Fig 5. Model mis-classifications correspond to features identified by the
model. The FA in CST of individuals that are mis-classified by the model is compared
the group FA (with shaded are indicating standard error of the mean). False negative
classifications (individuals that have ALS, but are classified as patients) correspond to

high FA either in one of the two regions of large ||β̂|| in Figure 4. The false positive
classification has an FA profile that oscillates between the two group means.

distributed amongst brain regions and measured diffusion properties. 345

Specifically, we demonstrated that the algorithm correctly detects the fact that ALS, 346

which is a disease of lower motor neurons, is localized to the cortico-spinal tract. This 347

recapitulates the results of previous analysis of these same data, using a targeted 348

ROI-based approach [3]. In contrast, for the analysis of biological age, the coefficients 349

identified by the algorithm are very widely distributed across many parts of the white 350

matter, mirroring previous results with this dataset (and others) that show a large and 351

continuous distribution of life-span changes in white matter properties [4]. 352

Taken together, these results demonstrate the promise of the group-regularized 353

regression approach. Even at the scale of dozens of subjects, the results provided by 354

SGL are both accurate, as well as interpretable [29]: tractometry capitalizes on domain 355

knowledge to engineer meaningful features; SGL scores these features based on their 356

relative importance; enables a visualization of these feature importance scores in the 357

anatomical coordinate frame of the bundles (e.g., Figures 3 and fig:regress-beta) and 358

provides a means to understand model errors (e.g., Figure 5) . Thus, this multivariate 359

analysis approach both (a) achieves high cross-validated accuracy for precision medicine 360

applications of dMRI data and (b) identifies relevant features of brain anatomy that can 361

further our neuroscientific understanding of clinical disorders. 362

Neuroscience has entered an era in which consortium efforts are putting together 363

large datasets of high-quality dMRI measurements to address a variety of scientific 364

questions [42,63–66]. The volume and complexity of these data pose a substantial 365

challenge. Dimensionality reduction with tractometry, followed by analysis with the 366

approach we present here promises to capitalize on the wealth of data and on the 367

co-measurement of interesting and important phenotypical data about brain health and 368

about the participants’ cognitive abilities. We also expect the group-regularized 369

approach to improve with larger datasets. 370

SGL has many other potential applications in neuroscience, because of the 371

hierarchical and grouped nature of many data types that are collected in multiple 372

sample points within anatomically-defined areas. For example, this method may be 373

useful to understand the relationship between fMRI recordings and behavior, where 374
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Fig 6. Predicting age with tractometry and SGL. Left: The predicted age of
each individual (on the abscissa) and true age (on the ordinate), from the test splits
(i.e., when each subject’s data was held out in fitting the model); an accurate prediction
falls close to the y = x line (dashed). The mean absolute error in this case is 3.6 years
and, the coefficient of determination R2 = 0.3. Right: Standardized residuals (on the
abscissa) as a function of the true age (on the ordinate). Predictions are generally more
accurate for younger individuals.
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Fig 7. Feature importance for predicting age from tractometry. Left: A
skeletonized display of the main brain tracts analyzed, with anterior facing up, and right
hemisphere on the right. The β̂ coefficients displayed in blue (negative) to red (positive)
are for measurements of FA along the length of the tracts. The left cingulum cingulate
(A) and forceps minor (B) are highlighted. Right: the FA (in shades of blue and green)
and the beta coefficients (dashed) in (A) left cingulum and (B) forceps minor.

activity in each voxel may co-vary with voxels within the same anatomical region and 375

form features and groups of features. Similarly, large-scale multi-electrode recordings of 376

neural activity in awake behaving animals are becoming increasingly feasible [67,68] and 377

these recordings can form features (neurons) and groups (neurons within an anatomical 378

region). More ambitiously perhaps, this approach may be used to understand the role of 379

correlations in so-called resting-state fMRI time-series and behavior, where pairwise 380

correlations between voxels in different anatomical regions are features in the matrix 381

and features may be grouped by pairs of anatomical regions. Given the large number of 382

voxels in the surface of the gray matter and given that correlations increase the number 383

of features by a factor of n2, this would pose a challenging problem to solve using SGL. 384

The results we present here also motivate extensions of the method using more 385

sophisticated cost functions. For example, the fused sparse group lasso (FSGL) [69] 386

extends SGL to enforce additional spatial structure: smoothness in the variation of 387

diffusion metrics along the bundles. As brain measurements include additional structure 388

(for example, bilateral symmetry), future work could also incorporate overlapping group 389
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membership for each entry in the tract profiles [70]. For example, a measurement could 390

come from the corpus callosum, but also from the right hemipshere. This would also 391

require extending the cost function used here to incorporate these constraints. Similarly, 392

unsupervised dimensionality reduction of tractometry data (e.g., [71]) could also benefit 393

from constraints based on grouping. 394

The method is packaged as open-source software called AFQ-Insight that is openly 395

available, and provides a clear API to allow for extensions of the method. The sofware 396

integrates within a broader automated fiber quantification software ecosystem: AFQ [1], 397

which extracts tractometry data from raw and processed dMRI datasets, as well as 398

AFQ-Browser, which visualizes tractometry data and facilitates sharing of the results of 399

dMRI studies [49]. To facilitate reproducibility and ease use of the software, the results 400

presented in this paper are also provided in https://github.com/richford/ 401

AFQ-Insight/tree/master/examples/preprint-notebooks as a series of Jupyter 402

notebooks [72]. 403
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The challenge of mapping the human connectome based on diffusion tractography.
Nat Commun. 2017 Nov;8(1):1349.

12. Thomas C, Ye FQ, Irfanoglu MO, Modi P, Saleem KS, Leopold DA, et al.
Anatomical accuracy of brain connections derived from diffusion MRI
tractography is inherently limited. Proc Natl Acad Sci U S A. 2014
Nov;111(46):16574–16579.

13. Pestilli F, Yeatman JD, Rokem A, Kay KN, Wandell BA. Evaluation and
statistical inference for human connectomes. Nat Methods.
2014;11(10):1058–1063.

14. Takemura H, Caiafa CF, Wandell BA, Pestilli F. Ensemble Tractography. PLoS
Comput Biol. 2016 Feb;12(2):e1004692.

15. Smith RE, Tournier JD, Calamante F, Connelly A. SIFT: Spherical-deconvolution
informed filtering of tractograms. Neuroimage. 2013 Feb;67:298–312.

16. Smith RE, Tournier JD, Calamante F, Connelly A. SIFT2: Enabling dense
quantitative assessment of brain white matter connectivity using streamlines
tractography. Neuroimage. 2015 Oct;119:338–351.

17. Smith RE, Tournier JD, Calamante F, Connelly A. The effects of SIFT on the
reproducibility and biological accuracy of the structural connectome. Neuroimage.
2015 Jan;104:253–265.

18. Rheault F, St-Onge E, Sidhu J, Maier-Hein K, Tzourio-Mazoyer N, Petit L, et al.
Bundle-specific tractography with incorporated anatomical and orientational
priors. Neuroimage. 2018 Nov;.

19. Catani M, Howard RJ, Pajevic S, Jones DK. Virtual in vivo interactive dissection
of white matter fasciculi in the human brain. Neuroimage. 2002 Sep;17(1):77–94.

20. Bells S, Cercignani M, Deoni S, Assaf Y, Pasternak O, Evans C, et al.
Tractometry–comprehensive multi-modal quantitative assessment of white matter
along specific tracts. In: Proc. ISMRM. vol. 678; 2011. p. 1.

21. Yendiki A, Panneck P, Srinivasan P, Stevens A, Zöllei L, Augustinack J, et al.
Automated probabilistic reconstruction of white-matter pathways in health and
disease using an atlas of the underlying anatomy. Front Neuroinform. 2011
Oct;5:23.

22. Wassermann D, Makris N, Rathi Y, Shenton M, Kikinis R, Kubicki M, et al. The
white matter query language: a novel approach for describing human white
matter anatomy. Brain Struct Funct. 2016 Dec;221(9):4705–4721.

23. O’Donnell LJ, Westin CF, Golby AJ. Tract-based morphometry for white matter
group analysis. Neuroimage. 2009 Apr;45(3):832–844.

December 19, 2019 14/18

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 20, 2019. ; https://doi.org/10.1101/2019.12.19.882928doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.19.882928
http://creativecommons.org/licenses/by/4.0/


24. Colby JB, Soderberg L, Lebel C, Dinov ID, Thompson PM, Sowell ER.
Along-tract statistics allow for enhanced tractography analysis. Neuroimage. 2012
Feb;59(4):3227–3242.

25. Nichols TE, Holmes AP. Nonparametric permutation tests for functional
neuroimaging: a primer with examples. Hum Brain Mapp. 2002 Jan;15(1):1–25.

26. Nichols T, Hayasaka S. Controlling the familywise error rate in functional
neuroimaging: a comparative review. Stat Methods Med Res. 2003
Oct;12(5):419–446.

27. Huber E, Donnelly PM, Rokem A, Yeatman JD. Rapid and widespread white
matter plasticity during an intensive reading intervention. Nature
communications. 2018;9(1):2260.

28. Dayan M, Monohan E, Pandya S, Kuceyeski A, Nguyen TD, Raj A, et al.
Profilometry: a new statistical framework for the characterization of white matter
pathways, with application to multiple sclerosis. Human brain mapping.
2016;37(3):989–1004.

29. Murdoch WJ, Singh C, Kumbier K, Abbasi-Asl R, Yu B. Definitions, methods,
and applications in interpretable machine learning. Proc Natl Acad Sci U S A.
2019 Oct;116(44):22071–22080.

30. Breiman L. Statistical Modeling: The Two Cultures (with comments and a
rejoinder by the author). Stat Sci. 2001 Aug;16(3):199–231.

31. Hoerl AE, Kennard RW. Ridge Regression: Biased Estimation for Nonorthogonal
Problems. Technometrics. 2000 Feb;42(1):80–86.

32. Tibshirani R. Regression Shrinkage and Selection via the Lasso. J R Stat Soc
Series B Stat Methodol. 1996;58(1):267–288.

33. Yuan M, Lin Y. Model selection and estimation in regression with grouped
variables. J R Stat Soc Series B Stat Methodol. 2006;68(1):49–67.

34. Simon N, Friedman J, Hastie T, Tibshirani R. A sparse-group lasso. Journal of
Computational and Graphical Statistics. 2013;22(2):231–245.

35. Basser PJ, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and
imaging. Biophysical journal. 1994;66(1):259–267.

36. Chang LC, Jones DK, Pierpaoli C. RESTORE: robust estimation of tensors by
outlier rejection. Magnetic Resonance in Medicine: An Official Journal of the
International Society for Magnetic Resonance in Medicine. 2005;53(5):1088–1095.

37. Basser PJ, Pajevic S, Pierpaoli C, Duda J, Aldroubi A. In vivo fiber tractography
using DT-MRI data. Magnetic resonance in medicine. 2000;44(4):625–632.

38. Wakana S, Caprihan A, Panzenboeck MM, Fallon JH, Perry M, Gollub RL, et al.
Reproducibility of quantitative tractography methods applied to cerebral white
matter. Neuroimage. 2007;36(3):630–644.

39. Hua K, Zhang J, Wakana S, Jiang H, Li X, Reich DS, et al. Tract probability
maps in stereotaxic spaces: analyses of white matter anatomy and tract-specific
quantification. Neuroimage. 2008 Jan;39(1):336–347.

December 19, 2019 15/18

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 20, 2019. ; https://doi.org/10.1101/2019.12.19.882928doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.19.882928
http://creativecommons.org/licenses/by/4.0/


40. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al.
Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research.
2011;12:2825–2830.

41. Kaufman S, Rosset S, Perlich C, Stitelman O. Leakage in data mining:
Formulation, detection, and avoidance. ACM Transactions on Knowledge
Discovery from Data (TKDD). 2012;6(4):15.

42. Van Essen DC, Ugurbil K, Auerbach E, Barch D, Behrens TEJ, Bucholz R, et al.
”The Human Connectome Project: A data acquisition perspective ”. NeuroImage.
2012;62(4):2222 – 2231. Available from:
http://www.sciencedirect.com/science/article/pii/S1053811912001954.

43. Tibshirani R. Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society Series B (Methodological). 1996;p. 267–288.

44. Yuan M, Lin Y. Model selection and estimation in regression with grouped
variables. Journal of the Royal Statistical Society: Series B (Statistical
Methodology). 2006;68(1):49–67.

45. Parikh N, Boyd S, et al. Proximal algorithms. Foundations and Trends® in
Optimization. 2014;1(3):127–239.

46. Pedregosa F. C-OPT: composite optimization in Python; 2018. Available from:
http://openopt.github.io/copt/.

47. Bergstra J, Komer B, Eliasmith C, Yamins D, Cox DD. Hyperopt: a Python
library for model selection and hyperparameter optimization. Computational
Science & Discovery. 2015 jul;8(1):014008. Available from:
https://doi.org/10.1088%2F1749-4699%2F8%2F1%2F014008.

48. Bergstra JS, Bardenet R, Bengio Y, Kégl B. Algorithms for hyper-parameter
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