

1 Identifying the causes and consequences of assembly gaps using a multiplatform 2 genome assembly of a bird-of-paradise

3
4 Valentina Peona^{1,2}, Mozes P.K. Blom^{3,4}, Luohao Xu^{5,6}, Reto Burri⁷, Shawn Sullivan⁸, Ignas Bunikis⁹,
5 Ivan Liachko⁸, Knud A. Jönsson¹⁰, Qi Zhou^{5,6,11}, Martin Irestedt³, Alexander Suh^{1,2}

6 7 **Affiliation**

8
9 ¹ Department of Ecology and Genetics – Evolutionary Biology, Uppsala University, Science for
10 Life Laboratories, Norbyvägen 18D, SE-752 36, Uppsala, Sweden

11 ² Department of Organismal Biology – Systematic Biology, Uppsala University, Norbyvägen 18D,
12 SE-752 36, Uppsala, Sweden

13 ³ Department of Bioinformatics and Genetics, Swedish Museum of Natural History, SE-104 05,
14 Stockholm, Sweden

15 ⁴ Museum für Naturkunde, Leibniz Institut für Evolutions- und Biodiversitätsforschung, Berlin,
16 Germany

17 ⁵ MOE Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang
18 University, Hangzhou, China

19 ⁶ Department of Molecular Evolution and Development, University of Vienna, Vienna, Austria

20 ⁷ Department of Population Ecology, Institute of Ecology and Evolution, Friedrich-Schiller-
21 University Jena, Dornburger Strasse 159, D-07743 Jena, Germany

22 ⁸ Phase Genomics, Inc. 1617 8th Ave N, Seattle, WA 98109 USA

23 ⁹ Uppsala Genome Center, Science for Life Laboratory, Dept. of Immunology, Genetics and
24 Pathology, Uppsala University, SE-752 37, Uppsala, Sweden

25 ¹⁰ Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-
26 2100 Copenhagen, Denmark

27 ¹¹ Center for Reproductive Medicine, The 2nd Affiliated Hospital, School of Medicine, Zhejiang
28 University

29

30 **Correspondence**

31
32 V.P. (valentina.peona@ebc.uu.se), A.S. (alexander.suh@ebc.uu.se)

33

34 **Keywords**

35 Genome assembly, long reads, chromosome-level assembly, bird, transposable element, satellite
36 repeat, GC content

37

38 **Abstract**

39

40 Genome assemblies are currently being produced at an impressive rate by consortia and individual
41 laboratories. The low costs and increasing efficiency of sequencing technologies have opened up a
42 whole new world of genomic biodiversity. Although these technologies generate high-quality genome
43 assemblies, there are still genomic regions difficult to assemble, like repetitive elements and GC-rich
44 regions (genomic “dark matter”). In this study, we compare the efficiency of currently used

45 sequencing technologies (short/linked/long reads and proximity ligation maps) and combinations
46 thereof in assembling genomic dark matter starting from the same sample. By adopting different *de-*
47 *novo* assembly strategies, we were able to compare each individual draft assembly to a curated
48 multiplatform one and identify the nature of the previously missing dark matter with a particular focus
49 on transposable elements, multi-copy MHC genes, and GC-rich regions. Thanks to this multiplatform
50 approach, we demonstrate the feasibility of producing a high-quality chromosome-level assembly for
51 a non-model organism (paradise crow) for which only suboptimal samples are available. Our
52 approach was able to reconstruct complex chromosomes like the repeat-rich W sex chromosome and
53 several GC-rich microchromosomes. Telomere-to-telomere assemblies are not a reality yet for most
54 organisms, but by leveraging technology choice it is possible to minimize genome assembly gaps for
55 downstream analysis. We provide a roadmap to tailor sequencing projects around the completeness
56 of both the coding and non-coding parts of the genomes.

57

58 **Introduction**

59 With the advent of Next Generation Sequencing (NGS) technologies, the field of genomics has grown
60 exponentially and during the last 10 years the genomes of almost 10,000 species of prokaryotes and
61 eukaryotes have been sequenced (from NCBI Assembly database, O'Leary et al. (2015)). Traditional
62 NGS technologies rely on DNA amplification and generation of millions of short reads (few hundreds
63 of bp long) that subsequently have to be assembled into contiguous sequences (contigs; Goodwin et
64 al. (2016)). Although the technique has been revolutionary, the short-read length together with
65 difficulties to sequence regions with extreme base composition poses serious limitations to genome
66 assembly (Chaisson et al. 2015; Peona et al. 2018). Technological biases are therefore impeding the
67 complete reconstruction of genomes and substantial regions are systematically missing from genome
68 assemblies. These missing regions are often referred to as the genomic “dark matter” (Johnson et al.
69

70 2005). It is key now for the genomics field to overcome these limitations and investigate this dark
71 matter.

72

73 Repetitive elements represent an important and prevalent part of the genomic dark matter of many
74 genomes, given that their abundance and repetitive nature makes it difficult to fully and confidently
75 assemble their sequences. This is particularly problematic when the read length is significantly shorter
76 than the repetitive element, in which case it is impossible to anchor the reads to unique genomic
77 regions. To what extent repeats can hamper genome assemblies depends on whether they are
78 interspersed or arranged in tandem. Highly similar interspersed repeats, like for example transposable
79 elements (TEs), may introduce ambiguity in the assembly process and cause assembly (contig)
80 fragmentation. On the other hand, tandem repeats are repetitive sequences arranged head-to-tail or
81 head-to-head such as microsatellites and some multi-copy genes (e.g., ribosomal DNA and genes of
82 the Major Histocompatibility Complex, MHC). Reads shorter than the tandem repeat array will not
83 resolve the exact number of the repeat unit, resulting in the collapse of the region into fewer copies.
84 Some particular genomic regions enriched for repeats tend to be systematically missing or
85 underrepresented in traditional genome assemblies. These regions include: 1) telomeres at the
86 chromosome ends that are usually composed of microsatellites; 2) centromeres, essential for
87 chromosome segregation often specified by satellites that can be arranged in higher-order structures
88 like the alpha satellite in humans (Willard and Waye 1987) or by transposable elements in flies
89 (Chang et al. 2019); 3) multi-copy genes like MHC genes (Shiina et al. 2009); d) non-recombining
90 and highly heterochromatic chromosomes like the Y and W sex chromosomes (Chalopin et al. 2015;
91 Smeds et al. 2015; Hobza et al. 2017). As these regions play an essential role in the functioning and
92 evolution of genomes, the need to successfully assemble them is a pressing matter.

93

94 The other main limitation of traditional NGS methods is the shortcoming in reading regions with
95 extreme base composition (an enrichment of either A+T or G+C nucleotides), thus representing

96 another source of genomic dark matter. Extreme base composition mainly affects the last step of the
97 standard library preparation for Illumina sequencers that involves PCR amplification (Dohm et al.
98 2008; Aird et al. 2011). GC-rich regions tend to have higher melting temperatures than the rest of the
99 genome and are thus not as accessible with standard PCR protocols. On the other side of the spectrum,
100 AT-rich regions are also challenging to be amplified with standard PCR conditions and polymerases
101 (Oyola et al. 2012) because they require lower melting and extension temperatures (Su et al. 1996).
102 Several protocols have been developed to help minimize the phenomenon of GC-skewed coverage
103 (uneven representation of GC-rich regions), including PCR-free library preparation (Kozarewa et al.
104 2009) and isolation of the GC-rich genomic fraction prior to sequencing (Tilak et al. 2018).
105 Nonetheless, there is no single method that entirely solves base composition biases of short-read
106 sequencing and gives a homogeneous representation of the genome (Tilak et al. 2018). As a result,
107 extremely GC-rich or AT-rich regions may not be assembled at all.

108

109 It is essential to be aware of technological biases and genome assembly incompleteness during project
110 design since these can affect downstream analysis and mislead biological interpretations (Thomma et
111 al. 2016; Weissensteiner et al. 2017; Domanska et al. 2018; Peona et al. 2018). For example, GC-
112 skewed coverage is particularly important in birds, where 15% of genes are so GC-rich that they are
113 often not represented in Illumina-based genome assemblies (Hron et al. 2015; Botero-Castro et al.
114 2017). Whether these genes are truly missing or mostly hiding due to technological limitations is still
115 debated (Lovell et al. 2014, Botero-Castro 2017). However the “missing gene paradox” in birds is a
116 clear example of how sequencing technologies can shape our view of genome evolution. Furthermore,
117 some GC-rich sequences can form non-B DNA structures, i.e., alternative DNA conformations to the
118 canonical double helix such as G-quadruplexes (G4). G4 structures are a four-stranded DNA/RNA
119 topologies that seem to be involved into numerous cellular processes, such as regulation of gene
120 expression (Du et al. 2008; Du et al. 2009; Raiber et al. 2011), genetic and epigenetic stability
121 (Schiavone et al. 2014), and telomere maintenance (Biffi et al. 2012). On the repetitive element side,

122 for example, transposable elements are a major target of epigenetic silencing (Law and Jacobsen
123 2010) that may influence the epigenetic regulation of nearby genes (Cowley and Oakey 2013; Chuong
124 et al. 2016; Tanaka et al. 2019). The epigenetic effect of transposable elements may be beneficial or
125 deleterious, but in either case it is important to acknowledge their potential involvement in the
126 evolution of gene expression (Lerat et al. 2019). More generally, repetitive elements can play
127 important roles in many molecular and cellular mechanisms, and as a source of genetic variability
128 (Bourque et al. 2018). They have contributed to evolutionary novelty in many organismal groups, by
129 giving rise to important evolutionary features like the mammalian placenta (Emera and Wagner
130 2012), the vertebrate adaptive immune system (Kapitonov and Koonin 2015; Zhang et al. 2019) and
131 other telomere repair systems (Levis et al. 1993; McGurk et al. 2019). Thus, having genome
132 assemblies that are as complete as possible facilitates research into a multitude of molecular
133 phenomena (Slotkin 2018).

134

135 To achieve more complete genomes, we need new technologies. Recently, long-read single-molecule
136 sequencing technologies with virtually no systematic error profile (Eid et al. 2009) have led to more
137 complete and contiguous assemblies (English et al. 2012; Loomis et al. 2013; Pettersson et al. 2019;
138 Smith et al. 2019). To date two sequencing strategies have been developed that produce very long
139 reads from single-molecules: 1) Pacific Biosciences (PacBio) SMRT sequencing, in which the
140 polymerases incorporate fluorescently labelled nucleotides and the luminous signals are captured in
141 real time by a camera; 2) Oxford Nanopore Technologies, which sequences by recording the electrical
142 changes caused by the passage of the different nucleotides through voltage sensitive synthetic pores.
143 These new sequencing techniques have already yielded numerous highly contiguous *de-novo*
144 assemblies (Faino et al. 2015; Gordon et al. 2016; Seo et al. 2016; Bickhart et al. 2017; Weissensteiner
145 et al. 2017; Michael et al. 2018; Yoshimura et al. 2019) and helped improving the completeness of
146 existing ones (Chaisson et al. 2014; Jain et al. 2018), as well as characterizing complex genomic

147 regions like the human Y centromere and MHC gene clusters (Rhoads and Au 2015; Westbrook et
148 al. 2015; Jain et al. 2018; Sedlazeck et al. 2018).

149

150 However, resolving entire chromosomes remains a difficult endeavour even with single-molecule
151 sequencing (except for small fungal and bacterial genomes (Ribeiro et al. 2012; Thomma et al. 2016)).

152 Even though no single technology is able to yield telomere-to-telomere assemblies, it is still possible
153 to bridge separate contigs into scaffolds using long-range physical data and obtain chromosome-level

154 assemblies. Scaffolding technologies are becoming more and more commonly used (Vertebrate
155 Genome Project ; Dudchenko et al. 2017; Belser et al. 2018; Deschamps et al. 2018; Li et al. 2019;

156 Wallberg et al. 2019). The two most common ones are linked-reads (Weisenfeld et al. 2017) and
157 proximity ligation techniques (reviewed in Sedlazeck et al. (2018)). Linked-read libraries are based

158 on a system of labelling reads belonging to a single input DNA molecule with the same barcode
159 (Weisenfeld et al. 2017). In this way, using high molecular weight DNA allows to connect different

160 genomic portions (contigs) that may be distantly located but physically part of the same molecule.

161 High-throughput proximity ligation techniques as Hi-C and CHiCAGO are able to span very distant
162 DNA regions by sequencing the extremities of chromatin loops that could be up to Megabases apart

163 in a linear fashion (for more details see Lieberman-Aiden et al. (2009)). While Hi-C is applied directly
164 on intact nuclei, the CHiCAGO protocol reconstructs chromatin loops *in-vitro* from extracted DNA.

165 All these libraries are then sequenced on an Illumina platform. As linked reads and proximity ligation
166 techniques are becoming more and more popular used nowadays, we also implement and test them
167 in the present study.

168

169 Although a plethora of new sequencing technologies and assembly methods are currently being
170 successfully implemented, it remains unclear how they complement each other in the assembly

171 process. Here we address these assembly and knowledge gaps using a bird as a model. Bird genomes
172 represent a promising target to investigate that as their genomic features make it relatively easy to

173 assemble most parts with the exception of few complex regions per chromosome. In fact, the typical
174 avian genome is characterized by a small genome size (mean of ~1 Gb Kapusta and Suh (2017);
175 Gregory (2019)) and low overall repeat content (about 10% overall, with the exception of
176 woodpeckers that have 20% (Kapusta and Suh 2017). However, there are gene-rich and GC-rich
177 microchromosomes (Burt 2002; Griffin and Burt 2014; Miller and Taylor 2016) as well as a highly
178 repetitive W chromosomes (at least in non-ratite birds Zhou et al. (2014); Smeds et al. (2015); Bellott
179 et al. (2017)) that are still difficult to assemble.

180

181 In this study, to understand which genomic sequences are missing in regular draft genome assemblies
182 with respect to a high-quality and curated assembly, we generated several draft *de-novo* genomes and
183 a reference genome for the same sample of the paradise crow (*Lycocorax pyrrhopterus*, 'lycPyr').
184 The paradise crow is a member of the birds-of-paradise family (Paradisaeidae), one of the most
185 prominent examples of an extreme phenotypic radiation driven by strong sexual selection, and as
186 such, a valuable system for the study of speciation, hybridization, phenotypic evolution and sexual
187 selection (Shedlock et al. 2004; Irestedt et al. 2009; Ligon et al. 2018; Prost et al. 2019; Xu et al.
188 2019). We sequenced one female paradise crow individual with all the technologies that worked with
189 a DNA sample of mean 50 kb molecule length. We combined short, linked, and long-read libraries
190 together with Hi-C and CHiCAGO proximity ligation maps into a multiplatform reference assembly.
191 All these technologies permitted us to curate the resulting assembly by controlling for consistency
192 between multiple independent data types and make majority rule decision in conflicting cases. The
193 curated assembly enabled us to: 1) demonstrate the feasibility of obtaining a high-quality assembly
194 of a non-model organism with limited sample amount and non-optimal sample quality (a situation
195 that empiricists commonly face); 2) identify which genomic regions are actually gained from
196 combining technologies compared to draft assemblies of each individual technology; 3) assess the
197 strengths and weaknesses of the implemented technologies regarding the efficiency of assembling
198 difficult repeats and GC-rich regions; and 4) quantify how technologies can widen or limit the study

199 of specific genomic features (e.g., TEs, satellite repeats, MHC genes, non-B DNA structures), thus
200 providing a roadmap to investigate them.

201

202 **Results**

203

204 We leveraged the power of data generated from multiple sequencing approaches for the same sample
205 of paradise crow to generate a gold-quality assembly and to assess limitations of regular draft
206 genomes based on any single technology. Briefly, we combined short, linked and long reads with
207 proximity-ligation data to obtain a high-quality assembly despite the limitations of a non-model
208 organism such as limited sample amount and non-optimal quality. For each sequencing technology,
209 we produced an independent *de-novo* assembly. These assemblies were compared using majority-
210 rule decisions by manually curating the final assembly. Finally, the multiplatform assembly was
211 compared to each *de-novo* version to assess the amount of repeats and other complex regions
212 previously missing from the individual assemblies. We then evaluated the completeness of each
213 assembly using a variety of different metrics, including established scores such as BUSCO,
214 contig/scaffold N50, LTR Assembly Index and new metrics like overall repeat content, number of
215 MHC IIB exons, GC and G4 content, as well as number and nature of gaps.

216

217 **Long and short read *de-novo* assemblies**

218 In order to compare the efficiency of short, linked, and long reads, we produced independent draft
219 assemblies for each of the different sequence libraries. One draft genome assembly of *L. pyrrhopterus*
220 based on short reads (Illumina) is already available from Prost et al. (2019) ('lycPyrIL'; **Table 1**).
221 For the present study, we produced two linked-read libraries (10X Genomics Chromium) from which
222 we assembled two draft genomes ('lycPyrSN1' and lycPyrSN2'; where 'SN' stands for Supernova)
223 and a PacBio library from the same paradise crow sample that generated the primary assembly

224 ‘lycPyrPB’ (**Table 1** and **Methods** section). In total, four independent *de-novo* assemblies were
225 generated.

226 We first evaluated the completeness of these assemblies by assessing their fragmentation, contig and
227 scaffold N50 and by counting the number of core genes present with BUSCO (Nishimura et al. 2017;
228 Waterhouse et al. 2017). In terms of fragmentation, the PacBio primary assembly ('lycPyrPB')
229 consisted of about 3,000 contigs, while lycPyrIL had ~3,000 scaffolds, and the 10XGenomics
230 assemblies had about ~14,000 scaffolds (**Table 1**). The short and linked-read assemblies all had a
231 scaffold N50 of about 4 Mb while the PacBio assembly had a contig N50 of 6 Mb (**Table 1**,
232 **Supplementary Table S1**). Notably, there is a 10-times higher of contig N50 in lycPyrPB relative to
233 the lycPyrIL assembly, indicating significant improvement in assembly continuity in the PacBio vs.
234 Illumina assembly. Next, we used the BUSCO tool (Nishimura et al. 2017) to identify correctly
235 assembled core genes (percentage of only single-copy and complete genes follow): lycPyrIL 93.8%,
236 lycPyrSN1 92.5%, lycPyrSN2 91.5%, lycPyrPB 84.8% prior to any assembly polishing
237 (**Supplementary Table S2**). Similarly, we estimated genome completeness and quality of the
238 intergenic and repetitive sequences with the LTR Assembly Index (LAI, Ou et al. (2018)). This index
239 is calculated as the proportion of full-length LTR retrotransposons over the total length of full-length
240 LTR retrotransposons plus their fragments. LAI could only be calculated for lycPyrPB since the other
241 *de-novo* assemblies did not have enough complete LTR elements for the algorithm to work. lycPyrPB
242 has an LAI score of 11.89, which is typical of a reference-quality assembly (Ou et al. 2018), and
243 higher than chicken (galGal5, RefSeq accession number GCF_000002315.6; Bellott et al. (2017))
244 with an LAI score of 7.54. We cannot exclude that the higher score in paradise crow is caused by
245 biological differences in LTR load between the species. More details about the LAI score distribution
246 across chromosomes and genomes are found in **Supplementary Table S3**, **Supplementary Figure**
247 **S1** and **Supplementary Figure S2**.

248

Table 1. Draft and multiplatform assemblies generated for the paradise crow. For each assembly the sequencing technology and software used to produce them are shown together with contig N50, scaffold N50 and the number of gaps.

Assembly	Technology	Software	Contig N50 (bp)	N contigs	Scaffold N50 (bp)	N scaffold	N gaps ^a	Missing assembly ^b (%)
lycPyrIL	Illumina HiSeq2500 (PE + MP) ^c	ALLPATHS-LG	620,719	10,766	4,227,710	3,216	14,573	3.82
lycPyrPB	PacBio RSII C6-P4	Falcon	6,644,420	3,422	-	-	-	0.45
lycPyrSN1	10X Genomics Chromium HiSeqX	Supernova2	144,856	29,791	4,360,585	13,934	21,550	4.53
lycPyrSN2	10X Genomics Chromium HiSeqX	Supernova2	149,640	27,366	4,748,626	14,217	20,131	2.62
lycPyrHiC	PacBio + Phase Genomics Hi-C	Proximo	6,644,420	3,422	70,588,898	2,927	533	0.45
lycPyrILPB	lycPyrIL + gap-filling with PacBio	PBJelly	1,982,606	6,895	4,229,628	3,216	10,422	3.03
lycPyr2	PacBio + Dovetail CHICAGO	HiRise	6,294,665	3,463	6,644,037	3,227	282	0.45
lycPyr3	lycPyr2 + 10X Genomics	ARCS + LINKS	6,294,665	3,463	8,009,555	3,121	345	0.27
lycPyr4	lycPyr3 + Phase Genomics Hi-C	Proximo	6,294,665	3,463	69,071,023	1,713	1,791	0.27
lycPyr5	lycPyr4 + manual curation with alignments + gap filling	PBJelly	7,540,011	3,269	74,173,823	1,700	1,631	0.001
lycPyr6	lycPyr5 + manual curation with Hi-C	Juicer	7,540,011	3,271	74,173,823	1,700	1,635	-

^a The number of gaps is estimated as the count of stretches of N nucleotides within a scaffold.

^b The percentage of incompleteness is relative to the final version of the multiplatform assembly: $(1 - (\text{assembly size} / \text{final assembly size})) * 100$. The N nucleotides are excluded from the calculation.

^c PE: paired end reads; MR: mated reads.

250 **The multiplatform reference assembly**

251 To generate a high-quality genome assembly, we combined five technologies (short, linked, and long
252 reads in addition to a CHiCAGO and Hi-C proximity ligation maps) into one multiplatform assembly.

253 This process was divided into 9 steps (**Figure 1**), described in further detail in the **Methods** section.

254

255 First, we assembled the PacBio long reads into the primary assembly (lycPyrPB; 3,442 contigs) and
256 it was scaffolded and corrected for misassemblies with the Dovetail CHiCAGO map ('lycPyr2';
257 **Figure 1a-b**). The scaffolding software HiRise introduced 98 breaks and made 293 joins of scaffolds
258 (gaps of 100 bp were introduced at this stage), as well as closed 11 gaps between contigs and resulted
259 into an assembly of 3,227 scaffolds (**Table 1** and **Supplementary Table S1**). Subsequently we
260 polished the assembly with long reads (two rounds of Arrow; Chin et al. (2016)) and short reads (two
261 rounds of Pilon; Walker et al. (2014); **Figure 1c**).

262

263 We then continued to scaffold lycPyr2 with two types of long-range information in order to get a
264 chromosome-level assembly. First, we used 10X Genomics linked reads (SN1 library; 24 kb mean
265 molecule length; **Figure 1d**) that encode medium-range spatial information that placed 235 contigs
266 into 131 new scaffolds. Of these new scaffolds we kept only 88 and discarded potential chimeric
267 scaffolds, which were identified by being composed of sex-linked contigs and autosomal ones (based
268 on male/female short-read coverage; see **Methods**). We then confirmed the chimeric nature of such
269 scaffolds by constructing an additional assembly based on scaffolding lycPyrPB with the Hi-C map
270 ('lycPyrHiC'; **Table 1**). Phase Genomics Hi-C, i.e., 3D chromatin conformation data, can bridge
271 sequences megabases apart (Burton et al. 2013) and theoretically reconstruct entire chromosomes
272 (Hi-C super-scaffolds). In this way lycPyrHiC represented a second independent verification of the
273 collinearity or chimeric nature of the contigs. Accordingly, we checked whether the contigs resided
274 on different Hi-C super-scaffolds. Once we removed the chimeric contigs, we obtained 'lycPyr3' that
275 contained a total of 3,121 scaffolds. Secondly, we scaffolded lycPyr3 with Phase Genomics Hi-C and

276 obtained 38 super-scaffolds ('lycPyr4'; **Figure 4e**) that harboured 1,446 contigs/scaffolds and
277 accounted for 97% of the assembly, while 1,675 contigs/scaffolds remained unplaced (3%). As most
278 of these super-scaffolds (32 out of 38) correspond to entire chromosomes of other avian species, we
279 call them "chromosome models". Examining the post-scaffolding Hi-C heatmap, we found that
280 chromosomes 1 and 2 were split into two Hi-C super-scaffolds, respectively. Therefore, following
281 the high level of Hi-C interaction between these super-scaffold pairs in the heatmap (**Supplementary**
282 **Figure S3**), we manually combined the respective super-scaffold pair into one chromosome model
283 (see **Methods**); the assembly thus resulted in 36 chromosome models.

284

285 We proceeded to further manually curate the chromosome models by looking for misassemblies
286 (**Figure 1f**) and used long reads for gap-filling (**Figure 1g**). We corrected fine scale orientation issues
287 of contigs within scaffolds through whole genome alignments (see **Figure 2** and **Methods**) and
288 corrected more orientation, order issues and erroneous chromosomal translocations through the
289 inspection of Hi-C heatmaps (see **Figure 1i** and **Methods**). We first corrected 43 misassemblies by
290 aligning the draft genomes and three outgroups to lycPyr4 (**Figure 2** and **Methods**). Next, we
291 extended contig ends and filled scaffold gaps with long reads using PBJelly ('lycPyr5'). PBJelly filled
292 106 gaps, extended 56 gaps on both ends and extended only one end of 292 gaps (**Supplementary**
293 **Table S4**). Finally, we further checked for misassemblies with the help of the Hi-C data. We
294 generated a Hi-C heatmap of lycPyr5 with Juicer (Durand et al. 2016) and detected misassemblies
295 through the visual inspection of such a map with JuiceBox (Dudchenko et al. 2018) following the
296 indications given by (Lajoie et al. 2015) and (Dudchenko et al. 2018). The Hi-C heatmap showed
297 mostly orientation and ordering problems within lycPyr5 (**Supplementary Figure S4**) that can be
298 identified from the ribbon-like patterns in the interaction map (Dudchenko et al. 2018). Finally, the
299 map highlighted the misplacement of two contigs between chromosome models (**Supplementary**
300 **Figure S4**). In total 76 misassemblies were corrected to generate the final assembly ('lycPyr6') with
301 a scaffold N50 of ~75 Mb (**Table 1**).

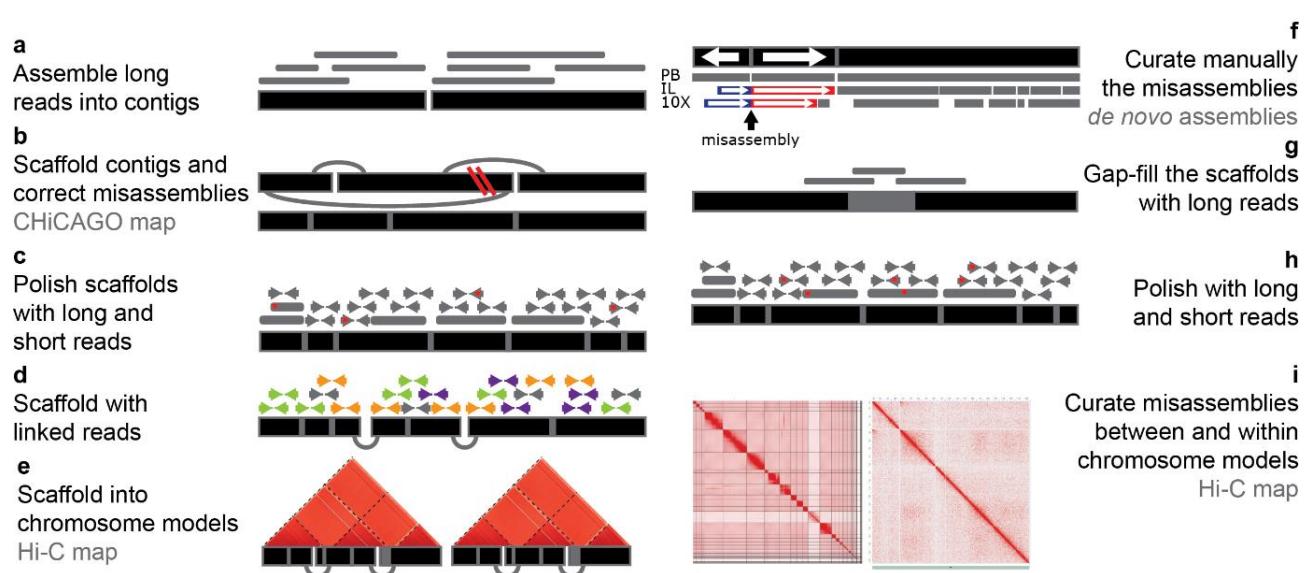
302

303 In parallel to the assembly of lycPyr6, we also generated a simpler multiplatform assembly by gap-
304 filling the Illumina primary assembly (lycPyrIL) with PacBio reads ('lycPyrILPB'). PBJelly was used
305 to gap-fill the Illumina assembly and successfully closed 4,151 gaps, reducing the total number of
306 gaps from 14,573 to 10,422. It also double extended 418 gaps and single extended 2,597 gaps
307 (**Supplementary Table S4**). The numbers of scaffolds and scaffold N50 did not significantly change
308 from lycPyrIL (**Table 1**).

309

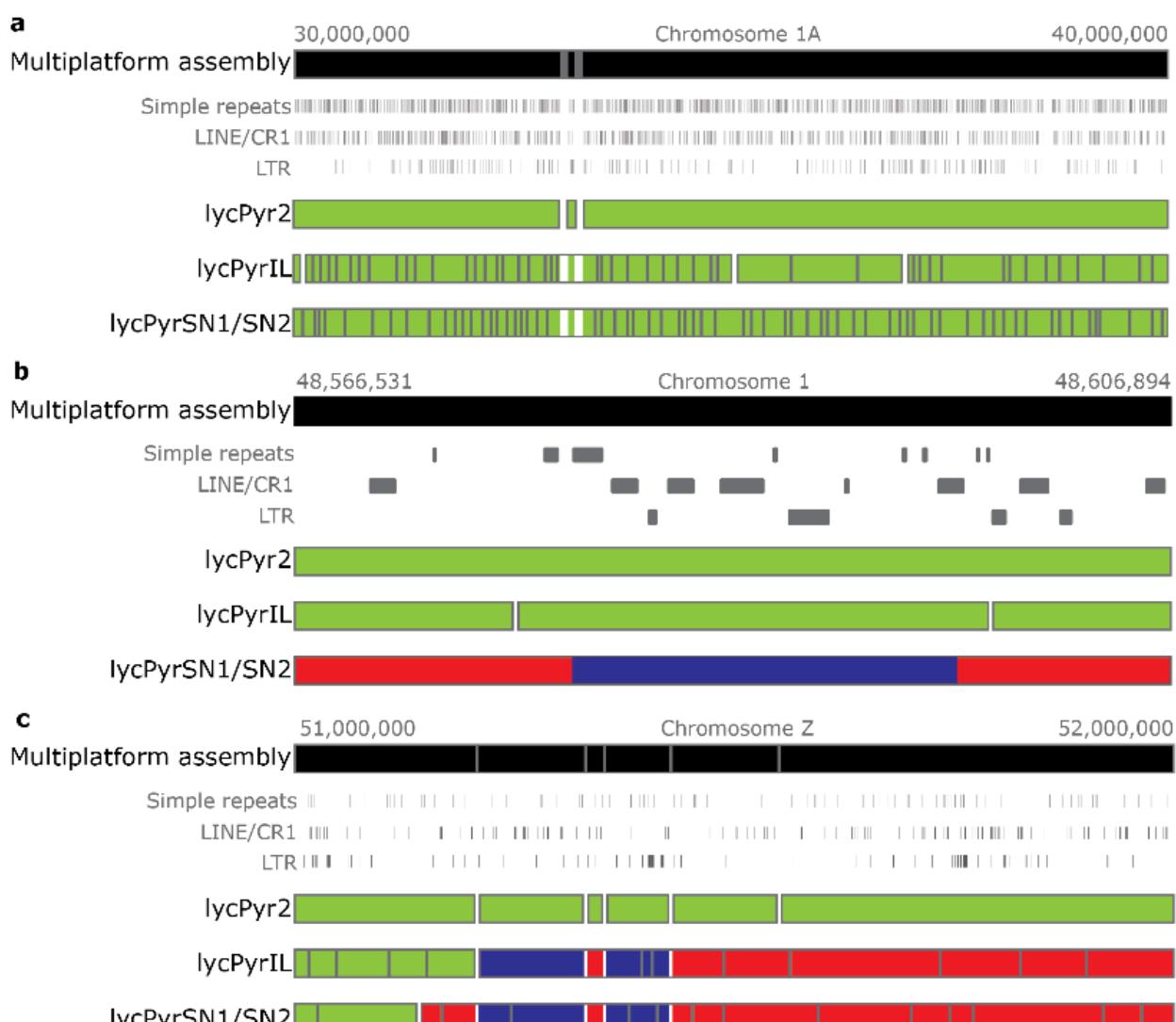
310 **Chromosome models: macrochromosomes, microchromosomes and sex chromosomes**

311 We obtained 36 chromosome models comprised of 16 macrochromosome models, 18
312 microchromosome models and two sex chromosome models. All the macrochromosome models
313 showed homology to chicken chromosomes and were named after their homologous counterparts.
314 The same applies for 12 of 18 microchromosomes, while the remaining 6 showed no homology with
315 chicken chromosomes and therefore were tentatively named as unknown chromosomes "chrUN1-6".
316 The chromosomes homologous to chicken are mostly syntetic with respect to chicken with few
317 exceptions. In fact, chicken chromosome 1 and 4 are split in two in Passeriformes and correspond,
318 respectively, to chromosome 1 and 1A, and chromosome 4 and 4A (Kapusta and Suh 2017).
319 The Z and W sex chromosome models had an assembled size of 73.5 Mb and 21.4 Mb, respectively,
320 and were comparable to chicken (82 Mb and 7 Mb, galGal6a, RefSeq accession number
321 GCF_000002315.6; Bellott et al. (2017)). Z and W models were also largely consistent with the sex-
322 linked contigs previously identified using male/female coverage comparisons (**Supplementary**
323 **Table S5 and Methods**), only 3.11 Mb of the W and 3.99 Mb of the Z chromosome were contigs not
324 previously identified as sex-linked. Finally, the pseudoautosomal region (PAR) seemed to be
325 fragmented into two parts. We identified two contigs that are homologous to the PAR of flycatcher;
326 one of them was placed by Hi-C onto the Z while the other was placed onto the W chromosome model
327 (**Supplementary Table S5**). While the Z chromosome showed a repetitive content similar to the


328 autosomes (~10%), the W was extremely repeat-rich (~70%, **Figure 3a, Supplementary Table S6**).
329 The dotplots of the alignments of the paradise crow sex chromosomes with the chicken sex
330 chromosomes (**Supplementary Figure S5 and Supplementary Figure S6**) showed that the two Z
331 chromosomes had a high level of synteny and collinearity while the repetitiveness of the two W
332 chromosomes made it difficult to identify shared single-copy regions other than very small ones. The
333 sex chromosomes were also easily identified in the post-clustering Hi-C heatmap (**Supplementary**
334 **Figure S3**), as their hemizygosity can be expected to result in roughly half of the amount of Hi-C
335 interactions (calculated as the frequency of shared paired-end reads between contigs/scaffolds) within
336 each chromosome model and with the other chromosome models.
337 Finally, the LTR Assembly Index calculated on the single chromosomes yielded high scores (min 0
338 on chromosome 10, mean 13.14, max 21.41 on chromosome W) that have been suggested to be
339 indicative of reference and gold-quality assemblies (Ou et al. (2018), **Supplementary Figure S1** and
340 **Supplementary Table S3**).
341

342 **GC content and G4 motif prediction**

343 GC-rich regions are commonly underrepresented in traditional NGS assemblies because of the
344 aforementioned GC-skewed coverage phenomenon (see **Introduction**). Comparing the different *de-*
345 *novo* assemblies, we noticed that indeed lycPyrPB showed more GC-rich regions (54,532 windows
346 of 1 kb size with GC > 58.8%) with respect to lycPyrIL, SN1 and SN2 (45,966, 45,720 and 52,080
347 such windows, **Figure 3b, Supplementary Table S7, Supplementary Figure S7**). Thus, lycPyrSN1
348 shared a similar number of GC-rich regions while lycPyrSN2 was closer to lycPyrPB
349 (**Supplementary Figure S7, Supplementary Table S7**).
350

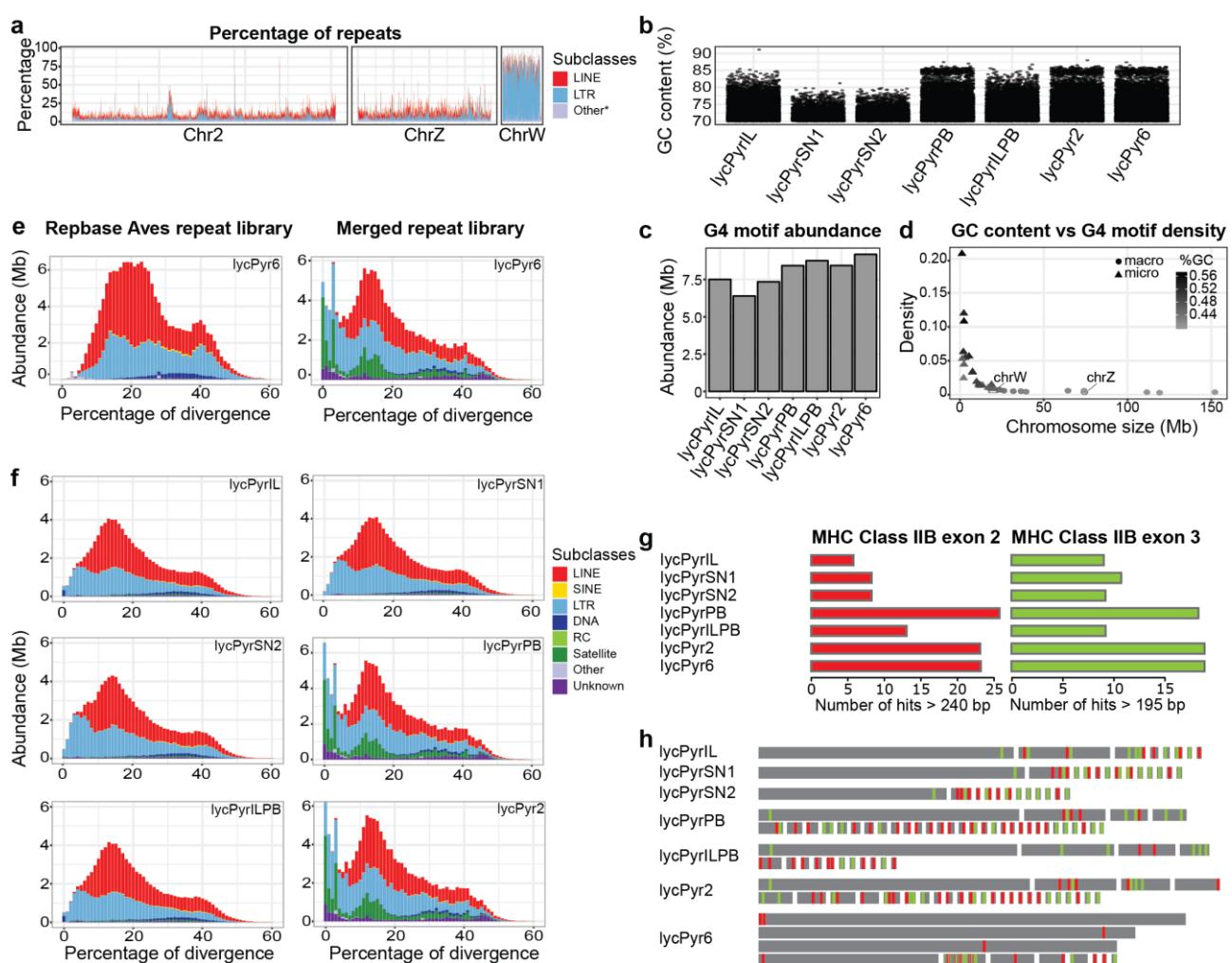

351 Since GC-rich regions may form G-quadruplexes motifs and structures (G4), we expected the
352 depletion of GC-rich short reads to limit the representation of G4 motifs in short read assemblies.
353 Conversely, we expected G4 motifs to be more abundant in long read assemblies, since these have

354 been suggested to be virtually free from sequence-based biases (Eid et al. 2009). To test this, we
355 predicted the presence of G4 motifs using Quadron (Sahakyan et al. 2017) in all the different
356 assemblies. All the *de-novo* Illumina-based assemblies had fewer predicted G4 sites than the PacBio
357 assemblies (**Figure 3c** and **Supplementary Table S8**). lycPyrSN2 and lycPyrIL had 7.3 and 7.5 Mb
358 (169,214 and 166,602 motifs) occupied by G4 sequences and about 1.6 Mb or 24,000 motifs less than
359 lycPyr6 (9.1 Mb, 193,248 motifs). lycPyrSN1 was the assembly with the fewest G4 motifs predicted
360 (6.5 Mb, 149,275 motifs). The PacBio primary assembly lycPyrPB had 8.42 Mb of predicted G4,
361 which was slightly higher in lycPyr2 after the correction with Dovetail CHiCAGO (8.43 Mb; **Figure**
362 **3c** and **Supplementary Table S8**). In the final assembly lycPyr6, G4 motifs were more present on
363 microchromosomes than on macrochromosomes (**Figure 3d**).
364

365 **Figure 1.** Overview of the multiplatform assembly process. **(a)** Long reads were assembled into
366 contigs. **(b)** The primary assembly was corrected and scaffolded using long-range information
367 provided by the CHiCAGO proximity ligation map. **(c)** The assembly was then polished from base-
368 calling errors with both short and long reads and **(d)** further scaffolded with linked-reads. **(e)** The
369 scaffolds are ordered and oriented into chromosome models according to the Hi-C proximity
370 ligation map. **(f)** The chromosome models were aligned to the *de-novo* assemblies based only on
371 one single technology and then manually inspected to find misassemblies and correct them
372 following the majority rule (more details in **Figure 2** and **Methods**). PB: PacBio long-read
373 assembly; IL: Illumina short-read assembly; 10X: 10XGenomics linked-read assemblies **(g)** Long
374 reads were used to gap-fill the assembly and **(h)** to polish the final version together with short reads.
375 **(i)** Hi-C heatmaps were used to identify and correct misassemblies between and within chromosome
376 models.

377

378 **Figure 2.** Examples of the manual curation of the assembly (step **f** in **Figure 1**). The multiplatform
379 assembly is aligned to the other *de-novo* assemblies from the same sample. The grey lines within
380 the assemblies represent gaps between different contigs or scaffolds while the white lines represent
381 gaps within the same scaffold. Green means that the contigs/scaffolds align to the reference in the
382 same orientation for their entire length while red and blue highlight contigs/scaffolds that partially
383 align in the forward (red) and reverse (blue) direction to the reference. **(a)** Here 10 Mb of
384 chromosome 1A are shown that are in accordance with all the *de-novo* assemblies. Nonetheless,
385 short-read based technologies yielded much more fragmented scaffolds. **(b)** Example of a scaffold
386 orientation misassembly in the 10XGenomics assembly. The other two assemblies span the inverted
387 region and both agree with the multiplatform assembly. **(c)** Example of how two different
388 assemblies could help to identify which contigs have to be re-oriented and re-ordered in the final
389 assembly. In lycPyrIL, lycPyrSN1 and lycPyrSN2 we had scaffolds that span the misoriented
390 (blue) region and bridge it to contigs that showed concordant orientation with the multiplatform
391 assembly. This indicated that we have only a small local inversion of two PacBio contigs


392

393 **Repeat library**

394 To obtain an in-depth annotation of interspersed and tandem repeats, the *de-novo* characterization of
395 repetitive elements and manual curation thereof are essential (Platt et al. 2016). We manually curated
396 a total of 183 consensus repeat sequences generated from lycPyrIL and lycPyrPB to have an optimal
397 repeat characterisation. In Prost et al. (2019) a total of 112 raw consensus sequences were produced
398 using RepeatModeler on three Illumina-based birds-of-paradise (*Astrapia rothschildii*, *L.*
399 *pyrrhopterus* and *Ptiloris paradiseus*; including lycPyrIL) but only the 37 most abundant from
400 lycPyrIL were manually curated. We then curated the remaining 75 and added 71 more *de-novo*
401 consensus sequences based on curated raw consensus sequences from RepeatModeler run on
402 lycPyrPB. Our new bird-of-paradise specific repeat library is now composed of the following
403 numbers of consensus sequences: 56 ERVK, 56 ERVL, 37 ERV1, 5 CR1, 4 LTR, 9 satellites, 2 DNA
404 transposons, 1 SINE/MIR, and 13 unknown repeats. All the consensus sequences curated for the three
405 species of birds-of-paradise (*L. pyrrhopterus*, *A. rothschildii*, *P. paradiseus*) are given in
406 **Supplementary Table S9**. Eventually, we merged birds-of-paradise consensus sequences together
407 with the Repbase Aves library, the flycatcher (Suh et al. 2018), the blue-capped cordon blue (Boman
408 et al. 2019) and the hooded crow libraries (Weissensteiner et al. 2019).

409
410 Custom and *de-novo* repeat libraries substantially improve the identification and masking of repeats
411 in genome assemblies (Platt et al. 2016). To quantify this effect for our assemblies, we compared a
412 general avian repeat library with our curated one. The custom library resulted in masking a higher
413 fraction of the genome in every assembly (**Figure 3e-f**). When comparing the masked fraction with
414 the custom library to the fraction masked with the Repbase library, we see that lycPyrIL, lycPyrILPB,
415 and lycPyrSN1 have 20% more masked repeats (from 78 Mb to 94 Mb), while lycPyrSN2 has 21.68%
416 (from 83 to 101 Mb), lycPyrPB 38% (from 87 Mb to 120 Mb), and lycPyr6 38% (from 88 Mb to 122
417 Mb; see **Figure 3e**, **Supplementary Table S10**). In particular, with the new library we were able to
418 identify 9.4 Mb of satellite DNA in the PacBio-based assemblies, while the standard Repbase avian
419 library identified only 1 Mb (**Figure 3e-f**, **Supplementary Table S10**). Relative to lycPyr6, most of

420 the satellites and unknown repeats remain unassembled in the short-read and linked-read assemblies
 421 (Figure 3f and Figure4b).

422
 423
 424 **Figure 3.** (a) Comparison of the repeat content across chromosome 2 (representative of autosomes),
 425 Z and W calculated as the percentage of repeats per window of 50 kb. Here LINE and LTR are
 426 shown as major components of the mobile element repertoire and all the other types of repeats are
 427 merged into the “Other*” category. (b) Distribution of GC-content per window (10 kb) across
 428 assemblies on the left side of the violin plots. GC-content distribution of the windows containing
 429 G4 motifs on the right side of the violin plots. (c) G4 motif abundance across different paradise
 430 crow assemblies. (d) G4 motif density across the chromosome models of the final assembly; the
 431 chromosomes are arranged by size; macrochromosomes are coloured in light grey while
 432 microchromosomes (smaller than 20 Mb) are shown in dark grey. The density distribution of G4 in
 433 micro and macro chromosomes was statistically different (t-test p-value: 0.01). (e) Repeat landscape
 434 of lycPyr6 masked with the Repbase Aves repeat library (on the left) and masked with the custom
 435 library produced in this study which also included the Repbase Aves library (on the right). (f)
 436 Repeat landscapes of the four *de-novo* assemblies of the paradise crow masked with the custom
 437 repeat library. (g) Abundance of MHC class IIB exon 2 and exon3 in the different paradise crow
 438 assemblies. (h) Schematic visualization of the instances of MHC class IIB exon 2 (red) and 3
 439 (green). Each black rectangle represents a different contig or scaffold.

440

441 **MHC class IIB analysis**

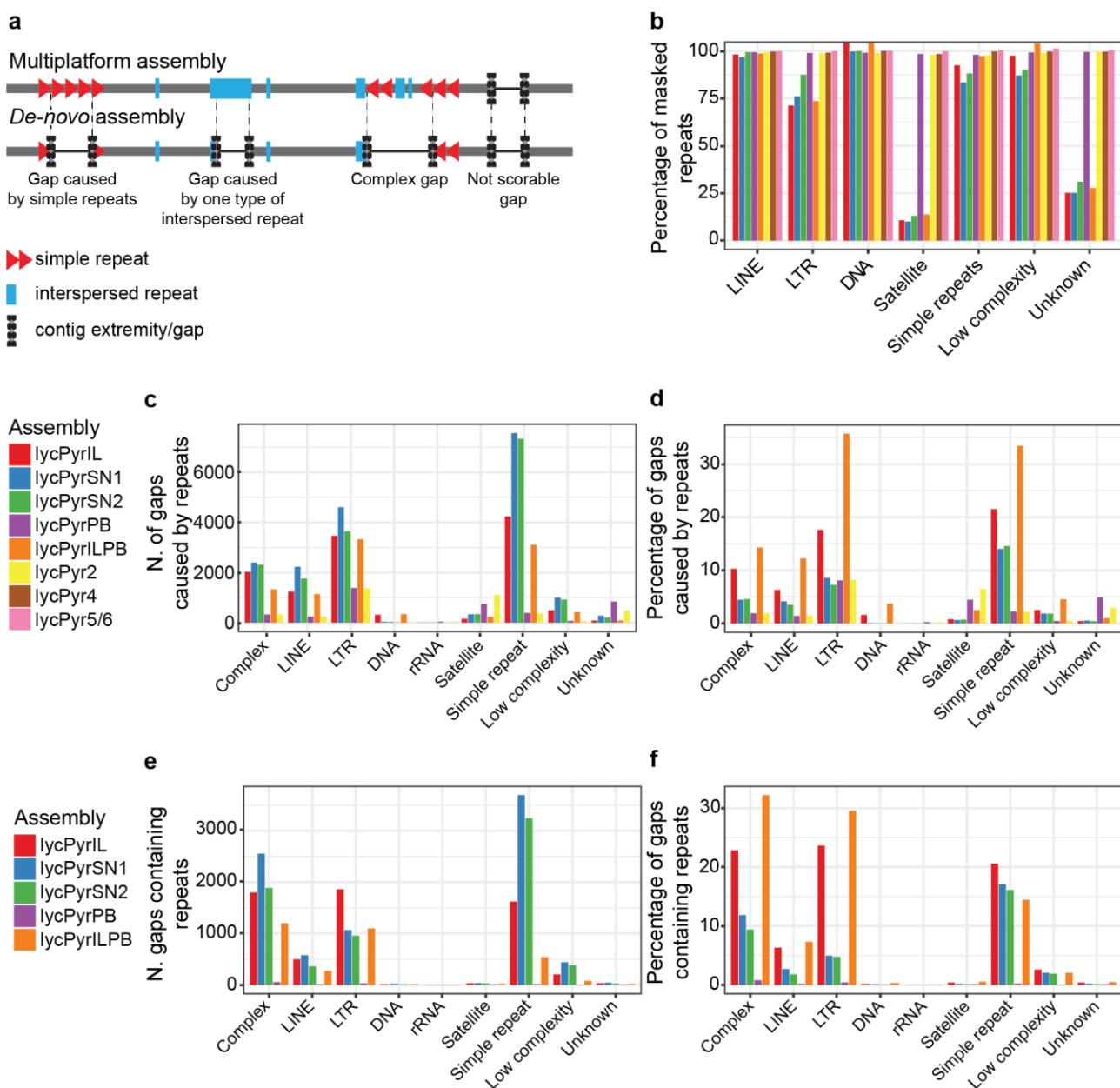
442 In birds, the multi-copy gene family of the major histocompatibility complex (MHC) is arranged as
443 a megabase long tandem repeat array (Miller and Taylor 2016). Since we expect it to be even more
444 difficult to correctly assemble than the aforementioned interspersed repeats (O'Connor et al. 2019),
445 it represents a prime candidate region for measuring the quality of an assembly.

446

447 We used the presence of entire copies of the second (most variable) and third (more conserved) exons
448 of the MHC class IIB as proxies of assembly quality (Hughes and Yeager 1998). Overall, we found
449 that short-read assemblies had fewer MHC gene copies than long-read assemblies (**Figure 3g-h**),
450 while linked-read assemblies performed better than Illumina alone. Regarding exon 2 (**Figure 3g**),
451 PacBio retrieved 26 copies while Illumina and 10XGenomics assembly only hold 6-8. However, it is
452 worth noting that after correcting lycPyrPB with the Dovetail CHiCAGO map, 3 copies were lost
453 (not detectable as full-length exons anymore) and were not restored by the subsequent steps of
454 sequence corrections and curation. The results were similar for exon 3 (**Figure 3g**): PacBio
455 assemblies retrieved 18-19 copies while the other technologies retrieved only 9-11 copies. In this case
456 we see that the molecule input length of 10XGenomics library has an effect on the assembly of these
457 genes, where the library with shorter molecule length had assembled more copies than the longer one
458 (11 vs 9 exon 2 copies; **Figure 3g-h**). On the other hand, while Dovetail CHiCAGO prevented the
459 identification of some exon 2 copies, it increased the number of assembled copies of exon 3.

460

461 **Gap analysis**


462 The process of scaffolding links contigs together without adding any information about the missing
463 DNA between them, but it is possible to use long reads to fill those gaps. For this we utilized PBJelly
464 (English et al. 2012) to extend and bridge contigs in the assembly by locally assembling PacBio reads
465 to the contig extremities. Once the software finds reads aligned to the contig extremities, the
466 extremities can be: 1) extended on one or both sides to reduce the gap length, 2) extended and bridged

467 to fill the entire gap, 3) extended over the length of the gap without being ultimately bridged
468 (overfilled). PBJelly extended the extremities of 348 gaps, closed 116 gaps and overfilled 236 gaps
469 (**Supplementary Table S4**). This gap-filling step added a total of 2.96 Mb to the assembly. All the
470 sequences that were extended or gap-filled were more GC-rich (40%-89%, mean 58%) than the
471 average GC content of 40% and 2865 G4 motifs were added for a total of 171 kb. Only 800 kb of the
472 2.96 Mb added were repetitive elements; specifically, ~400 kb of LTR elements were added, 120 kb
473 of LINE, 142 kb of satellite DNA and 90 kb of simple and low complexity repeats (**Supplementary**
474 **Table S4**).

475

476 Furthermore, we investigated the causes of assembly fragmentation in several assemblies by
477 analysing the immediate adjacency of repetitive elements to the gaps (lower part of **Figure 4a**). We
478 found that simple repeats were the major fragmentation cause in Illumina and 10XGenomics
479 assemblies, followed by LTR and LINE elements (**Figure 4c-d**). In contrast, PacBio gaps (lycPyrPB
480 and lycPyr2) seemed to be mainly caused by LTR elements and secondarily by satellites (**Figure 4c-**
481 **d**).

482

483

484 **Figure 4** Overview of the causes and content of gaps in the paradise crow assemblies by comparing
485 all the assembly versions to the final version. **(a)** Schematic representation of how gaps were
486 categorized based on the flanking regions and content. **(b)** Proportion of repeats present in each
487 assembly version respect to the reference (lycPyr6). **(c)** Number of gaps caused by the major repeat
488 groups. **(d)** Proportion of gaps caused by the major repeat groups. **(e)** Number of gaps that contain
489 (map to) repeats. **(f)** Proportion of gaps that contain (map to) repeats.

490

491 Finally, we quantitatively and qualitatively assessed which repeats in the final multiplatform
492 assembly lycPyr6 were collapsed as gaps in the draft assemblies (**Figure 4e-f**). Many gaps in the
493 Illumina and 10XGenomics draft assemblies corresponded to complex regions consisting of multiple
494 types of repetitive elements (**Figure 4e-f**). Among draft assembly gaps containing only a single type

495 of repeat in lycPyr6, most were caused by simple repeats, LTR retrotransposons, and LINE
496 retrotransposons in short-read and linked-read assemblies (**Figure 4e-f**).

497
498

Discussion

499

500 Assembling complete eukaryotic genomes is a complex and demanding endeavour often limited by
501 technological biases and assembly algorithms (Alkan et al. 2010; Sedlazeck et al. 2018). In the last
502 decade, NGS technologies defined the standard of genome assemblies. Although they provided an
503 unprecedented view on the structure and evolution of many coding regions (Zhang et al. 2014), short
504 reads hardly inform on the entire complexity of a genome (Thomma et al. 2016). Indeed, the
505 systematic absence from genome assemblies and the difficulty to characterize the nature of many
506 such genomic regions (e.g. centromeres, telomeres, other repeats and highly heterochromatic regions)
507 gave these “unassemblyable” sequences the evocative name of genomic “dark matter” (Johnson et al.
508 2005; Weissensteiner and Suh 2019).

509

510 In this study, we demonstrated that a combined effort involving multiple state-of-the-art methods for
511 long-read sequencing and scaffolding yielded a high-quality reference for a non-model organism. We
512 showed that a multiplatform approach was highly successful in resolving elevated quantities of
513 genomic dark matter in respect to single-technology assemblies (regular draft assemblies) and thus
514 resulted in a much more complete assembly. In order to assess genome completeness we focused
515 mostly on the quantification and characterization of previously inaccessible regions within genomic
516 dark matter, such as large transposable elements, GC-rich regions, and the high-copy MHC locus.

517

518 We generated a *de-novo* multiplatform assembly of a female bird-of-paradise genome by combining
519 the cutting-edge technologies that are now being implemented in many assembly projects (Faino et
520 al. 2015; Gordon et al. 2016; Seo et al. 2016; Bickhart et al. 2017; Weissensteiner et al. 2017; Michael

521 et al. 2018; Yoshimura et al. 2019), namely Illumina short reads, 10XGenomics linked reads, PacBio
522 long reads and two proximity ligation maps with Dovetail CHiCAGO and Phase Genomics Hi-C.
523 The choice of using a bird-of-paradise is manifold. First, avian genomes are small among amniotes
524 and have an overall repeat content of 10%, which make most genomic regions relatively “easy” to
525 assemble. This has made it possible to focus on regions that are challenging to assemble in eukaryotic
526 genomes of any size and complexity, like the repeat-rich W sex chromosome, and the GC-rich
527 microchromosomes. Second, birds-of-paradise is a highly promising system for the study of
528 speciation, hybridization and sexual selection (Irestedt et al. 2009; Prost et al. 2019; Xu et al. 2019).
529 A gold standard genome for this family will consequently expose new possibilities for more in-depth
530 studies of the genomic evolution behind the spectacular radiation of birds-of-paradise.

531

532 By employing a multiplatform approach, we 1) could assemble a chromosome-level genome which
533 includes the W chromosome and several previously inaccessible microchromosomes (i.e.,
534 comparable to the chicken genome, so far the best avian genome available); 2) report that a substantial
535 proportion (up to 90%) of repeat categories like satellites and LTR retrotransposons are missing from
536 most types of *de-novo* assemblies (**Figure 3e-f**, **Figure 4b**); and 3) identify simple repeats and LTR
537 retrotransposons as the major causes of assembly fragmentation (**Figure 4c-d**).

538

539 **A chromosome-level assembly for a non-model organism**

540 Our final assembly comprises 36 chromosome models. This assembled chromosome number is
541 similar to the known karyotype of another bird-of-paradise species *Ptiloris intercedens* (36-38
542 chromosome pairs; Les Christidis, personal communication). Among these models, there are 16
543 macrochromosomes, 12 microchromosomes, and the Z and W sex chromosomes showing homology
544 to chicken chromosomes (galGal6a). The remaining 6 models do not share homology with known
545 chicken chromosomes (galGal6a) and they might be putatively uncharacterized microchromosomes.
546 Microchromosomes are known to be very GC-rich (Burt 2002) and indeed this trend is present in our

547 data as well (**Figure 3d**). Base composition can create biases during the sequencing process especially
548 when a PCR step is required for the library preparation (Dohm et al. 2008; Aird et al. 2011) thus
549 limiting the representation of GC-rich and AT-rich reads in the data. Although, long read sequencing
550 technologies like PacBio have reduced amplification-based biases to a minimum (Schadt et al. (2010)
551 but see Guiblet et al. (2018)), we could not assemble contiguous sequences for all
552 microchromosomes. Among the unknowns and unassembled chromosomes, chromosome 16 which
553 is one of the most complex avian chromosomes and also holds the MHC (Miller and Taylor 2016).
554 The absence of these chromosomes is likely explained by that they are by far the densest in G4 motifs
555 of all chromosomes (**Figure 3d**). Given that DNA polymerase tends to introduce sequencing errors
556 in the presence of G4 structures (Guiblet et al. 2018), it is tempting to think that the depletion of
557 microchromosomes from assemblies is not only due to GC content per se but also due to the potential
558 presence of non-B structures (like G4) that elevated GC content appears to correlate with.
559 Nonetheless, even with the extensive use of cytogenetics the last chicken assembly (galGal5; Warren
560 et al. (2017)) completely lacks 5 microchromosomes. It thus seems plausible that these chromosomes
561 need special efforts to be recovered.

562

563 One of the most surprising outcomes of this multiplatform approach is the successful assembly of the
564 highly repetitive W chromosome which turned out to be larger (assembly size 21 Mb) and more
565 repetitive than the chicken equivalent (assembly size 9 Mb; Bellott et al. (2017)). In both species, it
566 is likely that the assembled sequences cover the euchromatic portions of the W. Birds have a ZW sex
567 chromosome system where the female is the heterogametic sex and the female-specific W is
568 analogous to the mammalian male-specific Y chromosome. Comparable to the mammalian Y
569 (Charlesworth et al. 2000), the W chromosome is highly repetitive and difficult to assemble
570 (Weissensteiner and Suh 2019). Previous studies focusing on the repetitive content of the avian W in
571 chicken (Bellott et al. 2017) and collared flycatcher (Smeds et al. 2015) showed in both cases a repeat
572 density of about 50%. In our assembly of the paradise crow, we found the W chromosome to be even

573 more repetitive with a repeat density of ~70% and highly enriched for LTR retrotransposons (**Figure**
574 **3a** and **Supplementary Table S6**). Having assembled chromosomes is key to improve any genomic
575 analysis but studies on sex chromosome evolution in birds has so far been heavily biased towards Z
576 (Zhou et al. 2014; Yazdi and Ellegren 2018; Xu et al. 2019). With genome assemblies like the present,
577 it will be possible to improve reconstructions how the two sex chromosomes diverged. We can
578 already see that the W chromosome evolves rapidly (**Supplementary Figure S5**) via accumulation
579 of transposable elements and only few regions appear syntenic between paradise crow and chicken
580 W.

581

582 **How complete are genome assemblies?**

583 Previous studies (see for example Etherington et al. (2019); Paajanen et al. (2019)) have assessed the
584 efficiency of available sequencing technologies in genome assembly and genome completeness
585 mainly through summary statistics like scaffold N50 and BUSCO. Scaffold N50 indicates the
586 minimum scaffold size among the largest scaffolds making up half of the assembly, while BUSCO
587 values measure the number of complete/incomplete/missing core genes in the assembly. However,
588 genome completeness goes beyond scaffold N50 and gene presence (Thomma et al. 2016; Domanska
589 et al. 2018; Sedlazeck et al. 2018). Genes usually occupy a small fraction of genomes and new
590 sequencing technologies commonly yield high N50 values. Therefore, these statistics have a very
591 limited scope in perspective of what the new sequencing technologies can achieve.

592

593 Although often being used as proxy of assembly quality, scaffold N50 is hardly meaningful in this
594 regard since it does not inform about the completeness and correctness of the assembled sequences.
595 If we order the scaffolds by decreasing size, scaffold N50 value can only reflect the fragmentation
596 level of the first half of the assembly regardless of whether the second half is made up of shorter
597 sequences. Finally, contig N50 should be used as a measure of contiguity, rather than scaffold N50,
598 as contig length measures sequences not interrupted by gaps.

599

600 Most of the currently available avian genomes score more than 94% of BUSCO gene completeness
601 (Peñalba et al. 2019) with various degrees of fragmentation, suggesting that it has become
602 straightforward to generate short-read assemblies with high BUSCO values. On the other hand,
603 BUSCO seems to be limited by the sequencing errors introduced by PacBio in the identification of
604 gene models (Watson and Warr 2019). Even with multiple rounds of error correction, BUSCO fails
605 to recognize genes that are actually present, at least partially, in the assembly (Watson and Warr
606 2019). Moreover, BUSCO seems to be trained and based on a set of core genes identified from Sanger
607 and Illumina assemblies. As such, BUSCO does not quantify genes in PacBio assemblies that were
608 previously missing in Illumina genomes, which would be needed for a fair genome completeness
609 comparison. This tendency is also evident from our results: for example after gap-filling lycPyrIL
610 with long reads, 10 genes were not detectable anymore in the resulting assembly lycPyrILPB
611 (**Supplementary Table S2**). A similar dynamic was observed also during the assembly process of
612 the superb fairy-wren *Malarus cyaneus* (Peñalba et al. 2019) where BUSCO values dropped with
613 long-read gap-filling but were restored after sequence polishing.

614

615 The new technologies have the potential to assemble very repetitive regions (e.g. MHC) and elusive
616 chromosomes (e.g., W and microchromosomes). For this reason, quality assessment should rely
617 upon measuring the efficiency in assembling difficult regions and not on those regions that we
618 already obtain with previous technologies. We therefore decided to measure genome completeness
619 and quality by characterising and quantifying repetitive regions.

620

621 Long reads were instrumental, not only to find and mask more repeats, but also to assemble and
622 discover previously overlooked repetitive sequences. In fact, by adding PacBio sequence data we
623 were able to significantly increase the number of predicted repeat subfamilies compared to the
624 repeat library previously built on three birds-of-paradise species (from 112 to 183 consensus

625 sequences; Prost et al. (2019)). These 71 new consensus sequences were only predicted by
626 RepeatModeler using the PacBio assembly, probably because the respective repeats were too
627 fragmented or assembled in too few copies in Illumina assemblies. A clear example is given by the
628 satellite DNA repeats that are severely depleted from both the lycPyrIL assembly (**Figure 3e-f**,
629 **Figure4b**) and from the previous repeat library. With our new repeat library we could increase the
630 base pairs masked by RepeatMasker by up to 38 % within the same assembly (lycPyr6). This
631 indicates that while longer read lengths are important for assembling repeats, only with a
632 comprehensive repeat library we can quantify their actual efficiency.

633

634 Repetitive elements are not only made up of transposable elements and satellite repeats, but also of
635 multi-copy genes. One of the most repetitive gene family is the Major Histocompatibility Complex
636 (MHC) involved in the adaptive immune response. In birds, MHC genes are located on one of the
637 most difficult chromosomes to assemble, namely chromosome 16 (Miller and Taylor 2016). We
638 recovered several scaffolds from this chromosome for which the only, though fragmented, assembly
639 exists from chicken (Warren et al. 2017). We counted how many MHC IIB copies we could retrieve
640 in the different assemblies, using BLAST hits to exon 2 and 3 sequences as proxy. We found the
641 maximum number of copies in lycPyrPB (**Figure 3g-h**) followed by lycPyr6, suggesting that the
642 misassembly correction with the CHiCAGO map affected the MHC genes, with the number of hits
643 of exon 2 decreasing and for exon 3 increasing. Short-read assemblies harbour fewer MHC IIB exon
644 copies but we note that 10XGenomics could assemble a couple more copies compared to standard
645 Illumina data. Moreover, lycPyrSN1 contained slightly more MHC genes than lycPyrSN2 assembled
646 with longer input molecule length.

647

648 As a further use of repetitive elements as quality measures, we tested the LTR Assembly Index
649 (LAI; Ou et al. (2018)) that assesses the quality of an assembly from the completeness of the LTR
650 retrotransposons present. It was not possible to obtain values for the Illumina and 10XGenomics

651 assemblies because the tool requires a certain baseline quantity of the full-length LTR assembled to
652 run as initial requirements. Nonetheless, both lycPyrPB and lycPyr6 show LAI scores (respectively
653 11.89 and 13.59, **Supplementary Table S3, Supplementary Figure S1**) typical for high-quality
654 reference genomes (as indicated in Ou et al. (2018)) and higher than those of chicken
655 (**Supplementary Figure S2**). The increase in LAI value from lycPyrPB and lycPyr6 indicates that
656 the assembly curation process, mostly gap-filling and polishing, improved the quality of the primary
657 assembly.

658

659 In addition to repetitive elements, base composition is the other main factor that limits completing
660 genome assemblies. We thus assessed the GC-content per window for each assembly (**Figure 3b**,
661 **Supplementary Figure S7**) and as expected, found more GC-rich windows in lycPyrPB compared
662 to the other *de-novo* assemblies (**Supplementary Figure S7**). High GC-content is often associated
663 with non-B DNA structures like G4 that have been shown to introduce sequencing errors during
664 polymerisation (Guiblet et al. 2018). We predicted the presence of G4 motifs in our assemblies
665 (**Figure 3c**) and Illumina and 10XGenomics assemblies have about 1.6-2.6 Mb less of G4 compared
666 to lycPyrPB. In this case, linked reads did not help to get a more complete overview of this genomic
667 feature respect to regular Illumina libraries. On the other hand, the overall curation from lycPyrPB to
668 lycPyr6 improved G4 prediction. G4 structures influence various molecular mechanisms such as
669 alternative splicing and recombination, therefore more complete assemblies make these regions
670 accessible for comparative genomic analysis.

671

672 **Strengths and limitations of sequencing technologies**

673 Nowadays, we have a plethora of sequencing technologies to choose from, each with their own
674 advantages and limitations. On top of that, the large number of assembly tools available and
675 hundreds of parameters to tweak makes it inevitable to produce numerous different assembly
676 versions. For example, we generated 15 different assemblies only for the parameter optimization of

677 the linked-read scaffolding (**Figure 1d**) and there are studies generating even 400 assemblies in
678 total (Montoliu-Nerin et al. 2019). In such a situation, it might seem difficult to decide how to
679 choose the “best” assembly among dozens. Here we present what we learned from the different
680 technologies and how they help in resolving the genomic regions that are most difficult to assemble.

681

682 We used two types of *de-novo* assemblies based on Illumina sequencing. The first, lycPyrIL is an
683 Illumina assembly made from multiple insert size libraries of paired end and mate pair reads (Prost
684 et al. 2019); the second on 10XGenomics linked reads (lycPyrSN1 and SN2). It is notable that
685 lycPyrIL is much more contiguous than lycPyrSN1 and SN2 (contig N50 of 620 kb vs 145-150 kb;
686 **Table 1**) and has much fewer gaps. Although lycPyrIL is a less fragmented assembly, lycPyrSN2
687 has a better resolution for repeats since 7 Mb more repeats are masked and a larger number of MHC
688 IIB exons are present (**Figure 3g-h**) as well as G4 motifs (**Figure 3g**). Nonetheless, the contiguity
689 reached in lycPyrPB for the same sample at contig level (contig N50 of 6 Mb) is ten-fold higher
690 than in lycPyrIL and even outscoring lycPyrIL scaffold N50 of 4 Mb. 10XGenomics linked reads
691 bring long-range information through the barcode system that is useful for local phasing, detection
692 of structural variations (Zheng et al. 2016; Marks et al. 2019), scaffolding (Yeo et al. 2017) and
693 construction of recombination maps (Dréau et al. 2019; Sun et al. 2019). We used the barcode
694 information to scaffold the PacBio assembly (lycPyr3, **Table 1**) without obtaining many new
695 scaffolds but this could be due to the already high contiguity of the input lycPyrPB assembly.
696 Finally, we note that the molecule input length for the 10XGenomics libraries have different effects
697 on the assembly and BUSCO scores. That is, lycPyrSN1 (24 kb mean molecule length library)
698 outscoring lycPyrSN2 (26.1 kb mean molecule length library) in the number of complete BUSCO
699 genes (**Supplementary Table S2**). Even though 10XGenomics linked reads consist of short reads,
700 both lycPyrSN1 and lycPyrSN2 have more missing genes compared to lycPyrIL (**Supplementary**
701 **Table S2**).

702

703 Long reads together with proximity ligation maps are game changers in genomics. Their
704 combination yielded a very high-quality assembly for a non-model bird with suboptimal sample
705 quality (see mean molecule lengths for 10XGenomics assemblies above). The PacBio assembly is
706 by far the most contiguous and a suitable genomic backbone to obtain chromosome models
707 including the W chromosome and several microchromosomes. The main weakness linked to PacBio
708 is the introduction of sequencing errors (mostly short indels) that must be corrected with accurate
709 short reads. As mentioned before, the sequencing errors hinder the identification of gene models
710 (BUSCO) and protein prediction (Watson and Warr 2019). Moreover, the PacBio assembly is likely
711 not free of misassemblies (e.g., chimeric contigs). Thus a second type of independent data is
712 necessary to detect such errors; e.g., ~100 potential misassemblies were identified by the
713 CHiCAGO proximity map. The CHiCAGO map was very useful to correct the assembly and make
714 a first scaffolding, but neither alone nor with 10XGenomics scaffolding yielded a chromosome-
715 level assembly. The only type of data implemented here that allowed the generation of chromosome
716 models was the Hi-C map. The latter does not rely on extracted DNA quality or library insert size,
717 but instead on *in-situ* proximity within the nuclei of the fixed sample. As such, Hi-C data is an
718 effective replacement of linkage maps for scaffolding purposes (Dudchenko et al. 2017) and can be
719 used to manually curate assemblies.

720

721 A direct way to identify the limits of sequencing data is to investigate where assemblers fail to
722 resolve sequences, i.e. where contig fragmentation occurs. Therefore, we characterized what causes
723 contig fragmentation in each assembly by analysing sequences directly adjacent to gaps and
724 inferring the gap content of draft assemblies by aligning their flanks to the final multiplatform
725 version lycPyr6 (**Figure 4a**). In general, we found that long and/or homogeneous repeats such as
726 LTR retrotransposons, satellites, and simple repeats are the main fragmentation causes in every
727 assembly, though the specific repeat type changed with the technology. Short-read and linked-read
728 contigs mostly break at simple repeats. Even though the percentage of simple repeats assembled in

729 lycPyrIL, lycPyrSN1 and lycPyrSN2 ranges between 80-90% relative to lycPyr6 (**Figure 4b**),
730 simple repeats also caused most of the assembly gaps, indicating that insert size and linked read
731 methods are not sufficient to unambiguously solve those regions (**Figure 4c-d**). At the same time,
732 the gaps of these three assemblies, when compared to the final multiplatform assembly, mainly
733 contain LTR retrotransposons, simple repeats and complex repeats (defined as arrays of different
734 types of repeats; **Figure 4e-f**). LTR retrotransposons are the second most abundant retrotransposons
735 in the paradise crow assembly and several kilobases long. These features make LTR
736 retrotransposons the major cause of fragmentation in the PacBio assembly and the second in the
737 short-read ones. This partially unexpected trend is likely because LTR retrotransposons are
738 underrepresented in lycPyrIL, lycPyr SN1 and lycPyrSN2 (as indicated by their lack of part of the
739 recent LTR activity; **Figure 3e-f**). The same pattern can be observed for the multicopy rRNA genes:
740 the only assemblies showing gaps caused by rRNA genes are the PacBio-based and this is likely
741 because PacBio was the only technology able to (partially) solve those repeats (**Figure 4c-d**). It is
742 interesting that linked reads appear to better distinguish long repeats like LTR retrotransposons than
743 short-read libraries based on insert size (**Figure 4b**). The satellite portion of the genome was
744 significantly better assembled with PacBio long reads (~9 Mb), while neither multiple Illumina
745 libraries nor linked reads could assemble more than 1 Mb of satellites. This is probably due to the
746 highly homogeneous nature of long stretches of satellites that make satellite arrays collapse during
747 assembly (Hartley and O'Neill 2019). Similar to LTR retrotransposons and rRNA genes, satellites
748 are barely assembled in lycPyrIL, lycPyrSN1 and lycPyrSN2. Therefore satellites are not a major
749 cause of contig fragmentation in Illumina-based assemblies. LINEs are usually short
750 retrotransposons due to 5' truncation during integration (Levin and Moran 2011) and in the paradise
751 crow and other songbirds they seem to be mostly present in old copies (**Figure 3e**; Suh et al.
752 (2018); Weissensteiner et al. (2019)). Therefore they likely are less homogeneous elements, with
753 more diagnostic mutations and hence easier to assemble. In fact, both Illumina and 10XGenomics
754 assemblies have 96-98% of LINEs assembled and LINEs represent only the fourth causative factor

755 of fragmentation. Finally, we noticed a disproportion of DNA transposons annotated in the Illumina
756 assemblies (lycPyrIL and lycPyrILPB) compared to the other assemblies. This phenomenon might
757 be explained by annotation issues linked to the fragmentation of those regions or by the presence of
758 unsolved haplotypes. DNA transposons have been inactive in songbirds for even longer than LINEs
759 (Kapusta and Suh 2017) and should thus be rather straightforward to assemble.

760

761 **Conclusions**

762 Thanks to a manually curated multiplatform assembly and three *de-novo* draft assemblies for the
763 same sample, we were able to characterise and measure genome completeness across sequencing
764 technologies. As expected, long-read assemblies are more complete than short-read assemblies but
765 completeness has been usually measured with statistics that are optimized for short reads rather than
766 for long reads. Scaffold N50 and BUSCO values do not reflect the entire potential and strengths of
767 new sequence technologies, therefore we measured completeness focusing on the most difficult-to-
768 assemble genomic regions. By doing so, we traced the essential steps for generating a high-quality
769 assembly for a non-model organism while optimizing costs and efforts.

770

771 Based on our assembly comparisons, the essential elements to make a chromosome-level assembly
772 are a contiguous primary assembly based on long reads, an independent set of data for correcting
773 misassemblies (CHiCAGO map or linked reads) and polish sequencing errors (short or linked
774 reads), and a Hi-C map for chromosome-level scaffolding. PacBio needs error correction both at the
775 nucleotide level (base calling errors and short indels) and at the assembly level (e.g., chimeric
776 contigs). For both scopes it is possible to use Illumina data but a note of caution is due. First, when
777 polishing the assembly for base calling errors and short indels, short reads could over-homogenize
778 repetitive sequences and thus it would be advisable to correct only outside repeats. In addition,
779 10XGenomics linked reads can also be used to correct both sequencing errors and misassemblies
780 (e.g., Tigmint, Jackman et al. (2018)) and to scaffold the genome (ARCS, Yeo et al. (2017), ARKS,

781 Coombe et al. (2018), fragScaff, Adey et al. (2014)). In general, the spatial information brought by
782 linked reads seems to be very versatile (e.g., assembly correction, scaffolding, structural variation
783 inference, haplotype phasing) and able to better avoid over-collapsing of repetitive elements and
784 genes (**Figure 3** and **4**). Therefore, if budgets and sample material are limited, this technology may
785 be suitable to obtain a better genomic overview than short reads alone. Nevertheless, long reads
786 provide the most detailed look into difficult-to-assemble genomic regions. We summarized the
787 strengths and limitations of the implemented technologies in **Figure 5** that can be used as a guide
788 for choosing technologies and ranking assemblies.

789

790 We have shown that recent technological developments have led to enormous improvements in
791 assembly quality and completeness, paving the way to more complete comparative genomic analyses,
792 including regions that were previously inaccessible within genomic dark matter. At the same time,
793 awareness of technological strengths and weaknesses in resolving repeat-rich and GC-rich regions is
794 fundamental for choosing the most suitable technology when designing sequencing projects, and will
795 help in a dilemma many genome scientists face these days: choosing the best assembly among many.

	lycPyrIL	lycPyrSN1	lycPyrSN2	lycPyrPB	lycPyrILPB	lycPyr2	Final assembly
Repeats	Yellow	Yellow	Yellow	Green	Yellow	Green	Green
Satellite DNA	Red	Red	Red	Green	Yellow	Green	Green
MHC	Orange	Yellow	Yellow	Green	Orange	Green	Green
GC/G4	Red	Yellow	Yellow	Green	Yellow	Green	Green
BUSCO	Green	Orange	Orange	Green	Orange	Green	Green
Contig N50	Orange	Red	Red	Green	Orange	Green	Green
Chromosome models	NA	NA	NA	NA	NA	NA	NA
LTR Assembly Index (LAI)	NA	NA	NA	Green	NA	Green	Green

796

797 **Figure 5.** Summary of the relative efficiency of the different technologies over
798 quality/completeness parameters. Green: most effective; red: least effective.

799

800

801 **Methods**

802 **Samples**

803 We used pectoral muscle samples from three vouchered specimens of *Lycocorax pyrrhopterus* ssp.
804 *obiensis* collected on Obi Island (Moluccas, Indonesia) in 2013, from the Museum Zoologicum
805 Bogoriense (MZB) in Bogor, Indonesia, temporarily on loan at the Natural History Museum of
806 Denmark. One female (voucher: MZB 34.073) sample preserved in DMSO was used for PacBio,
807 Illumina and 10XGenomics sequencing and for the Dovetail CHiCAGO library, one female sample
808 (voucher: MZB 34.070) preserved in RNAlater was used for the Hi-C library with Phase Genomics,
809 and one male sample preserved in DMSO (voucher: MZB 34.075) was used for Illumina sequencing.
810

811 **Sequencing technologies and *de-novo* assemblies**

812 We sequenced the female sample MZB 34.073 using a) PacBio RSII C6-P4 (mean of 11 kb and N50
813 of 16 kb for read length) for a total coverage of 72X; b) 10XGenomics with a HiSeqX Illumina
814 machine (24 kb mean molecule length, 280 bp library insert size, 150 bp read length, net coverage
815 39.7X); c) 10XGenomics with HiSeqX Illumina machine (26.1 kb mean molecule length, 280 bp
816 library insert size, 150 bp read length, net coverage 37.9X). DNA was extracted using magnetic beads
817 on a Kingfisher robot, except for library c) which was based on DNA extracted with agarose gel plugs
818 as in (Weissensteiner et al. 2017). In addition to these libraries, we also used the Illumina libraries
819 and assembly produced in (Prost et al. 2019): Illumina HiSeq 2500 TruSeq paired-end libraries (180
820 bp and 550 bp insert sizes) and Nextera mate pair libraries (5 kb and 8 kb insert sizes) for a total
821 coverage of 90X. Furthermore, two paired-end libraries (125 bp read length) of chromatin-chromatin
822 interactions from CHiCAGO and Hi-C techniques were produced using a HiSeq 2500 by Dovetail
823 Genomics (Putnam et al. 2016) and Phase Genomics (more details below), respectively. Finally, we
824 generated a paired-end library with insert size of 650 bp on an Illumina HiSeqX machine for the male
825 sample.

826 For each library/technology (namely Illumina, 10XGenomics and PacBio) we made independent *de-*
827 *novo* assemblies. (Prost et al. 2019) used ALLPATHS-LG (Butler et al. 2008) for Illumina data while
828 we used Falcon (Chin et al. 2016) for PacBio data and Supernova2 (Weisenfeld et al. 2017) for
829 10XGenomics data (**Table 1**). All the basic genome statistics of the assemblies (**Supplementary**
830 **Table S1**) were calculated using the Perl script assemblathon_stats.pl from
831 https://github.com/KorfLab/Assemblathon/blob/master/assemblathon_stats.pl.

832

833 **Identification of sex-linked contigs and PAR**

834 Given the extreme conservation of the Z chromosomes of songbird (Xu et al. 2019), we used the Z-
835 chromosome sequence of great tit as a query to search for homologous Z-linked contigs in paradise
836 crow. The aligner nucmer was used to perform the one-to-one alignment of the great tit genome and
837 lycPyrPB. Those contigs with more than 60 percent sequence aligned to great tit Z chromosome were
838 identified as Z-linked. We further calculated the sequencing coverage using the female Illumina
839 paired-end libraries to confirm the half-coverage pattern of candidate Z-linked contigs relative to
840 autosomal contigs. We used BWA-MEM to map the reads and the samtools depth function to estimate
841 contig coverage. To identify candidate W-linked contigs, we calculated the re-sequencing coverage
842 of the male individual, because W-linked contigs are female-specific and are not expected to be
843 mapped by male reads while the coverage of female reads should be half of that of autosomes. We
844 used the known PAR sequences of collared flycatcher (Smeds et al. 2014) to identify the homologous
845 PAR contigs in paradise crow. As expected, the PAR contigs were found to show similar re-
846 sequencing coverage in both the male and the female as on the autosomes.

847

848 **Multiplatform approach**

849 We created three types of multiplatform assemblies, one that combines only Illumina and PacBio data
850 (lycPyrILPB, see **Table 1**), a second one combining PacBio and Hi-C data, and a third more

851 comprehensive one that combines three types of sequencing data and two types of proximity ligation
852 data (lycPyr6).

853

854 For the first type of assembly (lycPyrILPB), we used the Illumina assembly lycPyrIL (Prost et al.
855 2019) as genomic backbone and gap-filled it with PacBio long reads using the software PBJelly
856 (PBSuite v. 15.8.24) maintaining the all the default options but -min 10 to consider only gaps of at
857 least 10 base pairs length. The second multiplatform assembly lycPyrHiC was built by scaffolding
858 the PacBio primary assembly (lycPyrPB) with Hi-C data.

859

860 For the most comprehensive assembly (lycPyr6), we combined PacBio, Illumina, 10XGenomics,
861 CHiCAGO and Hi-C data (**Figure 1**). The first step was to assemble the PacBio reads into a primary
862 assembly with the Falcon software (Chin et al. (2016); **Figure 1a**). The primary contigs were
863 corrected and scaffolded with the Dovetail CHiCAGO map generating lycPyr2 (**Figure 1b**) using the
864 software HiRise (Putnam et al. 2016). lycPyr2 then was polished with long reads (two runs of Arrow;
865 Chin et al. (2016)) and short reads (three runs of Pilon 1.22; Walker et al. (2014); **Figure 1c**). Since
866 PacBio sequencing is prone to introduce short indels in the reads (Eid et al. 2009), we addressed
867 specifically these sequencing problems with Pilon while we did not correct single nucleotide variants.
868 Furthermore, in order to not over-polish repetitive regions (i.e., homogenising them with short reads),
869 we excluded Pilon corrections falling within repeats identified by RepeatMasker 4.0.7 using our
870 custom repeat library.

871

872 We then scaffolded lycPyr2 using the long-range information given by 10XGenomics linked reads
873 with the software ARCS 1.0.1 (Yeo et al. (2017); parameters -s 95 -e 1000 -m 20-100000) and LINKS
874 1.8.5 (Warren et al. (2015); parameters -a 0.2) generating lycPyr3 (**Figure 1d**). The parameters for
875 ARCS and LINKS have been chosen after generating 15 assemblies with different values for -m -e -
876 a (**Supplementary Table S11**). The optimal parameter combination was established by minimising

877 a) the number of "private" scaffolds belonging only to one combination of parameters, b) the number
878 of scaffolds containing putative in-silico chromosomal translocations.

879

880 lycPyr3 was scaffolded into chromosome models (clusters of contigs and scaffolds) with the Phase
881 Genomics Hi-C data and the Proximo Hi-C scaffolding pipeline (lycPyr4; **Figure 1e**). Hi-C data were
882 generated using a Phase Genomics (Seattle, WA) Proximo Hi-C Animal Kit. Following the
883 manufacturer's instructions for the kit, intact cells from two samples were crosslinked using a
884 formaldehyde solution, digested using the Sau3AI restriction enzyme, and proximity ligated with
885 biotinylated nucleotides to create chimeric molecules composed of fragments from different regions
886 of the genome that were physically proximal *in-vivo*, but not necessarily linearly proximal.
887 Continuing with the manufacturer's protocol, molecules were pulled down with streptavidin beads
888 and processed into an Illumina-compatible sequencing library.

889

890 Reads were aligned to the draft assembly lycPyr3 following the manufacturer's recommendations.
891 Briefly, reads were aligned using BWA-MEM (Li and Durbin (2010); v. 0.7.15-r1144-dirty) with the
892 -5SP and -t 8 options specified, while keeping the other parameters as default. SAMBLASTER (Faust
893 and Hall 2014) was used to flag PCR duplicates, which were later excluded from analysis. Alignments
894 were then filtered with samtools (Li et al. (2009); v1.5, with htslib 1.5) using the -F 2304 filtering
895 flag to remove non-primary and secondary alignments, as well as read pairs in which one or more
896 mates were unmapped. Phase Genomics' Proximo Hi-C genome scaffolding platform was used to
897 create chromosome-scale scaffolds from the draft assembly as described in (Bickhart et al. 2017). As
898 in the LACHESIS method (Burton et al. 2013), this process computes a contact frequency matrix
899 from the aligned Hi-C read pairs, normalised by the number of Sau3AI restriction sites (GATC) on
900 each contig, and constructs scaffolds in such a way as to optimise expected contact frequency and
901 other statistical patterns in Hi-C data. Approximately 286,000 separate Proximo runs were performed

902 to optimise the number of scaffolds and scaffold construction in order to make the scaffolds as
903 concordant with the observed Hi-C data as possible.

904

905 Two chromosomes (chr1 and chr2) appeared to be split into two different super-scaffolds (or clusters)
906 respectively, thus they were manually put together following the orientation suggested by the Hi-C
907 interaction heatmap (**Supplementary Figure S3**). We then manually inspected the assembly lycPyr4
908 for misassemblies (**Figure 1f** and **Figure 2**) by aligning the four *de-novo* assemblies (lycPyrIL,
909 lycPyrPB, lycPyrSN1 and lycPyrSN2) to it using Satsuma2 (Grabherr et al. 2010) and chromosome
910 models from three songbird outgroups (*Ficedula albicollis*, *Taeniopygia guttata* and *Parus major*)
911 with LASTZ 1.04.00 (Harris 2007). We identified misassemblies by looking for regions in which the
912 different *de-novo* assemblies were in conflict with the final assembly (schematically showed in
913 **Figure 2**). We applied the majority rule for each scaffolding or orientation conflict found between
914 lycPyr4 and the four draft assemblies. To make any decisions against the scaffold configuration in
915 lycPyr4, three of the four *de-novo* assemblies needed to be in discordance with lycPyr4 and show the
916 same pattern of discordance. In cases where only two *de-novo* assemblies showed the same pattern
917 of discordance and the other were not informative, we used the information provided by the outgroups
918 to decide whether to keep the lycPyr4 scaffold configuration or correct it. With this approach we were
919 able to identify 45 intra-scaffold misassemblies at a fine scale, all of them being orientation issues of
920 PacBio contigs within scaffolds.

921

922 Then, we gap-filled the assembly using PBJelly (PBSuite 15.8.24; English et al. (2012)) with the
923 default options except for the parameter -min 10 in order to consider the gaps longer than 10 bps
924 (**Figure 1g**). After the gap-filling step that used the PacBio reads, we ultimately polished the genome
925 with long reads using Arrow (one run; PacBio library) and with short reads using Pilon (two runs;
926 Illumina library; **Figure 1h**).

927 The last step of assembly curation involved the generation of Hi-C heatmaps on lycPyr5 by mapping
928 the Hi-C library to the assembly using Juicer 1.5 (Durand et al. (2016); **Figure 1i**). We manually
929 inspected the Hi-C maps for misassemblies using Juicebox 1.9.8
930 (<https://github.com/aidenlab/Juicebox>) and corrected lycPyr5 accordingly (**Supplementary Figure**
931 **S3**). This way, we manually solved remaining assembly issues regarding the orientation and order of
932 some contigs or scaffolds within the chromosome models, as well as corrected *in-silico* chromosomal
933 translocations.

934

935 The completeness of the assemblies was assessed with gVolante (Nishimura et al. 2017) using
936 BUSCO v3 for avian genomes (**Supplementary Table S2**) and with LTR Assembly Index (Ou et al.
937 (2018); **Supplementary Table S3**).

938

939 The mitochondrial genome was identified as one PacBio contig by aligning the mtDNA of *Corvus*
940 *corax* (GenBank accession number KX245138.1) to lycPyrPB. It was annotated using DOGMA
941 (Wyman et al. 2004) and tRNAscan-SE 1.3.1 (Lowe and Eddy (1997); **Supplementary Table S12**).
942

943 **Chromosome nomenclature**

944 Since the chicken genome is the best avian genome assembled so far with reliable chromosome
945 information (Warren et al. 2017), we named and oriented our chromosome models according to
946 homology with galGal5 (RefSeq accession number GCF_000002315.6). In the case that our
947 chromosome models were not completely collinear with chicken, we oriented them following the
948 orientation of the majority of the model respect to chicken. Finally, if the chromosome models did
949 not share any homology with chicken, their orientation was not changed.

950

951 **Repeat library**

952 We produced a *de-novo* repeat library for paradise crow by running the RepeatMasker 4.0.7 and
953 RepeatModeler 1.0.8 software on the PacBio *de-novo* assembly. We hard-masked lycPyrPB with the
954 Aves repeat library from Repbase (version 20170127; <https://www.girinst.org/about/repbase.html>)
955 together with the consensus sequences from (Prost et al. 2019), then ran RepeatModeler. The new
956 consensus sequences generated by RepeatModeler were aligned back to the reference genome; the 20
957 best BLASTN 2.7.1+ results were collected, extended by 2 kb on both sides and aligned to one
958 another with MAFFT 7.4.07. The alignments were manually curated applying the majority rule and
959 the superfamily of repeat assessed following the (Wicker et al. 2007) classification.

960

961 All the new consensus sequences were masked in CENSOR
962 (<http://www.girinst.org/censor/index.php>) and named according to homology to known repeats in the
963 Repbase database. Sequences with high similarity to known repeats for their entire lengths were given
964 the name of the known repeat + suffix "_lycPyr"; repeats with partial homology have been named
965 with the suffix "-L_lycPyr" where "L" stands for "like" (Suh et al. 2018). Repeats with no homology
966 with known ones have been considered as new families and named with the prefix "lycPyr" followed
967 by the name of their superfamilies.

968

969 The final repeat library also contains the manually curated version of the consensus sequences
970 previously generated on other two birds-of-paradise *Astrapia rothschildi* "astRot", *Ptiloris*
971 *paradiseus* "ptiPar" (Prost et al. 2019), the ones from *Corvus cornix* (Weissensteiner et al. 2019),
972 *Uraeginthus cyanocephalus* (Boman et al. 2019), *Ficedula albicollis* and all the avian repeats
973 available on Repbase (mostly from chicken and zebra finch).

974

975 **G4 motif identification**

976 The *de-novo* assemblies and the final version have been scanned for G-quadruplex (G4) motifs with
977 the software Quadron (Sahakyan et al. (2017); <https://github.com/aleksahak/Quadron>). Only non-

978 overlapping hits with a score greater than 19 were used for subsequent analysis as suggested in
979 (Sahakyan et al. 2017). The density of such motifs per chromosome model was calculated using
980 bedtools coverage (BEDTools 2.27.1; Quinlan (2014)).

981

982 **MHC class IIB analysis**

983 To infer how highly duplicated genes are assembled with different input data and assembly
984 strategies, we investigated the distribution of major histocompatibility class IIB (MHCIIB)
985 sequence hits in seven assemblies: lycPyrIL, lycPyrPB, lycPyrSN1, lycPyrSN1, lycPyrILPB,
986 lycPyr2 and lycPyr6 (the intermediate assemblies like lycPyr3 are not shown here because the MHC
987 content did not change from lycPyr2 to lycPyr5). We performed BLAST (Altschul et al. 1990)
988 searches both with sequences of the highly variable exon 2 that encodes the peptide binding region,
989 and with the much more conserved exon 3 (Hughes and Yeager 1998), as the disparate levels of
990 polymorphism within these regions may provide insights into different aspects of challenges with
991 genome assembly. We conducted tBLASTn (BLAST 2.7.1+) searches using alignments available
992 from Goebel et al. (2017) that include sequences from across the entire avian phylogeny. We chose
993 this strategy to ensure the identification MHCIIB sequences, as with sequences of only a single-
994 species BLAST search might miss highly divergent sequences as they are often present in the MHC,
995 where within-species diversity of MHC genes often equals between-species divergence. From the
996 available alignments, we exclusively retained sequences spanning the entire 270 bp of exon 2 and
997 sequences covering 220 bp of exon 3. This left query alignments including 233 sequences from 22
998 bird orders/families for exon 2, and 314 sequences from 26 bird orders/families for exon 3.

999 Overlapping blast hit intervals were merged. To ensure that these intervals contained sequences
1000 corresponding to MHCIIB, we first BLAST searched them back against the GenBank database
1001 using BLASTn queries, and retained only intervals producing hits with MHCIIB. We then aligned
1002 the remaining sequences using the MAFFT alignment server with the --add option and default
1003 settings, and manually screened the alignments to identify non-MHCIIB sequences. Finally, we

1004 determined the alignment lengths of BLAST hit intervals after removing insertions relative to the
1005 query alignment. We report only hits longer than 240 bp for exon 2 and longer than 195 bp for exon
1006 3, corresponding to approximately 90% of the respective query alignment lengths.

1007

1008 **Gap analysis**

1009 For each assembly produced, we estimated the number of gaps caused by repeats by intersecting the
1010 gap and repeat coordinates using bedtools window (Quinlan 2014) with a window size of 100 bp
1011 (**Figure 4a**). Only gaps longer than 10 bp were taken into consideration. This filter is particularly
1012 important for lycPyrIL since there are many small gaps of 1-5 Ns that are probably caused by
1013 sequencing or base-calling errors.

1014

1015 We estimated what is missing in the draft assemblies with respect to the final multiplatform assembly
1016 lycPyr6 by aligning the flanking regions to the gaps onto the final version. We then assessed the
1017 presence of annotated repeats on lycPyr6 between the aligned flanking regions to the draft assembly
1018 gaps. To do these pairwise alignments, we extracted 500 bp of flanking regions from the intra-scaffold
1019 gaps of lycPyrIL, lycPyrSN1, lycPyrSN2, lycPyrPB and lycPyrILPB and BLASTn searched the
1020 sequences to lycPyr6 with BLAST 2.7.1+. The alignments were filtered to retain only unambiguously
1021 orthologous positions on lycPyr6, namely there was only one alignment (98% identity, 90% coverage)
1022 of both flanks on the same lycPyr6 scaffold. The coordinates of the draft genome gaps projected onto
1023 lycPyr6 were then intersected with the RepeatMasker annotation using bedtools intersect. Draft
1024 genome gaps containing only one type of repeat on lycPyr6 were classified according to the type of
1025 repeat. In case the draft genome gaps corresponded to a region containing more than one type of
1026 repeat, the gaps were classified as ‘complex’. Finally, in case that the draft genome gaps could not be
1027 mapped unambiguously (e.g., no homology, only one flank aligned or the two flanking regions
1028 mapped to different scaffolds) or mapped to gaps on lycPyr6, they were classified as ‘not scorable
1029 gaps’ (**Figure 4a**)

1030

1031 We also compared how many repeats were assembled in the draft assemblies compared to lycPyr6
1032 (**Figure 4b**) by calculating the proportion of repeat base pairs present in the draft assemblies relative
1033 to the total bp in lycPyr6. This was done for each major repeat group using the RepeatMasker table
1034 (.tbl) files; more details in **Supplementary Table S10**.

1035

1036 **Data Access**

1037

1038 **Acknowledgements**

1039

We would like to thank Max Käller, Phil Ewels, Remi-André Olsen, Joel Gruselius, Fanny Taborsak-
1040 Lines (SciLifeLab Stockholm) for generating 10X data; Olga Vinnere-Pettersson and Ida Höijer
1041 (SciLifeLab Uppsala) for generating PacBio data; Mai-Britt Mosbech and Anna Petri (SciLifeLab
1042 Uppsala) for doing the agarose gel plug extraction; Verena Kutschera at the National Bioinformatics
1043 Infrastructure Sweden at SciLifeLab (Stockholm) for bioinformatics advice; Muhammad Bilal for the
1044 help with the repeat library; Matthias Weissensteiner for the help with sample transfer, comments on
1045 the manuscript and helpful discussions; Douglas Scofield for help with the gap-filling analysis; Diem
1046 Nguyen, Marco Ricci, James Galbraith, Julie Blommaert, Ivar Westerberg, Jesper Boman for their
1047 comments on the manuscript; Octavio Gimenez-Palacio, David Adelson, James Galbraith, Hanna
1048 Johannesson, Jesper Boman, and Boel Olsson for helpful discussions. This research was supported
1049 by grants from the Swedish Research Council Formas (2017-01597 to AS), the Swedish Research
1050 Council Vetenskapsrådet (2016-05139 to AS, and 621-2014-5113 to MI), and the SciLifeLab
1051 Swedish Biodiversity Program (2015-R14 to AS). The Swedish Biodiversity Program has been made
1052 available by support from the Knut and Alice Wallenberg Foundation. A.S. acknowledges funding
1053 from the Knut and Alice Wallenberg Foundation via Hans Ellegren. The authors acknowledge support
1054 from the National Genomics Infrastructure (NGI)/Uppsala Genome Center. The work performed at
1055 NGI / Uppsala Genome Center has been funded by RFI/VR and Science for Life Laboratory, Sweden.
1056 The authors further acknowledge support from the National Genomics Infrastructure in Stockholm
1057 funded by Science for Life Laboratory, the Knut and Alice Wallenberg Foundation and the Swedish

1058 Research Council. Some of the computations were performed on resources provided by the Swedish
1059 National Infrastructure for Computing (SNIC) through Uppsala Multidisciplinary Center for
1060 Advanced Computational Science (UPPMAX). KAJ is most grateful for the financial support
1061 received from the Villum Foundation (Young Investigator Programme, project no. 15560), and from
1062 the Carlsberg Foundation (Distinguished Associate Professor Fellowship, project no. CF17-0248).
1063 We thank the State Ministry of Research and Technology (RISTEK); the Ministry of Forestry,
1064 Republic of Indonesia; the Research Center for Biology, Indonesian Institute of Sciences (RCB-LIPI);
1065 and the Bogor Zoological Museum (Tri Haryoko) for providing permits to carry out fieldwork in
1066 Indonesia and to export select samples. KAJ acknowledges a National Geographic Research and
1067 Exploration Grant (8853-10), the Dybron Hoffs Foundation and the Corrit Foundation for financial
1068 support for fieldwork in Indonesia.

1069
1070

1071 Disclosure declaration

1072 Shawn Sullivan and Ivan Liachko are employed at Phase Genomics.
1073

1074 References

1075 Adey A, Kitzman JO, Burton JN, Daza R, Kumar A, Christiansen L, Ronaghi M, Amini S, L.
1076 Gunderson K, Steemers FJ et al. 2014. In vitro, long-range sequence information for de novo
1077 genome assembly via transposase contiguity. *Genome Research* **24**: 2041-2049.
1078 Aird D, Ross MG, Chen WS, Danielsson M, Fennell T, Russ C, Jaffe DB, Nusbaum C, Gnirke A.
1079 2011. Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries.
1080 *Genome Biol* **12**.
1081 Alkan C, Sajadian S, Eichler EE. 2010. Limitations of next-generation genome sequence assembly.
1082 *Nature Methods* **8**: 61.
1083 Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool.
1084 *Journal of Molecular Biology* **215**: 403-410.
1085 Bellott DW, Skaletsky H, Cho T-J, Brown L, Locke D, Chen N, Galkina S, Pyntikova T, Koutseva
1086 N, Graves T et al. 2017. Avian W and mammalian Y chromosomes convergently retained
1087 dosage-sensitive regulators. *Nature Genetics* **49**: 387.
1088 Belser C, Istace B, Denis E, Dubarry M, Baurens F-C, Falentin C, Genete M, Berrabah W, Chèvre
1089 A-M, Delourme R et al. 2018. Chromosome-scale assemblies of plant genomes using
1090 nanopore long reads and optical maps. *Nature Plants* **4**: 879-887.
1091 Bickhart DM, Rosen BD, Koren S, Sayre BL, Hastie AR, Chan S, Lee J, Lam ET, Liachko I, Sullivan
1092 ST et al. 2017. Single-molecule sequencing and chromatin conformation capture enable de
1093 novo reference assembly of the domestic goat genome. *Nature Genetics* **49**: 643.
1094 Biffi G, Tannahill D, Balasubramanian S. 2012. An Intramolecular G-Quadruplex Structure Is
1095 Required for Binding of Telomeric Repeat-Containing RNA to the Telomeric Protein TRF2.
1096 *Journal of the American Chemical Society* **134**: 11974-11976.

1097 Boman J, Frankl-Vilches C, da Silva dos Santos M, de Oliveira EHC, Gahr M, Suh A. 2019. The
1098 Genome of Blue-Capped Cordon-Bleu Uncovers Hidden Diversity of LTR Retrotransposons
1099 in Zebra Finch. *Genes* **10**: 301.

1100 Botero-Castro F, Figuet E, Tilak M-K, Nabholz B, Galtier N. 2017. Avian Genomes Revisited:
1101 Hidden Genes Uncovered and the Rates versus Traits Paradox in Birds. *Molecular Biology*
1102 and Evolution

1103 Bourque G, Burns KH, Gehring M, Gorbunova V, Seluanov A, Hammell M, Imbeault M, Izsvák Z,
1104 Levin HL, Macfarlan TS et al. 2018. Ten things you should know about transposable
1105 elements. *Genome Biology* **19**: 199.

1106 Burt DW. 2002. Origin and evolution of avian microchromosomes. *Cytogenetic and Genome*
1107 *Research* **96**: 97-112.

1108 Burton JN, Adey A, Patwardhan RP, Qiu R, Kitzman JO, Shendure J. 2013. Chromosome-scale
1109 scaffolding of de novo genome assemblies based on chromatin interactions. *Nature*
1110 *Biotechnology* **31**: 1119.

1111 Butler J, MacCallum I, Kleber M, Shlyakhter IA, Belmonte MK, Lander ES, Nusbaum C, Jaffe DB.
1112 2008. ALLPATHS: De novo assembly of whole-genome shotgun microreads. *Genome*
1113 *Research* **18**: 810-820.

1114 Chaisson MJP, Huddleston J, Dennis MY, Sudmant PH, Malig M, Hormozdiari F, Antonacci F, Surti
1115 U, Sandstrom R, Boitano M et al. 2014. Resolving the complexity of the human genome using
1116 single-molecule sequencing. *Nature* **517**: 608.

1117 Chaisson MJP, Wilson RK, Eichler EE. 2015. Genetic variation and the de novo assembly of human
1118 genomes. *Nature Reviews Genetics* **16**: 627.

1119 Chalopin D, Volff J-N, Galiana D, Anderson JL, Schartl M. 2015. Transposable elements and early
1120 evolution of sex chromosomes in fish. *Chromosome Research* **23**: 545-560.

1121 Chang C-H, Chavan A, Palladino J, Wei X, Martins NMC, Santinello B, Chen C-C, Erceg J, Beliveau
1122 BJ, Wu C-T et al. 2019. Islands of retroelements are major components of Drosophila
1123 centromeres. *PLOS Biology* **17**: e3000241.

1124 Charlesworth B, Harvey PH, Charlesworth B, Charlesworth D. 2000. The degeneration of Y
1125 chromosomes. *Philosophical Transactions of the Royal Society of London Series B:*
1126 *Biological Sciences* **355**: 1563-1572.

1127 Chin C-S, Peluso P, Sedlazeck FJ, Nattestad M, Concepcion GT, Clum A, Dunn C, O'Malley R,
1128 Figueroa-Balderas R, Morales-Cruz A et al. 2016. Phased diploid genome assembly with
1129 single-molecule real-time sequencing. *Nature Methods* **13**: 1050.

1130 Chuong EB, Elde NC, Feschotte C. 2016. Regulatory activities of transposable elements: from
1131 conflicts to benefits. *Nature Reviews Genetics* **18**: 71.

1132 Coombe L, Zhang J, Vandervalk BP, Chu J, Jackman SD, Birol I, Warren RL. 2018. ARKS:
1133 chromosome-scale scaffolding of human genome drafts with linked read kmers. *BMC*
1134 *Bioinformatics* **19**: 234.

1135 Cowley M, Oakey RJ. 2013. Transposable Elements Re-Wire and Fine-Tune the Transcriptome.
1136 *PLOS Genetics* **9**: e1003234.

1137 Deschamps S, Zhang Y, Llaca V, Ye L, Sanyal A, King M, May G, Lin H. 2018. A chromosome-
1138 scale assembly of the sorghum genome using nanopore sequencing and optical mapping.
1139 *Nature Communications* **9**: 4844.

1140 Dohm JC, Lottaz C, Borodina T, Himmelbauer H. 2008. Substantial biases in ultra-short read data
1141 sets from high-throughput DNA sequencing. *Nucleic Acids Res* **36**.

1142 Domanska D, Kanduri C, Simovski B, Sandve GK. 2018. Mind the gaps: overlooking inaccessible
1143 regions confounds statistical testing in genome analysis. *BMC Bioinformatics* **19**: 481.

1144 Dréau A, Venu V, Avdievich E, Gaspar L, Jones FC. 2019. Genome-wide recombination map
1145 construction from single individuals using linked-read sequencing. *Nature Communications*
1146 **10**: 4309.

1147 Du Z, Zhao Y, Li N. 2008. Genome-wide analysis reveals regulatory role of G4 DNA in gene
1148 transcription. *Genome Research* **18**: 233-241.

1149 Du Z, Zhao Y, Li N. 2009. Genome-wide colonization of gene regulatory elements by G4 DNA
1150 motifs. *Nucleic Acids Research* **37**: 6784-6798.

1151 Dudchenko O, Batra SS, Omer AD, Nyquist SK, Hoeger M, Durand NC, Shamim MS, Machol I,
1152 Lander ES, Aiden AP et al. 2017. De novo assembly of the *Aedes aegypti* genome using Hi-
1153 C yields chromosome-length scaffolds. *Science* **356**: 92-95.

1154 Dudchenko O, Shamim MS, Batra SS, Durand NC, Musial NT, Mostafa R, Pham M, Glenn St Hilaire
1155 B, Yao W, Stamenova E et al. 2018. The Juicebox Assembly Tools module facilitates *de novo*
1156 assembly of mammalian genomes with chromosome-length scaffolds for under \$1000.
1157 *bioRxiv* doi:10.1101/254797: 254797.

1158 Durand NC, Shamim MS, Machol I, Rao SSP, Huntley MH, Lander ES, Aiden EL. 2016. Juicer
1159 Provides a One-Click System for Analyzing Loop-Resolution Hi-C Experiments. *Cell
1160 Systems* **3**: 95-98.

1161 Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D, Baybayan P, Bettman B et al.
1162 2009. Real-Time DNA Sequencing from Single Polymerase Molecules. *Science* **323**: 133-
1163 138.

1164 Emera D, Wagner GP. 2012. Transposable element recruitments in the mammalian placenta: impacts
1165 and mechanisms. *Briefings in Functional Genomics* **11**: 267-276.

1166 English AC, Richards S, Han Y, Wang M, Vee V, Qu J, Qin X, Muzny DM, Reid JG, Worley KC et
1167 al. 2012. Mind the Gap: Upgrading Genomes with Pacific Biosciences RS Long-Read
1168 Sequencing Technology. *PLOS ONE* **7**: e47768.

1169 Etherington GJ, Heavens D, Baker D, Lister A, McNelly R, Garcia G, Clavijo B, Macaulay I, Haerty
1170 W, Di Palma F. 2019. Sequencing smart: *De novo* sequencing and assembly approaches for
1171 non-model mammals. *bioRxiv* doi:10.1101/723890: 723890.

1172 Faino L, Seidl MF, Datema E, van den Berg GCM, Janssen A, Wittenberg AHJ, Thomma BPHJ.
1173 2015. Single-Molecule Real-Time Sequencing Combined with Optical Mapping Yields
1174 Completely Finished Fungal Genome. *mBio* **6**: e00936-00915.

1175 Goebel J, Promerová M, Bonadonna F, McCoy KD, Serbielle C, Strandh M, Yannic G, Burri R,
1176 Fumagalli L. 2017. 100 million years of multigene family evolution: origin and evolution of
1177 the avian MHC class IIB. *BMC Genomics* **18**: 460.

1178 Goodwin S, McPherson JD, McCombie WR. 2016. Coming of age: ten years of next-generation
1179 sequencing technologies. *Nature Reviews Genetics* **17**: 333.

1180 Gordon D, Huddleston J, Chaisson MJP, Hill CM, Kronenberg ZN, Munson KM, Malig M, Raja A,
1181 Fiddes I, Hillier LW et al. 2016. Long-read sequence assembly of the gorilla genome. *Science*
1182 **352**: aae0344.

1183 Grabherr MG, Russell P, Meyer M, Mauceli E, Alföldi J, Di Palma F, Lindblad-Toh K. 2010.
1184 Genome-wide synteny through highly sensitive sequence alignment: Satsuma. *Bioinformatics
1185 (Oxford, England)* **26**: 1145-1151.

1186 Gregory TR. 2019. Animal Genome Size Database, <http://www.genomesize.com>.

1187 Griffin D, Burt DW. 2014. All chromosomes great and small: 10 years on. *Chromosome Research*
1188 **22**: 1-6.

1189 Guiblet WM, Cremona MA, Cechova M, Harris RS, Kejnovská I, Kejnovsky E, Eckert K,
1190 Chiaromonte F, Makova KD. 2018. Long-read sequencing technology indicates genome-wide
1191 effects of non-B DNA on polymerization speed and error rate. *Genome Research* **28**: 1767-
1192 1778.

1193 Harris RS. 2007. Improved pairwise alignment of genomic DNA. *PhD Thesis, The Pennsylvania
1194 State University*.

1195 Hartley G, O'Neill RJ. 2019. Centromere Repeats: Hidden Gems of the Genome. *Genes* **10**: 223.

1196 Hobza R, Cegan R, Jesionek W, Kejnovsky E, Vyskot B, Kubat Z. 2017. Impact of Repetitive
1197 Elements on the Y Chromosome Formation in Plants. *Genes (Basel)* **8**.

1198 Hron T, Pajer P, Pačes J, Bartůněk P, Elleder D. 2015. Hidden genes in birds. *Genome Biology* **16**:
1199 164.

1200 Hughes AL, Yeager M. 1998. NATURAL SELECTION AT MAJOR HISTOCOMPATIBILITY
1201 COMPLEX LOCI OF VERTEBRATES. *Annual Review of Genetics* **32**: 415-435.

1202 Irestedt M, Jønsson KA, Fjeldså J, Christidis L, Ericson PGP. 2009. An unexpectedly long history of
1203 sexual selection in birds-of-paradise. *BMC Evolutionary Biology* **9**: 235.

1204 Jackman SD, Coombe L, Chu J, Warren RL, Vandervalk BP, Yeo S, Xue Z, Mohamadi H, Bohlmann
1205 J, Jones SJM et al. 2018. Tigmint: correcting assembly errors using linked reads from large
1206 molecules. *BMC Bioinformatics* **19**: 393.

1207 Jain M, Olsen HE, Turner DJ, Stoddart D, Bulazel KV, Paten B, Haussler D, Willard HF, Akeson M,
1208 Miga KH. 2018. Linear assembly of a human centromere on the Y chromosome. *Nature
1209 Biotechnology* **36**: 321.

1210 Johnson JM, Edwards S, Shoemaker D, Schadt EE. 2005. Dark matter in the genome: evidence of
1211 widespread transcription detected by microarray tiling experiments. *Trends in Genetics* **21**:
1212 93-102.

1213 Kapitonov VV, Koonin EV. 2015. Evolution of the RAG1-RAG2 locus: both proteins came from the
1214 same transposon. *Biology Direct* **10**: 20.

1215 Kapusta A, Suh A. 2017. Evolution of bird genomes-a transposon's-eye view. *Ann NY Acad Sci* **1389**:
1216 164-185.

1217 Kozarewa I, Ning Z, Quail MA, Sanders MJ, Berriman M, Turner DJ. 2009. Amplification-free
1218 Illumina sequencing-library preparation facilitates improved mapping and assembly of
1219 (G+C)-biased genomes. *Nat Methods* **6**.

1220 Lajoie BR, Dekker J, Kaplan N. 2015. The Hitchhiker's guide to Hi-C analysis: practical guidelines.
1221 *Methods* **72**: 65-75.

1222 Law JA, Jacobsen SE. 2010. Establishing, maintaining and modifying DNA methylation patterns in
1223 plants and animals. *Nature Reviews Genetics* **11**: 204-220.

1224 Lerat E, Casacuberta J, Chaparro C, Vieira C. 2019. On the Importance to Acknowledge Transposable
1225 Elements in Epigenomic Analyses. *Genes* **10**: 258.

1226 Levin HL, Moran JV. 2011. Dynamic interactions between transposable elements and their hosts.
1227 *Nature Reviews Genetics* **12**: 615-627.

1228 Levis RW, Ganesan R, Houtchens K, Tolar LA, Sheen F-m. 1993. Transposons in place of telomeric
1229 repeats at a *Drosophila* telomere. *Cell* **75**: 1083-1093.

1230 Li H, Durbin R. 2010. Fast and accurate long-read alignment with Burrows-Wheeler transform.
1231 *Bioinformatics* **26**: 589-595.

1232 Li H, Genome Project Data Processing S, Wysoker A, Handsaker B, Marth G, Abecasis G, Ruan J,
1233 Homer N, Durbin R, Fennell T. 2009. The Sequence Alignment/Map format and SAMtools.
1234 *Bioinformatics* **25**: 2078-2079.

1235 Li Q, Li HB, Huang W, Xu YC, Zhou Q, Wang SH, Ruan J, Huang SW, Zhang Z. 2019. A
1236 chromosome-scale genome assembly of cucumber (*Cucumis sativus* L.). *Gigascience* **8**: 10.

1237 Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie
1238 BR, Sabo PJ, Dorschner MO et al. 2009. Comprehensive Mapping of Long-Range
1239 Interactions Reveals Folding Principles of the Human Genome. *Science* **326**: 289-293.

1240 Ligon RA, Diaz CD, Morano JL, Troscianko J, Stevens M, Moskeland A, Laman TG, Scholes E, III.
1241 2018. Evolution of correlated complexity in the radically different courtship signals of birds-
1242 of-paradise. *PLOS Biology* **16**: e2006962.

1243 Loomis EW, Eid JS, Peluso P, Yin J, Hickey L, Rank D, McCalmon S, Hagerman RJ, Tassone F,
1244 Hagerman PJ. 2013. Sequencing the unsequenceable: Expanded CGG-repeat alleles of the
1245 fragile X gene. *Genome Research* **23**: 121-128.

1246 Lowe TM, Eddy SR. 1997. tRNAscan-SE: A Program for Improved Detection of Transfer RNA
1247 Genes in Genomic Sequence. *Nucleic Acids Research* **25**: 955-964.

1248 Marks P, Garcia S, Barrio AM, Belhocine K, Bernate J, Bharadwaj R, Bjornson K, Catalanotti C,
1249 Delaney J, Fehr A et al. 2019. Resolving the full spectrum of human genome variation using
1250 Linked-Reads. *Genome Research* **29**: 635-645.

1251 McGurk MP, Dion-Côté A-M, Barbash DA. 2019. Rapid evolution at the telomere: transposable
1252 element dynamics at an intrinsically unstable locus. *bioRxiv* doi:10.1101/782904: 782904.

1253 Michael TP, Jupe F, Bemm F, Motley ST, Sandoval JP, Lanz C, Loudet O, Weigel D, Ecker JR. 2018.
1254 High contiguity *Arabidopsis thaliana* genome assembly with a single nanopore flow cell.
1255 *Nature Communications* **9**: 541.

1256 Miller MM, Taylor RL, Jr. 2016. Brief review of the chicken Major Histocompatibility Complex: the
1257 genes, their distribution on chromosome 16, and their contributions to disease resistance.
1258 *Poultry Science* **95**: 375-392.

1259 Montoliu-Nerin M, Sánchez-García M, Bergin C, Grabherr M, Ellis B, Kutschera VE, Kierczak M,
1260 Johannesson H, Rosling A. 2019. From single nuclei to whole genome assemblies. *bioRxiv*
1261 doi:10.1101/625814: 625814.

1262 Nishimura O, Hara Y, Kuraku S. 2017. gVolante for standardizing completeness assessment of
1263 genome and transcriptome assemblies. *Bioinformatics* **33**: 3635-3637.

1264 O'Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, Rajput B, Robbertse B, Smith-
1265 White B, Ako-Adjei D et al. 2015. Reference sequence (RefSeq) database at NCBI: current
1266 status, taxonomic expansion, and functional annotation. *Nucleic Acids Research* **44**: D733-
1267 D745.

1268 O'Connor EA, Westerdahl H, Burri R, Edwards SV. 2019. Avian MHC Evolution in the Era of
1269 Genomics: Phase 1.0. *Cells* **8**: 1152.

1270 Ou S, Chen J, Jiang N. 2018. Assessing genome assembly quality using the LTR Assembly Index
1271 (LAI). *Nucleic Acids Research* **46**: e126-e126.

1272 Oyola SO, Otto TD, Gu Y, Maslen G, Manske M, Campino S, Turner DJ, MacInnis B, Kwiatkowski
1273 DP, Swerdlow HP et al. 2012. Optimizing illumina next-generation sequencing library
1274 preparation for extremely at-biased genomes. *BMC Genomics* **13**: 1.

1275 Paajanen P, Kettleborough G, López-Girona E, Giolai M, Heavens D, Baker D, Lister A, Cugliandolo
1276 F, Wilde G, Hein I et al. 2019. A critical comparison of technologies for a plant genome
1277 sequencing project. *GigaScience* **8**.

1278 Peñalba JV, Deng Y, Fang Q, Joseph L, Moritz C, Cockburn A. 2019. Genome of an iconic Australian
1279 bird: High-quality assembly and linkage map of the superb fairy-wren (*Malurus cyaneus*).
1280 *Molecular Ecology Resources* doi:10.1111/1755-0998.13124.

1281 Peona V, Weissensteiner MH, Suh A. 2018. How complete are "complete" genome assemblies?-An
1282 avian perspective. *Mol Ecol Resour* doi:10.1111/1755-0998.12933.

1283 Pettersson ME, Rochus CM, Han F, Chen J, Hill J, Wallerman O, Fan G, Hong X, Xu Q, Zhang H et
1284 al. 2019. A chromosome-level assembly of the Atlantic herring genome—detection of a
1285 supergene and other signals of selection. *Genome Research* doi:10.1101/gr.253435.119.

1286 Platt RN, II, Blanco-Berdugo L, Ray DA. 2016. Accurate Transposable Element Annotation Is Vital
1287 When Analyzing New Genome Assemblies. *Genome Biology and Evolution* **8**: 403-410.

1288 Prost S, Armstrong EE, Nylander J, Thomas GWC, Suh A, Petersen B, Dalen L, Benz BW, Blom
1289 MPK, Palkopoulou E et al. 2019. Comparative analyses identify genomic features potentially
1290 involved in the evolution of birds-of-paradise. *GigaScience* **8**: 1-12.

1291 Putnam NH, O'Connell BL, Stites JC, Rice BJ, Blanchette M, Calef R, Troll CJ, Fields A, Hartley
1292 PD, Sugnet CW et al. 2016. Chromosome-scale shotgun assembly using an in vitro method
1293 for long-range linkage. *Genome Research* **26**: 342-350.

1294 Quinlan AR. 2014. BEDTools: The Swiss-Army Tool for Genome Feature Analysis. *Current
1295 Protocols in Bioinformatics* **47**: 11.12.11-11.12.34.

1296 Raiber E-A, Kranaster R, Lam E, Nikan M, Balasubramanian S. 2011. A non-canonical DNA
1297 structure is a binding motif for the transcription factor SP1 in vitro. *Nucleic Acids Research*
1298 **40**: 1499-1508.

1299 Rhoads A, Au KF. 2015. PacBio Sequencing and Its Applications. *Genomics, Proteomics &*
1300 *Bioinformatics* **13**: 278-289.

1301 Ribeiro FJ, Przybylski D, Yin S, Sharpe T, Gnerre S, Abouelleil A, Berlin AM, Montmayeur A, Shea
1302 TP, Walker BJ et al. 2012. Finished bacterial genomes from shotgun sequence data. *Genome*
1303 *Research* **22**: 2270-2277.

1304 Sahakyan AB, Chambers VS, Marsico G, Santner T, Di Antonio M, Balasubramanian S. 2017.
1305 Machine learning model for sequence-driven DNA G-quadruplex formation. *Scientific*
1306 *Reports* **7**: 14535.

1307 Schadt EE, Turner S, Kasarskis A. 2010. A window into third-generation sequencing. *Human*
1308 *Molecular Genetics* **19**: R227-R240.

1309 Schiavone D, Guilbaud G, Murat P, Papadopoulou C, Sarkies P, Prioleau M-N, Balasubramanian S,
1310 Sale JE. 2014. Determinants of G quadruplex-induced epigenetic instability in REV1-
1311 deficient cells. *The EMBO Journal* **33**: 2507-2520.

1312 Sedlazeck FJ, Lee H, Darby CA, Schatz MC. 2018. Piercing the dark matter: bioinformatics of long-
1313 range sequencing and mapping. *Nature Reviews Genetics* **19**: 329-346.

1314 Seo J-S, Rhie A, Kim J, Lee S, Sohn M-H, Kim C-U, Hastie A, Cao H, Yun J-Y, Kim J et al. 2016.
1315 De novo assembly and phasing of a Korean human genome. *Nature* **538**: 243.

1316 Shedlock AM, Takahashi K, Okada N. 2004. SINEs of speciation: tracking lineages with retroposons.
1317 *Trends Ecol Evol* **19**: 545-553.

1318 Shiina T, Hosomichi K, Inoko H, Kulski JK. 2009. The HLA genomic loci map: expression,
1319 interaction, diversity and disease. *Journal Of Human Genetics* **54**: 15.

1320 Slotkin RK. 2018. The case for not masking away repetitive DNA. *Mobile DNA* **9**: 15.

1321 Smeds L, Kawakami T, Burri R, Bolivar P, Husby A, Qvarnström A, Uebbing S, Ellegren H. 2014.
1322 Genomic identification and characterization of the pseudoautosomal region in highly
1323 differentiated avian sex chromosomes. *Nature Communications* **5**: 5448.

1324 Smeds L, Warmuth V, Bolivar P, Uebbing S, Burri R, Suh A, Nater A, Bureš S, Garamszegi LZ,
1325 Hogner S et al. 2015. Evolutionary analysis of the female-specific avian W chromosome.
1326 *Nature Communications* **6**: 7330.

1327 Smith JJ, Timoshevskaya N, Timoshevskiy VA, Keinath MC, Hardy D, Voss SR. 2019. A
1328 chromosome-scale assembly of the axolotl genome. *Genome Research* **29**: 317-324.

1329 Su X-z, Wu Y, Sifri CD, Wellemes TE. 1996. Reduced Extension Temperatures Required for PCR
1330 Amplification of Extremely A+T-rich DNA. *Nucleic Acids Research* **24**: 1574-1575.

1331 Suh A, Smeds L, Ellegren H. 2018. Abundant recent activity of retrovirus-like retrotransposons
1332 within and among flycatcher species implies a rich source of structural variation in songbird
1333 genomes. *Molecular Ecology* **27**: 99-111.

1334 Sun H, Rowan BA, Flood PJ, Brandt R, Fuss J, Hancock AM, Michelmore RW, Huettel B,
1335 Schneeberger K. 2019. Linked-read sequencing of gametes allows efficient genome-wide
1336 analysis of meiotic recombination. *Nature Communications* **10**: 4310.

1337 Tanaka Y, Asano T, Kanemitsu Y, Goto T, Yoshida Y, Yasuba K, Misawa Y, Nakatani S, Kobata K.
1338 2019. Positional differences of intronic transposons in pAMT affect the pungency level in
1339 chili pepper through altered splicing efficiency. *The Plant Journal* **0**.

1340 Thomma BPHJ, Seidl MF, Shi-Kunne X, Cook DE, Bolton MD, van Kan JAL, Faino L. 2016. Mind
1341 the gap; seven reasons to close fragmented genome assemblies. *Fungal Genetics and Biology*
1342 **90**: 24-30.

1343 Tilak M-K, Botero-Castro F, Galtier N, Nabholz B. 2018. Illumina Library Preparation for
1344 Sequencing the GC-Rich Fraction of Heterogeneous Genomic DNA. *Genome Biology and*
1345 *Evolution* **10**: 616-622.

1346 Vertebrate Genome Project V. <https://vertebrategenomesproject.org>.

1347 Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo CA, Zeng Q, Wortman
1348 J, Young SK et al. 2014. Pilon: An Integrated Tool for Comprehensive Microbial Variant
1349 Detection and Genome Assembly Improvement. *PLOS ONE* **9**: e112963.

1350 Wallberg A, Bunikis I, Pettersson OV, Mosbech M-B, Childers AK, Evans JD, Mikheyev AS,
1351 Robertson HM, Robinson GE, Webster MT. 2019. A hybrid de novo genome assembly of the
1352 honeybee, *Apis mellifera*, with chromosome-length scaffolds. *BMC Genomics* **20**: 275.

1353 Warren RL, Yang C, Vandervalk BP, Behsaz B, Lagman A, Jones SJM, Birol I. 2015. LINKS:
1354 Scalable, alignment-free scaffolding of draft genomes with long reads. *GigaScience* **4**: 35.

1355 Warren WC, Hillier LW, Tomlinson C, Minx P, Kremitzki M, Graves T, Markovic C, Bouk N, Pruitt
1356 KD, Thibaud-Nissen F et al. 2017. A New Chicken Genome Assembly Provides Insight into
1357 Avian Genome Structure. *G3: Genes/Genomes/Genetics* **7**: 109-117.

1358 Waterhouse RM, Seppey M, Simão FA, Manni M, Ioannidis P, Klioutchnikov G, Kriventseva EV,
1359 Zdobnov EM. 2017. BUSCO Applications from Quality Assessments to Gene Prediction and
1360 Phylogenomics. *Molecular Biology and Evolution* **35**: 543-548.

1361 Watson M, Warr A. 2019. Errors in long-read assemblies can critically affect protein prediction.
1362 *Nature Biotechnology* **37**: 124-126.

1363 Weisenfeld NI, Kumar V, Shah P, Church DM, Jaffe DB. 2017. Direct determination of diploid
1364 genome sequences. *Genome Res* **27**: 757-767.

1365 Weissensteiner MH, Bunikis I, Catalan A, Francoijs K-J, Knief U, Heim W, Peona V, Pophaly S,
1366 Sedlazeck F, Suh A et al. 2019. The population genomics of structural variation in a songbird
1367 genus. *bioRxiv* doi:10.1101/830356: 830356.

1368 Weissensteiner MH, Pang AWC, Bunikis I, Hoijer I, Vinnere-Petterson O, Suh A, Wolf JBW. 2017.
1369 Combination of short-read, long-read, and optical mapping assemblies reveals large-scale
1370 tandem repeat arrays with population genetic implications. *Genome Res* **27**: 697-708.

1371 Weissensteiner MH, Suh A. 2019. Repetitive DNA: The Dark Matter of Avian Genomics. In *Avian
1372 Genomics in Ecology and Evolution: From the Lab into the Wild*, doi:10.1007/978-3-030-
1373 16477-5_5 (ed. RHS Kraus), pp. 93-150. Springer International Publishing, Cham.

1374 Westbrook CJ, Karl JA, Wiseman RW, Mate S, Koroleva G, Garcia K, Sanchez-Lockhart M,
1375 O'Connor DH, Palacios G. 2015. No assembly required: Full-length MHC class I allele
1376 discovery by PacBio circular consensus sequencing. *Human Immunology* **76**: 891-896.

1377 Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante
1378 M, Panaud O et al. 2007. A unified classification system for eukaryotic transposable elements.
1379 *Nature Reviews Genetics* **8**: 973-982.

1380 Willard HF, Waye JS. 1987. Hierarchical order in chromosome-specific human alpha satellite DNA.
1381 *Trends in Genetics* **3**: 192-198.

1382 Wyman SK, Jansen RK, Boore JL. 2004. Automatic annotation of organellar genomes with DOGMA.
1383 *Bioinformatics* **20**: 3252-3255.

1384 Xu L, Auer G, Peona V, Suh A, Deng Y, Feng S, Zhang G, Blom MPK, Christidis L, Prost S et al.
1385 2019. Dynamic evolutionary history and gene content of sex chromosomes across diverse
1386 songbirds. *Nature Ecology & Evolution* **3**: 834-844.

1387 Yazdi HP, Ellegren H. 2018. A Genetic Map of Ostrich Z Chromosome and the Role of Inversions
1388 in Avian Sex Chromosome Evolution. *Genome Biology and Evolution* **10**: 2049-2060.

1389 Yeo S, Coombe L, Warren RL, Chu J, Birol I. 2017. ARCS: scaffolding genome drafts with linked
1390 reads. *Bioinformatics* **34**: 725-731.

1391 Yoshimura J, Ichikawa K, Shoura MJ, Artiles KL, Gabdank I, Wahba L, Smith CL, Edgley ML,
1392 Rougvie AE, Fire AZ et al. 2019. Recompleting the *Caenorhabditis elegans* genome. *Genome
1393 Research* **29**: 1009-1022.

1394 Zhang G Li C Li Q Li B Larkin DM Lee C Storz JF Antunes A Greenwold MJ Meredith RW et al.
1395 2014. Comparative genomics reveals insights into avian genome evolution and adaptation.
1396 *Science* **346**: 1311-1320.

1397 Zhang Y, Cheng TC, Huang G, Lu Q, Surleac MD, Mandell JD, Pontarotti P, Petrescu AJ, Xu A,
1398 Xiong Y et al. 2019. Transposon molecular domestication and the evolution of the RAG
1399 recombinase. *Nature* **569**: 79-84.

1400 Zheng GXY, Lau BT, Schnall-Levin M, Jarosz M, Bell JM, Hindson CM, Kyriazopoulou-
1401 Panagiotopoulou S, Masquelier DA, Merrill L, Terry JM et al. 2016. Haplotyping germline
1402 and cancer genomes with high-throughput linked-read sequencing. *Nature Biotechnology* **34**:
1403 303.

1404 Zhou Q, Zhang J, Bachtrog D, An N, Huang Q, Jarvis ED, Gilbert MTP, Zhang G. 2014. Complex
1405 evolutionary trajectories of sex chromosomes across bird taxa. *Science* **346**: 1246338.

1406