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Abstract

The white matter contains long-range connections between different brain regions and
the organization of these connections holds important implications for brain function in
health and disease. Tractometry uses diffusion-weighted magnetic resonance imaging
(dAMRI) data to quantify tissue properties (e.g. fractional anisotropy (FA), mean
diffusivity (MD), etc.), along the trajectories of these connections [1]. Statistical
inference from tractometry usually either (a) averages these quantities along the length
of each bundle in each individual, or (b) performs analysis point-by-point along each
bundle, with group comparisons or regression models computed separately for each
point along every one of the bundles. These approaches are limited in their sensitivity,
in the former case, or in their statistical power, in the latter. In the present work, we
developed a method based on the sparse group lasso (SGL) [2] that takes into account
tissue properties measured along all of the bundles, and selects informative features by
enforcing sparsity, not only at the level of individual bundles, but also across the entire
set of bundles and all of the measured tissue properties. The sparsity penalties for each
of these constraints is identified using a nested cross-validation scheme that guards
against over-fitting and simultaneously identifies the correct level of sparsity. We
demonstrate the accuracy of the method in two settings: i) In a classification setting,
patients with amyotrophic lateral sclerosis (ALS) are accurately distinguished from
matched controls [3]. Furthermore, SGL automatically identifies FA in the corticospinal
tract as important for this classification — correctly finding the parts of the white matter
known to be affected by the disease. ii) In a regression setting, dMRI is used to
accurately predict “brain age” [4,5]. In this case, the weights are distributed throughout
the white matter indicating that many different regions of the white matter change with
development and contribute to the prediction of age. Thus, SGL makes it possible to
leverage the multivariate relationship between diffusion properties measured along
multiple bundles to make accurate predictions of subject characteristics while
simultaneously discovering the most relevant features of the white matter for the
characteristic of interest.
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Introduction

Diffusion-weighted Magnetic Resonance Imaging (AMRI) provides a unique view into
the physical properties of the connections that comprise the brain white matter. While
the measurements are usually conducted with voxels at the millimeter scale, water
molecules within each voxel diffuse with characteristic lengths at the micrometer scale,
providing aggregate information about the physical structure of the white matter,

including the density of axons and distribution of fiber orientations within each voxel [6].

Even though metrics derived from diffusion measurements are ambiguous in terms of
their underlying biological interpretation |7], analyzing the variance in these properties
has proven useful in characterizing individual differences in cognitive function,
characterizing differences between populations and detecting brain abnormalities
associated with disease |[§].

To relate the diffusion in each voxel to the macro-structure of long-range connections
between different brain regions, methods for computational tract-tracing from diffusion
MRI, or tractography, combine the estimates of fiber orientations in each voxel to form
streamlines that traverse the volume of the white matter [9,/10]. These methods have
been under increased scrutiny and several lines of investigation have raised critiques of
their validity |11[12]. On the other hand, there have been efforts to shore up the
inferences made with these methods [13H1§]. Importantly, though discovering novel
tracts requires extraordinary evidence, and delineating the exact cortical termination of
the streamlines in the gray matter is still prone to error, there is little dispute that
tractography can accurately define the location of several major white matter tracts
that are known to exist within the core of the white matter [11/19].

Leveraging this fact, one of the most powerful methods currently available to put
macro- and micro-structure together is tractometry: assessment of the physical
properties of the white matter along specific tracts [20]. Though there are several
different available implementations of this overall idea, the principles are
similar [1}21H23]: tractometry begins by delineating the parts of the white matter that
belong to different major “tracts” (i.e. anatomical or functional groups of white matter
fibers), such as the corticospinal tract or arcuate fasciculus, assigning tractography
generated streamlines to “bundles,” which approximate the anatomical tracts, and
sampling biophysical properties (such as fractional anisotropy or mean diffusivity) along
the length of these bundles. the parts of the white matter that belong to different major
tracts (i.e. anatomical or functional groups of white matter fibers), such as the
corticospinal tract or arcuate fasciculus, assigning tractography generated streamlines to
“bundles,” which approximate the anatomical tracts, and sampling biophysical properties
(such as fractional anisotropy or mean diffusivity) along the length of these bundles. In
some previous tractometry-based studies, tissue properties along the length of each tract
were summarized by taking the mean along each bundle, but there is a large body of
evidence showing that there is systematic variability in the values of diffusion metrics
along the trajectory of each bundle. This justifies retaining the individual samples along
the length of each bundle [1}23}/24]. While this retains important information about
each individual’s white matter, it also presents statistical challenges due to the
dimensionality of the data. Based on tractometry, researchers may choose to compare
different individuals to each other. This is usually done according to one of the
following approaches:

1. Mass univariate approaches: In this approach comparisons between groups or
across individuals are done independently at each node of each bundle, for each
one of the diffusion metrics available at that point. This approach is exhaustive,
but statistical power is compromised by a multiple comparison problem. Different
approaches can be taken to resolving this challenge. For example, Colby and
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colleagues [24] used a non-parametric resmapling approach to correct for
family-wise error across the different possible comparisons [25}26].

2. Region of interest(ROT)-based approaches: An alternative that circumvents the
multiple comparison problem is to select just a few tracts to compare in each
individual, or even focusing on particular segments of these tracts based on a
priori hypotheses. This approach is very powerful when the biological basis of the
process of interest is relatively well understood (for a recent example, see [27]).

3. ROI-based selection, followed by multivariate analysis: Here, an ROI is selected
based on a priori knowledge, and all the nodes or voxels in the ROI are used
together to fit a model that can predict differences between individuals. An
example of that is the “profilometry” framework, in which different diffusion
metrics from a single tract are combined together to provide input to a
multivariate analysis of covariance, and linear discriminant analysis [2§].

Generally speaking, analysis methods should balance predictive accuracy with
descriptive power [29,/30]. Accordingly, tractometry analysis should simultaneously
capitalize on all the data across all tracts to make the best possible prediction, while
also retaining and elucidating spatial information about the locations that are most
informative for a prediction. In the present work, we developed a novel framework for
analysis of tractometry that simultaneously selects the features for analysis, and fits a
model to these features. We use a linear modeling approach, which aims to predict
phenotypical variance in a group of subjects, based on a linear combination of the
features estimated with tractometry.

Using this approach, we first need to deal with the large and asymmetric
dimensionality of the data: tractometry data usually has many more features (i.e.,
number of measurements per individual) than samples (number of subjects), which
makes inferences from the data about phenotypical differences between individuals
ill-posed. This regime is the target of several statistical learning techniques, and is often
solved by various forms of regularization. For example, Tikhonov regularization shrinks
the solution such that the sum of squared contributions from the individual features are
minimized [31]. Another solution to the problem is provided by the Lasso algorithm,
which instead minimizes the sum of the absolute values of contributions of each
feature [32]. This tends to shrink to zero the contributions of many of the features,
providing results that are both accurate and interpretable. When additional structure is
available in the organization of the data, regularization algorithms can take advantage
of this structure. For example, if the features lend themselves to a natural division into
different groups, the group lasso (GL) can be used to select groups of features, rather
than individual features [33]. The Sparse Group Lasso (SGL) elaborates on this idea by

providing control both of group sparsity, as well as overall sparsity of the solutions [34].

Because the features measured with tractomery lend themselves to grouping based on
the tracts from which each measurement is taken, GL and SGL could provide a useful
tool for linear model fitting in problems of this form. Here we, first, develop an
implementation of SGL that is well suited to the analysis of tractometry data and,
second, demonstrate the power and flexibility of this approach by applying it to both
classification (disease diagnosis) and continuous prediction (age) problems from
previously published studies [3},/4].

Materials and methods

Data

Two different previously-published datasets were used here:
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1. Diffusion MRI from a previous study of the corticospinal tract (CST) in patients
with amyotrophic lateral sclerosis (ALS [3]), containing data from 24 ALS patients
and 24 demographically matched healthy controls. These data were measured in a
GE Discovery 750 3T MRI scanner at the Institute of Bioimaging and Molecular
Physiology in Catanzaro. Informed consent was provided as approved by the
Ethical Committee of the University “Magna Graecia” of Catanzaro. Voxel
resolution was 2 x 2 x 2 mm? and 27 non-colinear directions were measured with

a b=1000 >>=. Data was preprocessed to correct for subject motion and for

eddy currents. The diffusion tensor model [35] was fit in every voxel. We will refer

to this dataset as ALS.

2. Diffusion MRI data from a previous study of properties of the white matter across
the lifespan 4], containing dMRI data from 76 subjects with ages 6-50. These
data were measured in a GE Discovery 750 3T MRI scanner at the Stanford
Center for Cognitive and Neurobiological Imaging. The Stanford University IRB
approved the procedures of this study. Informed consent was obtained from each
adult participant, and assent for participation was provided by parents/guardians
for children. Voxel resolution was 2 x 2 x 2mm? with 96 non-colinear directions
measured with a b = 2000 2% and 30 non-colinear directions measured with a

2
b=1000 ;->%. These data $g;e acquired using a dual spin echo sequence, in which
there is sufficient time for eddy currents to subside between the application of the
gradients and the image acquisition, so no eddy current correction was applied,
but motion correction was applied before fitting the diffusion tensor model [35] in

every voxel using a robust fit [36]. We will refer to this dataset as WH.

Data from both of these studies was processed in a similar manner, using the Matlab
Automated Fiber Quantification toolbox (AFQ) |1]: streamlines representing fascicles of
white matter tracts were generated using a determinstic tractography algorithm that

follows the prinicpal diffusion direction of the diffusion tensor in each voxel (STT) [37].

Major tracts were identified using multiple criteria: streamlines are selected as
candidates for inclusion in a bundle of streamlines that represents a tract if they pass
through known inclusion ROIs and do not pass through exclusion ROIs [38]. In
addition, a probabilistic atlas is used to exclude streamlines which are unlikely to be
part of a tract [39]. Each streamline is resampled to 100 nodes and the robust mean at
each location is calculated by estimating the 3D covariance of the location of each node
and excluding streamlines that are more than 5 standard deviations from the mean
location in any node. Finally, a bundle profile of tissue properties in each bundle was
created by interpolating the value of MRI maps of these tissue properties to the location
of the nodes of the resampled streamlines designated to each bundle. In each of 100
nodes, the values are summed across streamlines, weighting the contribution of each
streamline by the inverse of the mahalnobis distance of the node from the average of
that node across streamlines. This means that streamlines that are more representative
of the tract contribute more to the bundle profile, relative to streamlines that are on the
edge of the tract.

This process creates bundle profiles, in which diffusion measures are quantified and
averaged along twenty major fiber tracts. Here, we use only the mean diffusivity (MD)
and the fractional anisotropy (FA) of the diffusion tensor, but additional dMRI-based
maps or maps based on other quantitative MRI measurements can also be used. These
bundle profiles, along with the phenotypical data we wish to explain or predict, form
the input to the SGL algorithm. In a domain-agnostic machine learning context, the
phenotypical data comprise the target variables while the bundle profiles form the
feature or predictor variables (See Fig [1)).
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Sparse Group Lasso

Before fitting a model to the data, imputation and standardization are performed.
Missing node values (e.g., in cases where AFQ designates a node as not-a-number) are
imputed via linear interpolation. Care is taken not to interpolate across the boundaries
between different bundles. Some diffusion metrics will have naturally larger variance
than others and may therefore dominate the objective function and make the SGL
estimator unable to learn from the lower variance metrics. For example, fractional
anisotropy (FA) is bounded between zero and one and could be overwhelmed by an
unscaled higher-variance metric like the mean diffusivity (MD). To prevent this we
remove each feature’s mean and scale it to unit variance (z-score) using the
StandardScaler from scikit-learn [40]. Scaling is performed separately within each
cross-validation set’s training or testing data to prevent leakage of information between
the testing and training sets [41].

After scaling and imputation, the tractometry data and target phenotypical data can
be organized in a linear model:

y=Xp[+e, (1)

where y is the phenotype — categorical, such as a clinical diagnosis, or continuous
numerical, such as the subject’s age. The tractometry data is represented in the feature
matrix X, with rows corresponding to different subjects, and columns corresponding to
diffusion measures at different nodes within each bundle. The relationship between

tractometric features and the phenotypic target is characterized by the coefficients in 5.
The error term, € is an unobserved random variable that captures the error in the model.

We denote our prediction of the targer phenotype as § and the coefficients that produce
this prediction as 3, so that

§=X5, (2)

without the error term, e. In general, the feature matrix X has dimensions

S x (B x N x M), where S is the number of subjects, B is the number of white matter
bundles, N is the number of nodes in each bundle, and M is the number of diffusion
metrics calculated at each node. Typically, B = 20, N = 100, and 2 < M < 8, resulting
in ~ 4,000 — 16,000 features. Conversely, many dMRI studies have between a few dozen
and a few hundred subjects, yielding a feature matrix that is wide and short. Even in
cases where more than a thousand subjects are measured (e.g., in the Human
Connectome Project, where 1,200 subjects were measured [42]), the problem is ill-posed:
the high dimensionality of this data requires regularization to avoid overfitting and
generate interpretable results.

Here, we propose that in addition to regularizing the coefficients in 37 we can also
capitalize on our knowledge of the group structure of the bundle profile features in X.
The bundle-metric combinations form a natural grouping. For example, we expect that
MD features within the left arcuate fasciculus will co-vary across individuals. Likewise
for FA values within the right corticospinal tract (CST) and so on. This group structure
is represented in Fig |1} which depicts the linear model § = X /3. Thus, we seek a
regularization approach that will fit a linear model with anatomically-grouped
covariates, where we expect to observe both groupwise sparsity, where the number of
groups (bundle/metric combinations) with at least one non-zero coefficients is small, as
well as within-group sparsity, where the number of non-zero coefficients within each
non-zero group is small. The sparse group lasso (SGL) is a penalized regression
technique that satisfies exactly these criteria |2]. It solves for a coefficient vector B that
satisfies

G G

A 1

f = min gy - D XOBOE+ A Ve84 A8l 3)
{=1

=1
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where G is the number of groups X is the submatrix of X corresponding to group £,
B® is the coefficient vector for group ¢ and py is the length of ). In the tractomtetry
setting, G =T x M and V¢ : p, = 100. The first term is the mean square error loss,

Lypyse, as in the standard linear regression framework. The second and third terms

encourage groupwise sparsity and overall sparsity, respectively. If A\; =0 and Ay =1,
the SGL reduces to the traditional lasso [43]. Conversely, if \; = 1 and A2 = 0, the SGL

reduces to the group lasso [44].

y X
y1 N | N N|N|N N | N|N N
y o ] [+] o [+ o [+] [+] o
2 d|d d|d|d d|d|d d
e e e e e e e e e
0|1 k|01 k| 0|1 k

L

JL
T
ﬁ o a

Fig 1. dMRI group structure. The phenotypical target data and tractometric
features can be organized into a linear model, § = X3. The feature matrix X is

JL
T
X U —

color-coded to reveal a natural group structure: the left (orange) group contains k

features from the inferior fronto-occipital fascicle (IFOF), the middle (green) group
contains k features from the corpus callosum, and the right (blue) group contains k
features from the uncinate. The coefficients in 3 follow the same natural grouping.

Fascicle image reproduced with permission from Ref [1] Figure 1.

Incorporating transformations on y

Often, the target variable y is not in the domain in which the linear model can be best
fit to it. Equation can be slightly modified as:

g =f1XB),

where the transformation function ' characterizes the transform applied to the data

before fitting the linear coefficients. For example, an often-used transform is the

logarithmic transform:

f(§) =log,(9)

In this case, the model is parametrized by one additional fit parameter, n.

Classification of categorical y

(4)

(5)

When the phenotypical target variable is categorical, as in the case of explaining or
predicting the presence of a clinical diagnosis, the SGL is readily adapted to logistic
regression, where the probability of a target variable belonging to an arbitrary defined

“true” class is the logistic function of the result of the linear model,

p(g=1)

1

- 1+ exp(XB) ’
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or equivalently, the mean squared error loss function in Eq is replaced with the
cross-entropy loss, which for binary classification is the negative log likelihood of the
SGL classifier giving the “true” label:

Lmse — Llog = - (y log(p) + (1 - y) IOg(l _p)) . (7)

Implementation, cross-validation and metaparameter
optimization

For given values of Ay and As, the cost function in Eq can be optimized using
proximal gradient descent methods [45] here implemented as a custom proximal
operator that is then optimized using the C-OPT library [46]. This supplies an estimate
of the optimal B given a particular set of values for the meta-parameters A\; and As.

To objectively evaluate the model and guard against over-fitting, we used a nested
cross-validation scheme, depicted in Fig 2] for the categorical classification case. The
subjects (i.e. rows of the feature matrix X in Fig[l|and Eq ) are shuffled and then
decomposed into k batches, hereafter referred to as folds. For the ALS dataset we used
k = 10 and for the WH dataset k = 5. For each unique fold, we hold that fold out as
the testouter set and let the remaining data comprise the trainguger set, with the
subscript indicating the depth of the nested decomposition. We further decompose each
trainguter set into three folds, and again for each unique fold, we hold out that fold as
the testinner set and let the remaining data comprise the trainj,,e, set. At level-1 of the
decomposition, we fit an SGL model using fixed regularization meta-parameters A\; and
Ao, training the model using trainj,,., and evaluating the fit on testiyner. We find the
optimal values for \; and Ay using hyperoptimization, implemented using the hyperopt
library’s fmin function [47] with a tree of Parzen estimators search algorithm [48]. For
continuous numerical y, fmin searches for meta-parameter values that minimize the
median absolute error. This can also be done minimizing the root of the mean squared
error (RMSE) or to maximizing the coefficient of determination (R?). For binary
categorical y fmin seeks to maximize the classification accuracy. This can also be done
maximizing the area under the receiver operating curve (ROC AUC) or the average
precision. Using hyperoptimization, we find optimal regularization parameters and B for
each trainguter set and then use those to predict values for data in testouter. Thus each
subject in the dataset has a predicted phenotype derived from a model that never saw
its particular subject’s data.

The above procedure describes k-fold cross validation. In fact, we use repeated
k-fold cross validation on the outer level of the decomposition, so that the input data is

decomposed into k folds, three times. Thus, each subject has three predicted phenotypes.

We then take the mean predicted value to summarize the performance of the model. In
the classification case, the shuffling into folds is stratified such that each fold has a
population that preserves the percentage of each class found in the larger input data.

Software implementation

The full software implementation of the SGL approach presented here is available in a
Python software package called AFQ-Insight, which is developed publicly in
https://github.com/richford/afq-insight. The version of the code used to
produce the results herein is also available in
https://doi.org/10.5281/zenodo.3585942. AFQ-Insight reads the target and
feature data that has been processed by AFQ from comma separated value (CSV) files
conforming to the AFQ-Browser data format [49] and represents them internally as
DataFrame objects from the pandas Python library [50]. The software provides
different options for imputing missing data in the feature matrix. Missing interior nodes
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Fig 2. Nested k-fold cross-validation scheme. We evaluate model quality using a
nested k-fold cross validation scheme. At level-0, the input data is decomposed three
times into k shuffled groups and optimal hyperparameters are found for the level-0
training set. Optimization of these hyperparameters requires the use of the hyperopt
library and many repeated evaluations of an SGL model over a search space of possible
regularization parameters. These evaluations take place at level-1 of the decomposition,
where the level-0 training set is further decomposed into three shuffled groups. For the
ALS data, kK = 10. For the WH data, k = 5.

are imputed using linear interpolation. For missing exterior nodes, the user may choose
between linear extrapolation and constant forward(back)-fill. Imputation uses only
values from adjacent nodes in the same white matter bundle in the same subject so
there is no danger of data leakage from other subjects. It uses the scikit-learn [40]
library to decompose input data into separate test and train datasets, to scale each
feature to have zero mean and unit variance, and to evaluate each fit in the
hyperparameter search using appropriate classification and regression metrics such as
accuracy, area under the receiver operating curve (AUC ROC), and coefficient of
determination (R?). For each set of hyperparameters, we solve the SGL using a custom
proximal operator supplied to the C-OPT library [46]. Appropriate hyperparameters
are found using the hyperopt library [47].

Results and discussion

We developed a method for analyzing dMRI tractometry data with SGL. We
demonstrate the use of this method on two previously published datasets in both a
classification setting and a regression setting.

SGL accurately detects ALS in tractometry data in a
classification setting

Using data from a previous study of the corticospinal tract (CST) profile and ALS [3],
we tested the performance of SGL in a classification setting. The previous study
predicted ALS status with a mean accuracy of 80% using a random forest algorithm
based on a priori selection of features within the corticospinal tract. SGL delivers
competitive predictive performance (mean 93% + 2% accuracy, 0.978 + 0.006 ROC
AUC) without the need for a priori feature engineering. The results of the classification
prediction are shown in Figure [3| with “ground-truth” ALS status separated into
columns, and predicted ALS status encoded by color. In addition to this classification
performance, SGL also identifies the white matter tracts most important for ALS
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classification. The relative importance of white matter features is captured in the £
coefficients from Eq . Figure 4| depicts these coefficients along the right CST, plotted
over the FA values for the control and ALS subject groups. We find that SGL selects
FA metrics in the corticospinal tract and particularly in the right corticospinal tract as
most important to ALS classification, confirming previous findings [51H60] and
identifying the portions of the brain that were selected a priori in the previous study
from which we collected our data [3].

Analyzing the ways in which the model mislabels individuals may also provide
insight. We found that mislabelled subjects are outliers relative to their group with
respect to diffusion features of the CST. Figure [5| depicts the group FA values along
with FA values of mislabelled subjects, two false negatives and one false-positive. The
false negative classifications have high FA in one of the two sections of the CST where
||| > 0 in Figure 4. The false positive subject has an FA that oscillates between the
two group means. Thus, the SGL method fails comprehensibly.

[ ] @ Predicted Control
o @ Predicted ALS

&
¥

0.00437
2 %0
H oo -0.00227
06 LYY
E PY e 1 ‘ -0.00891
g ? 3
(8 1
504 :. -0.0155
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..‘. -0.0222
0.2 ..Qi... M.
0 Control ALS

Class
Fig 3. SGL accurately predicts ALS. Left: Classification probabilities for each
subject’s ALS diagnosis. Controls are on the left while patients are on the right.
Predicted controls are in blue and predicted patients are in red. Thus, false positive are
represented as red dots on the left, while false negatives are represented as blue dots on
the right. The SGL algorithm achieves 93% + 2% accuracy,with 0.978 + 0.006 ROC
AUC. Right: SGL coefficients are presented on a skeleton of the major tracts. The
brain is oriented with the right hemisphere to our left and anterior out of the page. As
expected large negative coefficients are in the FA of the CST (and particularly in the
right hemisphere, here to the left)

SGL accurately predicts age from tractometry data in a
regression setting

To test the performance of SGL with tractometry data in a continuous regression task,
we focus here on the prediction of biological age based on tractometry data. Prediction
of “brain age” is a commonly undertaken task. This is both because it operates on a
natural scale, with meaningful and easily understood units, as well as because
predictions of brain age, and deviations from accurate prediction are diagnostic of
overall brain health (for a recent review, see [61]). The WH dataset used here contains
data from 76 healthy subjects, ranging between 6 years and 50 years of age [4]. In this
case, biological age was used as the predicted variable (y in Eq ) SGL was fit to
tractometry-extracted features: FA and MD in 20 major brain tracts, with each tract
divided into 100 nodes. To evaluate the fit of the model, we used a nested
cross-validation procedure. In this procedure, batches of subjects are held out. For each
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Right Corticospinal Tract Profile
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Fig 4. Model coefficients mirror FA differences. The places along the length of
the CST where 3 coefficients for FA (dashed line, right axis) have large negative values
correspond to the locations of substantial differences between the ALS (green) and
control (orange) FA (shaded area indicates standard error of the mean).

batch (or fold), the model is fully fit without this data. Then, once the parameters are
fixed, the model is inverted to predict the ages of held out subjects based on the linear
coeffiecients and the static non-linearity. This scheme automatically finds the right level
of regularization (i.e., sparseness) and fits the coefficients to the ill-posed linear model,
while guarding against overfitting. SGL accurately predicts the age of the subjects in
this procedure, with a mean absolute error of 3.6 years (Figure @ left panel). This is
lower than the results of a recent study that predicted age in a large sample, based on
diffusion MRI features [62]. Nevertheless, older subjects have higher residual variance,
reflecting the automatically-chosen log-transformation and implying that brain age
becomes more difficult to predict as we age chronologically @ right panel). The model
weights are distributed over many different tracts and dMRI tissue properties (Figure
left). This demonstrates that SGL is not coerced to produce overly sparse results when
a more accurate model requires a dense selection of features. Furthermore, looking
closer at a selection of tracts where high coefficients are found demonstrates that
diffusion properties (FA, in this case) are different in different age groups in parts of the
tracts where these higher coefficients are found (Figure [7| right).

Conclusion

We present here a novel method for analysis of dMRI tractometry data that relies on
the Sparse Group Lasso 2] to (a) make accurate predictions of phenotypic properties of
individual subjects while, simultaneously, (b) identifying the features of the white
matter that are most important for this prediction in a completely data-driven
approach. The method is broadly applicable to a wide range of research questions: it
performs well in predicting both continuous variables, such as biological age, as well as
categorical variables, such as whether a person is a patient or a healthy control. In both
of these cases, SGL out-performs previous algorithms that have been developed for
these tasks [3}/62]. The nested cross-validation approach used to fit the model and make
both predictions and inferences from the model guards against overfitting and tunes the
degree of sparseness required by the algorithm. This means that SGL can accurately
describe phenomena that are locally confined to a particular anatomical location or
diffusion property (e.g., FA in the CST) as well as phenomena that are widely
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Right Corticospinal Tract Profile, Misclassified subjects
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Fig 5. Model mis-classifications correspond to features identified by the
model. The FA in CST of individuals that are mis-classified by the model is compared
the group FA (with shaded are indicating standard error of the mean). False negative
classifications (individuals that have ALS, but are classified as patients) correspond to
high FA either in one of the two regions of large ||| in Figure 4l The false positive
classification has an FA profile that oscillates between the two group means.

distributed amongst brain regions and measured diffusion properties.

Specifically, we demonstrated that the algorithm correctly detects the fact that ALS,
which is a disease of lower motor neurons, is localized to the cortico-spinal tract. This
recapitulates the results of previous analysis of these same data, using a targeted
ROI-based approach [3]. In contrast, for the analysis of biological age, the coefficients
identified by the algorithm are very widely distributed across many parts of the white
matter, mirroring previous results with this dataset (and others) that show a large and
continuous distribution of life-span changes in white matter properties [4].

Taken together, these results demonstrate the promise of the group-regularized
regression approach. Even at the scale of dozens of subjects, the results provided by
SGL are both accurate, as well as interpretable [29]: tractometry capitalizes on domain
knowledge to engineer meaningful features; SGL scores these features based on their
relative importance; enables a visualization of these feature importance scores in the
anatomical coordinate frame of the bundles (e.g., Figures [3[ and fig:regress-beta) and
provides a means to understand model errors (e.g., Figure . Thus, this multivariate
analysis approach both (a) achieves high cross-validated accuracy for precision medicine
applications of dAMRI data and (b) identifies relevant features of brain anatomy that can
further our neuroscientific understanding of clinical disorders.

Neuroscience has entered an era in which consortium efforts are putting together
large datasets of high-quality dMRI measurements to address a variety of scientific
questions [42|63H66]. The volume and complexity of these data pose a substantial
challenge. Dimensionality reduction with tractometry, followed by analysis with the
approach we present here promises to capitalize on the wealth of data and on the
co-measurement of interesting and important phenotypical data about brain health and
about the participants’ cognitive abilities. We also expect the group-regularized
approach to improve with larger datasets.

SGL has many other potential applications in neuroscience, because of the
hierarchical and grouped nature of many data types that are collected in multiple
sample points within anatomically-defined areas. For example, this method may be
useful to understand the relationship between fMRI recordings and behavior, where
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Fig 6. Predicting age with tractometry and SGL. Left: The predicted age of
each individual (on the abscissa) and true age (on the ordinate), from the test splits
(i.e., when each subject’s data was held out in fitting the model); an accurate prediction
falls close to the y = x line (dashed). The mean absolute error in this case is 3.6 years
and, the coefficient of determination R? = 0.3. Right: Standardized residuals (on the
abscissa) as a function of the true age (on the ordinate). Predictions are generally more
accurate for younger individuals.
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Fig 7. Feature importance for predicting age from tractometry. Left: A
skeletonized display of the main brain tracts analyzed, with anterior facing up, and right
hemisphere on the right. The § coefficients displayed in blue (negative) to red (positive)
are for measurements of FA along the length of the tracts. The left cingulum cingulate
(A) and forceps minor (B) are highlighted. Right: the FA (in shades of blue and green)
and the beta coefficients (dashed) in (A) left cingulum and (B) forceps minor.

activity in each voxel may co-vary with voxels within the same anatomical region and
form features and groups of features. Similarly, large-scale multi-electrode recordings of
neural activity in awake behaving animals are becoming increasingly feasible [67,68] and
these recordings can form features (neurons) and groups (neurons within an anatomical
region). More ambitiously perhaps, this approach may be used to understand the role of
correlations in so-called resting-state fMRI time-series and behavior, where pairwise
correlations between voxels in different anatomical regions are features in the matrix
and features may be grouped by pairs of anatomical regions. Given the large number of
voxels in the surface of the gray matter and given that correlations increase the number

of features by a factor of n2, this would pose a challenging problem to solve using SGL.

The results we present here also motivate extensions of the method using more
sophisticated cost functions. For example, the fused sparse group lasso (FSGL) [69]
extends SGL to enforce additional spatial structure: smoothness in the variation of
diffusion metrics along the bundles. As brain measurements include additional structure
(for example, bilateral symmetry), future work could also incorporate overlapping group
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membership for each entry in the tract profiles [70]. For example, a measurement could
come from the corpus callosum, but also from the right hemipshere. This would also
require extending the cost function used here to incorporate these constraints. Similarly,
unsupervised dimensionality reduction of tractometry data (e.g., |[71]) could also benefit
from constraints based on grouping.

The method is packaged as open-source software called AFQ-Insight that is openly
available, and provides a clear API to allow for extensions of the method. The sofware
integrates within a broader automated fiber quantification software ecosystem: AFQ [1],
which extracts tractometry data from raw and processed dMRI datasets, as well as
AFQ-Browser, which visualizes tractometry data and facilitates sharing of the results of
dMRI studies [49]. To facilitate reproducibility and ease use of the software, the results
presented in this paper are also provided in https://github.com/richford/
AFQ-Insight/tree/master/examples/preprint-notebooks as a series of Jupyter
notebooks [72].
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