

1 **Vitamin D-binding protein is required for the maintenance of α -cell function**
2 **and glucagon secretion**

3 Katrina Viloria^{1,2,3}, Daniela Nasteska^{1,2,3}, Linford J.B. Briant⁴, Silke Heising^{1,2}, Dean Larner^{1,2},
4 Nicholas H.F. Fine^{1,2,3}, Fiona B. Ashford^{1,2,3}, Gabriela da Silva Xavier^{1,2}, Maria Jiménez
5 Ramos^{1,2}, Jocelyn E. Manning Fox⁵, Patrick E. MacDonald⁵, Ildem Akerman^{1,2}, Gareth G.
6 Lavery^{1,2}, Christine Flaxman⁶, Noel G. Morgan⁶, Sarah J. Richardson⁶, Martin Hewison^{1,2*},
7 David J. Hodson^{1,2,3*}

8
9 ¹ Institute of Metabolism and Systems Research (IMSR), University of Birmingham,
10 Birmingham, UK.

11 ² Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners,
12 Birmingham, UK.

13 ³ Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham,
14 Birmingham, UK.

15 ⁴ Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of
16 Medicine, University of Oxford, Oxford, UK.

17 ⁵ Department of Pharmacology and Alberta Diabetes Institute, University of Alberta,
18 Edmonton, Alberta, Canada.

19 ⁶ University of Exeter, Medical School, Institute of Biomedical and Clinical Science, UK.

20
21 *Correspondence should be addressed to: d.hodson@bham.ac.uk or
22 m.hewison@bham.ac.uk

23
24 **Keywords:** α -cell, Glucagon, GC-globulin, Vitamin D, Vitamin D-binding protein, Type 1
25 diabetes

26
27 **Word count:** (excluding Abstract, Methods, References and Legends).

28
29
30

31 **HIGHLIGHTS**

32 • DBP expression is highly-localized to mouse and human α -cells
33 • Loss of DBP increases α -cell number, but decreases α -cell size
34 • α -cells in DBP knockout islets are dysfunctional and secrete less glucagon
35 • DBP expression is decreased in α -cells of donors with late-onset or longstanding
36 type 1 diabetes

37

38 **ABSTRACT**

39 Vitamin D-binding protein (DBP) or GC-globulin carries vitamin D metabolites from the
40 circulation to target tissues. DBP expression is highly-localized to the liver and pancreatic α -
41 cells. While DBP serum levels, gene polymorphisms and autoantigens have all been
42 associated with diabetes risk, the underlying mechanisms remain unknown. Here, we show
43 that DBP regulates α -cell morphology, α -cell function and glucagon secretion. Deletion of
44 DBP led to smaller and hyperplastic α -cells, altered Na^+ channel conductance, impaired α -
45 cell activation by low glucose, and reduced rates of glucagon secretion. Mechanistically, this
46 involved reversible changes in islet microfilament abundance and density, as well as
47 changes in glucagon granule distribution. Defects were also seen in β -cell and δ -cell
48 function. Immunostaining of human pancreata revealed generalized loss of DBP expression
49 as a feature of late-onset and longstanding, but not early-onset type 1 diabetes. Thus, DBP
50 is a critical regulator of α -cell phenotype, with implications for diabetes pathogenesis.

51

52

53

54

55

56

57

58 INTRODUCTION

59 Vitamin D-binding protein (DBP), a 52–59 kDa protein also known as group-specific
60 component of serum (GC-globulin), is the primary plasma carrier for circulating vitamin D
61 and its metabolites (White and Cooke, 2000). Expression of GC/Gc, which encodes DBP, is
62 highly-expressed in the liver of all mammals (Feldman et al., 2017), in keeping with the
63 function of this organ to convert sterol-derivatives such as cholecalciferol (Vitamin D₃) into
64 pre-hormone 25-OH vitamin D (25(OH)D) (Bikle, 2014). DBP is also expressed in the
65 pancreatic islets. Recent studies have shown that GC/Gc is highly-expressed in purified
66 mouse and human α -cells (Ackermann et al., 2016; Adriaenssens et al., 2016; Qiu et al.,
67 2017; Segerstolpe et al., 2016), and is upregulated in de-differentiated β -cells (Kuo et al.,
68 2019). Since the GC promoter region contains cell type-selective open chromatin regions,
69 GC can be classified as an α -cell signature gene, similarly to prototypical hits such as ARX,
70 GCG, IRX2 and DPP4 (Ackermann et al., 2016; Lam et al., 2019). Despite these findings,
71 the role of DBP in the regulation of glucagon release, and in wider aspects of islet function,
72 remains enigmatic.

73 Evidence that the effects of DBP in α -cells are unrelated to serum vitamin D transport
74 comes from studies in vitamin D-deficient patients who show no improvement in insulin-
75 induced glucagon output upon vitamin D repletion (Gedik and Akalin, 1986). Moreover, a
76 patient harboring a rare mutation in GC showed no symptoms of vitamin D deficiency,
77 despite low plasma levels of 25(OH)D, arguing that it is the free form of 25(OH)D that
78 dictates many of the non-classical actions of vitamin D (Chun et al., 2014; Henderson et al.,
79 2019). Alongside its role in 25(OH)D transport, DBP is also a major actin scavenger (Harper
80 et al., 1987). Following disassembly of polymerized actin by gelsolin, DBP traps monomeric
81 filaments using its three domains as a clamp (Otterbein et al., 2002). Pertinently, ephrin-A
82 forward signaling has been shown to inhibit glucagon secretion through increases in F-actin
83 density (Hutchens and Piston, 2015), and the appearance of regulated glucagon secretion in
84 re-aggregated islets coincides with normalization of F-actin levels (Reissaus and Piston,
85 2017).

86 Linking DBP with type 2 diabetes (T2D) risk, GC variants are associated with
87 elevated fasting glucose, fasting insulin levels and responses to oral glucose tolerance (Baier
88 et al., 1998; Hirai et al., 2000; Iyengar et al., 1989; Szathmary, 1987). Results, however,
89 tend to be conflicting, likely reflecting heterogeneity introduced by ethnicity and environment
90 (Malik et al., 2013; Wang et al., 2014). The concept that DBP might also be involved in type
91 1 diabetes (T1D) risk is supported by retrospective cross-sectional analysis of 472
92 individuals showing that serum DBP levels were lowest in patients with T1D (Blanton et al.,
93 2011). Using gene expression-based genome-wide association studies, DBP was
94 subsequently identified as a novel T1D autoantigen (Kodama et al., 2016). The same
95 authors showed that T-cell reactivity against DBP was increased in NOD mice, and that
96 humans with T1D possess specific DBP autoantibodies (Kodama et al., 2016). Together,
97 these studies suggest that DBP is likely to be associated with altered diabetes risk in
98 humans.

99 Here, we sought to establish the role of DBP in α -cell phenotype, function and
100 diabetes risk by combining studies in knockout mice with staining of pancreata from T1D
101 donors and age-matched controls. We show that DBP is critical for proper α -cell function and
102 glucagon secretion, with related effects for δ -cell morphology and insulin release. We further

103 show that glucagon and DBP expression decrease in α -cells of individuals with late-onset or
104 longstanding T1D, but not in children with early-onset disease. As such, DBP should be
105 considered as an essential component of the α -cell and the wider islet functional machinery
106 with relevance for glucagon secretion during diabetes.

107

108 **RESULTS**

109 **DBP is deleted in α -cells of DBP^{-/-} mice**

110 Confocal imaging showed an intense DBP signal localized predominantly to GLU+ cells at
111 the islet periphery in mice (Figure 1A). While DBP expression was clearly decreased in DBP^{-/-}
112 animals, a faint signal could still be detected in some α -cells using fluorescent
113 immunohistochemistry (Figure 1A). This likely reflects the sensitivity of the staining protocol
114 used since non-fluorescent immunohistochemistry implied complete loss of DBP in DBP^{-/-}
115 islets (Figure 1B). We wondered whether DBP was also expressed in other islet cell types,
116 but might be obscured by the strong staining detected in α -cells. Therefore, immunostaining
117 was repeated using a higher antibody concentration combined with more sensitive imaging
118 settings to oversaturate signal in α -cells but not in other cells. Using this approach, weak
119 DBP expression could be detected in the β -cell compartment, which was absent in islets
120 from DBP^{-/-} mice (Figure 1C).

121 Gc was undetectable using specific Taqman assays (Figure 1D), and circulating 25(OH)D
122 and hormonal 1,25-(OH)₂ vitamin D (1,25(OH)₂D) levels were ~50% decreased in
123 heterozygous DBP^{+/−} mice, and virtually undetectable in homozygous DBP^{-/-} littermates
124 (Figure 1E and 1F). Despite low levels of 25(OH)D and 1,25(OH)₂D, DBP^{-/-} animals do not
125 show signs of vitamin D deficiency unless placed on a vitamin D-deficient diet (Safadi et al.,
126 1999).

127 Metabolic phenotyping of DBP^{-/-} mice at 8-12 weeks revealed normal glucose tolerance
128 (Figure 1G and H), insulin sensitivity (Figure 1I and 1J) and pyruvate tolerance versus
129 littermate controls (Figure 1K). Growth curves and adult body weight were similar between
130 genotypes (Figure 1L). Thus DBP^{-/-} mice possess an apparently normal metabolic
131 phenotype, without changes in insulin sensitivity or hepatic gluconeogenesis that could non-
132 autonomously influence α -cell mass/function. With this in mind, we proceeded to conduct the
133 remainder of the studies in isolated pancreata and islets.

134 **Deletion of DBP leads to abnormal islet morphology**

135 Cell resolution immunostaining of entire pancreatic sections showed no changes in α -cell or
136 β -cell mass following loss of DBP (Figure 2A and B). While detailed morphometric analyses
137 of individual DBP^{-/-} islets revealed an increase in α -cell number (Figure 2C and D) (also
138 apparent in Figure 1A), this was accompanied by a decrease in α -cell size (Figure 2E),
139 maintaining the area occupied by α -cells (Figure 2F). Although a small but significant
140 increase in β -cell number was apparent (Figure 2G), no changes in β -cell size (Figure 2H) or
141 area occupied by β -cells (Figure 2I) were detected between DBP^{-/-} and DBP^{+/+} animals.
142 However, a ~2-fold decrease in δ -cell mass was detected (Figure 2J and 2K), along with a
143 reduction in the size of individual δ -cells (Figure 2L and 2M).

144 Suggesting that loss of DBP is not associated with α -cell de-differentiation, mRNA levels for
145 *Pax6*, *Arx* and *Pou3f4* was similar in islets from DBP^{+/+} and DBP^{-/-} mice (Figure 2N). No
146 differences in the number of (very rare) cells co-staining for GLU/PDX1 or GLU/MAFA were
147 detected (Figure 2O-Q), implying that adoption of a β -cell- or δ -cell-like fate by α -cells was
148 unlikely. Moreover, a similar number of PCNA+ or proliferative α -cells was detected in DBP^{-/-}
149 and DBP^{+/+} animals, suggesting normal cell turnover rates (Figure S1). While DBP was

150 expressed in some but not all δ -cells (Figure 2R), expression of the δ -cell differentiation
151 markers *Hhex* and *Ghsr* was unchanged in $DBP^{-/-}$ islets (Figure 2S).

152 Thus, $DBP^{-/-}$ islets are morphologically abnormal, containing smaller and more abundant α -
153 cells alongside a modest contraction of the δ -cell compartment.

154 **DBP is critical for α -cell, δ -cell and β -cell function**

155 Multicellular Ca^{2+} imaging of $DBP^{-/-}$ islets showed large impairments in the activity of α -cells,
156 identified by their responses to low glucose and epinephrine (Figure 3A-C) (Tian et al.,
157 2011). This presented as a loss of α -cell activation by low glucose (Figure 3A), although
158 some α -cells that remained active displayed characteristic Ca^{2+} -spiking responses of
159 elevated amplitude (Figure 3B and 3C). We also examined the ability of α -cells to coordinate
160 Ca^{2+} responses within clusters throughout the imaged plane. Unexpectedly, α -cell population
161 activity in $DBP^{-/-}$ mice was more stochastic, with an almost 2-fold decrease in coordinated α -
162 cell- α -cell activity (Figure 3D). This was not dependent on loss of a specific subset of α -cells,
163 since topology of the communicating α -cells was unaffected by DBP loss (Figure 3E).

164 The same islets were also examined for changes in β -cell activity at both low (0.5 mM) and
165 high (17 mM) glucose. A large increase in the proportion of β -cells active at low glucose was
166 observed (Figure 3F), identified on the basis of their responsiveness to subsequent
167 challenge with high glucose. However, no differences in β -cell activity were detected at high
168 glucose (Figure 3G and 3H), suggesting the presence of intact glucose metabolism.

169 To record δ -cell activity, islets were imaged at 5 mM glucose before increasing concentration
170 of the sugar to 17 mM. δ -cells were identified by their characteristic, rare, Ca^{2+} -spiking
171 patterns at 5 mM glucose (Figure 3K), which did not change in the presence of high glucose
172 (compared to β -cells) (Shuai et al., 2016; Vierra et al., 2018). Suggesting the presence of
173 abnormal function, the proportion of active δ -cells was increased in $DBP^{-/-}$ islets (Figure 3I
174 and 3J), possibly reflecting compensation for reduced δ -cell number. However, δ -cells that
175 did respond displayed Ca^{2+} spikes of normal amplitude (Figure 3K).

176 **DBP is required for normal α -cell Na^+ channel conductance**

177 α -cells generate electrical activity, with Na^+ channel inactivation properties playing an
178 important role in determining glucagon secretion (Zhang et al., 2013). Using patch clamp
179 electrophysiology, we therefore explored whether DBP influences α -cell Na^+ channel
180 function. As expected from the increased Ca^{2+} amplitude detected in these cells, Na^+
181 currents were increased in α -cells lacking DBP (Figure 3L). However, the slope factor of Na^+
182 inactivation also tended to be increased (Figure 3M and N), despite a similar half maximal
183 voltage (Figure 3O), suggesting the presence of impairments in glucose-dependent α -cell
184 activity.

185 We further subjected patch-clamp recordings from $DBP^{+/+}$ and $DBP^{-/-}$ islets to a
186 mathematical model (Briant et al., 2017b). This model takes as input the electrophysiological
187 data of a cell, and outputs a probability that the cell is an α -cell. While the model predicted
188 α -cell phenotype in $DBP^{+/+}$ islets with high probability, confidence was lower in recordings
189 from $DBP^{-/-}$ islets with the output favoring a more δ -cell-like (probability = 0.27 versus 0.48,
190 $DBP^{+/+}$ versus $DBP^{-/-}$, respectively, $P<0.05$), but not β -cell-like (probability = 4.43×10^{-7}
191 versus 1.15×10^{-8} , $DBP^{+/+}$ versus $DBP^{-/-}$, respectively, non-significant) profile (Figure 3P).

192 Thus, α -cells lose their “electrophysiological identity”, become less α -cell-like, and resemble
193 δ -cells following loss of DBP. Confirming the decrease in α -cell size detected using
194 immunohistochemistry, membrane capacitance was significantly lower in cells predicted to
195 be α -cells in DBP^{-/-} islets (Figure 3Q).

196 **DBP regulates glucagon and insulin secretion**

197 DBP^{+/+} islets responded to low (0.5mM) glucose with a 2-fold increase in glucagon secretion
198 (Figure 3R). By contrast, DBP^{-/-} islets showed a tendency toward increased basal glucagon
199 levels and loss of glucagon secretion in response to low glucose (Figure 3R). Glucagon
200 secretory responses to epinephrine were also significantly impaired in DBP^{-/-} islets, pointing
201 toward a defect in exocytosis (Figure 3R). Suggesting the presence of normal glucagon
202 biosynthesis, total levels of the hormone were similar between DBP^{+/+} and DBP^{-/-} littermates
203 (Figure 3S).

204 Conversely to glucagon, glucose-stimulated insulin secretion was significantly increased in
205 islets from DBP^{-/-} animals (Figure 3T). This effect was likely associated with improved
206 exocytosis of the readily-releasable pool of insulin granules, since KCl-stimulated insulin
207 secretion was similarly increased in DBP^{-/-} versus DBP^{+/+} islets (Figure 3T), despite
208 equivalent insulin content (Figure 3U).

209 Thus, DBP is required for normal glucose-regulated glucagon secretion, and limits insulin
210 secretion under high glucose stimulation.

211 **DBP mediates α -cell function through F-actin binding**

212 DBP is a major actin scavenger and might exert effects on α -cell size and glucagon
213 secretion by trapping monomeric actin (G-actin), which is needed to form polymerized actin
214 (F-actin) (Dominguez and Holmes, 2011). To investigate DBP-actin interactions, high
215 resolution snapshots were taken of islets stained with either phalloidin or DNAasel to
216 demarcate F-actin and G-actin, respectively. While F-actin density was unchanged in DBP^{-/-}
217 islets, increases in intensity and fiber thickness were seen throughout the islet (Figure 4A-
218 C), rather than restricted solely to α -cells. Conversely, G-actin levels tended to be reduced in
219 DBP^{-/-} mice, again being evident throughout the islet (Figure 4D and E).

220 Since F-actin/G-actin ratio is important for regulated secretion (Kalwat and Thurmond,
221 2013), glucagon granule size and distribution were mapped in pancreatic slices using super-
222 resolution imaging. Analysis of individual granules revealed a small but significant decrease
223 in granule size in DBP^{-/-} mice, although area occupied was unchanged, pointing to an
224 increase in granule number (Figure 4F and G). While glucagon granules tended to be
225 clustered in DBP^{+/+} α -cells, they were more diffusely scattered throughout the cytoplasm in
226 DBP^{-/-} tissue (Figure 4H and I).

227 Lastly, we investigated whether normal activity could be restored in DBP^{-/-} islets by reducing
228 F-actin levels to DBP^{+/+} levels. Experiments were performed in the absence or presence of
229 Latrunculin B, which prevents F-actin polymerization (Spector et al., 1983). A concentration-
230 response showed that Latrunculin B was able to modulate F-actin within the range detected
231 in DBP^{+/+} islets (Figure 4J). Notably, using 300 nM Latrunculin B to reduce F-actin in DBP^{-/-}
232 islets down to DBP^{+/+} levels (Figure 4K), we were able to restore α -cell Ca²⁺ responses to
233 low glucose (Figure 4L and M).

234 Together, these results suggest that DBP increases availability of monomeric G-actin, which
235 is then able to polymerize to form F-actin, ultimately altering granule distribution and size, as
236 well as α -cell function.

237 **DBP and glucagon expression are decreased in late-onset and longstanding T1D
238 donors**

239 Islet α -cells persist in T1D, but display reduced glucose responsiveness (Brissova et al.,
240 2018; Gerich et al., 1973), which could be associated with changes in DBP expression. We
241 therefore examined whether DBP levels changed in T1D, initially using pancreatic sections
242 from the Exeter Archival Diabetes Biobank. Immunohistochemistry was performed on
243 sections from donors with early- and late-onset T1D, together with their age-matched
244 controls. In donors without diabetes, DBP was highly localized to α -cells (Figure 5A), as
245 previously shown (Kodama et al., 2016; Lam et al., 2019), although we were also able to
246 detect very faint expression in β -cells, as for mouse (Figure S3). In sections from donors
247 with T1D, a similar pattern of DBP immunostaining was observed (Figure 5B). While a small
248 but significant decrease in glucagon expression was seen in islets of early-onset T1D donors
249 (Figure 5C), this was not accompanied by changes in DBP staining (Figure 5D) or proportion
250 of α -cells immunopositive for DBP (Figure 5E).

251 By contrast, glucagon levels were almost 2-fold lower in islets of late-onset T1D donors
252 versus age-matched controls (Figure 5F and G), in line with previous reports of decreased α -
253 cell mass during T1D (von Herrath et al., 2018). These changes were accompanied by a
254 reduction in DBP expression (Figure 5H) and α -cell size (Figure 5I), although no differences
255 were detected in the number of DBP+/GLU+ cells per islet (Figure 5J). We were able to
256 confirm results in samples from IsletCore (Alberta), and also show that DBP levels
257 consistently decrease in islets of donors with more longstanding T1D (Figure S3).

258 Immunohistochemistry of control islets showed that DBP expression increased with age,
259 peaking at 18-32 years and remaining elevated thereafter (Figure 6A and B). Similar results
260 were seen for glucagon expression (Figure 6C). Glucagon and DBP expression values for
261 each individual donor are provided in Figure S4.

262 **Granular DBP content decreases in late-onset T1D**

263 Analysis of a published RNA-seq dataset (Brissova et al., 2018) revealed no differences in
264 GC expression in purified α -cells from control and T1D donors (20 to 53 years) (Figure 6D),
265 suggesting that DBP might be post-transcriptionally regulated. As such, we investigated
266 DBP and glucagon localization within human α -cells using super-resolution microscopy.
267 Unexpectedly, DBP was found to be present in glucagon granules of control donors (Figure
268 6E), suggesting that DBP enters the secretory pathway and might function in an autocrine
269 manner. Explaining the decrease in glucagon and DBP expression in late-onset T1D
270 samples, a large reduction in the number of GLU+/DBP+ granules was detected in each α -
271 cell (Figure 6F), accompanied by a small decrease in DBP/GLU co-localization (Figure 6G).
272 Glucagon granules were also smaller and more randomly distributed in late-onset T1D α -
273 cells (Figure 6H and I), suggestive of changes in the actin cytoskeleton, as demonstrated for
274 mice.

275

276 **DISCUSSION**

277 In the present study, we show that DBP is strongly expressed in murine and human α -cells.
278 Loss of DBP leads to alterations in α -cell number and size, electrical activity and glucagon
279 release. This is accompanied by changes in δ -cell mass, as well as alterations in β -cell
280 function and insulin release. Linking these findings, DBP was found to decrease the
281 availability of actin monomeric subunits for assembly into polymers. DBP expression levels
282 were also decreased in islets of donors with late-onset or longstanding T1D, but not in
283 children with early-onset disease.

284 Transcriptomic studies have consistently shown that *Gc* is highly-enriched in the
285 mouse α -cell lineage (Adriaenssens et al., 2016; Cigliola et al., 2018; Qiu et al., 2017),
286 similarly to data from humans (Ackermann et al., 2016; Segerstolpe et al., 2016). In keeping
287 with these findings, our immunohistochemical analyses confirmed that DBP is predominantly
288 expressed at the protein level in α -cells in both mouse and human. Careful inspection of
289 images also detected faint DBP expression in β -cells, which was difficult to appreciate due to
290 the high intensity of the DBP signal in α -cells. Notably, DBP expression was also absent in
291 β -cells in DBP^{-/-} islets, and F-actin and G-actin were both altered across the islet. Thus, DBP
292 is detectable in both α -cells and β -cells, with large differences in expression levels apparent
293 between the two compartments. In addition, recent studies have shown that β -cells increase
294 histone modification at the *Gc* locus in response to high fat feeding, with knockout of *Gc*
295 protecting from β -cell dysfunction (Kuo et al., 2019). Thus, DBP protein expression in the β -
296 cell compartment is low, but is likely to be upregulated under conditions of metabolic stress.

297 Intriguingly, Na^+ currents, which contribute to action potential firing in α -cells, were
298 increased in DBP^{-/-} α -cells. This was mirrored at the level of low glucose-stimulated Ca^{2+}
299 rises, which were also increased by loss of DBP. Given that α -cell function was otherwise
300 decreased across the board (i.e. defective glucagon secretion, activation by low glucose,
301 electrophysiological identity, Na^+ channel inactivation), increases in Na^+ conductance and
302 Ca^{2+} spiking amplitude are likely to reflect a maladaptive compensatory response.

303 Supporting the notion that F-actin is an important regulator of glucagon release
304 (Hutchens and Piston, 2015), fiber size was increased in DBP^{-/-} animals, alongside
305 decreases in monomeric G-actin content. Thus, DBP in the α -cell likely scavenges G-actin,
306 preventing formation of F-actin polymers, which would otherwise suppress glucagon release.
307 At the molecular level, F-actin has been shown to restrict basal insulin release (Kalwat and
308 Thurmond, 2013), as well as maximal glucagon secretion, by acting as a physical constraint
309 against granule exocytosis (Hutchens and Piston, 2015; Reissaus and Piston, 2017).
310 Morphological evidence for this was provided in the current study by the observation that
311 glucagon granules were distributed more diffusely in DBP^{-/-} islets. Furthermore, granule size
312 was decreased, indicative of either preferential sequestration of immature granules, or
313 effects of DBP on granule maturity. Cytoskeletal changes were also likely to be involved in
314 the reduction in α -cell and δ -cell size, since assembly of actin filaments from monomers is
315 critical for cell morphology (Pollard and Cooper, 2009).

316 β -cells displayed increased Ca^{2+} activity at low glucose in DBP^{-/-} islets. This however
317 did not translate to elevated basal insulin release, probably because F-actin fiber thickness
318 was also increased across β -cells, potentially acting as a barrier for unregulated granule
319 exocytosis (Mziaut et al., 2016). While DBP levels were much lower in β -cells compared to

320 α-cells, it could be argued that only small amounts are required to prevent actin
321 polymerization given the high binding affinity for monomeric actin (Mc Leod et al., 1989). By
322 contrast, the increase in glucose-stimulated insulin secretion seen in DBP^{-/-} islets is most
323 likely due to lack of α-cell shut-off at high glucose, expected to positively reinforce β-cell
324 function (Svendsen et al., 2018). Indeed, electrophysiological recordings showed that the
325 Na⁺ channel inactivation switch tended to be impaired in DBP^{-/-} α-cells. An alternative
326 mechanism might center on changes in glucose-stimulated actin remodelling in the β-cells
327 themselves, for example by gelsolin (Tomas, 2006), which severs actin filaments but in
328 competition with DBP.

329 Demonstrating the relevance of our studies for human disease, islets in pancreata
330 from individuals with late-onset or longstanding T1D consistently showed decreased DBP
331 expression, as well as a reduction in α-cell size. Super-resolution imaging showed that the
332 majority of glucagon granules in human α-cells also contained DBP, with a sharp decrease
333 in granular expression levels during T1D. A similar localization of DBP to secretory granules
334 was reported in human neutrophils, together with release of the protein into the extracellular
335 milieu (Kew et al., 1993). Since the GC transcriptional machinery is present in the α-cell, the
336 source of this DBP is likely from de novo synthesis. It is also plausible that DBP is
337 transported from the circulation into α-cells by megalin-mediated endocytosis, as reported in
338 the kidney (Nykjaer et al., 1999), and that either this process, or liver production of DBP, is
339 altered during T1D. However, it is difficult to envisage how endocytosis would lead to
340 accumulation of DBP specifically in glucagon granules.

341 Interestingly, no changes in DBP expression were found in early-onset T1D donors.
342 While the exact reasons for this are unknown, DBP was significantly lower in young versus
343 old control donors without T1D. These data suggest that DBP expression and thus α-cell
344 identity might not be fully specified until adolescence, meaning that DBP cannot be further
345 downregulated in early-onset T1D. These data raise a number of interesting questions
346 involving the known role of DBP as a novel autoantigen during T1D (Kodama et al., 2016).
347 For example, does DBP only act as an auto-antigen in late-onset T1D patients? Is the
348 decrease in DBP expression seen in late-onset T1D a consequence of auto-antigens, or
349 another unrelated mechanism? If DBP is an auto-antigen in T1D, why do α-cells not die, or
350 are the low DBP-expressing β-cells instead targeted? Could α-cells confer auto-immunity on
351 β-cells through paracrine DBP signaling? How do these findings relate to polymorphic
352 variants in GC, which are known to influence DBP action/levels, as well as 25(OH)D (Powe
353 et al., 2013)? Further systematic studies in autoantigen-positive and -negative early and
354 late-onset T1D donors, as well as individuals harboring GC risk alleles, will be required to
355 address these questions. Nonetheless, our studies suggest that, together with adoption of a
356 β-cell like transcriptional profile (Brissova et al., 2018), loss of DBP might contribute to the
357 impaired glucagon secretion reported in T1D (Brissova et al., 2018; Marchetti et al., 2000).

358 We acknowledge a number of limitations in the present study. Firstly, the animals
359 were globally deleted for DBP, which means that the effects of the protein specifically in α-
360 cells could not be examined. However, DBP is highly expressed in α-cells, which validates
361 our model. Moreover, use of DBP^{-/-} mice allowed us to uncover a hitherto underappreciated
362 role of DBP in regulating β-cell and δ-cell function, which might also be important from a
363 translational standpoint. In addition, a global deletion model would be more reflective of
364 studies in humans bearing homozygous deletion of GC (Henderson et al., 2019). Secondly,
365 although animals were fed a vitamin D-sufficient diet, we cannot completely exclude vitamin

366 D-dependent effects of DBP. Suggesting that this is unlikely to be the case, a single
367 individual harboring homozygous mutations in GC did not show symptoms consistent with
368 vitamin D deficiency despite almost undetectable plasma 25(OH)D levels (Henderson et al.,
369 2019). This argues for the free hormone hypothesis where DBP acts as a major vitamin D
370 reservoir but only low levels are required for biological effects (Chun et al., 2014). Thirdly,
371 morphometric analyses were based upon glucagon staining, which could lead to an
372 underestimation of α -cell size in T1D samples, especially if the fewer detectable granules
373 were not distributed evenly throughout the cytoplasm. Fourthly, although mice did not show
374 a clear phenotype, further studies are warranted using in vivo models of α -cell stress, for
375 example glucagon receptor antagonism to induce hyperplasia (Gu et al., 2009). Lastly, while
376 a causal role for DBP in α -cell dysfunction is suggested by mouse studies, we cannot
377 confidently assert the same in islets of human T1D donors where autoimmunity and species-
378 differences come into play.

379 In summary, we show that DBP is critical for maintaining α -cell phenotype and
380 glucagon secretion, with changes in expression apparent during late-onset and longstanding
381 T1D. The stage is now set for investigating more widely how DBP influences islet function
382 and disease risk in individuals with T1D and T2D.

383 **STAR METHODS**

384 **KEY RESOURCES TABLE**

385 **CONTACT FOR REAGENT AND RESOURCE SHARING**

386 Further information and requests for resources and reagents should be directed to and will
387 be fulfilled by the Lead Contact, David J. Hodson (d.hodson@bham.ac.uk).

388 **STUDY DESIGN**

389 No data were excluded unless the cells displayed a clear non-physiological state (i.e.
390 impaired viability), and all individual data points are reported in the figures. The
391 measurement unit is animal, batch of islets or donor, with experiments replicated
392 independently at least three times. Samples and animals were allocated to treatment groups
393 in a randomized manner to ensure that all states were represented in the different
394 experiment arms. Investigators were blinded to animal and donor identity both during the
395 experiment and subsequent analysis.

396 **EXPERIMENTAL MODEL AND SUBJECT DETAILS**

397 **Mouse models**

398 *DBP*^{-/-} mice were generated using a PGK-promoter/neomycin cassette to disrupt exon 5 of
399 the mouse *Gc* gene, as described (Safadi et al., 1999). We used these animals rather than
400 the KOMP repository strain (Gctm1^{(KOMP)Vlcg}; VG11723), since they have been subjected to
401 thorough phenotypic validation and show loss of serum DBP protein, as well as
402 25(OH)[³H]D₃ binding (Safadi et al., 1999). Animals were maintained in a specific-pathogen
403 free facility with ad lib access to regular chow (which contains 1000 U/kg cholecalciferol) and
404 water. All studies were performed with 6-15 week-old male and female animals, and
405 regulated by the Animals (Scientific Procedures) Act 1986 of the U.K. Approval was granted
406 by the University of Birmingham's Animal Welfare and Ethical Review Body.

407 **Human donors**

408 Formalin-fixed paraffin-embedded pancreata were obtained from the Exeter Archival
409 Diabetes Biobank (<http://foulis.vub.ac.be/>) or the Alberta Diabetes Institute IsletCore (quality
410 control and phenotyping data is available for each preparation (via www.isletcore.ca and
411 iidp.coh.org). Studies with human tissue were approved by the University of Birmingham
412 Ethics Committee, as well as the National Research Ethics Committee (REC reference
413 16/NE/0107, Newcastle and North Tyneside, U.K.). Donor characteristics are reported in
414 Table S1.

415 **METHOD DETAILS**

416 **Islet isolation and culture**

417 Animals were euthanized by a cervical dislocation, before isolation of islets using
418 collagenase digestion (1 mg/ml, SERVA NB8; amsbio Cat# 17456.01) and Histopaque or
419 Ficoll-Paque gradient separation. Islets were maintained at 37°C and 5% CO₂ in RPMI
420 medium containing 10% FCS, 100 units/mL penicillin, and 100 µg/mL streptomycin.

421 **Gene expression**

422 Relative mRNA abundance was determined using an Applied Biosystems 7500 or 7900HT
423 instrument and PowerUp SYBR Green Master Mix (Thermo Fisher Scientific Cat# A25742).
424 Fold-change mRNA expression was calculated versus *Ppia* by using the $2^{-\Delta\Delta Ct}$ method. For
425 primer sequences, see the Resource Table.

426 **Glucagon and insulin assays**

427 Batches of 10 islets were pre-incubated in either 10 mM or 3 mM glucose for 1 hour at 37°C
428 in buffer containing (in mmol/L) 120 NaCl, 4.8 KCl, 24 NaHCO₃, 0.5 Na₂HPO₄, 5 HEPES, 2.5
429 CaCl₂, 1.2 MgCl₂, and 3–17 D-glucose + 0.1% BSA. For glucagon secretion, islets were
430 incubated in 10 mM, 0.5 mM or 0.5 mM glucose + 5 µm epinephrine for 1 hour at 37°C.
431 Glucagon and insulin secreted into the supernatant was measured using specific
432 ultrasensitive HTRF assay (glucagon; Cisbio Cat# 62CGLPEG) (insulin; Cisbio Cat#
433 62IN2PEG). Total glucagon was measured from islets lysed in acid ethanol. Insulin was
434 measured similarly, but using batches of 10 islets sequentially incubated in 3 mM glucose,
435 17 mM glucose and 17 mM glucose + 10 mM KCl for 30 minutes at 37°C. In all cases,
436 values are normalized against total glucagon/insulin for each individual experiment to
437 account for differences in α-cell/β-cell proportion with treatment and islet size (Henquin,
438 2019).

439 **Immunostaining of mouse tissue**

440 Pancreata were fixed in 10% formalin overnight, before dehydration and wax embedding.
441 Sections were blocked with PBS-T + 1% BSA for 1 hour and incubated with primary
442 antibodies overnight at 4°C. Following washing in PBS-T + 0.1% BSA, secondary antibodies
443 were applied for 2 hours at room temperature. Primary antibodies were rabbit anti-insulin
444 1:500 (Cell Signaling Technology Cat# 3014, RRID:AB_2126503), guinea pig anti-insulin
445 1:50 (Abcam Cat# ab7842, RRID:AB_306130), mouse monoclonal anti-glucagon 1:2000
446 (Sigma-Aldrich Cat# G2654, RRID:AB_259852), rabbit anti-glucagon 1:100 (Sigma-Aldrich
447 Cat# SAB4501137, RRID:AB_10761583), mouse anti-somatostatin 1:1000 (Thermo Fisher
448 Scientific Cat#14-9751-80, RRID:AB_2572981), rabbit anti-DBP 1:1000 (Sigma-Aldrich Cat#
449 HPA019855, RRID:AB_1849545), guinea pig anti-PDX1 1:200 (Abcam Cat# ab47308,
450 RRID:AB_777178), rabbit anti-MafA 1:1000 (Bethyl laboratories Cat# IHC-00352,
451 RRID:AB_1279486), and mouse anti-PCNA 1:500 (Cell Signaling Technology Cat# 2586,
452 RRID:AB_2160343). We note that the rabbit anti-DBP antibody (Sigma-Aldrich Cat#
453 HPA019855, RRID:AB_1849545) was developed and validated by the Human Protein Atlas
454 project, passing multiple quality controls (https://www.proteinatlas.org/ENSG00000145321-GC/antibody#protein_array).

456 Secondary antibodies were goat anti-rabbit Alexa Fluor 633 (Thermo Fisher Scientific Cat#
457 A-21052, RRID:AB_2535719), goat anti-rabbit Alexa Fluor 488 (Thermo Fisher Scientific
458 Cat# R37116, RRID:AB_2556544), goat anti-guinea pig Alexa Fluor 488 (Thermo Fisher
459 Scientific Cat# A-11073, RRID:AB_2534117), goat anti-mouse Alexa Fluor 488 (Thermo
460 Fisher Scientific Cat# A-11029, RRID:AB_138404), goat anti-guinea pig Alexa Fluor 568
461 (Thermo Fisher Scientific Cat# A-11075, RRID:AB_2534119) 1:1000. Fixed islets were
462 incubated with Phalloidin-488 (Abcam Cat# ab176753) and DNaseI-594 (Invitrogen Cat#
463 D12372) for 2 hours at room temperature to stain F-actin and G-actin.

464 Images were captured using either Zeiss LSM780 or LSM880 meta-confocal microscopes,
465 the latter equipped with an Airyscan super-resolution module. Excitation was delivered at $\lambda =$
466 488 nm, $\lambda =$ 568 and $\lambda =$ 633 nm for Alexa Fluor 488, Alexa Fluor 568 and Alexa Fluor 633,
467 respectively. Emitted signals were detected using a GaAsP PMT detector at $\lambda =$ 498–559,
468 nm $\lambda =$ 568–629 and $\lambda =$ 633–735 nm for Alexa Fluor 488, Alexa Fluor 568 and Alexa Fluor
469 633, respectively. Super-resolution images were subjected to online deconvolution
470 processing using Zen Black (Zeiss Microscopy).

471 **Immunostaining of human tissue**

472 Tissue was obtained from individuals with T1D and their age-matched controls. Donor
473 details are provided in Table S1. Samples were dewaxed and rehydrated before antigen
474 retrieval and blocking with 5% normal goat serum. Primary antibodies were guinea pig anti-
475 insulin 1:700 (Agilent Cat# A0564, RRID:AB_10013624), mouse anti-glucagon 1:2000
476 (Abcam Cat# ab10988, RRID:AB_297642) or mouse monoclonal anti-glucagon 1:2000
477 (Sigma-Aldrich Cat# G2654, RRID:AB_259852), and rabbit anti-DBP 1:500 (Sigma-Aldrich
478 Cat# HPA019855, RRID:AB_1849545). Secondary antibodies were goat anti-guinea pig
479 Alexa Fluor 647 (Thermo Fisher Scientific Cat# A-21450, RRID:AB_2735091), goat anti-
480 mouse Alexa Fluor 555 (Thermo Fisher Scientific Cat# A-11075, RRID:AB_2534119), and
481 goat anti-rabbit Alexa Fluor 488 at 1:400 (Thermo Fisher Scientific Cat# R37116,
482 RRID:AB_2556544).

483 Images were captured using Zeiss LSM780 and LSM880 meta-confocal microscopes, as
484 above. Excitation was delivered at $\lambda =$ 488 nm, $\lambda =$ 568 nm and $\lambda =$ 633 nm for Alexa Fluor
485 488, Alexa Fluor 555 and Alexa Fluor 647 nm, respectively. Emitted signals were detected
486 using a GaAsP PMT detector at $\lambda =$ 498–561 nm, $\lambda =$ 564–617 nm and $\lambda =$ 641–691 nm for
487 Alexa Fluor 488, Alexa Fluor 555 and Alexa Fluor 647 nm, respectively.

488 **Analysis of α -cell and β -cell mass**

489 Pancreatic sections for determination of α -cell and β -cell mass were stained as above,
490 before scanning and digitization using a Zeiss Axio Scan.Z1. Excitation was delivered at $\lambda =$
491 453–485 nm and $\lambda =$ 590–650 nm for Alexa Fluor 488 and Alexa Fluor 647, respectively.
492 Emitted signals were detected using an Orca Flash 4.0 at $\lambda =$ 507–546 nm and $\lambda =$ 663–738
493 nm for Alexa Fluor 488 and Alexa Fluor 647, respectively. Overall 408 separate images were
494 captured for each pancreas section using a 20 x / 0.8 NA objective, before compilation into a
495 single image using Zen lite 2012.

496 **Ca²⁺ imaging**

497 Islets were loaded with Fura2 (HelloBio HB0780-1mg) before imaging using a Crest X-Light
498 spinning disk system coupled to a Nikon Ti-E base and 10 x / 0.4 air objective. Excitation
499 was delivered at $\lambda =$ 340 nm and $\lambda =$ 385 nm using a FuraLED system, with emitted signals
500 detected at $\lambda =$ 470–550 nm. Traces were presented as the emission ratio at 340 nm and
501 385 nm (i.e. 340/385). HEPES-bicarbonate buffer was used, containing (in mmol/L) 120
502 NaCl, 4.8 KCl, 24 NaHCO₃, 0.5 Na₂HPO₄, 5 HEPES, 2.5 CaCl₂, 1.2 MgCl₂, and 0.5–17 D-
503 glucose.

504 **Electrophysiology**

505 Whole-cell currents were recorded in intact islets using the standard whole-cell
506 configuration, as previously described (Briant et al., 2018). Measurements were performed
507 using an EPC-10 patch-clamp amplifier and Patchmaster software (HEKA Electronics).
508 Currents were filtered at 2.9 kHz and digitized at more than 10 kHz. Currents were
509 compensated for capacitive transients and leak current subtraction was conducted. The
510 extracellular solution consisted of (in mM) 138 NaCl, 5.6 KCl, 1.2 MgCl₂, 5 HEPES (pH 7.4
511 with NaOH), 2.6 CaCl₂ and 1 D-glucose. The intracellular solution contained (mM) 125 KCl,
512 1 CaCl₂, 1 MgCl₂, 5 HEPES, 3 MgATP and 10 EGTA (KOH buffered). All chemicals were
513 from Sigma-Aldrich UK. Recordings with an access resistance of < 50 mΩ were used for
514 analysis in MATLAB. The logistic regression model identifying cell type was implemented in
515 MATLAB as previously described (Briant et al., 2017a).

516 QUANTIFICATION AND STATISTICAL ANALYSIS

517 Correlation analysis

518 Correlation analysis was performed using matrix binarization analyses (Hodson et al., 2012).
519 Intensity over time traces were smoothed using Hilbert-Huang empirical mode
520 decomposition, and a 20% threshold used to binarize cells according to activity status. Co-
521 activity was assessed using the equation $C_{ij} = T_{ij}/\sqrt{T_i T_j}$ where C is a correlation coefficient, T_i
522 and T_j is the period spent ON for each cell, and T_{ij} is the period both cells spend on together.
523 Significance (P<0.01) was calculated versus the randomized dataset using a permutation
524 step based. Highly connected cells were identified based on their position (60-100% range)
525 within a probability-distribution, before construction of functional connectivity using link
526 number and Euclidean coordinates.

527 Image analysis

528 F-actin, G-actin and DBP expression levels were analyzed using integrated density (area x
529 mean fluorescence intensity), which accounts for the influence of cell size on fluorophore
530 emission intensity for a given pixel (i.e. intensity of *n* fluorescent molecules will increase as a
531 function of area⁻¹). Corrected total cell fluorescence (CTCF) was then calculated as follows:
532 integrated density – (area of selected cell x mean background fluorescence) (Gavet and
533 Pines, 2010). Quantification of α-cell, β-cell and δ-cell area and number was performed on
534 binarized images using ImageJ (NIH) and Threshold, Nucleus Counter and Particle Analysis
535 plugins.

536 Glucagon granule distribution was analyzed using the G-function, which measures the
537 distance from any position to the nearest object of interest compared to a random
538 distribution of the same measured objects (FIJI Spatial Statistic 2D/3D plugin) (Zimmer et
539 al., 2010). A left shift away from the mean +/- 95% confidence intervals indicates a less
540 random or more clustered organization.

541 Linear adjustments to brightness and contrast were applied to representative images, with
542 intensity values maintained between samples to allow accurate cross-comparison. For
543 super-resolution images, the following FIJI look-up-tables were used: NanoJ-Orange, cyan
544 and magenta.

545 Statistical analysis

546 Data normality was assessed using D'Agostino-Person test. Unpaired/paired Students t-test
547 or Mann-Whitney test were used for pairwise comparisons. Multiple interactions were
548 determined using one-way or two-way ANOVA followed by Tukey's, Dunnett's, Bonferroni's
549 or Sidak's post-hoc tests (accounting for degrees of freedom). Analyses were conducted
550 using GraphPad Prism or Excel software

551 **Data availability**

552 The datasets generated and/or analyzed during the current study are available from the
553 corresponding author upon reasonable request.

554

555 **REFERENCES**

556 Ackermann, A.M., Wang, Z., Schug, J., Naji, A., and Kaestner, K.H. (2016). Integration of
557 ATAC-seq and RNA-seq identifies human alpha cell and beta cell signature genes. *Mol
558 Metab* 5, 233-244.

559 Adriaenssens, A.E., Svendsen, B., Lam, B.Y.H., Yeo, G.S.H., Holst, J.J., Reimann, F., and
560 Gribble, F.M. (2016). Transcriptomic profiling of pancreatic alpha, beta and delta cell
561 populations identifies delta cells as a principal target for ghrelin in mouse islets. *Diabetologia*
562 59, 2156-2165.

563 Baier, L.J., Dobberfuhl, A.M., Pratley, R.E., Hanson, R.L., and Bogardus, C. (1998).
564 Variations in the Vitamin D-Binding Protein (GcLocus) Are Associated with Oral Glucose
565 Tolerance in Nondiabetic Pima Indians. *The Journal of Clinical Endocrinology & Metabolism*
566 83, 2993-2996.

567 Bikle, Daniel D. (2014). Vitamin D Metabolism, Mechanism of Action, and Clinical
568 Applications. *Chem. Biol.* 21, 319-329.

569 Blanton, D., Han, Z., Bierschenk, L., Linga-Reddy, M.V.P., Wang, H., Clare-Salzler, M.,
570 Haller, M., Schatz, D., Myhr, C., She, J.X., et al. (2011). Reduced Serum Vitamin D-Binding
571 Protein Levels Are Associated With Type 1 Diabetes. *Diabetes* 60, 2566-2570.

572 Briant, L.J., Zhang, Q., Vergari, E., Kellard, J.A., Rodriguez, B., Ashcroft, F.M., and
573 Rorsman, P. (2017a). Functional identification of islet cell types by electrophysiological
574 fingerprinting. *J R Soc Interface* 14.

575 Briant, L.J.B., Reinbothe, T.M., Spiliotis, I., Miranda, C., Rodriguez, B., and Rorsman, P.
576 (2018). delta-cells and beta-cells are electrically coupled and regulate alpha-cell activity via
577 somatostatin. *J Physiol* 596, 197-215.

578 Briant, L.J.B., Zhang, Q., Vergari, E., Kellard, J.A., Rodriguez, B., Ashcroft, F.M., and
579 Rorsman, P. (2017b). Functional identification of islet cell types by electrophysiological
580 fingerprinting. *J. Royal Soc. Interface* 14.

581 Brissova, M., Haliyur, R., Saunders, D., Shrestha, S., Dai, C., Blodgett, D.M., Bottino, R.,
582 Campbell-Thompson, M., Aramandla, R., Poffenberger, G., et al. (2018). α Cell Function and
583 Gene Expression Are Compromised in Type 1 Diabetes. *Cell Reports* 22, 2667-2676.

584 Chun, R.F., Peercy, B.E., Orwoll, E.S., Nielson, C.M., Adams, J.S., and Hewison, M. (2014).
585 Vitamin D and DBP: The free hormone hypothesis revisited. *The Journal of Steroid
586 Biochemistry and Molecular Biology* 144, 132-137.

587 Cigliola, V., Ghila, L., Thorel, F., van Gurp, L., Baronnier, D., Oropeza, D., Gupta, S.,
588 Miyatsuka, T., Kaneto, H., Magnuson, M.A., et al. (2018). Pancreatic islet-autonomous
589 insulin and smoothened-mediated signalling modulate identity changes of glucagon+ α -cells.
590 *Nat. Cell Biol.* 20, 1267-1277.

591 Dominguez, R., and Holmes, K.C. (2011). Actin Structure and Function. *Annual Review of
592 Biophysics* 40, 169-186.

593 Feldman, D., Pike, J.W., Bouillon, R., Giovannucci, E., Goltzman, D., and Hewison, M.
594 (2017). Vitamin D.

595 Gavet, O., and Pines, J. (2010). Progressive activation of CyclinB1-Cdk1 coordinates entry
596 to mitosis. *Dev. Cell* 18, 533-543.

597 Gedik, O., and Akalin, S. (1986). Effects of vitamin D deficiency and repletion on insulin and
598 glucagon secretion in man. *Diabetologia* 29, 142-145.

599 Gerich, J.E., Langlois, M., Noacco, C., Karam, J.H., and Forsham, P.H. (1973). Lack of
600 glucagon response to hypoglycemia in diabetes: evidence for an intrinsic pancreatic alpha
601 cell defect. *Science* 182, 171-173.

602 Gu, W., Yan, H., Winters, K.A., Komorowski, R., Vonderfecht, S., Atangan, L., Sivits, G., Hill,
603 D., Yang, J., Bi, V., et al. (2009). Long-Term Inhibition of the Glucagon Receptor with a
604 Monoclonal Antibody in Mice Causes Sustained Improvement in Glycemic Control, with
605 Reversible α -Cell Hyperplasia and Hyperglucagonemia. *J. Pharmacol. Exp. Ther.* 331, 871-
606 881.

607 Harper, K.D., McLeod, J.F., Kowalski, M.A., and Haddad, J.G. (1987). Vitamin D binding
608 protein sequesters monomeric actin in the circulation of the rat. *J. Clin. Invest.* 79, 1365-
609 1370.

610 Henderson, C.M., Fink, S.L., Bassyouni, H., Argiropoulos, B., Brown, L., Laha, T.J.,
611 Jackson, K.J., Lewkonia, R., Ferreira, P., Hoofnagle, A.N., et al. (2019). Vitamin D-Binding
612 Protein Deficiency and Homozygous Deletion of the GC Gene. *N. Engl. J. Med.* 380, 1150-
613 1157.

614 Henquin, J.-C. (2019). The challenge of correctly reporting hormones content and secretion
615 in isolated human islets. *Molecular Metabolism*.

616 Hirai, M., Suzuki, S., Hinokio, Y., Hirai, A., Chiba, M., Akai, H., Suzuki, C., and Toyota, T.
617 (2000). Variations in Vitamin D-Binding Protein (Group-Specific Component Protein) Are
618 Associated with Fasting Plasma Insulin Levels in Japanese with Normal Glucose
619 Tolerance1. *The Journal of Clinical Endocrinology & Metabolism* 85, 1951-1953.

620 Hodson, D.J., Schaeffer, M., Romano, N., Fontanaud, P., Lafont, C., Birkenstock, J., Molino,
621 F., Christian, H., Lockey, J., Carmignac, D., et al. (2012). Existence of long-lasting
622 experience-dependent plasticity in endocrine cell networks. *Nat. Commun.* 3, 605.

623 Hutchens, T., and Piston, D.W. (2015). EphA4 Receptor Forward Signaling Inhibits
624 Glucagon Secretion From alpha-Cells. *Diabetes* 64, 3839-3851.

625 Iyengar, S., Hamman, R.F., Marshall, J.A., Majumder, P.P., Ferrell, R.E., Rao, D.C., and
626 Vogler, G.P. (1989). On the role of vitamin D binding globulin in glucose homeostasis:
627 Results from the San Luis Valley diabetes study. *Genet. Epidemiol.* 6, 691-698.

628 Kalwat, M.A., and Thurmond, D.C. (2013). Signaling mechanisms of glucose-induced F-actin
629 remodeling in pancreatic islet β cells. *Exp. Mol. Med.* 45, e37-e37.

630 Kew, R.R., Sibug, M.A., Liuzzo, J.P., and Webster, R.O. (1993). Localization and
631 quantitation of the vitamin D binding protein (Gc- globulin) in human neutrophils. *Blood* 82,
632 274-283.

633 Kodama, K., Zhao, Z., Toda, K., Yip, L., Fuhlbrigge, R., Miao, D., Fathman, C.G., Yamada,
634 S., Butte, A.J., and Yu, L. (2016). Expression-Based Genome-Wide Association Study Links
635 Vitamin D-Binding Protein With Autoantigenicity in Type 1 Diabetes. *Diabetes* 65, 1341-
636 1349.

637 Kuo, T., Damle, M., González, B.J., Egli, D., Lazar, M.A., and Accili, D. (2019). Induction of a
638 cell-restricted Gc in dedifferentiating β cells contributes to stress-induced β cell dysfunction.
639 *JCI Insight* 4.

640 Lam, C.J., Chatterjee, A., Shen, E., Cox, A.R., and Kushner, J.A. (2019). Low-Level Insulin
641 Content Within Abundant Non- β Islet Endocrine Cells in Long-standing Type 1 Diabetes.
642 *Diabetes* 68, 598-608.

643 Malik, S., Fu, L., Juras, D.J., Karmali, M., Wong, B.Y.L., Gozdzik, A., and Cole, D.E.C.
644 (2013). Common variants of the vitamin D binding protein gene and adverse health
645 outcomes. *Crit. Rev. Clin. Lab. Sci.* 50, 1-22.

646 Marchetti, P., Dotta, F., Ling, Z., Lupi, R., Del Guerra, S., Santangelo, C., Realacci, M.,
647 Marselli, L., Di Mario, U., and Navalesi, R. (2000). Function of pancreatic islets isolated from
648 a type 1 diabetic patient. *Diabetes Care* 23, 701-703.

649 Mc Leod, J.F., Kowalski, M.A., and Haddad, J.G., Jr. (1989). Interactions among serum
650 vitamin D binding protein, monomeric actin, profilin, and profilactin. *J. Biol. Chem.* 264,
651 1260-1267.

652 Mziaut, H., Mulligan, B., Hoboth, P., Otto, O., Ivanova, A., Herbig, M., Schumann, D.,
653 Hildebrandt, T., Dehghany, J., Sönmez, A., et al. (2016). The F-actin modifier villin regulates
654 insulin granule dynamics and exocytosis downstream of islet cell autoantigen 512. *Molecular
655 Metabolism* 5, 656-668.

656 Nykjaer, A., Dragun, D., Walther, D., Vorum, H., Jacobsen, C., Herz, J., Melsen, F.,
657 Christensen, E.I., and Willnow, T.E. (1999). An Endocytic Pathway Essential for Renal
658 Uptake and Activation of the Steroid 25-(OH) Vitamin D3. *Cell* 96, 507-515.

659 Otterbein, L.R., Cosio, C., Graceffa, P., and Dominguez, R. (2002). Crystal structures of the
660 vitamin D-binding protein and its complex with actin: structural basis of the actin-scavenger
661 system. *Proc. Natl. Acad. Sci. U. S. A.* 99, 8003-8008.

662 Pollard, T.D., and Cooper, J.A. (2009). Actin, a Central Player in Cell Shape and Movement.
663 *Science* 326, 1208-1212.

664 Powe, C.E., Evans, M.K., Wenger, J., Zonderman, A.B., Berg, A.H., Nalls, M., Tamez, H.,
665 Zhang, D., Bhan, I., Karumanchi, S.A., et al. (2013). Vitamin D-Binding Protein and Vitamin
666 D Status of Black Americans and White Americans. *N. Engl. J. Med.* 369, 1991-2000.

667 Qiu, W.-L., Zhang, Y.-W., Feng, Y., Li, L.-C., Yang, L., and Xu, C.-R. (2017). Deciphering
668 Pancreatic Islet β Cell and α Cell Maturation Pathways and Characteristic Features at the
669 Single-Cell Level. *Cell Metab.* 25, 1194-1205.e1194.

670 Reissaus, C.A., and Piston, D.W. (2017). Reestablishment of Glucose Inhibition of Glucagon
671 Secretion in Small Pseudoislets. *Diabetes* 66, 960-969.

672 Safadi, F.F., Thornton, P., Magiera, H., Hollis, B.W., Gentile, M., Haddad, J.G., Liebhaber,
673 S.A., and Cooke, N.E. (1999). Osteopathy and resistance to vitamin D toxicity in mice null
674 for vitamin D binding protein. *J. Clin. Invest.* 103, 239-251.

675 Segerstolpe, Å., Palasantza, A., Eliasson, P., Andersson, E.-M., Andréasson, A.-C., Sun, X.,
676 Picelli, S., Sabirsh, A., Clausen, M., Bjursell, M.K., et al. (2016). Single-Cell Transcriptome
677 Profiling of Human Pancreatic Islets in Health and Type 2 Diabetes. *Cell Metab.* 24, 593-
678 607.

679 Shuai, H., Xu, Y., Yu, Q., Gylfe, E., and Tengholm, A. (2016). Fluorescent protein vectors for
680 pancreatic islet cell identification in live-cell imaging. *Pflügers Archiv - European Journal of
681 Physiology* 468, 1765-1777.

682 Spector, I., Shochet, N., Kashman, Y., and Graweiss, A. (1983). Latrunculins: novel marine
683 toxins that disrupt microfilament organization in cultured cells. *Science* 219, 493-495.

684 Svendsen, B., Larsen, O., Gabe, M.B.N., Christiansen, C.B., Rosenkilde, M.M., Drucker,
685 D.J., and Holst, J.J. (2018). Insulin Secretion Depends on Intra-islet Glucagon Signaling.
686 *Cell Reports* 25, 1127-1134.e1122.

687 Szathmary, E.J. (1987). The effect of Gc genotype on fasting insulin level in Dogrib Indians.
688 *Hum. Genet.* 75, 368-372.

689 Tian, G., Sandler, S., Gylfe, E., and Tengholm, A. (2011). Glucose- and hormone-induced
690 cAMP oscillations in alpha- and beta-cells within intact pancreatic islets. *Diabetes* 60, 1535-
691 1543.

692 Tomas, A. (2006). Regulation of pancreatic α -cell insulin secretion by actin cytoskeleton
693 remodelling: role of gelsolin and cooperation with the MAPK signalling pathway. *J. Cell Sci.*
694 119, 2156-2167.

695 Vierra, N.C., Dickerson, M.T., Jordan, K.L., Dadi, P.K., Katdare, K.A., Altman, M.K., Milian,
696 S.C., and Jacobson, D.A. (2018). TALK-1 reduces delta-cell endoplasmic reticulum and
697 cytoplasmic calcium levels limiting somatostatin secretion. *Molecular Metabolism* 9, 84-97.

698 von Herrath, M.G., Bonnet-Serrano, F., Diedisheim, M., Mallone, R., and Langer, E. (2018).
699 Decreased α -cell mass and early structural alterations of the exocrine pancreas in patients
700 with type 1 diabetes: An analysis based on the nPOD repository. *PLoS ONE* 13.

701 Wang, G., Li, Y., Li, L., Yu, F., Cui, L., Ba, Y., Li, W., and Wang, C. (2014). Association of
702 the vitamin D binding protein polymorphisms with the risk of type 2 diabetes mellitus: a
703 meta-analysis. *BMJ Open* 4, e005617.

704 White, P., and Cooke, N. (2000). The multifunctional properties and characteristics of
705 vitamin D-binding protein. *Trends Endocrinol. Metab.* 11, 320-327.

706 Zhang, Q., Ramracheya, R., Lahmann, C., Tarasov, A., Bengtsson, M., Braha, O., Braun,
707 M., Brereton, M., Collins, S., Galvanovskis, J., et al. (2013). Role of KATP channels in
708 glucose-regulated glucagon secretion and impaired counterregulation in type 2 diabetes.
709 *Cell Metab.* 18, 871-882.

710 Zimmer, C., Andrey, P., Kiêu, K., Kress, C., Lehmann, G., Tirichine, L., Liu, Z., Biot, E.,
711 Adenot, P.-G., Hue-Beauvais, C., et al. (2010). Statistical Analysis of 3D Images Detects
712 Regular Spatial Distributions of Centromeres and Chromocenters in Animal and Plant
713 Nuclei. *PLoS Comput. Biol.* 6, e1000853.

715 **ACKNOWLEDGMENTS**

716 D.J.H. was supported by MRC (MR/N00275X/1 and MR/S025618/1) and Diabetes UK
717 (17/0005681) Project Grants. This project has received funding from the European Research
718 Council (ERC) under the European Union's Horizon 2020 research and innovation
719 programme (Starting Grant 715884 to D.J.H.). L.J.B.B. was supported by a Sir Henry
720 Wellcome Postdoctoral Fellowship (Wellcome Trust, 201325/Z/16/Z) and a Junior Research
721 Fellowship from Trinity College, Oxford. P.E.M. was funded by a Foundation Grant from the
722 Canadian Institutes of Health Research (grant 148451). N.G.M. and S.J.R. were supported
723 by Diabetes UK (15/0005156 and 16/0005480), MRC (MR/P010695/1) and JDRF (2-SRA-
724 2018-474-S-B) Project Grants. The authors thank the Human Organ Procurement and
725 Exchange and Trillium Gift of Life Network programs for their efforts in procuring pancreases
726 for research at the Alberta Diabetes Institute.

727 **AUTHOR CONTRIBUTIONS**

728 K.V., D.N., D.L., N.H.F., F.A., M.J.R. and G.dS.X. performed in vitro experiments and
729 analyzed data. K.V., S.H., D.L. G.G.L., performed in vivo studies and analyzed data. L.J.B.B.
730 performed electrophysiological studies and analyzed data. J.E.M.F. and P.E.M. provided
731 human pancreas samples. I.A. performed bioinformatic analysis. K.V., D.J.H., C.F., N.G.M.
732 and S.J.R. performed immunohistochemical analysis of human samples.. M.H. and D.J.H.
733 conceived, designed and supervised the studies. K.V., M.H. and D.J.H. wrote the paper with
734 input from all authors.

735 **COMPETING INTERESTS**

736
737 All authors declare no competing interests.

738 **DATA AVAILABILITY**

739 All data necessary to understand, assess and extend the conclusions of the manuscript are
740 available upon reasonable request.

741 **FIGURE LEGENDS**

742 **Figure 1: Phenotypic assessment of DBP^{-/-} mice.**

743 (A) Representative fluorescence immunohistochemistry image showing localization of DBP
744 to α -cells and its specific loss in DBP^{-/-} animals (scale bar = 34 μ m, top and middle panels)
745 (scale bar = 12 μ m, bottom panel) (n = 3-4 animals).

746 (B) As for (A), but non-fluorescent DAB staining in DBP^{+/+} and DBP^{-/-} pancreatic sections
747 (scale bar = 40 μ m) (n = 2-3 animals).

748 (C) Fluorescence immunohistochemistry showing DBP staining of β -cells, which is absent in
749 pancreatic sections from DBP^{-/-} animals. Due to the relative strength of DBP expression in α -
750 cells, the images have been overexposed to allow visualization of DBP in the non α -cell
751 compartment (representative images are shown) (scale bar = 85 μ m) (n = 13 islets, 3
752 animals).

753 (D) Expression of Gc, which encodes DBP, is barely detectable in DBP^{-/-} islets using
754 Taqman assays (n = 4-5 animals).

755 (E and F) Serum 25(OH)D (D) and 1,25(OH)2D (E) levels are ~2-fold and 4-fold lowered in
756 DBP^{+/+} and DBP^{-/-} animals, respectively (n = 4-6 animals) (one-way ANOVA with
757 Bonferroni's multiple comparisons test).

758 (G and H) Glucose tolerance curves (G) and AUC (H) are similar in DBP^{+/+} and DBP^{-/-} mice
759 (n = 7-11 animals) (two-way repeated measure ANOVA with Bonferroni's multiple
760 comparisons test, or unpaired t-test).

761 (I and J) Insulin sensitivity is similar in DBP^{+/+} and DBP^{-/-} mice (I), as also shown by the AUC
762 (J) (n = 11 animals) (two-way repeated measure ANOVA with Bonferroni's multiple
763 comparisons test, or unpaired t-test).

764 (K and L) Pyruvate tolerance (K) and body weight/growth curve (L) is similar in DBP^{+/+} and
765 DBP^{-/-} mice (n = 3-4) (two-way repeated measure ANOVA or unpaired t-test).

766 Line graphs show mean \pm SEM. Bar graphs show scatter plot with mean \pm SEM. *P<0.05,
767 **P<0.01 and NS, non-significant. DBP, Vitamin D-binding protein; DAB, 3,3'-
768 Diaminobenzidine; GLU, glucagon; AUC, area-under-the-curve (AUC).

769

770 **Figure 2: DBP alters α -cell and β -cell number and size.**

771 (A and B) Cell resolution reconstruction of pancreatic sections reveals no differences in α -
772 cell and β -cell mass in DBP^{+/+} and DBP^{-/-} mice (A), quantified in bar graph (B) (scale bar =
773 530 μ m) (representative images are shown; inset is a zoom showing maintenance of cellular
774 resolution in a single image) (n = 9-12 sections from 3-4 animals) (unpaired t-test).

775 (C-I) Morphological analyses of DBP^{-/-} islets (C) reveal increased α -cell number (D),
776 decreased α -cell size (E, representative images shown in right panel) but normal area
777 occupied (F). By contrast, β -cell number is increased (G), although β -cell size (H,
778 representative images shown in right panel) and area (I) are unchanged (scale bar in D = 85
779 μ m; scale bar in E and H = 10 μ m) (n = 24-45 islets from 3-4 animals) (panel E and H are
780 zooms of panel C to better show α -cell and β -cell size) (DAPI is shown in blue) (unpaired t-
781 test).

782 (J-M) δ -cell proportion (J and K) (n = 55–79 islets from 4-5 animals) and size (L and M) (n =
783 29-30 islets from 3 animals) are decreased in DBP^{-/-} islets (scale bar in J = 85 μ m; scale bar
784 in L = 10 μ m) (representative images are shown; panel L is a zoom of panel J to better show
785 δ -cell cell size) (unpaired t-test).

786 (N) Expression levels of the α -cell differentiation markers *Arx*, *Pax6* and *Pou3f4* are similar
787 in DBP^{+/+} and DBP^{-/-} islets (n = 3-6 animals) (one-way ANOVA with Bonferroni's multiple
788 comparisons test).

789 (O-Q) No changes in the proportion of α -cells expressing PDX1 (O and P) or MAFA (O and
790 Q) are detected in pancreatic sections from DBP^{-/-} versus DBP^{+/+} islets (scale bar = 85 μ m)
791 (representative images are shown) (n = 17-27 islets from 3 animals) (unpaired t-test).

792 (R) DBP is expressed in a subpopulation of δ -cells (arrows show SST+/DBP+ cells) (n = 3
793 animals) (scale bar = 85 μ m).

794 (S) The δ -cell differentiation markers *Hhex* and *Ghsr* are not significantly downregulated in
795 DBP^{-/-} islets (n = 3-6 animals) (one-way ANOVA with Bonferroni's multiple comparisons test).

796 Bar graphs show scatter plot with mean \pm SEM. *P<0.05, **P<0.01 and NS, non-significant.
797 DBP, Vitamin D-binding protein; GLU, glucagon; NS, insulin; SST, somatostatin.

798

799 **Figure 3: Dysregulated α -cell, β -cell and δ -cell function in islets lacking DBP.**

800 (A and B) Proportion of α -cells active at low (0.5 mM) glucose is decreased in DBP^{-/-} islets
801 (A), although Ca²⁺ amplitude is increased in responsive cells (B) (n = 46-30 islets, 4 animals)
802 (Mann-Whitney test).

803 (C) Representative images (left) and traces (right) showing loss of α -cell activation in DBP^{-/-}
804 islets (scale bar = 40 μ m) (n = 46-30 islets, 4 animals).

805 (D) Coordinated α -cell responses to low glucose are impaired in DBP^{-/-} islets (white box
806 shows an episode of coordinated activity) (n = 8 islets, 4 animals) (unpaired t-test).

807 (E) Topology of coordinated α -cells is similar in DBP^{-/-} versus DBP^{+/+} islets (n = 8 islets, 4
808 animals) (unpaired t-test).

809 (F-H) Proportion of β -cells active at low (0.5 mM) (F) glucose is increased in DBP^{-/-} islets,
810 despite intact responses to high (17 mM) glucose (G and H) (n = 27-29 islets, 4 animals)
811 (unpaired t-test).

812 (I-K) More δ -cells are active at 5 mM glucose in DBP^{-/-} compared to DBP^{+/+} islets (I and J),
813 mounting Ca²⁺ spikes with a tendency toward increased amplitude (K) (representative Ca²⁺
814 images and traces are shown) (scale bar = 40 μ m) (n = 28-29 islets, 4 animals) (unpaired t-
815 test).

816 (L) Representative patch-clamp recordings of α -cells (left) showing increased Na⁺
817 conductance in DBP^{+/+} islets (right) (n = 17-22 cells, 3 animals) (unpaired t-test).

818 (M-O) Sigmoid plots of raw current data showing calculation of slope factor and half-maximal
819 voltage ($V_{1/2}$) for two cells (M). Summary data show a tendency toward increased slope
820 factor for Na⁺ channel inactivation (N), but unchanged half maximal voltage (O) in DBP^{-/-}
821 versus to DBP^{+/+} α -cells (n = 17-22 cells, 3 animals) (Mann-Whitney test).

822 (P) Electrophysiological fingerprinting reveals decreased and increased probability of cells
823 resembling an α -cell or δ -cell, respectively, in DBP^{-/-} islets (n = 17-22 cells, 3 animals)
824 (Mann-Whitney test).

825 (Q) α -cell capacitance is significantly reduced in DBP^{-/-} islets (n = 17-22 cells, 3 animals)
826 (unpaired t-test).

827 (R) Glucagon secretion is impaired in DBP^{-/-} islets in response to low (0.5 mM) glucose and
828 low (0.5 mM) glucose + epinephrine (data are shown normalized to content or as fold-
829 change) (n = 13-14 replicates, 10 animals) (two-way ANOVA with Bonferroni's multiple
830 comparisons test, or unpaired t-test).

831 (S) Glucagon content is similar in DBP^{+/+} and DBP^{-/-} islets (n = 12 replicates, 8 animals)
832 (unpaired t-test).

833 (T) Insulin secretion in response to high (17 mM) glucose or high (17 mM) glucose + KCl is
834 increased in DBP^{-/-} islets (data are shown normalized to content or as fold-change) (n = 12-
835 13 replicates, 3 animals) (two-way ANOVA with ANOVA with Bonferroni's multiple
836 comparisons test, or unpaired t-test).

837 (U) Insulin content is similar in DBP^{+/+} and DBP^{-/-} islets (n = 14 replicates, 3 animals)
838 (unpaired t-test).

839 Bar graphs show scatter plot with mean \pm SEM. *P<0.05, **P<0.01 and NS, non-significant.
840 DBP, Vitamin D-binding protein.

841

842 **Figure 4: DBP scavenges actin in the islet and maintains glucagon granule
843 morphology.**

844 (A-C) F-actin expression is increased following loss of DBP (A), quantified using
845 fluorescence intensity (B) and fiber thickness (C) (representative images are shown) (scale
846 bar = 53 μ m) (n = 23 islets, 3 animals) (unpaired t-test).

847 (D and E) As for (A-C), but representative images (D) and summary bar graph (E) showing
848 decreased G-actin monomer expression (scale bar = 34 μ m) (n = 19-25 islets, 5 animals)
849 (unpaired t-test).

850 (F and G) Representative super-resolution (~ 140 nm lateral resolution) snapshots of
851 glucagon granules (F), showing a 20% decrease in size (G) (magnified images from (F) are
852 shown above each bar) (scale bar = 6 μ m) (n = 13-15 islets, 3-4 animals) (unpaired t-test).

853 (H and I) G-function analysis on actual and simulated glucagon granule distribution showing
854 that glucagon granules tend to more diffusely scattered in DBP^{-/-} islets (actual and simulated
855 distribution is inset).

856 (J and K) Representative images (J) and bar graph (K) showing that F-actin levels in DBP^{-/-}
857 islets can be restored to DBP^{+/+} levels using 0.3-1.25 μ M Latrunculin B (scale bar = 53 μ m)
858 (n = 5-16 islets, 1-2 animals) (one-way ANOVA with Dunnett's post hoc test).

859 (L and M) Representative images (L) and summary bar graph (M) showing that 0.3 μ M
860 Latrunculin B rescues α -cell responses to low glucose in DBP^{-/-} islets (scale bar = 25 μ m) (n
861 = 11-12 islets, 3-4 animals).

862 Bar graphs show scatter plot with mean \pm SEM. *P<0.05, **P<0.01 and NS, non-significant.
863 DBP, Vitamin D-binding protein; GLU, glucagon; INS, insulin; Latrun B, Latrunculin B.

864

865 **Figure 5: DBP expression is decreased in late-onset and longstanding type 1**
866 **diabetes.**

867 (A) Fluorescent immunohistochemistry showing strong expression of DBP in the α -cell
868 compartment in human islets (inset shows a zoomed image) (n = 7 control donors).

869 (B-E) Glucagon staining decreases slightly (B and C) in islets of donors with early-onset
870 (<13 yrs old) T1D, but this is not associated with changes in DBP expression (B and D), or
871 proportion of DBP+/GLU+ α -cells (E) (representative images are shown) (inset shows a
872 zoomed image) (n = 300 cells, 30 islets, 3 T1D donors and age-matched controls; from the
873 Exeter biobank) (Mann-Whitney test).

874 (F-H) Glucagon (F and G) and DBP (F and H) expression are both decreased in islets of
875 donors with late-onset (>13 yrs old) T1D (representative images are shown) (inset shows a
876 zoomed image) (n = 400 cells, 40 islets, 4 T1D donors and age-matched controls) (Mann-
877 Whitney test).

878 (I and J) α -cell size (I), but not proportion of DBP+/GLU+ α -cells (J), is decreased in islets of
879 donors with late-onset (>13 yrs old) T1D (n = 180 cells, 30 islets, 3 T1D donors and age-
880 matched controls) (inset shows a zoomed image) (unpaired t-test).

881 Scale bar = 42.5 μ m. Bar graphs show scatter plot with mean \pm SEM. **P<0.01 and NS,
882 non-significant. DBP, Vitamin D-binding protein; GLU, glucagon; INS, insulin.

883

884 **Figure 6: DBP expression increases with age and co-localizes with glucagon in**
885 **granules.**

886 (A-C) DBP (A and B) and glucagon (A and C) expression increase with age in control donors
887 (representative images are shown) (n = 15-53 islets per age group, 3 early-onset and 4 late-
888 onset T1D donors together with age-matched controls) (one-way ANOVA with Tukey's
889 multiple comparison test).

890 (D) Analysis of published RNA-seq datasets from purified α -cells (Brissova et al., 2018)
891 shows no differences in transcript abundance for GC (encoding DBP) in control and T1D
892 donors. Expression levels are normalized against TBP. Each individual donor is shown. Data
893 were obtained from GEO: GSE106148.

894 (E) Super-resolution images showing co-localization of DBP and glucagon within the same
895 granule in α -cells of both control and late-onset T1D donors (representative images are
896 shown) (n = 8 cells from 8 islets, 4 late-onset T1D donors together with age-matched
897 controls).

898 (F and G) The ratio of glucagon:DAPI (F) and DBP/glucagon co-localization strength (G) are
899 lower in α -cells from donors with late-onset T1D (n = 8 cells, 4 late-onset T1D donors
900 together with age-matched controls) (unpaired t-test).

901 (H) Glucagon granule size is decreased in α -cells from donors with late onset T1D
902 (magnified images from (E) are shown above each bar) (scale bar = 6 μ m) (n = 160-200
903 granules from 4 islets, 4 late-onset T1D donors together with age-matched controls) (Mann-
904 Whitney test).

905 (I) G-function analysis on actual and simulated glucagon granule distribution showing a more
906 random arrangement of glucagon granules in α -cells of T1D donors (actual and simulated
907 distribution is inset). Scale bar = 42.5 μ m.

908 Bar graphs show scatter plot with mean \pm SEM. **P<0.01 and NS, non-significant. DBP,
909 Vitamin D-binding protein; GLU, glucagon; INS, insulin.; TBP, TATA-Box Binding Protein.

Figure 1

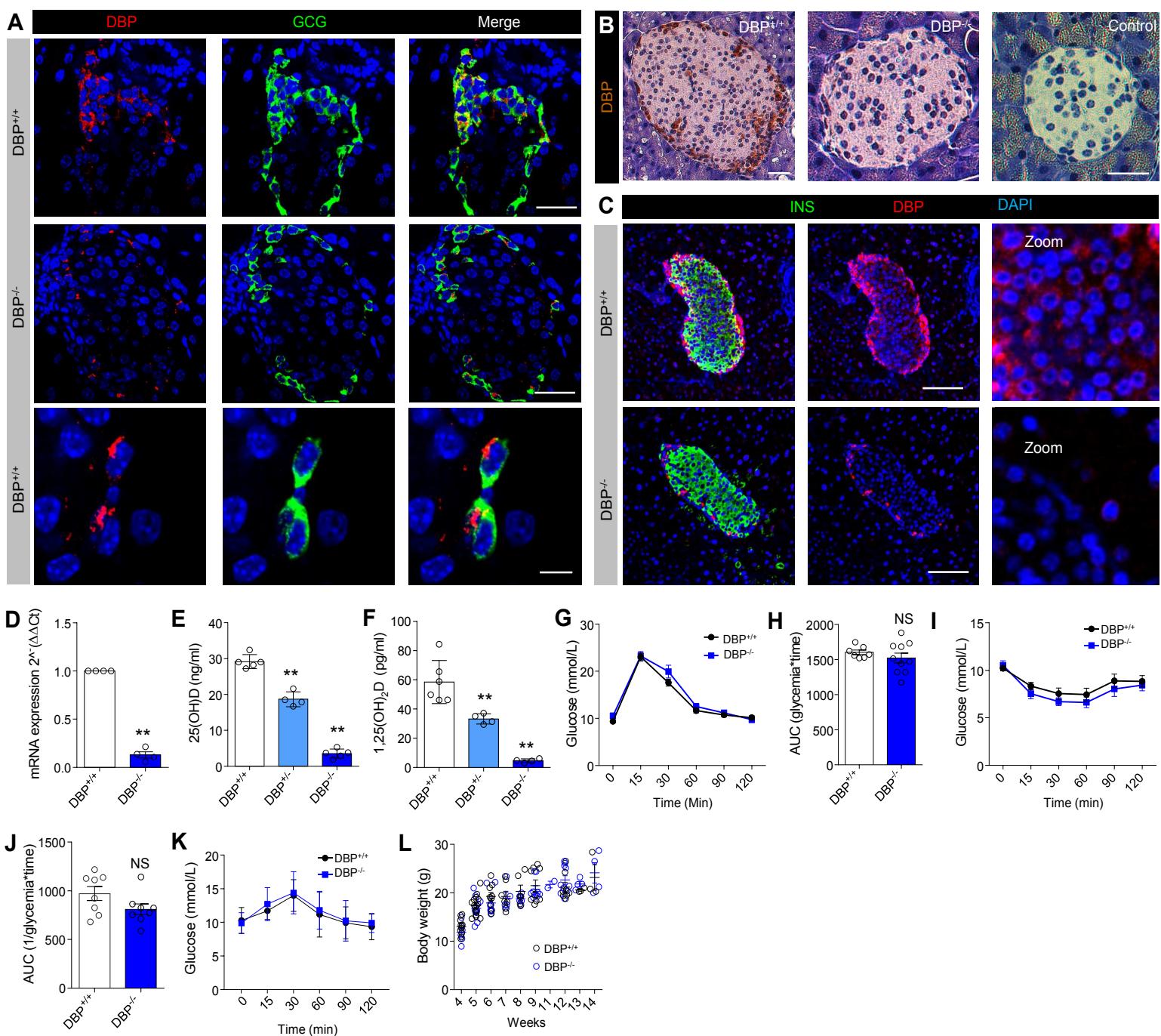


Figure 2

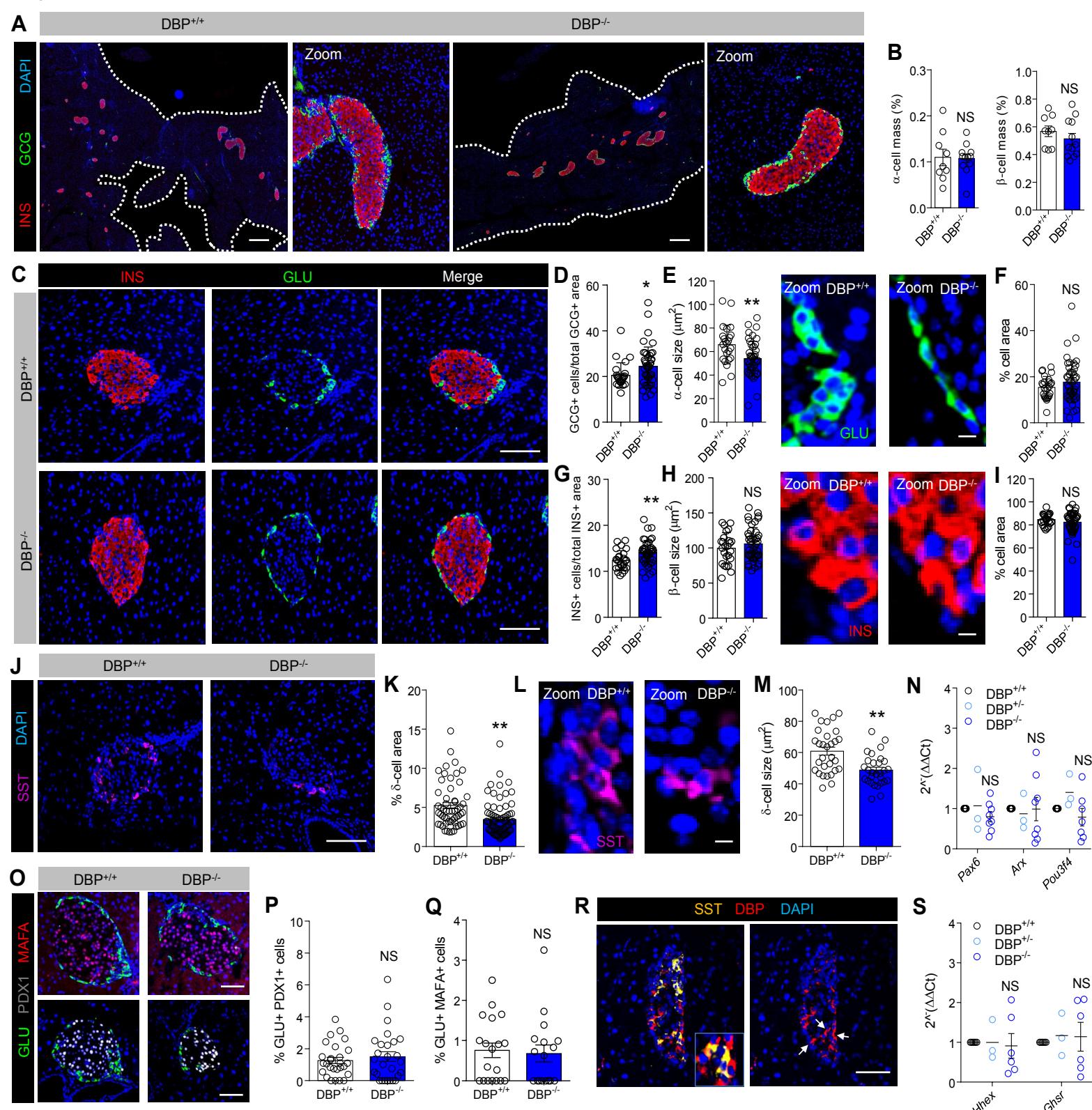


Figure 3

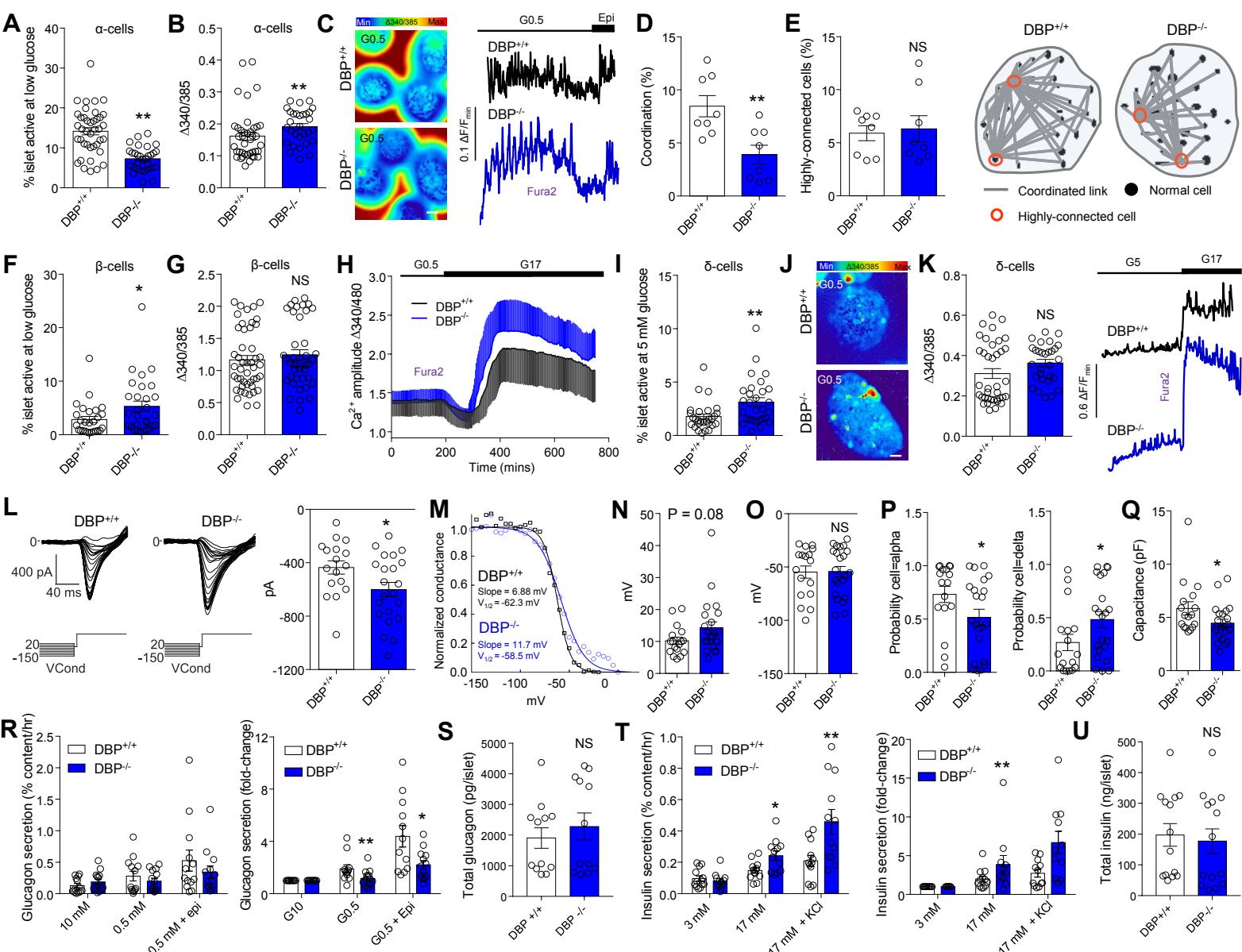
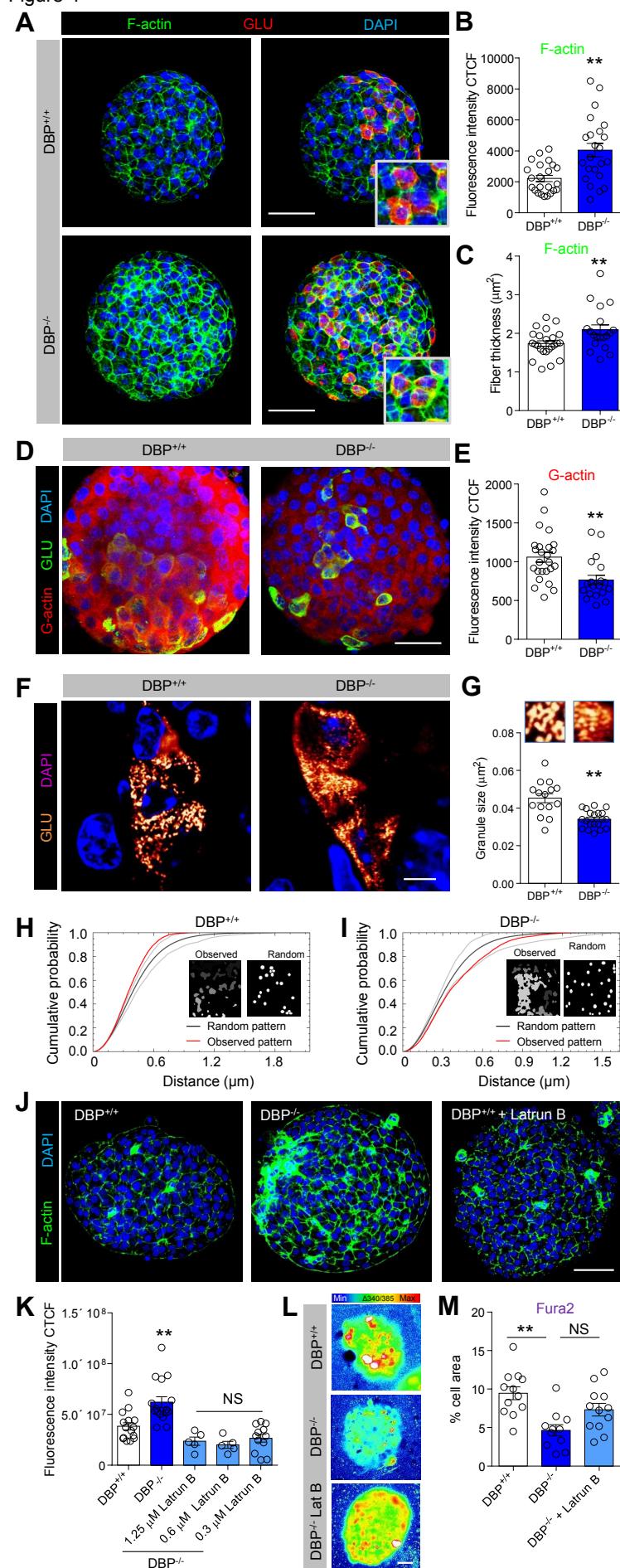
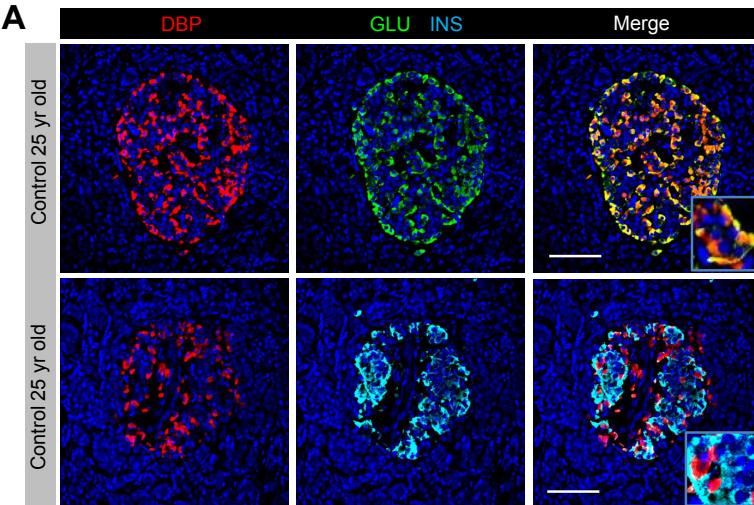
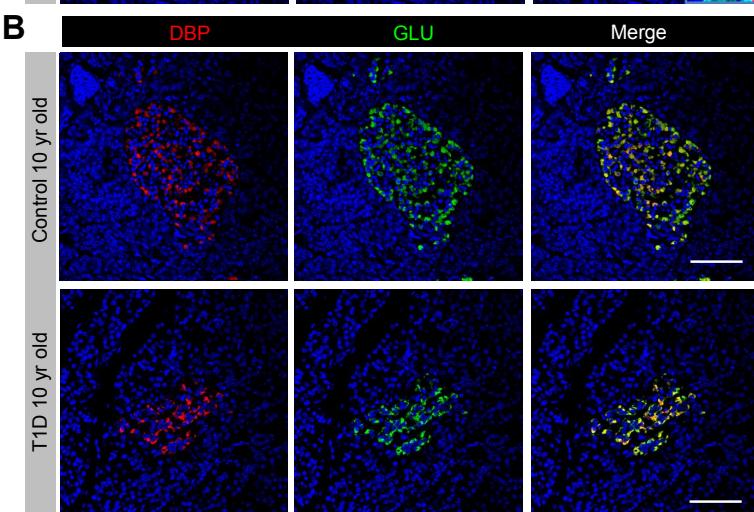
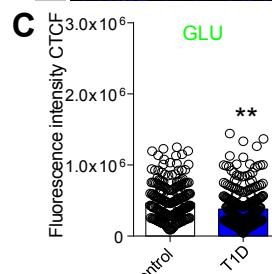
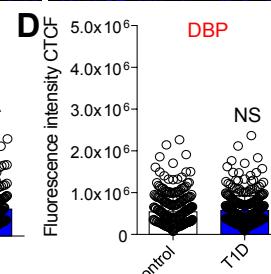
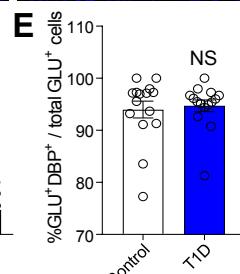


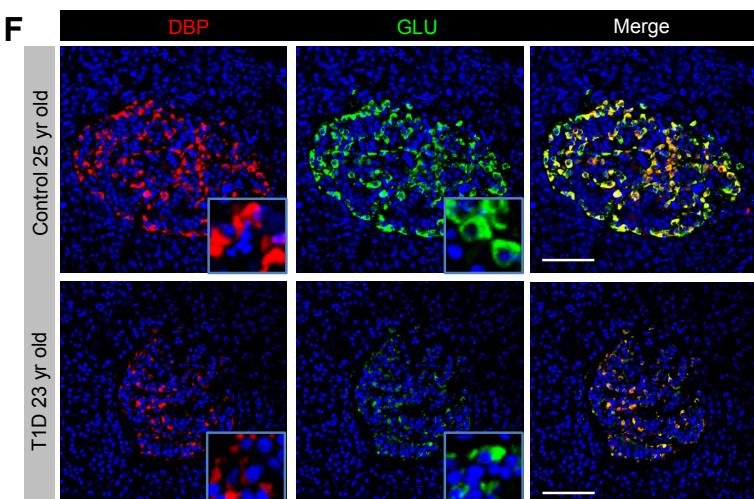
Figure 4

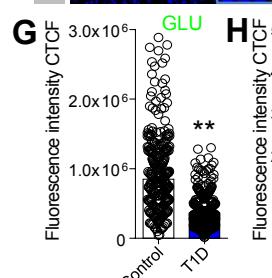




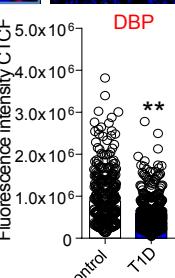

Figure 5 A

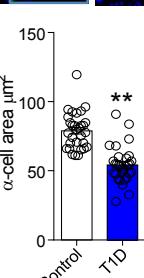

B


C


D


E


F


G

H

I

J

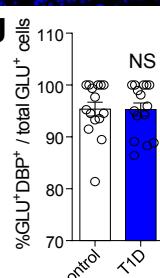
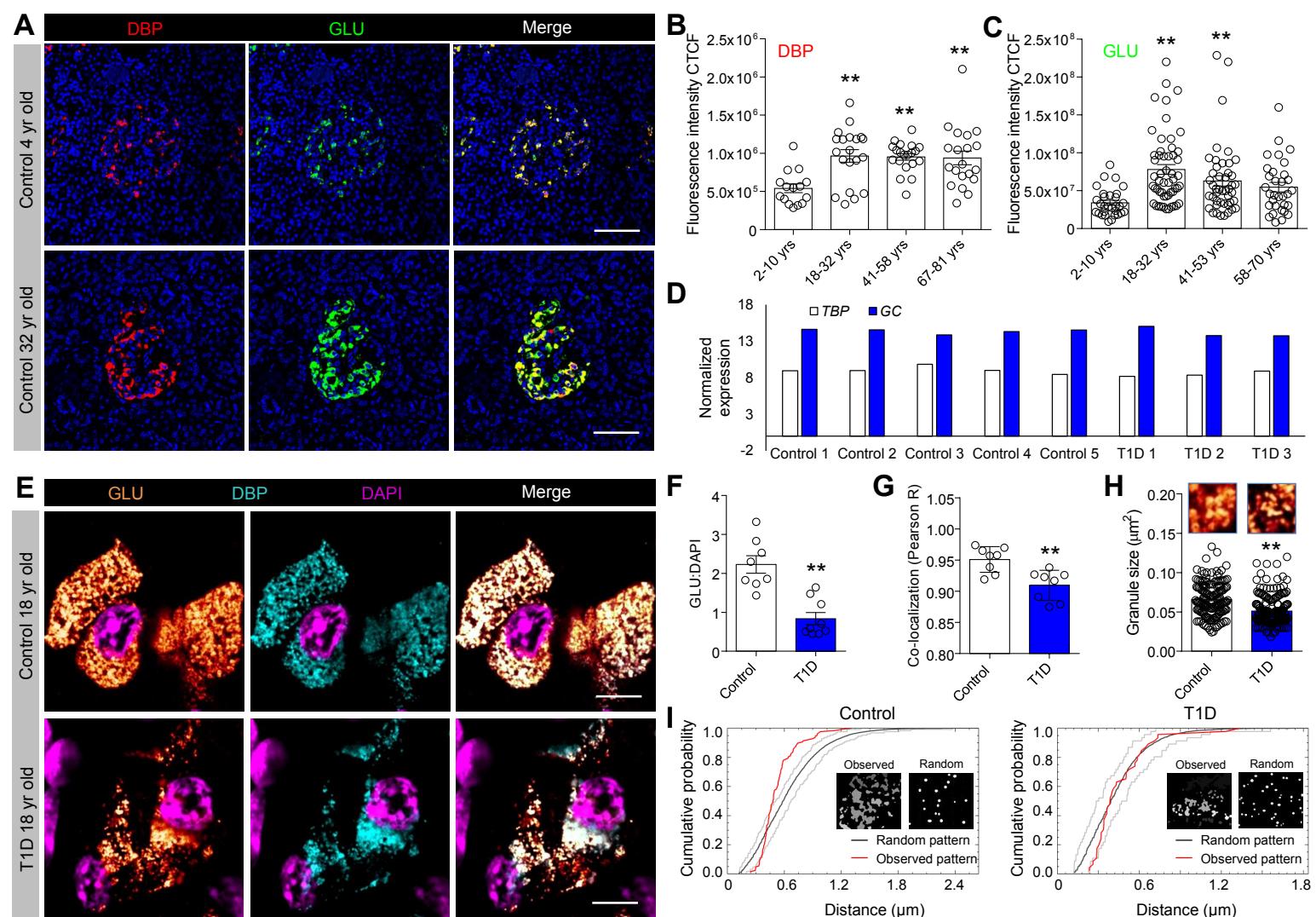



Figure 6

