

1 **Title**

2 Loss of function variants in *PCYT1A* causing spondylometaphyseal dysplasia with cone/rod
3 dystrophy have broad consequences on lipid metabolism, chondrocyte differentiation, and lipid
4 droplet formation.

5 **Authors**

6 Julie Jurgens^{1, 2}, Suming Chen³, Nara Sobreira¹, Sarah Robbins^{1, 2}, Arianna Franca Anzmann^{1, 2},
7 Raha Dastgheyb³, Saja S. Khuder³, Julie Hoover-Fong⁴, Courtney Woods^{1, 2}, Felicity Collins⁵,
8 John Christodoulou^{5, 6}, Guilherme Lopes Yamamoto⁷, Débora Romeo Bertola^{7, 8}, Wagner A. R.
9 Baratela⁷, Sophie D. Curie¹, Norman Haughey^{3, 9}, Rosemary Cornell¹⁰, David Valle^{1, 4, *}

10 **Affiliations**

11 ¹McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of
12 Medicine, Baltimore, MD 21205, USA

13 ²Predoctoral Training Program in Human Genetics, Johns Hopkins University School of Medicine,
14 Baltimore, MD 21205, USA

15 ³Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287,
16 USA

17 ⁴Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205,
18 USA

19 ⁵Western Sydney Genetics Program, Children's Hospital at Westmead, Westmead and Disciplines
20 of Child and Adolescent Health and Genetic Medicine, Sydney Medical School, University of
21 Sydney, New South Wales, Australia

22 ⁶Brain and Mitochondrial Research Group, Murdoch Children's Research Institute, and
23 Department of Paediatrics, Melbourne Medical School, University of Melbourne, Melbourne,
24 Australia

25 ⁷ Unidade de Genética Clínica, Instituto da Criança do Hospital das Clínicas da Faculdade de
26 Medicina da Universidade de São Paulo, São Paulo 05403-000, Brazil

27 ⁸Instituto de Biociências da Universidade de São Paulo, São Paulo 05508-090, Brazil

28 ⁹Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD
29 21287, USA

30 ¹⁰Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, B.C.
31 V5A 1S6, Canada

32 *Corresponding author

33 Correspondence to:

34 David Valle, MD
35 Johns Hopkins University School of Medicine

36 Department of Genetic Medicine
37 733 N. Broadway, Suite 519

38 Baltimore, MD 21205, USA

39 E-mail: dvalle@jhmi.edu

40

41

42

43

44

45 **Abstract**

46 Spondylometaphyseal dysplasia with cone-rod dystrophy (SMD-CRD) is a rare autosomal
47 recessive disorder of the skeleton and the retina caused by biallelic variants in *PCYT1A*, encoding
48 the nuclear enzyme CTP:phosphocholine cytidylyltransferase α (CCT α), which catalyzes the rate-
49 limiting step in phosphatidylcholine (PC) biosynthesis by the Kennedy pathway. As a first step in
50 understanding the consequences of *PCYT1A* variants on SMD-CRD pathophysiology, we
51 generated and characterized a series of cellular models for SMD-CRD, including CRISPR-edited
52 *PCYT1A*-null HEK293 and ATDC5 cell lines. Immunoblot and PC synthesis assays of cultured
53 skin fibroblasts from SMD-CRD patient cell lines revealed patient genotype-specific reductions in
54 CCT α steady state levels (10-75% of wild-type) and choline incorporation into PC (22-54% of
55 wild-type). While *PCYT1A*-null HEK293 cells exhibited fewer and larger lipid droplets in response
56 to oleate loading than their wild-type counterparts, SMD-CRD patient fibroblasts
57 (p.Ser323Argfs*38 homozygotes) failed to show significant differences in lipid droplet numbers
58 or sizes as compared to controls. Lipid droplet phenotypes in *PCYT1A*-null HEK293 cells were
59 rescued by transfection with wild-type, p.Ala99Val, and p.Tyr240His human *PCYT1A* cDNAs.
60 While both edited cellular models had normal morphology and proliferation rates compared to
61 unedited controls, *Pcyt1a*-null ATDC5 cells demonstrated accelerated rates of chondrocyte
62 differentiation as compared to their wild-type counterparts. Lipidomics revealed changes in 75-
63 200 lipid levels in *PCYT1A*-null HEK293 and ATDC5 cells or in SMD-CRD patient fibroblasts as
64 compared to wild-type controls. The specific lipids altered and extent of change varied by cell
65 type. Importantly, both *PCYT1A*-null HEK293 cells and SMD-CRD patient fibroblast cell lines
66 had decreased phosphatidylcholine:phosphatidylethanolamine (PC:PE) ratios and decreased levels
67 of several lysophosphatidylcholine (LPC) species as compared to wild-type controls, suggesting

68 compensatory PC production through increased LPC remodeling by LPCAT or decreased
69 conversion of PC to LPC by phospholipase A₂. Our results show that all tested *PCYT1A* alleles
70 associated with SMD-CRD are hypomorphic and suggest involvement of *PCYT1A* in chondrocyte
71 differentiation, PC:PE ratio maintenance and LPC metabolism, and lipid droplet formation.

72 **Author Summary**

73 Rare genetic disorders can reveal the function of genes on an organismal scale. When
74 normal gene activity is lost, patients can experience a range of symptoms, often dependent on the
75 residual activity of the encoded protein. Rare variants in the gene *PCYT1A* can cause multiple
76 inherited disorders, including a disorder of the skeleton and the retina characterized by short
77 stature, bone abnormalities, and blindness. *PCYT1A* is required for normal cellular function,
78 particularly lipid metabolism, but the role of this gene in human disease is still poorly understood.

79 To determine consequences of genetic variants in patients with this disorder, we made and studied
80 a series of cellular models, including cells cultured from patients and CRISPR-edited cell lines
81 lacking normal copies of *PCYT1A*. Here we show that patient variants lead to reduced *PCYT1A*
82 expression and/or function and have adverse consequences on cell biology and lipid metabolism
83 that are often cell-type specific. This work advances understanding of the role of lipid metabolism
84 in skeletal and eye development.

85 **Introduction**

86 Spondylometaphyseal dysplasia with cone-rod dystrophy (SMD-CRD, MIM 608940) is a
87 rare, autosomal recessive disorder of the skeleton and the retina. The clinical phenotype includes
88 progressive, early-onset photoreceptor degeneration—particularly in the macula—as well as short
89 stature, bowing of the long bones, metaphyseal flaring, rhizomelic shortening, platyspondyly, and
90 scoliosis. Using whole exome and Sanger sequencing, Hoover-Fong et al. (2014) and Yamamoto

91 et al. (2014) identified homozygous or compound heterozygous variants in *PCYT1A* as the cause
92 of SMD-CRD [1,2]. These variants ranged from missense (RefSeq NM_005017.2: c.296C>T,
93 p.Ala99Val; c.295G>A, p.Ala99Thr; c.385G>A, p.Glu129Lys; c.448C>G, p.Pro150Ala;
94 c.571T>C, p.Phe191Leu; and c.669G>C, p.Arg223Ser) to nonsense variants (c.847C>T,
95 p.Arg283*) or frameshifting indels (c.990delC, p.Ser331Profs*?; c.968dupG, p.Ser323Argfs*38;
96 c.996delC, p.Ser333Leufs*?). Since the publication of these initial reports, our group has identified
97 two additional missense alleles in *PCYT1A* in patients with SMD-CRD (c.341G>C, p.Ser114Thr
98 and c.718T>C, p.Tyr240His).

99 Interestingly, compound heterozygous *PCYT1A* variants were also detected in two
100 unrelated young adult probands with congenital lipodystrophy and fatty liver disease [3]. These
101 patients had no detectable retinal or skeletal abnormalities, suggesting a distinct
102 pathophysiological mechanism. Both patients shared an in-frame deletion variant
103 (c.838_840delCTC, p.Glu280del) in trans to a second variant in the other allele (c.424G>A,
104 p.Val142Met or c.996delC, p.Ser333Leufs*?, respectively). These observations suggest that the
105 shared allele may account for the distinctive phenotype in these patients. Testa et al. (2017)
106 reported a third class of patients with biallelic *PCYT1A* variants and retinal degeneration, without
107 accompanying skeletal dysplasia or lipodystrophy [4]. The two probands shared a common
108 *PCYT1A* missense variant (c.277G>A, p.Ala93Thr) in trans to a splice site or nonsense variant in
109 the second allele (c.897+1G>A or c.847C>T, p.Arg283*, respectively).

110 *PCYT1A* encodes CTP:phosphocholine cytidylyltransferase α (CCT α), which catalyzes the
111 rate-limiting step in *de novo* synthesis of phosphatidylcholine (PC) by the Kennedy pathway [5].
112 *PCYT1A* is expressed ubiquitously in humans and mice, and PC is the predominant membrane
113 phospholipid in mammalian cells [6–10]. Complete loss of *Pcyt1a* expression has devastating

114 consequences: homozygosity for a *Pcyt1a* knockout allele results in embryonic lethality by day
115 E3.5 and failed implantation [9], and MT-58 CHO cells with a temperature-sensitive *Pcyt1a* point
116 mutation resulting in undetectable CCT protein at 40° C undergo apoptosis at this temperature
117 [11,12]. Based on this evidence, some degree of PC production by the Kennedy pathway appears
118 to be essential for life, at least in these model systems. Fly models with eye-specific RNAi
119 knockdown or ocular mosaic homozygous knockout of *CCT1* (the fly ortholog of *PCYT1A*)
120 showed reduced response to light on ERG, decreased rhodopsin expression, and failed rhabdomere
121 formation [13]. These phenotypes were rescued with wild-type and nuclear localization signal
122 mutant *CCT1*. In at least some cells, however, *PCYT1A* is expressed at levels exceeding that
123 required for basal function. For example, MT-58 CHO cells at the permissive temperature have
124 normal growth rates with only ~5% CCT expression compared to control CHO cells [12].

125 Although most PC is produced by the CCT α -dependent Kennedy pathway in mammalian
126 cells, there are alternative pathways for PC production [6,14] (Fig 1). *PCYT1B*, a paralog of
127 *PCYT1A*, encodes the enzyme CCT β , which catalyzes the same Kennedy pathway reaction as
128 CCT α but has expression limited predominantly to the brain and reproductive tissues of mice and
129 humans [7,10,14]. Independent of the Kennedy pathway, PC can be formed by sequential
130 methylation of another phospholipid, phosphatidylethanolamine (PE), by the PEMT pathway,
131 which functions primarily in liver and adipocytes [5,15]. Finally, in a series of reactions known as
132 the Lands cycle, PC can be converted into lysophosphatidylcholine (LPC) through fatty acid
133 hydrolysis catalyzed by phospholipase A₂ (PLA₂), and LPC can be re-acylated to form PC by
134 lysophosphatidylcholine acyltransferases (LPCATs) [16,17]. Interestingly, rd11 mice with *Lpcat1*
135 deletions have a retinal degeneration phenotype, bolstering support for involvement of this arm of
136 the phospholipid metabolism pathway in retinal degeneration [18]. Perturbations in other Kennedy

137 pathway genes have been linked to phenotypes independent of the skeleton or retina, suggesting a
138 versatile role for lipid metabolism [19–21].

139

140 **Fig 1. Kennedy pathway and related pathways for PC production.** Choline (Cho) is taken in
141 exogenously from the diet and transported across the plasma membrane into the cytosol, where it
142 becomes phosphorylated by choline kinase to produce phosphocholine (P-Cho). Phosphocholine
143 is converted into CDP-choline (CDP-Cho) in a reaction catalyzed by CTP:phosphocholine
144 cytidylyltransferase (CCT), which is combined with diacylglycerol (DAG) to form
145 phosphatidylcholine (PC). Phospholipase-A₂ (PLA₂) converts PC into lyso-phosphatidylcholine
146 (LPC), which can be converted back into PC in a reaction catalyzed by lysophosphatidylcholine
147 acyltransferase (LPCAT). PC can also be derived from sequential methylation of
148 phosphatidylethanolamine (PE) by phosphatidylethanolamine *N*-methyltransferase. The red
149 rectangle indicates the location of the block in PC synthesis in SMD-CRD.
150 Phosphatidylethanolamine can also be interconverted to lysophosphatidylethanolamine by
151 phospholipase-A₂ (PLA₂) and LPE acyltransferase (LPEAT) enzymes.

152

153 CCT α functions as a homodimer comprised of 367-residue monomers with several
154 functional domains (Fig 1) [6]. The catalytic domain is responsible for catalyzing the conversion
155 of phosphocholine and CTP to CDP-choline and diphosphate. In addition, there is an N-terminal
156 nuclear localization signal; a membrane-binding amphipathic helical domain (M domain); and a
157 C-terminal phosphorylation domain, which when phosphorylated reduces membrane association
158 *in vitro* and in cultured cells [22]. Membrane binding of domain M in response to altered
159 membrane lipid composition elicits catalytic activation of the enzyme by displacing an auto-

160 inhibitory segment of the M domain from the base of the active site [6]. Immunostaining
161 experiments have shown that CCT α in the nucleoplasm translocates to the inner nuclear membrane
162 in response to demand for lipid synthesis or remodeling, or in response to requirements for lipid
163 droplet expansion in yeast, fly, and in multiple types of mammalian cells, including adult mouse
164 photoreceptors, hypertrophic zone chondrocytes from developing mouse growth plates,
165 hepatocytes, and adipocytes [13,23,24]. Most SMD-CRD variants are missense mutations in the
166 catalytic domain of the enzyme (Fig 2), although two variants are in the M domain (p.Tyr240His
167 and p.Arg283*) and three frameshifting indels localize to the C-terminal phosphorylation domain
168 (p.Ser331Profs*?, p.Ser323Argfs*38, and p.Ser333Leufs*?). The catalytic domain mutant
169 enzymes have defects in folding stability based on thermal denaturation of purified enzymes, and
170 several have impaired catalytic function *in vitro*. For example, p.Ala99Val, p.Ala99Thr,
171 p.Glu129Lys, and p.Arg223Ser have higher K_m values for both substrates, CTP and
172 phosphocholine, and lower V_{max} values, suggesting that in cells expressing these enzymes the rate
173 of CDP-choline production would be slower [25].

174

175 **Fig 2. Diagram of all known SMD-CRD alleles to-date.** Both previously described and novel
176 SMD-CRD patient variants are mapped to their corresponding CCT α protein domains. Note that
177 most variants are missense and fall within the catalytic domain. NLS-nuclear localization signal;
178 M-membrane-binding domain; P-phosphorylation domain.

179

180 An additional aspect of CCT α cell biology is its relationship with cellular organelles called
181 lipid droplets (LDs). LDs form in response to loading of cells with fatty acids (e.g. oleate) that are
182 converted to triglycerides for storage, and to prevent lipotoxicity [26]. Phospholipids such as PC

183 are required for the formation of LD membranes, which encapsulate neutral lipids and prevent
184 their coalescence [27]. Neutral lipids such as fatty acids and diacylglycerol activate CCT α and
185 stimulate PC production; for instance, oleate facilitates the dephosphorylation and membrane
186 translocation of CCT α , leading to its activation [23,24,28–31]. Accordingly, CCT α -deficient
187 yeast, *Drosophila*, mouse, rat, and human cells accumulate fewer and larger lipid droplets as
188 compared to their wild-type counterparts in response to oleate loading [13,24,27,32,33].

189 Here we describe the generation and characterization of three distinct cellular model
190 systems—cultured human dermal fibroblasts, HEK293 cells, and mouse pre-chondrocyte ATDC5
191 cells—to interrogate diverse functional consequences of *PCYT1A* loss of function. Using cultured
192 skin fibroblasts obtained from SMD-CRD patients, we sought to understand the consequences of
193 SMD-CRD variants on cellular phenotypes in an endogenous context. Next, we generated
194 *PCYT1A*-null HEK293 cell lines to assess the impact of complete loss of CCT α on previously
195 described CCT functions such as lipid droplet formation. Finally, we created *Pcyt1a*-null ATDC5
196 cell lines, which are putatively more relevant to SMD-CRD pathophysiology, to measure the
197 effects of loss of CCT α on chondrocyte proliferation and differentiation.

198 **Results**

199 **Measurement of CCT α steady state levels and PC synthesis rates**

200 Immunoblot analysis of CCT α steady state levels in cultured fibroblasts of five SMD-CRD
201 probands and one affected sibling revealed reduced CCT α steady state levels as compared to wild-
202 type controls, with the level of reduction varying according to patient genotype (Fig 3A).
203 Fibroblasts homozygous for the p.Ala99Val variant had the mildest reductions in CCT α steady
204 state levels (~75% wild-type levels), followed by p.Glu129Lys homozygotes (~30% wild-type
205 levels). Fibroblasts homozygous for a 1-bp frameshifting insertion (p.Ser323Argfs*38) had only

206 ~10% of wild-type CCT α levels, and similar levels were observed in cells compound heterozygous
207 for the p.Ser323Argfs*38/p.Ser114Thr variants.

208

209 **Fig 3. Western blot and PC synthesis assays of SMD-CRD patient fibroblasts.** A)
210 Representative immunoblot showing reduced protein expression of CCT α relative to loading
211 control β -actin in cultured skin fibroblasts of SMD-CRD patients as compared to wild-type
212 controls, with the level of reduction varying according to patient genotype. B) To assess PC
213 synthesis, we measured continuous incorporation of [3 H]-choline into PC in intact fibroblasts over
214 2 hours. Error bars represent standard deviation. n=3 biological replicates. Tukey's Honest
215 Significance Test. *p<0.05.

216

217 To assess PC synthesis, we measured continuous incorporation of [3 H]-choline into PC in
218 intact fibroblasts over 2 hours. Consistent with the results of our western blotting experiments,
219 p.Ala99Val homozygotes had the mildest impairments in PC synthesis (54% of wild-type),
220 whereas homozygotes for the p.Ser323Argfs*38 or p.Glu129Lys alleles had only 22% of wild-
221 type incorporation levels, and compound heterozygotes for the p.Ser323Argfs*38/p.Ser114Thr
222 alleles had 33% of wild-type incorporation.

223 CCT α membrane translocation in putative cell models

224 In order to assess the utility of several cell models for studying CCT α variants, we first
225 analyzed CCT α localization in response to oleate treatment. Previous studies have shown that
226 oleate stimulation can induce CCT α translocation to the inner nuclear membrane, colocalizing with
227 lamin A/C in CHO cells and in HEK293 cells, although results are variable depending on the report
228 and the cell line tested [23,24,29]. Under our experimental conditions, oleate failed to stimulate

229 translocation of CCT α to nuclear membranes in wild-type fibroblasts, but did induce nuclear
230 membrane translocation in wild-type HEK293 cells (S1 Fig). These results are consistent with the
231 observations of Aitchison et al., who demonstrated oleate-dependent translocation of CCT α to the
232 nuclear membrane in HEK293 cells but not in CHO cells [24]. Based on this finding, we performed
233 additional cellular modeling in HEK293 cells to examine consequences of *PCYT1A* variants on
234 cellular phenotypes.

235 **Lipid droplet analyses**

236 In multiple species, cellular deficiency of CCT α orthologs results in formation of fewer
237 and larger lipid droplets than in control cells in response to oleate exposure [24,27,32,33]. We
238 hypothesized that SMD-CRD patient fibroblast cells would have a similar phenotype in response
239 to oleate treatment. However, we found the sizes and numbers of lipid droplets in both wild-type
240 and SMD-CRD patient fibroblast cell lines were highly heterogeneous, and SMD-CRD patient
241 fibroblasts (p.Ser323Argfs*38 homozygotes) failed to show significant differences in lipid droplet
242 numbers or sizes as compared to control cells (Fig 4A and 4C). To assess the impact of total
243 *PCYT1A* deficiency we generated *PCYT1A*-null HEK293 cells (S2 Fig). Interestingly, these cells
244 generated fewer and larger lipid droplets than their wild-type counterparts in response to oleate
245 loading (Fig 4B and 4D). Transfection with wild-type, p.Ala99Val, and p.Tyr240His *PCYT1A*
246 cDNAs rescued lipid droplet phenotypes in *PCYT1A*-null cells (Fig 4E). This result suggests that
247 either alleles with partial CCT α activity are sufficient to support normal lipid droplet morphology
248 in response to oleate loading in HEK293 cells, or that overexpression of these hypomorphic alleles
249 is sufficient for phenotypic rescue.

250

251 **Fig 4. Lipid droplet phenotype and rescue experiments.** Lipid droplet (LD) formation was
252 induced by oleic acid loading (1 mM, 24 hr) and visualized with BODIPY staining. LD size and
253 number were quantified using “analyze particle” command in ImageJ (v1.47). Note heterogeneity
254 in LDs. A and C) Neither LD size ($p=0.43$) nor number ($p=0.87$) differed between control
255 fibroblasts and SMD-CRD patient fibroblasts. B and D) *PCYT1A*-null HEK293 cells have fewer
256 and larger LDs than control HEK293 cells. E) LD sizes and numbers are rescued by transfection
257 of *PCYT1A*-null HEK293T cells with *PCYT1A* WT, p.Ala99Val or p.Tyr240His cDNAs but not
258 corresponding empty vector controls. $n=200$ HEK293 *PCYT1A* null cells from 4 experimental
259 trials. Error bars represent SD. We used Welch Two Sample t-test for panels C and D, and Tukey’s
260 Honest Significant Difference test for panel E. Data in panel E is represented as box and whisker
261 plot for which the box represents the range of the first to third quartiles, line represents the median,
262 and whiskers extend to minimum and maximum data points. * $p<0.05$.

263

264 **Proliferation studies in HEK293 cells**

265 Given the high concentration of PC in plasma membranes of cultured cells, we
266 hypothesized that CCT α deficiency would limit their proliferation. Interestingly, we found that
267 *PCYT1A*-null HEK293 cells proliferated at normal rates as compared to wild-type cells cultured
268 in standard medium supplemented with 10% FBS (Fig 5A). To determine if this normal growth
269 rate was dependent on uptake of exogenous lipid from the medium, we also tested cells cultured
270 in medium supplemented with 10% delipidated serum. Both wild-type and *PCYT1A*-null HEK293
271 cells grew more slowly in medium with delipidated serum as compared to normal serum, but
272 surprisingly the *PCYT1A*-null HEK293 cells grew at a faster rate than their wild-type counterparts

273 in medium supplemented with delipidated serum and reached numbers comparable to cells grown
274 in standard serum by day 6 (Fig 5A).

275

276 **Fig 5. *PCYT1A*-null HEK293 and ATDC5 cells have normal proliferation rates.** A) Wild-type
277 and *PCYT1A*-null HEK293 cells were grown in either normal serum or delipidated serum up to
278 144 hours and counted every 24 hours. Error bars represent SD. B) Undifferentiated wild-type or
279 *Pcyt1a*-null ATDC5 cells were grown for 5 days in normal serum and counted every 24 hours
280 using absorbance-based cell counting. Error bars represent SD of three replicates.

281

282 **Effects of *Pcyt1a* knockout on chondrocyte proliferation and differentiation**

283 To better understand the chondrocyte defects in SMD-CRD, we evaluated the utility of
284 ATDC5 pre-chondrocytes as a model system. We first assessed steady-state CCT α levels at
285 baseline and over the course of 21 days of chondrocyte differentiation by immunoblot. CCT α
286 protein was expressed robustly in ATDC5 cells prior to chondrocyte differentiation and maintained
287 stable expression over the 21-day differentiation time course (Fig 6A). Next, we generated *Pcyt1a*-
288 null ATDC5 cell lines using genome editing (S2 Fig) and assessed the consequences of *Pcyt1a*
289 loss-of-function on chondrocyte proliferation and differentiation. As in HEK293 cells, we found
290 *Pcyt1a*-null ATDC5 cells proliferated at normal rates as compared to their wild-type counterparts
291 (Fig 5B). Surprisingly, *Pcyt1a*-null ATDC5 cells differentiated into chondrocytes more quickly
292 than their wild-type counterparts (Fig 6B).

293

294 **Fig 6. Involvement of *Pcyt1a* in ATDC5 chondrocyte differentiation.** A) Western blot analysis
295 of ATDC5 cell lysates shows that CCT α steady-state levels remain stable over the course of 21

296 days of chondrocyte differentiation. B) Rates of chondrocyte differentiation in control and *Pcyt1a*-
297 null ATDC5 cells were measured by absorbance of Alcian blue in SDS-lysed cell extracts. n=3
298 biological replicates for each time point.

299

300 **Lipidomic studies**

301 To assess the broader consequences of CCT α deficiency on cellular lipid metabolism, we
302 performed lipidomics on ~1000 distinct lipids extracted from SMD-CRD patient-derived skin
303 fibroblasts (p.Ser323Argfs*38 homozygotes) and in *PCYT1A*-null HEK293 or ATDC5 cells as
304 compared to their wild-type counterparts. The SMD-CRD genotype we chose had the strongest
305 impact on CCT α expression and PC synthesis, so we expected a stronger effect on lipid
306 composition. We grouped lipid species distinguished by acyl/alkyl chain content into the following
307 classes for analysis: cholesterol ester, ceramide, desmosteryl ester, diacylglycerol,
308 galactosylceramide, lactosylceramide, lysophosphatidylcholine, lysophosphatidylethanolamine,
309 lysophosphatidylglycerol, lysophosphatidylserine, monoacyldiacylglyceride, phosphatidic acid,
310 phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylserine,
311 sphingomyelin, or triacylglyceride. Some lipid classes were not represented in all cell lines tested.
312 In total, the levels of ~75-200 lipids were significantly changed in the *PCYT1A*-null or SMD-CRD
313 cells, and the specific lipids altered were largely variable depending on the cell type tested (S2
314 Table, S3 Table, S4 Table). However, there were two significant changes in the lipidome shared
315 by both SMD-CRD cells and *PCYT1A*-null cells: reduced LPC content and reduced
316 phosphatidylcholine: phosphatidylethanolamine (PC:PE) ratios (Fig 7).

317 The levels of several LPC species (Fig 7A) were significantly decreased in *PCYT1A*-null
318 HEK293 cells (LPCs 16:1, 18:1, 18:2, 20:0, 20:3, 20:4, 20:5, 22:5, and 22:6) and in SMD-CRD

319 patient fibroblasts (LPCs 16:0, 16:1, 16:3, 18:1, 18:2, 20:1, 20:4, 22:4, and 22:5). Notably, levels
320 of five identical LPCs (LPCs 16:1, 18:1, 18:2, 20:4, and 22:5) were reduced in both *PCYT1A*-null
321 HEK293 cells and in SMD-CRD patient fibroblast cell lines as compared to controls (Fig 7A).
322 The reduction over all LPC classes attributed to loss of *PCYT1A* or the p.Ser323Argfs*38 mutation
323 was 3.3-fold for *PCYT1A*-null ATDC5 cells, 3.9-fold for *PCYT1A*-null HEK293 cells, and 1.7-
324 fold for SMD-CRD fibroblasts. We also observed significant decreases in the
325 lysophosphatidylethanolamines (1.5-fold in null ATDC5 cells) and increases in
326 lysophosphatidylserines (2-fold in null HEK293 cells) (S2 Table, S4 Table).

327

328 **Fig 7. Lipidomics reveal decreases in LPCs and in PC:PE ratio in SMD-CRD patient**
329 **fibroblasts and *PCYT1A*-null HEK293 cells.** A) Data represent mean values of relative
330 abundance of lysophosphatidylcholine (LPC) species of various acyl chain lengths and
331 compositions relative to internal standards in SMD-CRD patient fibroblasts and *PCYT1A*-null
332 HEK293 cells as compared to wild-type controls. Error bars represent SD of three replicates.
333 p<0.05 for all comparisons. B) Ratios of total phosphatidylcholine (PC) to
334 phosphatidylethanolamine (PE) in SMD-CRD patient fibroblasts, *PCYT1A*-null HEK293 cells,
335 and *Pcyt1a*-null ATDC5 cells as compared to wild-type controls. Error bars represent SD. *p<0.05.

336

337 PC:PE ratios were significantly reduced by 2-3 fold in *PCYT1A*-null HEK293 cells and in
338 SMD-CRD patient fibroblast cell lines as compared to their wild-type counterparts (Fig 7B). The
339 PC:PE ratio in *PCYT1A*-null ATDC5 cells was reduced, but the reduction was not statistically
340 significant. Because PC is a precursor to sphingomyelin (SM), we probed for relative and absolute
341 changes in the levels of SM and its metabolite, ceramide (Cer), which has been implicated in

342 apoptotic processes [34]. We found that sphingomyelin:ceramide (SM:Cer) ratios were not
343 significantly altered in any of the *PCYT1A*-null or SMD-CRD patient cell lines as compared to
344 their wild-type counterparts (S3 Fig). Other interesting lipidomic changes included a 1.4-fold
345 increase in diacylglycerol in SMD-CRD cells (S3 Table), in line with a reduced rate of PC
346 synthesis. The *PCYT1A*-null HEK293 lipidome showed significantly increased
347 galactosylceramide and lactosylceramide (1.3-fold) (S4 Table).

348 **Discussion**

349 ***PCYT1A* expression and PC synthesis rates do not correlate well with phenotypic severity**

350 Our results show that all SMD-CRD patient-derived dermal fibroblasts tested have reduced
351 steady state CCT α levels, ranging from 10 to 75% of control steady state levels, and reduced PC
352 synthesis, ranging from 22 to 54% of wild-type. Surprisingly, the extent of reduction in steady-
353 state CCT α amount or PC synthesis does not correlate with the phenotypic severity. Patients
354 homozygous for p.Ala99Val had a severe phenotype despite the mildest fibroblast biochemical
355 phenotype of all variants tested, both in their CCT α steady state levels (75% of wild-type) and PC
356 incorporation (54% of wild-type). Similar levels of reduction in PC synthesis were independently
357 observed in a recent study of *PCYT1A*-null Caco2 cells [33], which suggested that residual PC
358 production could be attributable to CCT β . The PC synthesis assays monitored radiolabeled choline
359 uptake into PC in a 2 hr pulse, but this value reflects the balance between incorporation and loss
360 due to PC degradation. Lipidomic analyses revealed that CCT α deficiency in HEK293 cells can
361 suppress PC degradation. Nonetheless, because the p.Ala99Val allele decreased PC incorporation
362 more severely than steady-state expression, we can conclude that this allele reduces the catalytic
363 activity of CCT α independently of its effects on protein levels. This result is supported by recent
364 kinetic studies of purified CCT α , which demonstrate impaired catalytic activity of p.Ala99Val and

365 other SMD-CRD alleles in the catalytic domain [25]. In the crystal structure of the orthologous rat
366 CCT α protein, this alanine inserts into a hydrophobic pocket that cannot easily accommodate a
367 bulkier residue such as valine and leads to lower thermal stability [25,35], so the consequences of
368 this allele are also consistent with our expectations based on the structure of the enzyme.

369 Other alleles reduced steady state levels of CCT α and PC incorporation much more
370 severely. For instance, fibroblasts homozygous for the p.Ser323Argfs*38 allele had only 10% of
371 the steady state CCT α and 22% of the PC incorporation levels of wild-type fibroblasts. We did
372 not expect this allele to result in complete loss of CCT α expression, since the generated termination
373 codon is C-terminal to the penultimate exon junction and therefore is predicted to escape nonsense-
374 mediated mRNA decay [36]. However, the reduced steady state level of CCT α with the reduction
375 in PC incorporation suggests that this allele translates into an unstable protein, likely due to its
376 foreign P-region amino acid sequence.

377 Fibroblasts harboring compound heterozygous p.Ser323Argfs*38/p.Ser114Thr alleles had
378 only 14% of wild-type steady state CCT α but 33% of wild-type PC incorporation. The protein
379 levels in this cell line were only slightly higher than those of p.Ser323Argfs*38 homozygotes,
380 indicating that the p.Ser114Thr allele has similarly adverse consequences on protein production
381 and/or stability, at least when in combination with the p.Ser323Argfs*38 allele. This is consistent
382 with findings from Cornell et al. (2019), showing that cDNA transfection of p.Ser114Thr into COS
383 cells generated no signal above background, unlike transfection with WT *PCYT1A* or other alleles,
384 perhaps due to misfolding and subsequent degradation [25]. Finally, fibroblasts homozygous for
385 p.Glu129Lys had ~30% of wild-type steady-state CCT α levels and similar levels of PC
386 incorporation (22% of wild-type). This glutamic acid residue is pivotal in hydrogen-bonding

387 interactions between two α -helices of the catalytic domain Rossman fold, and the p.Glu129Lys
388 mutation destabilizes that domain, lowering the T_m for unfolding by 6°C [25,35].

389 **CCT-associated changes in LD morphology may require complete ablation of its activity**

390 Contrary to our expectations based on CCT α gene silencing in *Drosophila*, mouse, rat, and
391 human cell lines [24,27,32,33], SMD-CRD patient fibroblasts (p.Ser323Argfs*38 homozygotes)
392 failed to show significant differences in lipid droplet numbers or sizes as compared to controls,
393 indicating that oleate loading does not induce an abnormal lipid droplet phenotype in cells with
394 this genotype. Of note, p.Ser323Argfs*38 homozygous fibroblasts had the most severe reductions
395 of all SMD-CRD patient cells tested in both steady-state levels of CCT α (~10% wild-type levels)
396 and in phosphatidylcholine incorporation (~22% wild-type levels), so the absence of a lipid droplet
397 phenotype in our experiments is surprising. This may be due to the lack of conservation of the
398 mechanism for regulating lipid droplet size and number in human fibroblasts as compared to the
399 models used in previous studies, including *Drosophila* S2 cells and larval fat bodies; mouse bone
400 marrow-derived mouse macrophages and 3T3-L1 cells (embryonic fibroblasts that differentiate
401 into adipocyte-like cells); rat IEC-18 cells (epithelial ileum); and human Caco2 cells (epithelial
402 colorectal adenocarcinoma) [24,27,32,33]. Alternatively, it is possible that complete ablation of
403 CCT α protein expression is required for lipid droplet phenotypes to manifest. The SMD-CRD
404 patient fibroblasts retained some residual CCT α expression and activity, which could be sufficient
405 for normal lipid droplet formation. Consistent with the above-mentioned studies in other cell types
406 and a requirement for total ablation of CCT expression, *PCYT1A*-null HEK293 cells generated
407 fewer and larger lipid droplets than did wild-type HEK293 cells in response to oleate loading.
408 Transfection with wild-type, p.Ala99Val, and p.Tyr240His *PCYT1A* cDNAs rescued lipid droplet
409 phenotypes in *PCYT1A*-null cells. This suggests that these variants in the catalytic or membrane-

410 binding domains of CCT α provide ample enzyme activity and PC production to generate lipid
411 droplets normally; this interpretation is further supported by our findings in SMD-CRD patient
412 fibroblasts, in which even small residual amounts of functional CCT α are sufficient to form normal
413 lipid droplets. However, we also recognize that cDNA expression was driven by a CMV promoter
414 in our transfection studies, which may simply normalize lipid droplet phenotypes by driving
415 *PCYT1A* overexpression. Analysis of the impact of the *PCYT1A* alleles associated with
416 lipodystrophy on the size and number of LDs in patient cells has not been done, but could help
417 unravel the basis of the differential disease manifestations linked to specific alleles.

418 ***PCYT1A*-null cells have grossly normal morphology and proliferation rates**

419 Given that homozygous *Pcyt1a*-null mice are embryonic lethal; CHO MT-58 cells undergo
420 apoptosis; and yeast cells reliant on M-domain or catalytic domain mutant *pct1* for PC synthesis
421 show reduced viability [9,11–13], we are intrigued that *PCYT1A*-null HEK293 and ATDC5 cells
422 are grossly morphologically normal and proliferate at rates comparable to their wild-type
423 counterparts. This is contrary to recent work demonstrating reduced proliferation of *PCYT1A*-null
424 Caco2 cells [33]. Our results are consistent with findings that *Pcyt1a*-null mouse peritoneal
425 macrophages grow normally under standard cell culture conditions due to compensatory
426 upregulation of a specific isoform of *Pcyt1b* [37]. Interestingly, these *Pcyt1a*-null mouse
427 macrophages have increased susceptibility to cell death upon loading with free cholesterol,
428 suggesting that additional stressors may be required to evoke cell death in CCT α -deficient cell
429 lines. Furthermore, we show that *PCYT1A*-null HEK293 cells proliferate more quickly than their
430 wild-type counterparts when cultured in delipidized serum. Our results suggest that growth rates
431 are normalized independently of exogenous lipid uptake from serum in these cells and that
432 *PCYT1A*-null HEK293 cells may have a growth advantage over their wild-type counterparts when

433 grown in conditions devoid of exogenous lipids, perhaps by upregulation of compensatory
434 pathways for PC production.

435 **Deficiency in *PCYT1A* expression and/or function reduces PC content and modifies PC**
436 **remodeling**

437 Using mass spectrometry, we investigated changes in lipid species that are directly
438 implicated in or apart from those directly implicated in the Kennedy pathway. We found a broad
439 array of lipids to be altered in *PCYT1A*-null HEK293 or ATDC5 cells or SMD-CRD patient
440 fibroblast cell lines as compared to controls. Altered lipids were often cell-type specific. Key
441 findings include lipid modifications that were replicated in two of the three cell lines tested. First,
442 total PC:PE ratios were significantly decreased in *PCYT1A*-null HEK293 and in SMD-CRD
443 patient fibroblast cell lines as compared to controls. CCT α deficiency manifested as reduced
444 PC:PE in several previous reports [3,13,38]. Decreased PC:PE ratios have previously been
445 associated with loss of membrane integrity, decreases in membrane potential, and membrane
446 packing defects due to increased proportions of conical lipids leading to increased membrane stress
447 [13,38]. Our data suggest that decreased PC:PE ratios leads to adverse consequences in SMD-
448 CRD patients, perhaps in combination with the other defects we describe here.

449 The only lipid whose overall cellular content was decreased in two cell types was LPC,
450 which was present in lower proportions in *PCYT1A*-null HEK293 and ATDC5 cell lines as
451 compared to corresponding wild-type controls. In *Pcyt1a*-null ATDC5 cells, we also observed
452 decreases in overall LPE content, suggesting potential upregulation of LPE acyltransferase
453 (LPEAT) or downregulation of PLA₂. In *PCYT1A*-null HEK293 cells, we observed decreased PC
454 content, suggesting that compensatory pathways for PC production may not be as robust in this
455 cell type. *PCYT1A*-null HEK293 cells also had increased content of LPS, galactosylceramide, and

456 lactosylceramide. The implications of increased levels of these lipids are unclear. Both
457 galactosylceramide and lactosylceramide are formed from ceramide, which can combine with PC
458 to form sphingomyelin in a reaction catalyzed by sphingomyelin synthase. It is possible that
459 decreased PC production by the Kennedy pathway depresses PC conversion to sphingomyelin in
460 an attempt to maintain cellular PC, which in turn shunts ceramide into galactosylceramide and
461 lactosylceramide production. In homozygous p.Ser323Argfs*38 fibroblasts, the proportions of
462 DAG and PE were increased as compared to wild-type fibroblasts. We expected increased
463 proportions of DAG, given that SMD-CRD cells have decreased production of CDP-choline,
464 which normally combines with DAG to form PC in the final step of the Kennedy pathway.
465 However, increased proportions of PE were not expected *a priori*. The increase in PE content could
466 result from shunting the DAG that is non-utilized for PC synthesis into the CDP-ethanolamine
467 pathway. We suggest that in SMD-CRD fibroblasts, upregulation of the PEMT pathway is not a
468 major means for compensatory PC production.

469 In addition, we found that several LPCs were significantly decreased in both *PCYT1A*-null
470 HEK293 and SMD-CRD patient fibroblast cell lines as compared to the corresponding control cell
471 lines. Decreased LPCs could be attributable either to increased conversion of LPC into PC by
472 LPCAT or to decreased conversion of PC into LPC by PLA₂ (Fig 1). The former mechanism is
473 supported by recent work by Lee and Ridgway (2018), who showed rescue in lipid droplet
474 phenotypes in *PCYT1A*-null Caco2 cells supplemented with LPC [33]. Previous studies in COS
475 cells and in CHO cells have shown that CCT α overexpression increases LPC levels by promoting
476 PLA₂-mediated PC catabolism [39,40]. It is possible that decreased activity by this pathway is also
477 responsible for decreases in LPC in our cell lines.

478 Interestingly, recent studies have also demonstrated increased *Lpcat4* mRNA expression
479 and activity toward LPC acyl chains 18:1, 18:2, 20:4, and 22:6 during the late stages of
480 chondrocyte differentiation in ATDC5 cells [41]. Notably, LPCs with three of these four acyl
481 chains (18:1, 18:2, and 20:4) were decreased in SMD-CRD patient fibroblast cell lines, and all
482 four were decreased in *PCYT1A*-null HEK293 cells as compared to wild-type controls. The mean
483 levels of these and other individual LPCs were also decreased in *Pcyt1a*-null as compared to wild-
484 type ATDC5 cells, but none of these reductions approached statistical significance. This may be
485 due in part to the small sample size of ATDC5 cells measured in our study. Further investigation
486 of LPCs in this cell type is indicated, but we posit that decreased LPCs may play a role in SMD-
487 CRD pathophysiology.

488 Increased LPCAT expression or activity is also suggested by our finding that *Pcyt1a*-null
489 ATDC5 cells have increased rates of chondrocyte differentiation as compared to wild-type
490 controls. *Lpcat4* knockdown has been associated with decreased rates of chondrocyte
491 differentiation in ATDC5 cells [41]. Compensatory upregulation of LPCAT proteins may
492 contribute to the increased rate of chondrocyte differentiation in *Pcyt1a*-null ATDC5 cells.
493 Changes in chondrocyte differentiation rates have also been observed in previous studies of other
494 skeletal dysplasias. For example, ATDC5 cells expressing FGFR3-G380R, the variant responsible
495 for achondroplasia, have reduced rates of chondrocyte differentiation, whereas ATDC5 cells
496 harboring inactivating mutations in the Kabuki syndrome gene *Kmt2d* show precocious
497 differentiation [42,43]. Our results suggest that SMD-CRD may be another phenotype for which
498 perturbed rates of chondrocyte differentiation contribute to skeletal dysplasia.

499 Overall, our results indicate that partial or complete loss of *PCYT1A* in ATDC5, HEK293,
500 or fibroblast cell lines leads to decreased PC synthesis by the Kennedy pathway and cell-type

501 specific secondary dysregulation of diverse lipid metabolic pathways and phenotypes. Our results
502 also suggest involvement of *Pcyt1a* in chondrocyte differentiation but not proliferation or
503 morphology. We recommend a careful assessment of all *PCYT1A* alleles implicated in SMD-
504 CRD, isolated retinopathy, and lipodystrophy in a range of cell types to dissect further tissue-
505 specific consequences of these alleles.

506 **Materials and Methods**

507 **Patient consent**

508 Our study was approved by the Johns Hopkins Medicine Institutional Review Board and
509 by the IRBs of other participating institutions. We obtained informed consent from all responsible
510 individuals who participated in this study.

511 **Cell culture**

512 Primary adherent fibroblast cells were derived from skin biopsies of SMD-CRD patients
513 or wild-type controls. HEK293 cells were a gift from Dr. Jeremy Nathans of Johns Hopkins
514 University. ATDC5 cells were a gift from Dr. Jill Fahrner of Johns Hopkins University (ECACC,
515 Cat#99072806). All cell lines were cultured at 37° C under 5% CO₂ and passaged using 1x trypsin-
516 EDTA (Gibco, Cat#15400-054). Fibroblast, HEK293, and CHO cell lines were cultured in 1x
517 MEM (Gibco, Cat#11430-030) supplemented with non-essential amino acids (Gibco, Cat#11140-
518 050), 1% L-glutamine (Gibco, Cat#25030-149), and 10% fetal bovine serum (FBS; Gemini
519 Biosciences, Cat#100-106). For experiments using delipidated serum, culture medium was the
520 same as above, except 10% delipidated FBS (Gemini Biosciences, Cat#900-123) was substituted
521 for regular FBS.

522 Prior to chondrocyte differentiation, ATDC5 cells were maintained in DMEM/F12 50/50
523 (Corning Cellgro, Cat#15-090-CV) with 1% L-glutamine (Gibco, Cat#25030-149), and 5% FBS

524 (Gemini Biosciences, Cat#100-106), and 1% penicillin-streptomycin (Gibco, Cat#15140-122).
525 Chondrocyte differentiation was induced by adding 1x insulin/transferrin/selenium (Corning
526 Cellgro, Cat#25-800-CR) to the culture medium for 21 days.

527 **DNA extraction and Sanger sequencing**

528 DNA was extracted from blood or cell lines using the Puregene Blood Core Kit B (Qiagen,
529 Cat#158467). *PCYT1A* exons were PCR-amplified from SMD-CRD patient genomic DNA with
530 Accuprime Taq polymerase (Invitrogen, Cat#12339-016) and standard thermal cycling conditions
531 using custom primer sequences (S1 Table).

532 ***PCYT1A* cDNA construct generation**

533 RNA was extracted from *PCYT1A*-wild-type human fibroblasts using the RNeasy Mini
534 Kit (Qiagen, Cat#74104), reverse-transcribed according to the manufacturer's protocol
535 (SuperScriptIII One-Step RT-PCR system with Platinum Taq DNA Polymerase; Invitrogen, Cat#
536 12574-018, primer sequences in S1 Table), and cloned into the pcDNA3 mammalian expression
537 vector (Invitrogen, Cat#V790-20) using primers designed to amplify full-length *PCYT1A* cDNA
538 (based on NCBI transcript NM_005017.2) and attach restriction enzyme sites for subsequent
539 cloning (forward primer: 5'-TACGTAAGCTTAGCGCCACCTCAGAAGATAA-3', reverse
540 primer: 5'-CTGAGCTCGAGTTGGGGTCACAATTGGAAT-3'). Single base-pair SMD-CRD
541 missense variants were then introduced using QuikChange II XL Site-Directed Mutagenesis Kit
542 (Agilent, Cat # 200521; primer sequences in S1 Table). All plasmids were sequence-verified prior
543 to use.

544 **Plasmid transfection**

545 Transfections were conducted using Lipofectamine 2000 as prescribed by the
546 manufacturer's protocol (Invitrogen, Cat#11668-019) with ratios of 1.6 μ g total cDNA-containing

547 plasmid: 4 μ L Lipofectamine for 12-well plate transfections, or ratios of 4.0 μ g total plasmid DNA:
548 10 μ L Lipofectamine for 6-well plate transfections. For lipid droplet rescue experiments, plasmid
549 cDNAs harboring wild-type or SMD-CRD patient variants in *PCYT1A* were transfected into
550 *PCYT1A*-null HEK293 cells and 24 hours post-transfection, cells were incubated with 1 mM oleate
551 medium and further processed for imaging, as described below.

552 **Protein extraction and immunoblotting**

553 At approximately 80% confluence, we washed monolayers with 1x PBS and scraped cells
554 into ice-cold 1xPBS supplemented with protease inhibitors (Sigma-Aldrich, Cat#P8340-5ML),
555 and centrifuged them for 5 minutes at 1,000 x g. We then resuspended the cells in RIPA buffer
556 (150 mM NaCl, 1.0% NP-40, 0.5% sodium deoxycholate, 0.1% SDS, 50 mM Tris, pH 8.0) with
557 protease inhibitors (Sigma-Aldrich, Cat#P8340-5ML), vortexed briefly, and lysed the cells at 4°
558 C with rotation and periodic low-speed vortexing. We pelleted cell debris by centrifugation at
559 12,000 x g for 15 minutes and isolated the supernatant for subsequent analysis. We measured total
560 protein concentrations of cell lysates with the BCA protein assay kit (Pierce, Cat#23225) and
561 diluted 40 μ g of each protein with XT sample buffer (Bio-Rad, Cat#1610791) and XT reducing
562 agent (Bio-Rad, Cat#1610792) as prescribed by company protocols. Samples were denatured by
563 boiling for 5 minutes, then cooled and run on 4-12% Bis-Tris Criterion XT precast gels (Bio-Rad,
564 Cat#3450123) with XT MOPS Running Buffer (Bio-Rad, Cat#1610788). Transfer was conducted
565 onto Immun-Blot PVDF membranes (Bio-Rad, Cat#162-0177) at 4° C with 100 V for 1 hour in 1
566 x Tris/Glycine Buffer (Bio-Rad, Cat#1610734) and 20% methanol (Fisher Scientific,
567 Cat#A41220). Blots were blocked for 1 hour at room temperature in 5% nonfat dried milk in TBST
568 (0.5% Tween-20, 137 mM NaCl, 200 mM Tris, pH 7.5), then incubated in the appropriate primary
569 antibodies (anti- β -actin antibody AC-15, ThermoFisher Scientific, Cat#AM4302, 1:10,000

570 dilution; monoclonal anti-CCT α , Abcam, Cat#ab109263, 1:1,000 dilution) diluted in 5% nonfat
571 dried milk in TBST at 4° C overnight. The epitope for this antibody is N-terminal to the SMD-
572 CRD mutations, and thus should react equally with both WT and mutant CCT α species.
573 Membranes were washed 3 x 10 minutes in TBST, incubated for 1 hour at room temperature in
574 the appropriate secondary antibodies diluted 1:10,000 in 5% nonfat dried milk in TBST (goat anti-
575 rabbit IgG-HRP, Santa Cruz Biotechnology, Cat#sc-2004; goat anti-mouse IgG-HRP, Santa Cruz
576 Biotechnology, Cat#sc-2005). Membranes were washed 3 x 10 minutes in TBST, then incubated
577 in ECL reagent (GE Healthcare Life Sciences, Cat#RPN2106) for 5 minutes and exposed to CL-
578 X Posure Film (Thermo Scientific, Cat#34091).

579 **3H-choline incorporation assay**

580 To assess the effect of *PCYT1A* variants on the rate of phosphatidylcholine synthesis by
581 the Kennedy pathway, we monitored continuous incorporation of [Methyl-³H]-choline chloride
582 (NEN Radiochemicals, Cat#NET109001MC) into phosphatidylcholine over time essentially as
583 described previously [44]. We cultured control or SMD-CRD patient fibroblasts in 1x MEM with
584 10% FBS, 1% L-glutamine, and non-essential amino acids in 60 mm dishes until ~80% confluence
585 and counted a subset of cells using the Beckman Coulter Particle Counter Z1. We aspirated the
586 normal growth medium from remaining cells and incubated in serum-free medium at 37° C with
587 5% CO₂ for 1 hour. We then added 5 μ Ci [³H]-methyl-choline per dish and returned to the
588 incubator or quenched immediately for our 0-minute time point. Two hours later, we quickly rinsed
589 cells in ice-cold 1xPBS and quenched radiolabel uptake by adding 1 mL of ice-cold methanol per
590 dish. We then placed cells on ice and scraped into prechilled glass tubes containing 1 mL
591 chloroform, and residual cells were scraped with an additional 1 mL of methanol. We then added
592 0.75 mL dI water per tube, mixed by vortexing at low speed, and added 1 mL additional chloroform

593 followed by 1 mL of dI water per tube. We then vortexed cells briefly to mix, followed by
594 centrifugation for 5 minutes at 1000 RPM to form a biphasic mixture. We transferred the lower
595 organic phase (containing lipids) to a scintillation vial, evaporated under nitrogen gas
596 (Organomation Associates, Inc., Berlin, MA, USA) and resuspended in 10 mL Insta-Gel Plus
597 scintillation fluid (Perkin Elmer, Cat#6013399), followed by counting with a Beckman LS6500
598 scintillation counter. Previous thin layer chromatography analyses have shown that >90% of
599 counts in the organic phase following up to 2 hours incubation are attributable to
600 phosphatidylcholine [42], so we used counts in this phase as a proxy for radiolabeled
601 phosphatidylcholine levels. We corrected all samples for background counts by subtracting counts
602 generated at the 0 hour incubation timepoint from the 2 hour incubation timepoint.

603 **Genome editing**

604 We performed genome editing as described previously, with slight modifications [46].
605 Guide RNAs against target genomic sequences from human or mouse *PCYT1A* (RefSeq
606 NC_000003.11 or NC_000082.5, respectively) were designed using the CRISPR MIT portal [47]
607 (S1 Table), modified into oligonucleotides for cloning purposes, and cloned according to the
608 submitter's laboratory protocol into the pSpCas9(BB)-2A-Puro (PX459) V2.0 plasmid (Addgene,
609 Cat#62988), a gift from Feng Zhang's laboratory [48]. By combining two guide RNAs targeting
610 the beginning and end of the genomic sequence of either human or mouse *PCYT1A*, we generated
611 ~31 kb genomic deletions in either human (HEK293 cells) or mouse (ATDC5 cells) *PCYT1A*,
612 effectively excising the majority of the coding sequence. Cells were seeded for transfection at ~2
613 x 10⁵ cells/well in six-well plates, grown to ~80% confluence, and transfected using Lipofectamine
614 2000 as prescribed by the manufacturer's protocol (Invitrogen, Cat#11668-019), with equal DNA
615 amounts of each guide RNA-encoding plasmid (2 µg each plasmid DNA: 10 µl Lipofectamine).

616 Next, we treated cells with puromycin-containing medium at either 2 μ g/mL (HEK293 cells) or 4
617 μ g/mL (ATDC5 cells) 24 hours post-transfection. Medium was replaced daily for 2-3 days, until
618 untransfected control cells died. Single cells were then isolated by serial dilution in puromycin-
619 free medium, expanded into isogenic clones, subjected to DNA extraction, and screened for both
620 wild-type and deletion-containing (S1 Table) genomic DNA by PCR amplification. Clones which
621 contained the *PCYT1A* deletion but not wild-type genomic DNA were genotyped using Sanger
622 sequencing and tested for the presence of CCT α protein by immunoblot.

623 **Cell proliferation assays**

624 We measured cell proliferation using the Cell Counting Kit-8 (Dojindo Molecular
625 Technologies, Cat#CK04-05), as prescribed by the manufacturer's protocol. We counted cells
626 using the Beckman Coulter Particle Counter Z1, plated at 1000 cells per well in 96-well plates,
627 and cultured for the respective amounts of time indicated in our growth curve. We measured
628 growth by incubating with CCK-8 solution for 3 hours, followed by absorbance reading at 450 nm
629 with the Biotek Synergy 2 plate reader and Gen5 software v2.01.14.

630 **Oleate incubation for lipid droplet and nuclear lamina translocation studies**

631 In order to induce lipid droplet formation, we prepared oleic acid: BSA complexes for
632 addition to cell culture medium. First, we sonicated 100 mM sodium oleate solution (Sigma-
633 Aldrich, Cat#O3880-1G) in distilled water on ice (Branson Sonifier 250 with a tapered microtip,
634 Fisher Scientific, Cat#22-309782) under a constant duty cycle and output level of 2 for
635 approximately 2 minutes, or until solution reached clarity. We then mixed this solution with a 200
636 mg/ml fatty acid-free BSA (Sigma-Aldrich, Cat#A8806-5G) in PBS and briefly sonicated again
637 until solution was clear. This generated a final stock of 100 mg/mL BSA with 10 mM oleate, which
638 we diluted 10-fold in serum-free medium (1x MEM supplemented with non-essential amino acids

639 and 1% L-glutamine) for a 1 mM working oleate solution. We incubated cells in 1 mM oleate
640 medium for various timepoints prior to processing for immunofluorescence or lipid droplet
641 staining.

642 **Cell staining and immunofluorescence**

643 We performed cell culture using the conditions described above in 12-well plates
644 containing sterile 18-mm glass cover slips (VWR, Cat#48380-046). We fixed cells for 10 minutes
645 in 4% paraformaldehyde (Sigma-Aldrich, Cat#P6148-500G), permeabilized for 10 minutes with
646 0.2% Triton X-100 (Sigma-Aldrich, Cat#T-8532) in 1x PBS, and blocked for 1 hour in 1% BSA
647 (Sigma-Aldrich, Cat#A-9647) in 1x PBS, all at room temperature. We then processed cells for
648 immunofluorescence or lipid droplet staining.

649 For immunofluorescence experiments, we incubated cells in primary antibody (anti-CCT α ,
650 Abcam, Cat#ab109263) diluted 1:200 in 1% BSA in PBS overnight at 4°C, followed by a one-
651 hour room-temperature incubation in Alexa Fluor 488 or 555 secondary antibodies (Thermo Fisher
652 Scientific, Cat#A-21428 or Cat#A-11008) diluted 1:300 in 1% BSA in PBS. For lipid droplet
653 staining, we incubated cells for one hour in BODIPY 493/503 dye (ThermoFisher Scientific,
654 Cat#D-3922, stored as 1 mg/mL stock in 100% ethanol at -20°C) diluted in 1:500 in 1x PBS.

655 We counterstained cell nuclei with DAPI (Life Technologies, Cat#D1306) diluted to 300
656 nM in 1x PBS for 10 minutes at room temperature, followed by mounting with ProLong Gold
657 Antifade Mountant (Thermo Fisher Scientific, Cat#P36930) on glass slides (Fisher Scientific,
658 Cat#12-550-15). We obtained images using the Zeiss LSM 510 Meta Confocal Microscope under
659 63x oil magnification.

660 **Lipid droplet quantification**

661 We quantified lipid droplet sizes and numbers as described previously [24]. Using ImageJ
662 software (v1.47), we converted images to 8-bit, adjusted image threshold, and used the “analyze
663 particle” command with a particle size distribution of 20 to infinity pixels² set to exclude on
664 edges.

665 **Alcian blue staining**

666 We performed Alcian blue staining as previously described [49], with slight modification.
667 Upon reaching ~80% confluency, we rinsed cells in 1xPBS, fixed with 4% paraformaldehyde for
668 10 minutes at room temperature, and then incubated in 1% Alcian Blue 8GX (Sigma-Aldrich,
669 Cat#A5268-10G) pH 1.0 at 4° C overnight. After briefly washing in 1xPBS, we lysed cells in 1%
670 SDS for one hour and measured an absorbance of 605 nm using the Biotek Synergy 2 plate reader
671 with Gen5 software v2.01.14.

672 **Lipid standards for mass spectrometry**

673 We obtained the following lipid standards from Avanti Polar Lipids (Alabaster, AL): 1,2-
674 dilauroyl-*sn*-glycero-3-phosphate (sodium salt) (PA 12:0/12:0, PA C12), 1,2-dilauroyl-*sn*-glycero-
675 3-phosphocholine (PC 12:0/12:0, PC C12), 1,2-dilauroyl-*sn*-glycero-3-phosphoethanolamine (PE
676 12:0/12:0, PE C12), 1,2-dilauroyl-*sn*-glycero-3-phospho-(1'-*rac*-glycerol) (sodium salt) (PG
677 12:0/12:0, PG C12), 1,2-dilauroyl-*sn*-glycero-3-phospho-L-serine (sodium salt) (PS 12:0/12:0, PS
678 C12), cholesteryl-d7 palmitate (Cholesterol-d7 ester 16:0, Cholesterol ester d7), N-lauroyl-D-
679 *erythro*-sphingosine (C12 Ceramide d18:1/12:0, Cer C12), N-heptadecanoyl-D-*erythro*-
680 sphingosine (C17 Ceramide d18:1/17:0, Cer C17), N-lauroyl-D-*erythro*-
681 sphingosylphosphorylcholine (12:0 SM d18:1/12:0 SM C12), 1,3-dihexadecanoyl glycerol (d5-
682 [1,3-16:0 DG (d5), DG d5], 1,3(d5)-dihexadecanoyl-2-octadecanoyl-glycerol [TG d5-
683 (16:0/18:0/16:0), TG d5], D-galactosyl- β -1,1' N-lauroyl-D-*erythro*-sphingosine [C12

684 Galactosyl(β) Ceramide (d18:1/12:0), GlcCer C12], D-lactosyl-β-1,1' N-dodecanoyl-D-*erythro*-
685 sphingosine [Lactosyl (β) C12 Ceramide, LacCer C12]. We purchased APCI positive calibration
686 solution from AB Sciex (Cat. #4460131; Concord, Ontario, Canada). Lipid stocks were prepared
687 in methanol, dichloromethane/methanol 1:1 (v/v), or dichloromethane and stored at -20°C.
688 Ultrapure water (resistivity > 18 MΩ cm) was used for mass spectrometry experiments.

689 **Cell culture and lipid extraction for mass spectrometry**

690 For mass spectrometry experiments, we measured various lipid classes in *PCYT1A* wild-
691 type versus *PCYT1A*-null HEK293 and ATDC5 cells, or in cultured dermal fibroblasts obtained
692 from healthy controls or SMD-CRD patients homozygous for the p.Ser323Argfs*38 variant in
693 *PCYT1A*. All cell lines were cultured in growth conditions described above. Upon reaching
694 approximately 80% confluence, cells were scraped in ultrapure water, pelleted at 1000 x g,
695 resuspended in ultrapure water, and subjected to total protein concentration measurements using
696 the BCA protein assay kit (Cat#23225, Pierce). We stored cell extracts at -80°C until further
697 processing.

698 We obtained a total lipid extract from cell pellets using a modified Bligh-Dyer procedure
699 [50]. In brief, we diluted each cell suspension (200 µg protein) to 200 µl with ddH₂O and sonicated
700 ten times using short bursts with a sonic homogenizer (Fisher Scientific, Waltham, MA) for 30
701 seconds followed by 30 seconds on ice. We transferred homogenates to glass tubes and gently
702 mixed with 800 µL of ddH₂O, followed by 2.9 mL methanol/dichloromethane (2:0.9, v/v)
703 containing internal standards for 12 lipid classes to each sample. We then added 1 mL of ddH₂O
704 and 0.9 mL dichloromethane to obtain a biphasic mixture, which was incubated at 4°C for 30 min
705 and centrifuged at 4°C for 10 min at 3000 x g to separate organic and aqueous phases. 1 mL of the
706 organic phase was transferred to a 2 mL glass vial and stored at -20°C until use. We finally dried

707 0.5 mL of the organic layer extract using a nitrogen evaporator (Organomation Associates, Inc.,
708 Berlin, MA, USA), and re-suspended in 135 μ L of running solvent (dichloromethane:methanol
709 [1:1 v/v] with 5 mM ammonium acetate) containing 5 mg/mL of ceramide (C17:0) as an internal
710 standard for instrument performance. All solvents used were HPLC grade.

711 **Lipidomic analysis by MS/MS^{ALL}**

712 In order to capture cellular changes in a broad spectrum of lipids, we performed mass
713 spectrometry analyses on a TripleTOF™ 5600 mass spectrometer (AB SCIEX, Redwood City,
714 CA) using an MS/MS^{ALL} approach. We introduced 50 μ L of each sample extract into a DuoSpray
715 electrospray ionization source at a flow rate of 7 μ L/min. All samples were run in duplicate in
716 positive ion mode. We used a mass resolution of ~30,000 for TOF MS scans and ~15,000 for
717 product ion scans in high sensitivity mode, and the instrument automatically calibrated using an
718 APCI positive calibration solution (AB Sciex) after every 10 sample injections. The source
719 parameters were as follows: ion source gases 15 psi (GS1), 20 psi (GS2), curtain gas 30 psi,
720 temperature 150°C, positive ion spray voltage +5200 V, declustering potential of 80V, and
721 collision energy of 10V. Initial TOF MS scanning provided an overview of total lipid content at
722 an accumulation time of 5s. Precursor ions were selected by sequential 1 Da mass steps from
723 200.050 to 1200.050 m/z, and analytes in each 1 Da step were introduced into the collision
724 chamber. Fragments were identified by TOF with a scan range of 100-1500 m/z (accumulation
725 time of 300 ms). The collision energy for each MS/MS step was 40 eV. Data were acquired using
726 Analyst 1.7 TF (AB SCIEX, Concord, ON, Canada).

727 **Mass spectrometry data processing and analysis**

728 Lipid identifications were pre-validated using a pooled sample that was extracted and
729 sequentially run 8 times. Criteria for the inclusion of lipid analytes for analysis was that MS/MS

730 fragment peaks were present in 7 of the 8 pooled runs, with a coefficient of variation (CV) for peak
731 identifications less than 20%. Peak identifications meeting these criteria were then used to develop
732 a targeted method in LipidView. The targeted method was used to identify these pre-validated
733 lipid species in experimental samples using a custom made MatLab script and MultiQuant software
734 (version 3.0, AB SCIEX, Concord, ON, Canada). All peak intensities were corrected by their
735 corresponding internal standard, and each sample duplicate was averaged. If duplicates varied
736 more than 30%, the sample was re-run. For statistical analyses, intensity values of 0 were replaced
737 with a minimum intensity value that was calculated by dividing the average intensity value of for
738 that particular lipid by 0.001. Data were log-transformed, z-score normalized, and exponentially
739 transformed so that all values were positive. In order to compare each lipid between *PCYT1A* wild-
740 type and variant cell lines of each group (ATDC5, HEK293, or fibroblast cell lines), we used
741 Welch's two-sample *t*-test.

742 **Statistical procedures**

743 All statistical analyses were performed using R 3.2.4 (Bioconductor) [51]. Between-
744 group comparisons were performed using Welch's two-sample *t*-test. Multiple group comparisons
745 were done using Tukey's Honest Significant Difference test. No outliers were removed for
746 statistical analyses.

747 **Acknowledgements**

748 We are grateful to our patients and their families for participation in this study. We would
749 like to thank Dr. Jill Fahrner of Johns Hopkins University for providing her ATDC5 cells.

750 **References**

751 1. Hoover-Fong J, Sobreira N, Jurgens J, Modaff P, Blout C, Moser A, et al. Mutations in
752 *PCYT1A*, encoding a key regulator of phosphatidylcholine metabolism, cause

753 spondylometaphyseal dysplasia with cone-rod dystrophy. *Am J Hum Genetics*. 2014;94:105–12.

754 2. Yamamoto GL, Baratela WA, Almeida TF, Lazar M, Afonso CL, Oyamada MK, et al.

755 Mutations in PCYT1A cause spondylometaphyseal dysplasia with cone-rod dystrophy. *Am J*

756 *Hum Genetics*. 2014;94:113–9.

757 3. Payne F, Lim K, Girousse A, Brown RJ, Kory N, Robbins A, et al. Mutations disrupting the

758 Kennedy phosphatidylcholine pathway in humans with congenital lipodystrophy and fatty liver

759 disease. *Proc National Acad Sci*. 2014;111:8901–6.

760 4. Testa F, Filippelli M, Brunetti-Pierri R, Fruscio G, Iorio V, Pizzo M, et al. Mutations in the

761 PCYT1A gene are responsible for isolated forms of retinal dystrophy. *Eur J Hum Genet*.

762 2017;25:651–5.

763 5. Kennedy EP, Weiss SB. The function of cytidine coenzymes in the biosynthesis of

764 phospholipids. *Journal of Biological Chemistry*. 1956;222:193–214.

765 6. Cornell RB, Ridgway ND. CTP:phosphocholine cytidylyltransferase: Function, regulation,

766 and structure of an amphitropic enzyme required for membrane biogenesis. *Progress in Lipid*

767 *Research*. 2015;59:147–71.

768 7. Karim M, Jackson P, Jackowski S. Gene structure, expression and identification of a new

769 CTP:phosphocholine cytidylyltransferase β isoform. *Biochimica et Biophysica Acta (BBA) -*

770 *Molecular and Cell Biology of Lipids*. 2003;1633:1–12.

771 8. Keenan TW, Morre JD. Phospholipid class and fatty acid composition of Golgi apparatus

772 isolated from rat liver and comparison with other cell fractions. *Biochemistry*. 1970;9:19–25.

773 9. Wang L, Magdaleno S, Tabas I, Jackowski S. Early embryonic lethality in mice with targeted

774 deletion of the CTP:phosphocholine cytidylyltransferase alpha gene (Pcyt1a). *Mol Cell Biol*.

775 2005;25:3357–63.

776 10. Carithers LJ, Ardlie K, Barcus M, Branton PA, Britton A, Buia SA, et al. A Novel Approach
777 to High-Quality Postmortem Tissue Procurement: The GTEx Project. *Biopreserv Biobank*.
778 2015;13:311–9. V7 release, dbGaP Accession phs000424.v7.p2, accession date 12/04/17.
779 <https://www.gtexportal.org/>.

780 11. Cui Z, Houweling M, Chen MH, Record M, Chap H, Vance DE, et al. A Genetic Defect in
781 Phosphatidylcholine Biosynthesis Triggers Apoptosis in Chinese Hamster Ovary Cells. *J Biol
782 Chem*. 1996;271:14668–71.

783 12. Sweitzer TD, Kent C. Expression of Wild-Type and Mutant Rat Liver CTP: Phosphocholine
784 Cytidyltransferase in a Cytidyltransferase-Deficient Chinese Hamster Ovary Cell Line.
785 *Archives of Biochemistry and Biophysics*. 1994;311:107–16.

786 13. Haider A, Wei Y-C, Lim K, Barbosa AD, Liu C-H, Weber U, et al. PCYT1A Regulates
787 Phosphatidylcholine Homeostasis from the Inner Nuclear Membrane in Response to Membrane
788 Stored Curvature Elastic Stress. *Dev Cell*. 2018;45:481–495.e8.

789 14. Jackowski S, Rehg JE, Zhang Y-M, Wang J, Miller K, Jackson P, et al. Disruption of
790 CCTbeta2 expression leads to gonadal dysfunction. *Mol Cell Biol*. 2004;24:4720–33.

791 15. Hörl G, Wagner A, Cole LK, Malli R, Reicher H, Kotzbeck P, et al. Sequential synthesis and
792 methylation of phosphatidylethanolamine promote lipid droplet biosynthesis and stability in
793 tissue culture and in vivo. *J Biol Chem*. 2011;286:17338–50.

794 16. Lands WE. Metabolism of glycerolipides: A comparison of lecithin and triglyceride
795 synthesis. *Journal of Biological Chemistry*. 1958;231:883–8.

796 17. Vance JE, Vance DE. Phospholipid biosynthesis in mammalian cells. *Biochem Cell Biol*.
797 2004;82:113–28.

798 18. Friedman JS, Chang B, Krauth DS, Lopez I, Waseem NH, Hurd RE, et al. Loss of

799 lysophosphatidylcholine acyltransferase 1 leads to photoreceptor degeneration in rd11 mice. Proc
800 National Acad Sci. 2010;107:15523–8.

801 19. Mitsuhashi S, Ohkuma A, Talim B, Karahashi M, Koumura T, Aoyama C, et al. A congenital
802 muscular dystrophy with mitochondrial structural abnormalities caused by defective de novo
803 phosphatidylcholine biosynthesis. Am J Hum Genetics. 2011;88:845–51.

804 20. Ahmed MY, Al-Khayat A, Al-Murshedi F, Al-Futaisi A, Chioza BA, Fernandez-Murray PJ,
805 et al. A mutation of EPT1 (SELENOI) underlies a new disorder of Kennedy pathway
806 phospholipid biosynthesis. Brain. 2017;140:547–54.

807 21. Vaz FM, rmott JH, Alders M, Wortmann SB, Kölker S, Pras-Raves ML, et al. Mutations in
808 PCYT2 disrupt etherlipid biosynthesis and cause a complex hereditary spastic paraplegia. Brain.
809 2019;142:3382–97.

810 22. Dennis MK, Taneva SG, Cornell RB. The intrinsically disordered nuclear localization signal
811 and phosphorylation segments distinguish the membrane affinity of two cytidylyltransferase
812 isoforms. J Biol Chem. 2011;286:12349–60.

813 23. Gehrig K, Cornell RB, Ridgway ND. Expansion of the nucleoplasmic reticulum requires the
814 coordinated activity of lamins and CTP:phosphocholine cytidylyltransferase alpha. Mol Biol
815 Cell. 2008;19:237–47.

816 24. Aitchison AJ, Arsenault DJ, Ridgway ND. Nuclear-localized CTP:phosphocholine
817 cytidylyltransferase α regulates phosphatidylcholine synthesis required for lipid droplet
818 biogenesis. Mol Biol Cell. 2015;26:2927–38.

819 25. Cornell RB, Taneva SG, Dennis MK, Tse R, Dhillon RK, Lee J. Disease-linked mutations in
820 the phosphatidylcholine regulatory enzyme CCT α impair enzymatic activity and fold stability. J
821 Biol Chem. 2019;294:1490–501.

822 26. Walther TC, Chung J, Farese RV. Lipid Droplet Biogenesis. *Annu Rev Cell Dev Bi.*
823 2017;33:491–510.

824 27. Krahmer N, Guo Y, Wilfling F, Hilger M, Lingrell S, Heger K, et al. Phosphatidylcholine
825 synthesis for lipid droplet expansion is mediated by localized activation of CTP:phosphocholine
826 cytidylyltransferase. *Cell Metab.* 2011;14:504–15.

827 28. Cornell R, Vance DE. Translocation of CTP:phosphocholine cytidylyltransferase from
828 cytosol to membranes in HeLa cells: stimulation by fatty acid, fatty alcohol, mono- and
829 diacylglycerol. *Biochimica et Biophysica Acta (BBA) - Lipids and Lipid Metabolism.*
830 1987;919:26–36.

831 29. Lagace TA, Ridgway ND. The rate-limiting enzyme in phosphatidylcholine synthesis
832 regulates proliferation of the nucleoplasmic reticulum. *Mol Biol Cell.* 2005;16:1120–30.

833 30. Pelech S, Pritchard P, Brindley D, Vance D. Fatty acids promote translocation of
834 CTP:phosphocholine cytidylyltransferase to the endoplasmic reticulum and stimulate rat hepatic
835 phosphatidylcholine synthesis. *Journal of Biological Chemistry.* 1983;258:6782–8.

836 31. Wang Y, MacDonald J, Kent C. Regulation of CTP:phosphocholine cytidylyltransferase in
837 HeLa cells. Effect of oleate on phosphorylation and intracellular localization. *Journal of*
838 *Biological Chemistry.* 1993;268:5512–8.

839 32. Guo Y, Walther TC, Rao M, Stuurman N, Goshima G, Terayama K, et al. Functional
840 genomic screen reveals genes involved in lipid-droplet formation and utilization. *Nature.*
841 2008;453:657–61.

842 33. Lee J, Ridgway ND. Phosphatidylcholine synthesis regulates triglyceride storage and
843 chylomicron secretion by Caco2 cells. *J Lipid Res.* 2018;59:1940–50.

844 34. Lozano J, Menendez S, Morales A, Ehleiter D, Liao W-C, Wagman R, et al. *Cell*

845 Autonomous Apoptosis Defects in Acid Sphingomyelinase Knockout Fibroblasts. *J Biol Chem.*
846 2001;276:442–8.

847 35. Lee J, Johnson J, Ding Z, Paetzel M, Cornell RB. Crystal structure of a mammalian CTP:
848 phosphocholine cytidylyltransferase catalytic domain reveals novel active site residues within a
849 highly conserved nucleotidyltransferase fold. *J Biol Chem.* 2009;284:33535–48.

850 36. Popp M, Maquat LE. Organizing principles of mammalian nonsense-mediated mRNA decay.
851 *Annu Rev Genet.* 2013;47:139–65.

852 37. Zhang D, Tang W, Yao P, Yang C, Xie B, Jackowski S, et al. Macrophages Deficient in
853 CTP:Phosphocholine Cytidylyltransferase- α Are Viable under Normal Culture Conditions but
854 Are Highly Susceptible to Free Cholesterol-induced Death: Molecular Genetic Evidence that the
855 Induction of Phosphatidylcholine Biosynthesis in Free Cholesterol-Loaded Macrophages is an
856 Adaptive Response. *J Biol Chem.* 2000;275:35368–76.

857 38. Li Z, Agellon LB, Allen TM, Umeda M, Jewell L, Mason A, et al. The ratio of
858 phosphatidylcholine to phosphatidylethanolamine influences membrane integrity and
859 steatohepatitis. *Cell Metab.* 2006;3:321–31.

860 39. Walkey C, Kalmar G, Cornell R. Overexpression of rat liver CTP:phosphocholine
861 cytidylyltransferase accelerates phosphatidylcholine synthesis and degradation. *Journal of*
862 *Biological Chemistry.* 1994;269:5742–9.

863 40. Barbour SE, Kapur A, Deal CL. Regulation of phosphatidylcholine homeostasis by calcium-
864 independent phospholipase A2. *Biochimica et Biophysica Acta (BBA) - Molecular and Cell*
865 *Biology of Lipids.* 1999;1439:77–88.

866 41. Tabe S, Hikiji H, Ariyoshi W, Hashidate-Yoshida T, Shindou H, Shimizu T, et al.
867 Lysophosphatidylcholine acyltransferase 4 is involved in chondrogenic differentiation of

868 ATDC5 cells. *Sci Rep-uk*. 2017;7:16701–16701.

869 42. Matsushita M, Kitoh H, Ohkawara B, Mishima K, Kaneko H, Ito M, et al. Meclozine
870 facilitates proliferation and differentiation of chondrocytes by attenuating abnormally activated
871 FGFR3 signaling in achondroplasia. *Plos One*. 2013;8:e81569–e81569.

872 43. Fahrner JA, Lin W-Y, Riddle RC, Boukas L, DeLeon VB, Chopra S, et al. Precocious
873 chondrocyte differentiation disrupts skeletal growth in Kabuki syndrome mice. *Jci Insight*.
874 2019;4:e129380.

875 44. Kitos TE, Drobnić A, Ng M, Wen Y, Cornell RB. Contribution of lipid mediators to the
876 regulation of phosphatidylcholine synthesis by angiotensin. *Biochimica et Biophysica Acta*
877 (BBA) - Molecular and Cell Biology of Lipids. 2006;1761:261–71.

878 45. Ng M, Kitos TE, Cornell RB. Contribution of lipid second messengers to the regulation of
879 phosphatidylcholine synthesis during cell cycle re-entry. *Biochimica et Biophysica Acta (BBA)* -
880 Molecular and Cell Biology of Lipids. 2004;1686:85–99.

881 46. Moyer TC, Holland AJ. Generation of a conditional analog-sensitive kinase in human cells
882 using CRISPR/Cas9-mediated genome engineering. *Methods Cell Biol*. 2015;129:19–36.

883 47. Hsu PD, Scott DA, Weinstein JA, Ran AF, Konermann S, Agarwala V, et al. DNA targeting
884 specificity of RNA-guided Cas9 nucleases. *Nat Biotechnol*. 2013;31:827–32.

885 48. Ran AF, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the
886 CRISPR-Cas9 system. *Nat Protoc*. 2013;8:2281–308.

887 49. Lu C, Jain SU, Hoelper D, Bechet D, Molden RC, Ran L, et al. Histone H3K36 mutations
888 promote sarcomagenesis through altered histone methylation landscape. *Science*. 2016;352:844–
889 9.

890 50. Bligh E, Dyer W. A rapid method of total lipid extraction and purification. *Can J Biochem*

891 Phys. 1959;37:911–7.
892 51. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for
893 Statistical Computing, Vienna, Austria. 2018; <https://www.R-project.org/>.

894

895 **Supporting Information**

896 **S1 Fig. Oleate induces CCT α membrane translocation in HEK293 cells, but not in control**
897 **human fibroblasts. A)** HEK293 and **B)** CHO cells with and without oleate stimulation. LMNA-
898 nuclear lamina marker. DAPI-nuclear marker.

899 **S2 Fig. Generation of *PCYT1A*-null HEK293 and ATDC5 cells.** *PCYT1A*-null cell lines were
900 generated by cotransfected with guide RNAs positioned at the beginning and end of *PCYT1A* to
901 introduce a 31-kb deletion that excises the majority of the coding sequence and ablates CCT α
902 expression. **A)** Exon structure of *PCYT1A* (blue) with HEK293-targeting guide RNA placement
903 (orange arrows) in the first and last coding exons. Tan arrows labeled A, B, and C indicate
904 placement of forward and reverse primers used to sequence for WT or deleted alleles. A similar
905 targeting strategy was used for editing in ATDC5 cells. **B)** Chromatogram of Cas9-induced
906 deletion breakpoint in a genome-edited HEK293 cell clone. Both alleles contain the deletion, with
907 one allele including an additional single-base insertion. **C-D)** Western blots showing ablation of
908 endogenous CCT α expression in three separate clones of HEK293 cells (**C**) or ATDC5 cells (**D**)
909 homozygous for a *PCYT1A* deletion.

910 **S3 Fig. SM:Cer ratios in WT and *PCYT1A* mutant cells.** Ratios of sphingomyelin (SM) to its
911 metabolite ceramide (Cer) were not significantly altered in WT as compared to *PCYT1A*-null
912 HEK293 and ATDC5 cell lines or in control as compared to homozygous *PCYT1A* p.S323Rfs*38
913 patient-derived cell lines. Data are represented as a box and whisker plot for which boxes represent

914 the range of the first to third quartiles, lines represents median values, and whiskers extend to
915 minimum and maximum data points.

916 **S1 Table. Oligo sequences for CRISPR experiments, site-directed mutagenesis, and**
917 **sequencing of protein-coding exons of *PCYT1A*.**

918 **S2 Table. Lipidomic analysis of WT or *Pcyt1a*-null ATDC5 cells by MS/MS^{ALL}.**

919 **S3 Table. Lipidomic analysis of WT or SMD-CRD patient-derived fibroblasts homozygous**
920 **for the p.Ser323Argfs*38 *PCYT1A* variant by MS/MS^{ALL}.**

921 **S4 Table. Lipidomic analysis of WT or *PCYT1A*-null HEK293 cells by MS/MS^{ALL}.**

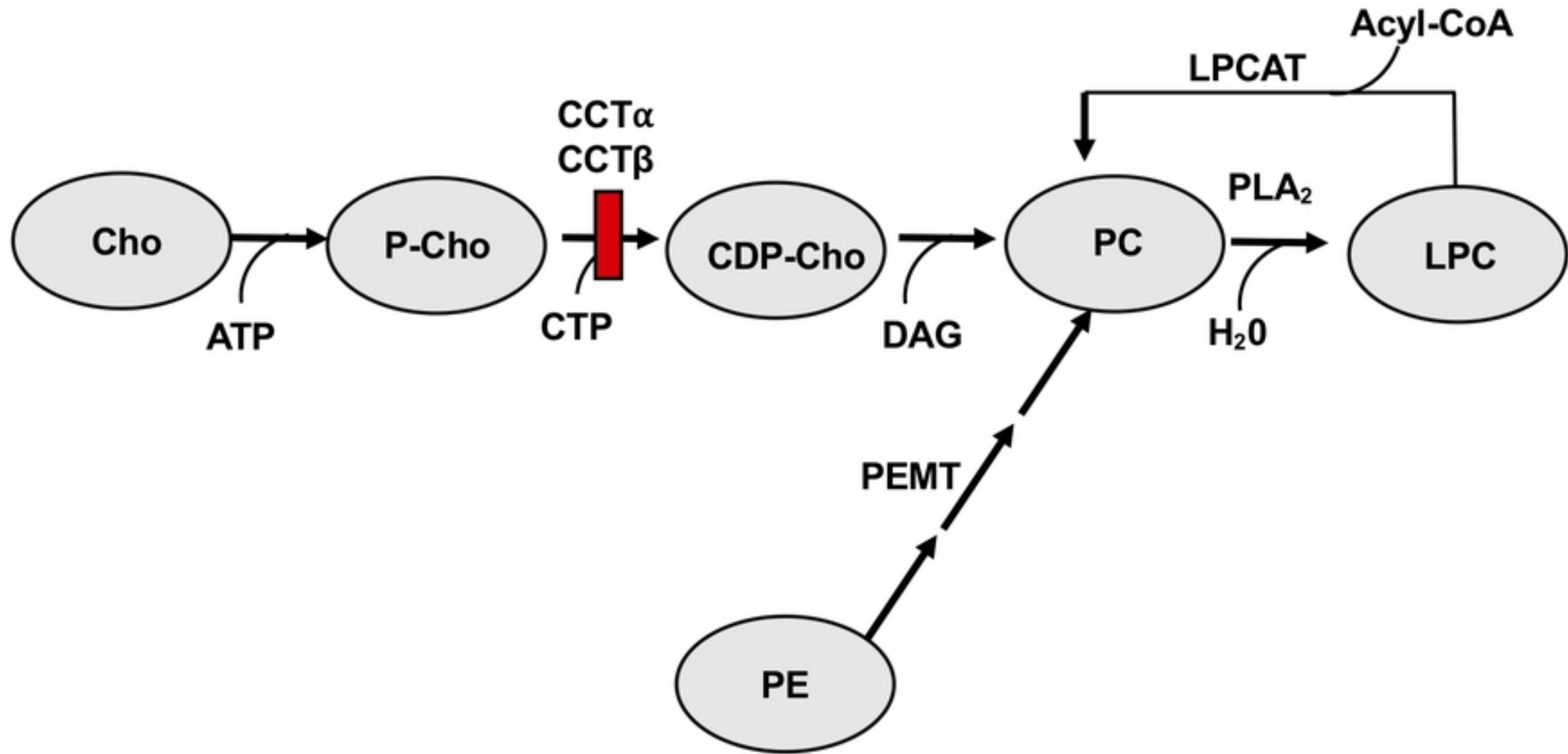


Figure 1

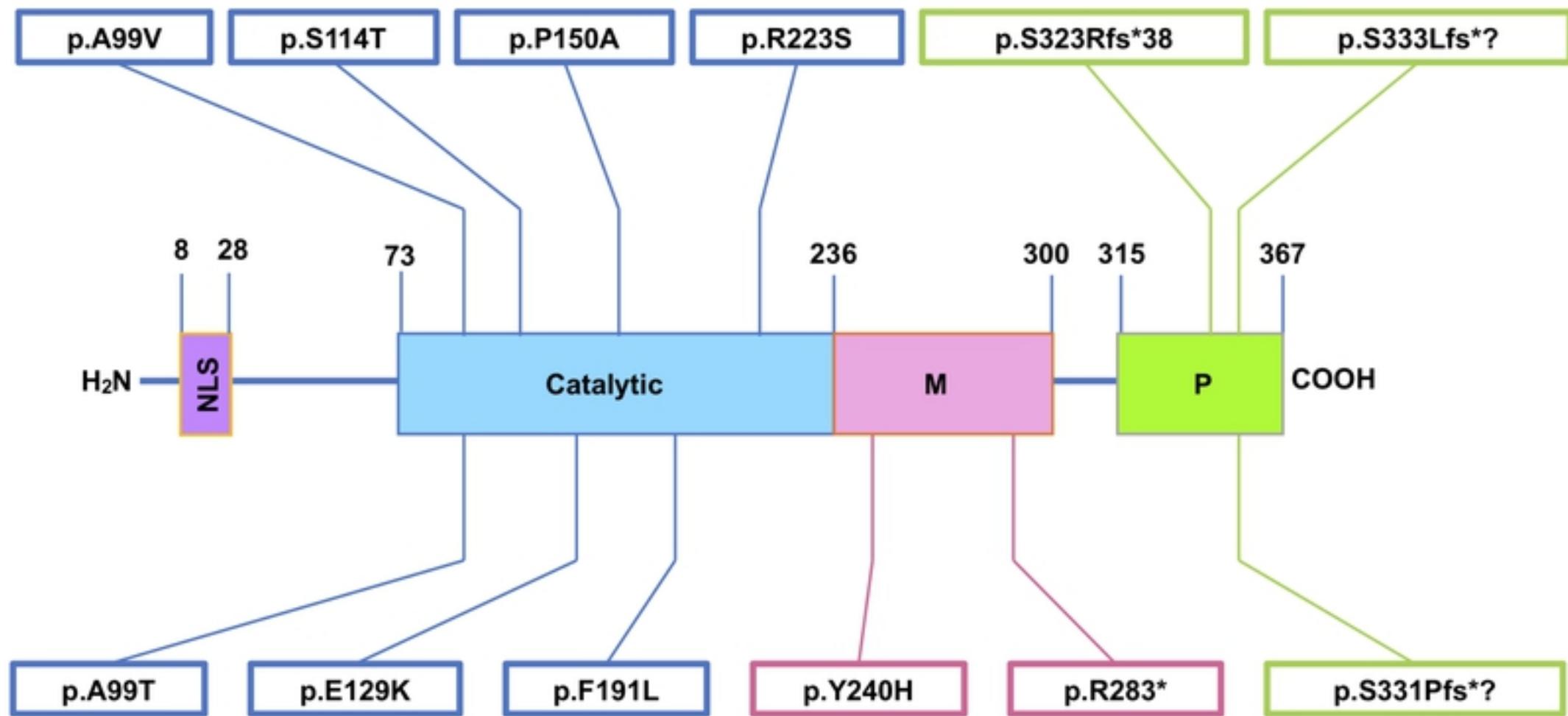


Figure 2

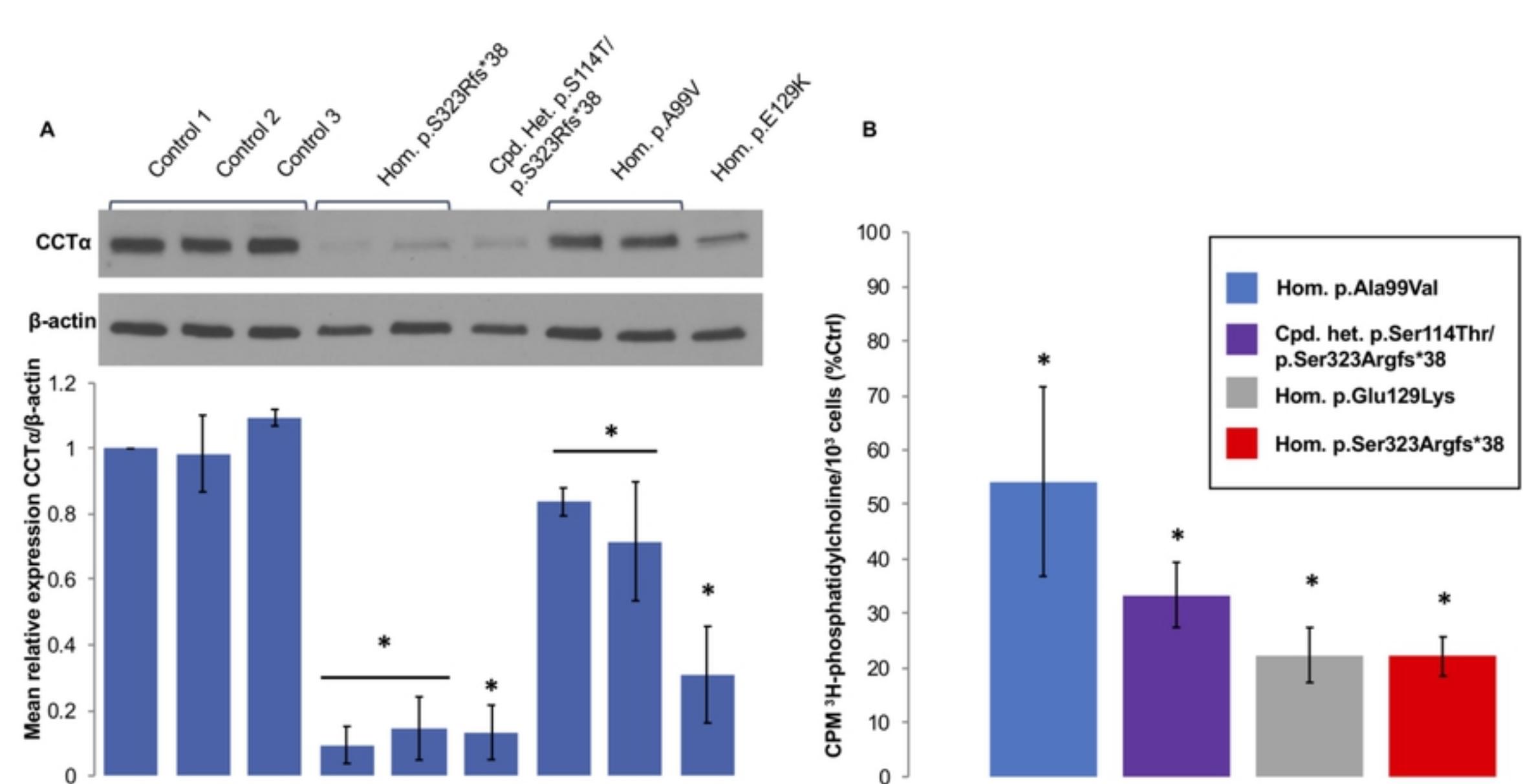


Figure 3

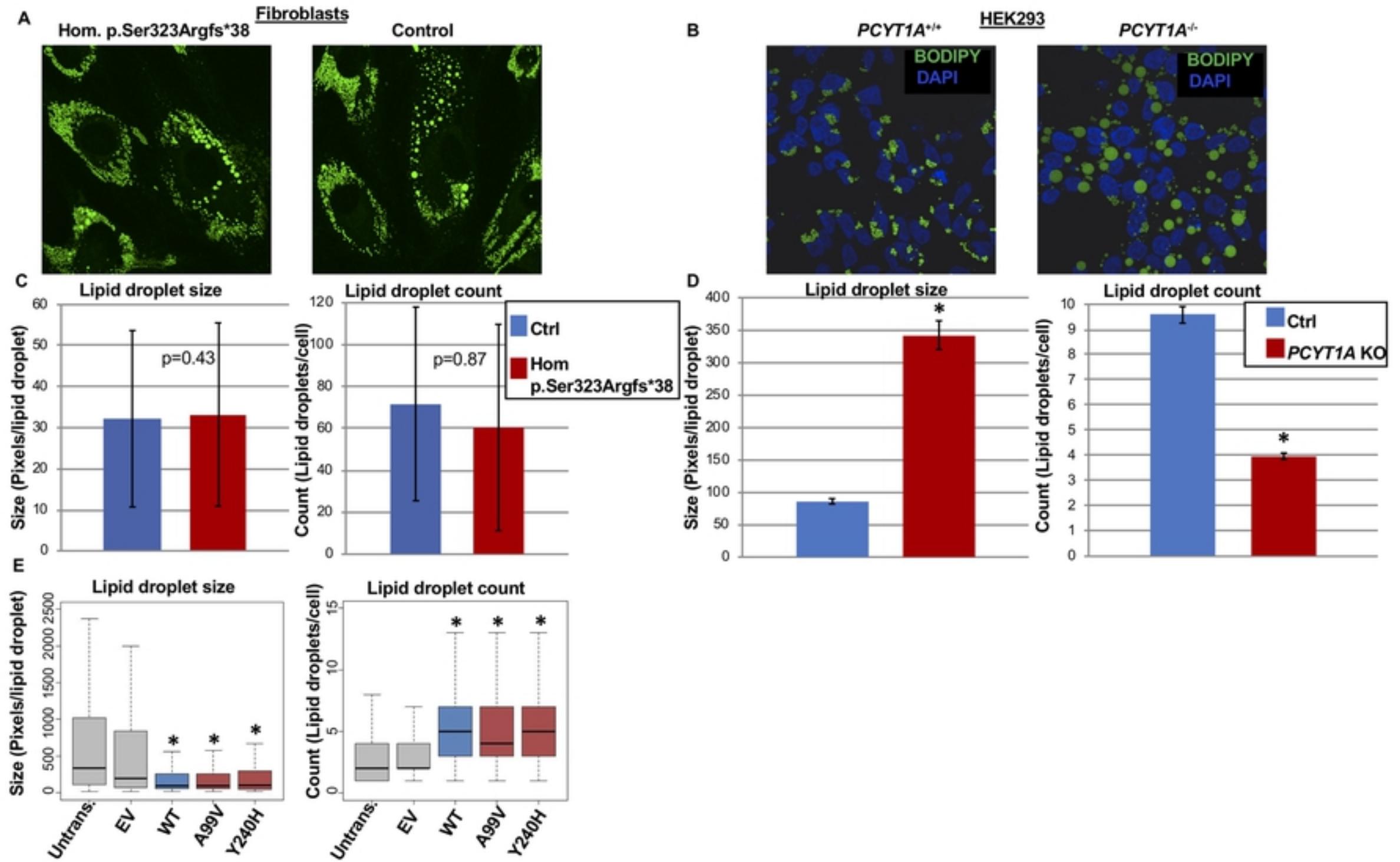


Figure 4

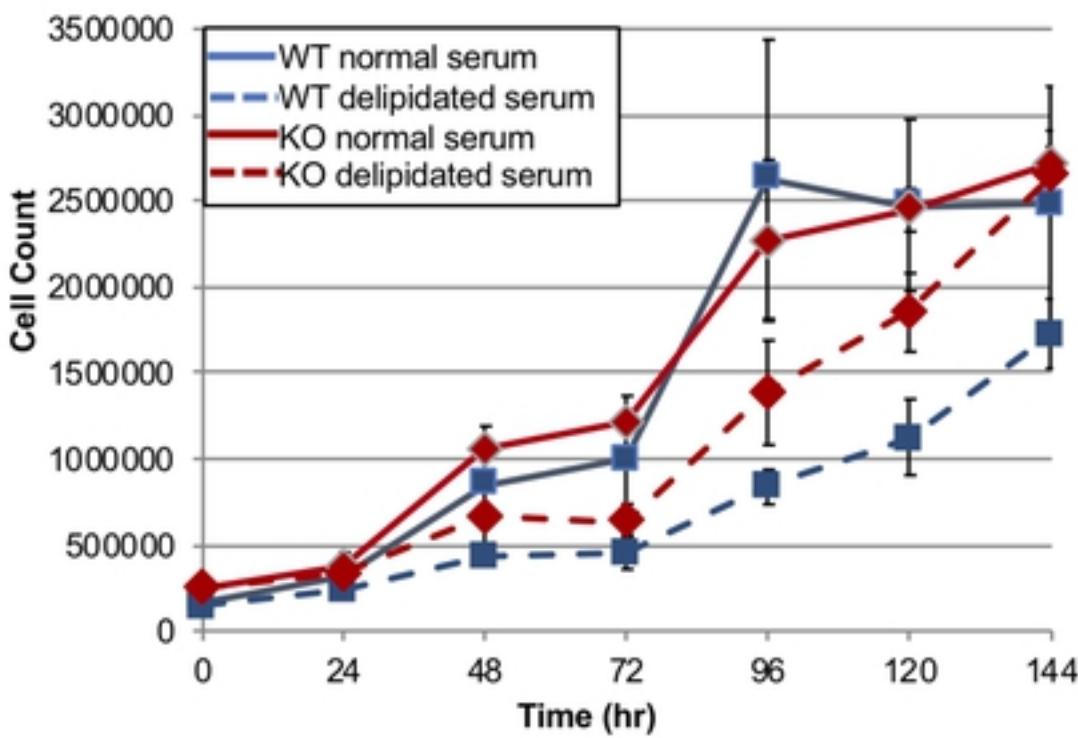
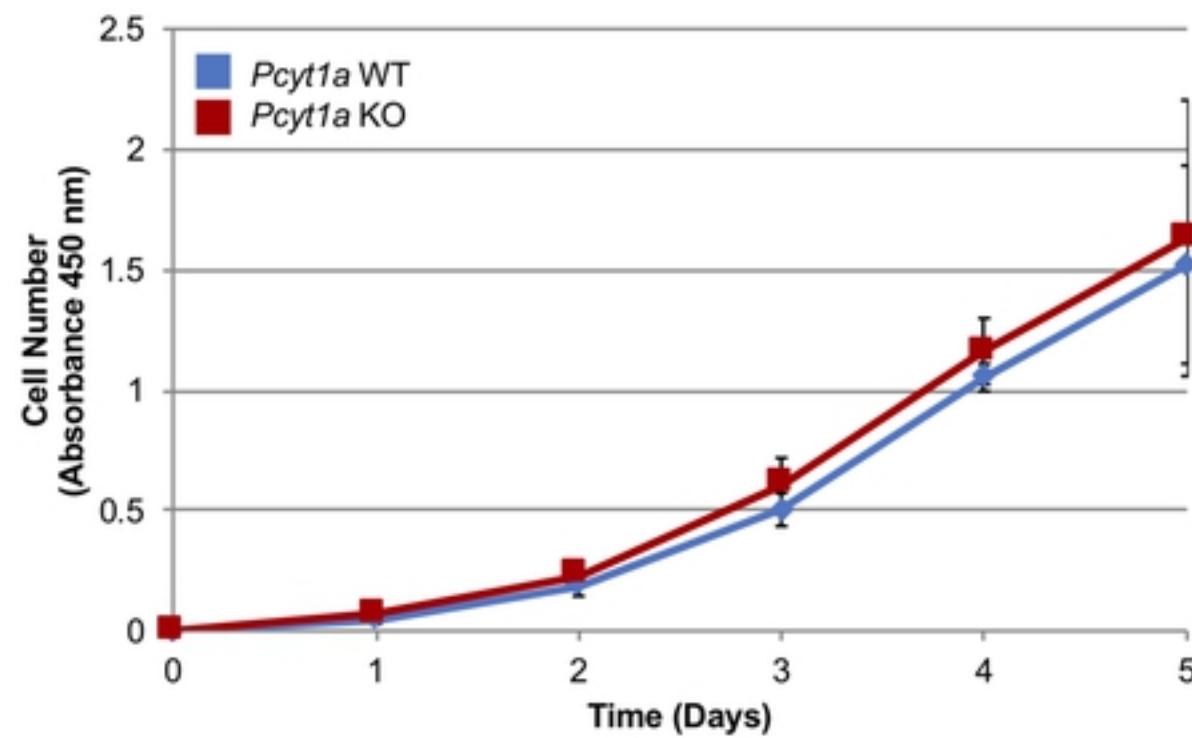
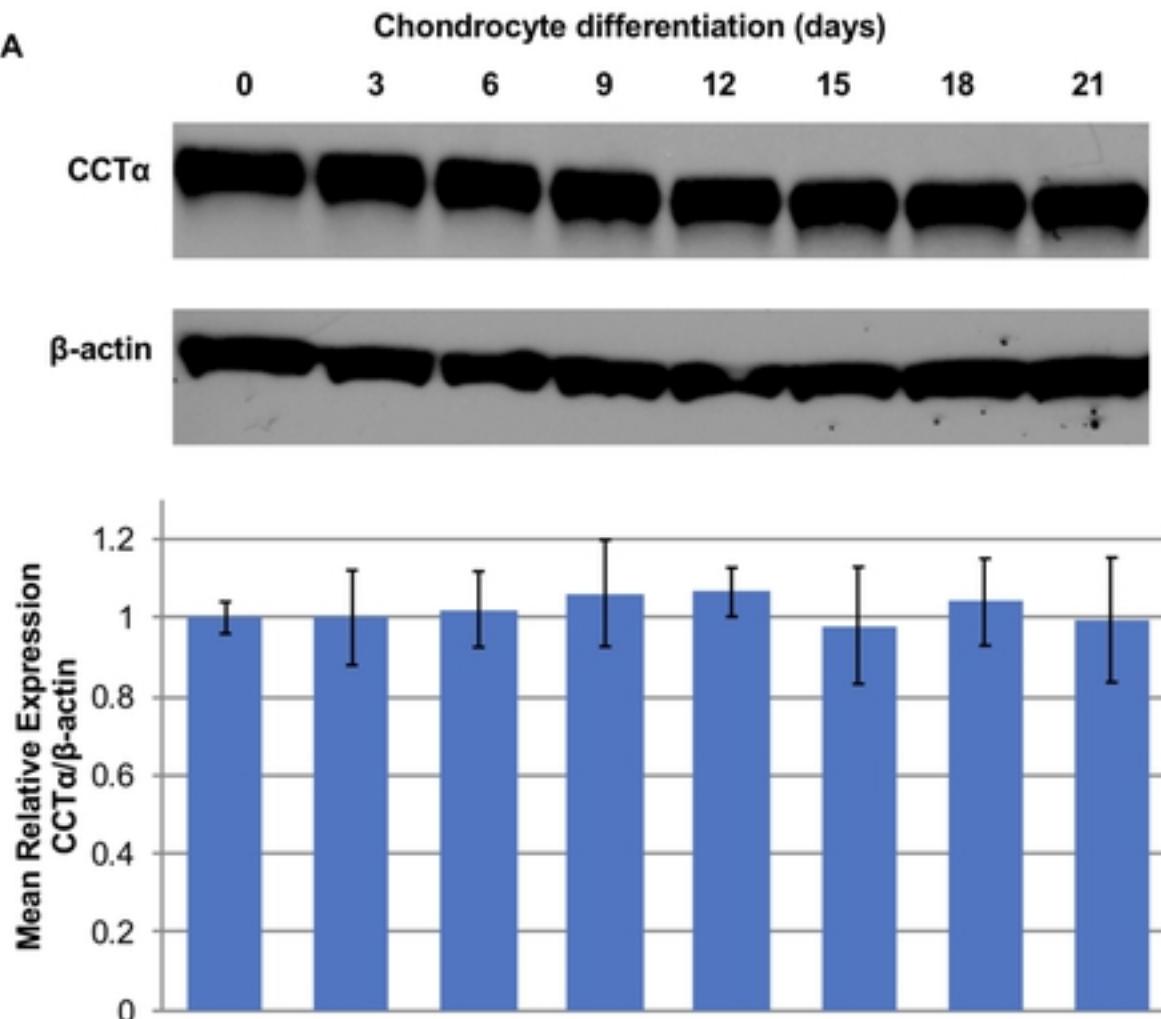
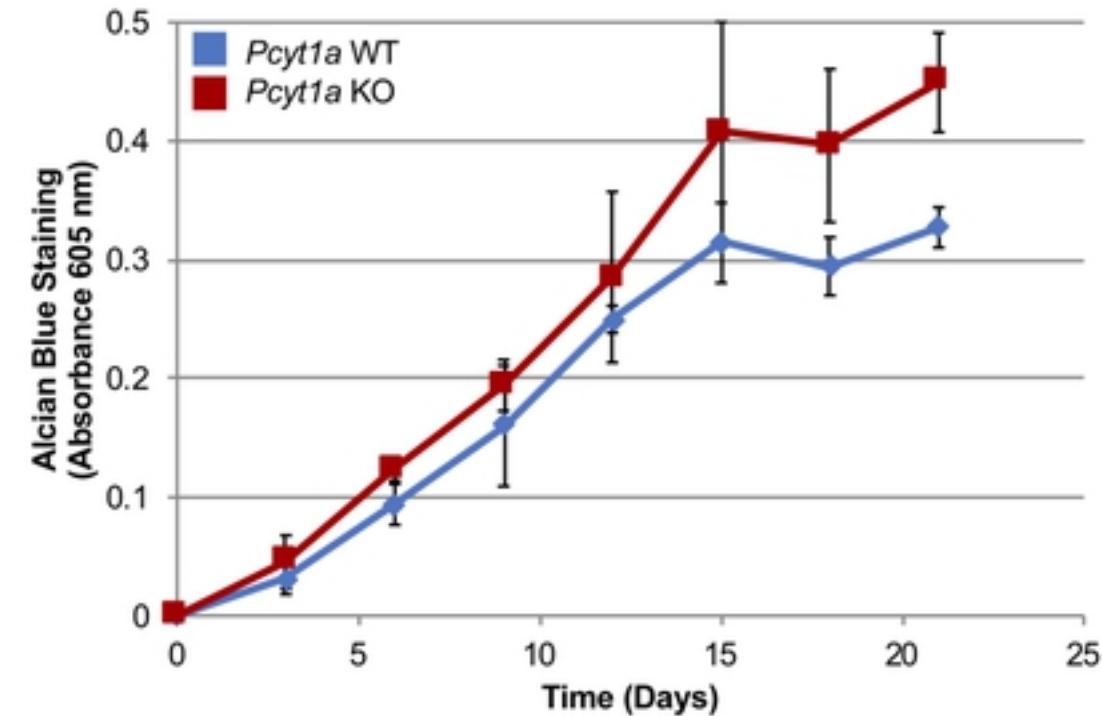




A**B**

Figure 5

A**B****Figure 6**

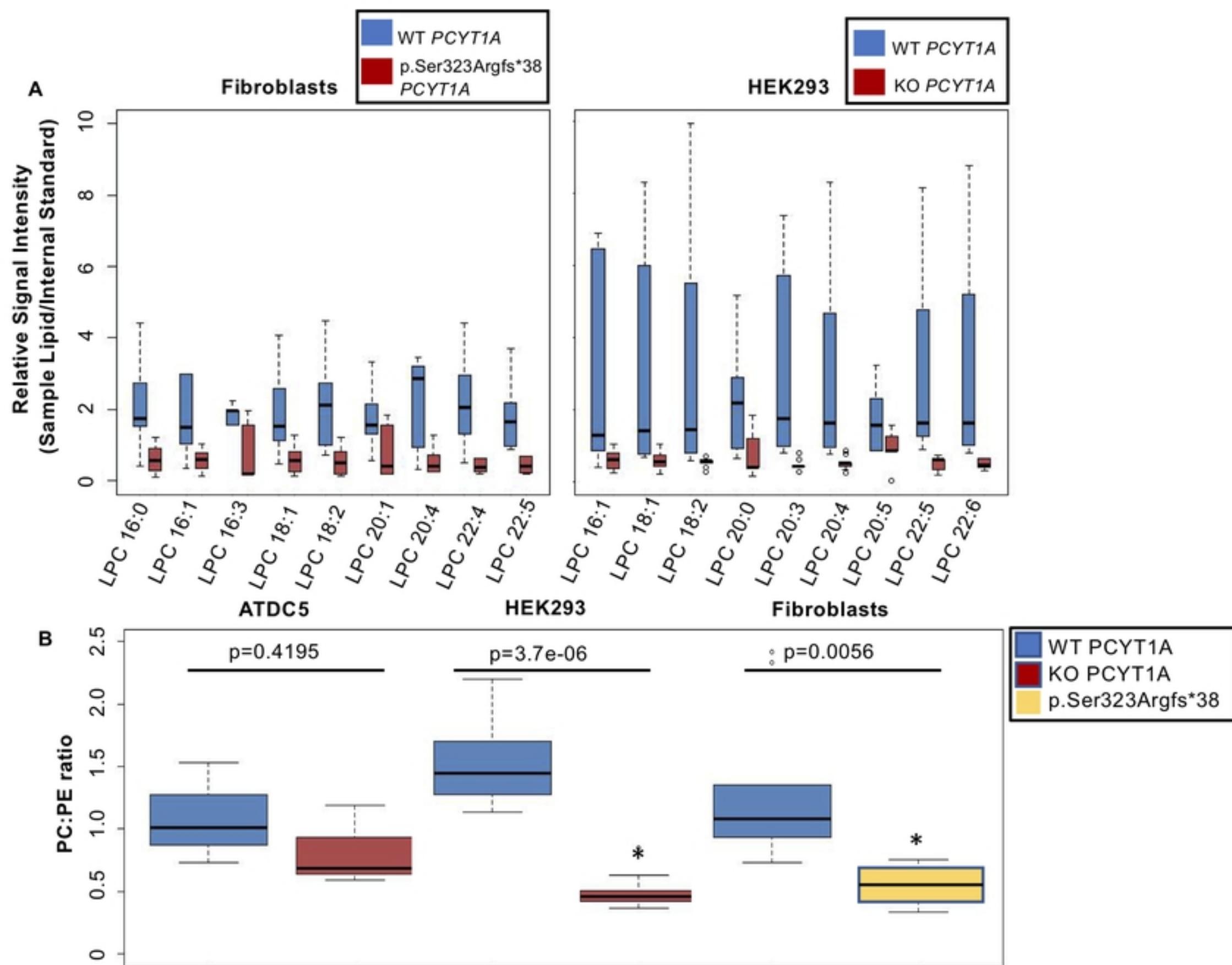


Figure 7