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Abstract

Gene regulatory networks underlie every aspect of life; but, we don’t understanding how webs of
regulators are assembled through the process of evolution. For example, it is typically assumed that
evolution does not occur through low-fitness intermediate pathways; however, this presumes that com-
pensatory mutation can not drive rapid evolutionary recovery. Using a well-established in silico model
of gene regulatory networks, we show that compensatory mutation can drive the evolution of regulatory
pathways because it biases the response to natural selection. In our simulations, we find that compen-
satory mutation is common during periods of relaxed selection, with 8-15% of degraded networks having
regulatory function restored by a single randomly-generated additional mutation. Though this process
reduces average robustness, proportionally higher robustness is found in networks where compensatory
mutations occur close to the deleterious mutation site, or where the compensatory mutation results in
a large regulatory effect size. This location- and size-specific robustness systematically biases which
networks are purged by selection for network stability, producing emergent changes to the population
of regulatory networks. We show that over time, large-effect and co-located mutations accumulate, as-
suming only that periods of relaxed selection occur, even rarely. This accumulation serves to increase
regulatory complexity. Our findings help explain a process by which large-effect mutations structure
complex regulatory networks, and may account for the speed and pervasiveness of observed occurrence
of compensatory mutation, for example in the context of antibiotic resistance, which we discuss. If sus-
tained by in vitro experiments, these results promise a significant breakthrough in the understanding of

evolutionary and regulatory processes.
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. 1 Introduction

2 Gene regulatory networks are the internal tools living organism employ to facilitate resilience to envi-

» ronmental variation. Unfortunately, to date their evolution is not well understood |[Wilke and Adami, 2001}

« Wilke et al. 2003, Beerenwinkel et al. [2007, Lehner, 2011, [Rokyta et al., 2011, [Park and Lehner} [2013].

s Prior theory building based on computational and mathematical models has shown that gene regulatory

o mnetworks (GRNs) can evolve by adaptive responses to direct selection |Ciliberti et al., 2007, |Crombach and|

7 [Hogeweg), 2008] [Romero and Arnold, 2009, [Tsuda and Kawatal, [2010] [Olson-Manning et all, [2012] [Cotterelll

s land Sharpe) 2013|, and by random genetic drift when sampling biases shift the distribution of networks [cf.

o Wagner and Wright|, |2007, |[Lynch et all |2016].

10 In contrast, the role of compensatory mutation in GRN evolution has been given little consideration. In
11 most modelling, regulatory networks rendered unfunctional (unstable) by deleterious mutation have been
12 assumed to be immediately purged by direct selection, precluding the possibility of an additional mutation

13 which might restore fitness. Yet in nature, phenotypic selection is known to be episodic, with periods of

1« strong and weak selection [Siepielski et al.|[2009a]. This indicates there may be sufficient time for evolutionary

15 rescue. Further, if compensatory mutation happens frequently enough, it could play a major role in GRN

1e evolution. Compensatory mutation has been observed to occur surprisingly frequently in some laboratory

1z contexts under high selective pressure, particularly with respect to antibiotic resistance [Dunai et all 2019,

1s  [Moura de Sousa et al [2017], see Remigi et al.| [2019] for a recent review. This indicates that compensatory

1e  mutation should receive more theoretical attention.

20 Compensatory mutation could contribute to GRN evolution as an emergent consequence of biases that
21 occur in the processes of mutation and selection. Although originally considered an important source of
22 innovation and diversity, mutations are now thought generally to be in the vast majority of cases at least
23 mildly deleterious, decreasing individual fitness. However, not all mutations are deleterious or have the same

2 detrimental effects on all individuals. There are occasionally beneficial mutations, including compensatory

= mutations that recover fitness after deleterious mutations [Kulathinal et al. 2004} Piskol and Stephan| 2008|

26 overt et al. . duch mutations could contribute to gene pathway evolution [Kimur oore et al.
C I} [2013]. Such i 1d contrib gene pathway evolution [Kimura) 1985} M il

2z 2000, Levin et al., 2000, |Choi et al. |2005, Meer et al., [2010]. However, in contrast to adaptive and neutral

2s evolution, little attention has been placed on evolutionary dynamics driven by genes that at least initially
20 code lower-than-average reproductive success.
30 Compensatory mutation in regulatory networks may be far more frequent than we expect. Outside of the

;1 context of a regulatory network, theory tells us compensatory mutation is not likely to play an important

2 pole in evolution [Wright) [1931a]b| [Stephan| [1996| [Parsch et all, [1997, [Whitlock and Ottoj [1999, [Whitlock|
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33 let all [2003] |Zhang and Watson, 2009]. This is because the frequency of deleterious mutation is low and
sa  the frequency at which a new mutation compensates for the previous deleterious mutation is expected to be
s even lower. Furthermore, if the compensatory mutation restores fitness, then its probability of fixation in
ss the population might be assumed to be the same as any allele under drift, the inverse of twice the effective
sz population size [Wright| [1931a), (Charlesworth, |2009]. This analysis may be incorrect though, given the
ss coupling to the original deleterious mutation, particularly if the ‘deleterious’ mutation provides a specialist
3o ability to an organism despite overall lowering its adaptive value. This is the reported case in antibiotic
a0 resistance, where initial mutations confer resistance but create other metabolic costs. Some proportion
a1 of bacteria evolve compensatory mutations rather than reverting to initial genotype |[Dunai et all [2019],
a2 and some even seem to be conferred with net adaptive advantage after the event of additional mutations
a3 |Moura de Sousa et al. 2017|. Further, mutations do not only happen in independently-acting genes, but
aa also in genetic networks where there are many sites of complex interactions that could be mutated. If a
«s deleterious mutation occurs at a locus that is not presently subjected to strong selective pressure, then
26 as long as a compensatory mutation occurs before the lineage is driven to extinction, it may restore the
a7 lineage’s fitness. Thus, understanding the frequency and nature of compensatory mutations is of substantial
«s importance to understanding their impact on pathway evolution.

a0 Logically, we can expect relaxed selection to be critical to the frequency of compensatory mutation.
so Empirical evidence indicates that when selection against deleterious mutation is relaxed, the frequency of
51 compensatory mutation in organisms carrying deleterious mutations is surprisingly high [Maisnier-Patin
s2 |et all 2002, |Gifford and MacLean, 2013]. Several recent empirical studies have suggested that various
ss sorts of relaxed selection facilitate compensatory mutation [Sloan et all 2014, Moura de Sousa et al., 2017
s« [Dunai et all 2019]. Compensatory mutations might then be expected to play a key role in the formation
s of GRN. The frequency at which deleterious mutations incapacitate gene regulatory pathways is likely to
se be substantially higher than that for an independently acting gene, because there will inevitably be many
sz more possible sites to mutate. We do not know the frequency at which mutations in incapacitated networks
ss can compensate for previous deleterious mutations. But because mutation, by definition, occurs in networks
so that were previously functional, it seems logical that there could be a wide range of mutational sites and
eo magnitudes that might restore the function of a network. If the frequency of compensatory mutation is
ex high and persistent enough over time, then there is a high probability that some compensatory mutations
ez will be maintained, even if solely by drift. If there is something special about the sorts of genes likely
ez to produce compensation, then we might also expect this process to generate biases, both with respect to
sa where mutations occur and any other characteristic that might engender higher robustness. Variation in the

es speed with which poorly functioning genotypes are removed by purifying natural selection could ultimately
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es have substantial impacts on the genetic attributes of the population. Similarly, properties associated with
ez compensatory mutations may accumulate over time. The basic logic of this argument is that, facilitated by
es periods of relaxed selection, compensatory mutation not only allows evolution to proceed, but results in it
eo proceeding differently. GRN may accumulate specific features as a consequence of compensatory mutation.
70 The gene regulatory network paradigm is an excellent system is which to test this question. Most
7» importantly, it explicitly incorporates genetic interactions in an evolutionary framework. Simulation allows us
72 to generate thousands upon thousands of networks of different sizes and connectivities, which we could not do
73 with in vivo approaches, and makes it relatively simple to identify, track and understand the properties of all
za of the compensatory mutations within those networks. Many previous computational studies have focused on
75 the evolution of gene regulatory networks under constant selection [Azevedo et al., 2006, |Ciliberti et al., {2007,
z¢ |Crombach and Hogeweg) [2008|, [Tsuda and Kawatal, |2010, (Cotterell and Sharpe, 2013|. However, constant
7z selection necessarily constrains pathway evolution because it removes the low-fitness individuals who carry
zs incapacitated gene networks. This in turn eliminates the potentially significant mechanism of compensatory
7o mutation. Compensatory mutation is impossible under one of the dominant modelling frameworks, where
so unstable networks — networks whose phenotype never reach an equilibrium state — are always labelled as
s1  ‘unviable’ and therefore never subjected to further rounds of mutation [Wagner, (1996} |Siegal and Bergman,,
s2 [2002, |Azevedo et al. [2006, Lohaus et all [2010]. If we instead allow unstable networks to stay in the
s3 population when selection for network stability is relaxed, compensatory mutation is possible and able to
sa allow lineages access to a greater variety of evolutionary pathways.

85 In our experiments, we adapted the experimental paradigm for one of the dominant models of GRN
se evolution, to consider deleterious mutations to only compromise, not destroy, a lineage. This allows us to
sz examine the prevalence and impacts of compensatory mutation. We find that compensatory mutations are
ss both surprisingly common, and that their frequency is relatively invariant to the scale of the network. We
se also find that compensatory mutations exhibit biases both in effect size, and in location with respect to the
oo deleterious mutation. The accumulation of these emergent biases increases regulatory complexity in GRN
o1 over generations. As we discuss, these observations are all congruent with empirical observations, indicating
o2 we may have established a useful theoretical advance in the understanding of compensatory mutation and

o3 of GRN.
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« Results

s A network model for compensatory evolution

o6 We present a model to study compensatory mutation, using a process well-established in the literature
oz (see more details in . As with published precedent on gene regulatory network (GRN) evolution,
os the model generates an initial population of stable regulatory networks and networks made unfunctional
oo (unstable) by deleterious mutation [Wagner} |1996| Siegal and Bergmanl 2002, |Azevedo et al.l 2006, [Wang
w0 |et al. 2015, [Wang) [2019alb]. Our innovation is that instead of assuming that unfunctional networks are
11 removed immediately by persistent selection for network stability, we assume that they are part of a larger
102 organism and only marginally reduce that organism’s fitness. In this, we effectively hypothesise that organ-
103 isms carry a deleterious mutation (DM) load, analogous to parasite load. We compute the consequences of
10a  additional rounds of mutation on the stability of the network, during periods labelled as bouts of relaxed
105 selection (Fig. [I]).

106 Though the criteria for network stability we employ is similar to that used in previous models, our
107 fitness function—the relationship between genotype and fitness—is different. Specifically, we assume that
108 networks are either functional (high fitness, equivalent to fitness 1 in previous models) or unfunctional
10 (low fitness, replacing fitness 0 in previous models). We then estimate the rate of compensatory mutation
110 by calculating the proportion of regulatory networks which have stability restored by a single additional
11 mutation, represented by the blue circle in Fig. [IA. Note that the green circle represents that the network
112 has experienced a neutral mutation that does not affect network stability. Thus in Step 1 we generate a
us  random population of GRNs. In Step 2 (Fig. [IB), each GRN has been mutated (red edge) and the resulting
s unstable networks have been collected for further testing. In Step 3, the unstable networks have undergone
115 a second round of mutation, allowing the collection and analysis of any newly-stable networks. In this case,
16 one network’s mutation has been compensatory (blue edge).

117 Fig. shows an initially-stable gene network which contains five genes: A-FE. Each edge is directed
us and indicates the strength (weight) of the influence on one gene of another. In the Deleterious Mutation
1o Phase, a mutation occurs on cA (red edge), which leads to the failure of maintaining network stability. In
120 the Compensatory Mutation Phase, the compromised network is recovered by another round of mutation,
121 with a mutation that proves compensatory (blue edge) occurring on CE. Note that there is no difference in
122 the modelling process between generating a compensatory or deleterious mutation. Rather, random changes

123 to the network are categorised based on their impact on network stability.
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Figure 1: Overview across time of the computational model for exploring characteristics of
compensatory mutation. (A) Stability (approximates fitness contribution) of gene regulatory networks
in a population. Note that dashed circles are networks no longer considered for the study. (B) The population
pool of gene regulatory networks. Note that a red edge indicates a deleterious mutation and a blue edge a
compensatory mutation. (C) Detailed view of a single network.

12 Compensatory mutations are common and relatively scale-invariant

125 We first test whether compensatory mutation is common in the context of the synthetic GRNs. We
126 find that, unlike deleterious mutation, the frequency of compensatory mutation is almost scale-invariant.
12z From Fig. and B, we can see that the stability and robustness in initial networks are quite different
128 among varying sizes and levels of connectivity of gene regulatory networks. Which type of network, once
120 compromised, more frequently experiences compensatory mutation? Fig.[2] answers this question. As can be
130 seen, the patterns of frequency of compensatory mutation depend on network size. For the smaller networks

1 N = 5, 10, 15 and 20, the compensatory mutation rates continuously increase as network connectivity
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Figure 2: The frequency of compensatory mutation is relatively insensitive to network size and
network connectivity in the context of gene regulatory networks. For each network size (N = 5,
10, 15, 20, 30 and 40 genes) for each value of network connectivity (proportion of regulatory relationships)
given from a range of values in continuous intervals ([0.2, 1], step size 0.02), the frequency of experiencing
first deleterious followed by a compensatory mutation on just two rounds of mutation was tested based on
an initial 10,000 randomly generated stable gene networks. The shaded areas represent 95% confidence
intervals based on 100 independent runs.

increases, but very gradually. In contrast, for the larger networks N = 30 and 40, with the rise in connectivity,
the compensatory mutation rates decrease slightly. However, overall the results indicate that the frequency
of individuals that can be fixed by compensatory mutation is more sensitive to network size than to network
connectivity, and not particularly sensitive to either. The implied probability of compensatory mutation
from the relative frequencies observed ranges from 8% to 15% of compromised networks recovering, with the
larger rates associated with larger networks. This marked scale-invariance (see Fig. , which is identical
to Fig. |2 but re-scaled) stands in contrast to the scale dependencies shown for deleterious mutations in
Fig. and B.

Next, we investigate the occurrence of compensatory mutations in populations that have been exposed
to bouts of generations of relaxed selection and selection for network stability. Again as a slight modification
of what is standard for this type of model, we assume selection favours network stability. We find that
compensatory mutation occurs in both evolutionary scenarios. From Fig.[S2JA, we can see that compensatory
mutation is able to occur even in highly stable networks that have been subjected to network stability selection
for many generations. In addition, the compensation probability tends to be constant after many rounds of
mutation. Furthermore, we find that, across network sizes, all populations still maintain a high diversity in
the presence of selection for network stability, and for many generations (see Appendix). It is not surprising

therefore to see that, as shown in Fig.|S2[B, compensatory mutation can occur in the mixed populations (stable
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140 and unstable networks) that result from a relaxed selection regime, although it is less pronounced there and
150 declines significantly over rounds of selection. Interestingly, we found that compensatory mutation can still
151 fix seriously damaged networks that have suffered many deleterious mutations over generations. Here we
12 select for study only the broken networks after each mutation round, as shown in Fig. [S2IC. Compensatory
153 mutations will restore, for example, about 14% of networks for N = 5 that are broken by one round of
152 mutation, but the frequency of compensation quickly drops to mutation restoring the stability of only 5%
155 broken networks that have had many deleterious mutations for up to 15 generations. This indicates that
156 compensatory mutations can still be cure-alls even for even seriously damaged networks, or at least those
157 long neglected by selection for network stability.

158 Finally, we investigate the impact of relaxed selection on compensatory mutations. We find that, as
150 expected, we can observe more compensatory mutations in the presence of relaxed selection for network sta-
10 bility. Specifically, we performed simulations to measure the number of compensatory mutations in lineages
1e1  for which relaxed selection occurs in different likelihoods. From Fig. [S3] we see that the number of compen-
12 satory mutations markedly increases as the consequence of having more generations of relaxed selection. We
163 can also see that smaller networks typically have more compensatory mutations compared with larger net-
1ea  works. This is because compromised networks with smaller sizes are more likely to experience compensation
15 after lengthy evolution, though larger networks tend to have a higher frequency of compensatory mutation

s at early stages as indicated in Fig. [

1= Compensatory mutations exhibit bias in location and size

168 Given a model capable of generating compensatory mutation, we next characterise their nature. In
160 general, there is little difference between a compensatory mutation and a deleterious mutation — in fact, the
170 exact same mutation could be deleterious in one network and compensatory in another. However, compared
11 to a completely random baseline, we find evidence that compensatory mutations tend to be biased with
172 respect to the location in the network and the magnitude of gene regulatory effects.

173 We first look at where compensatory mutations happened in compromised networks. We find that they
17a are more likely to occur at or close to the site of the original, deleterious mutation. In a typical small
175 network with size N = 5 genes (see Fig. [S4]A), we found a 95.8% chance that a mutation that occurs on
e the exact site of a deleterious mutation compensates for it. The frequency of compensatory mutation is
17z also high on most of the edges close to the original mutation site. Mutations on edges far away from the
17s  deleterious mutation site are much less likely to experience compensation. The same basic pattern is also

17e  seen in a larger network with size N = 20 genes (see Fig. [S4B), where the frequency of mutations being
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10 compensatory, if they occur on the original deleterious site, is 85%. The percentages beside each edge in
;1 these figures indicate the proportion of mutations that occur on that edge that are compensatory, out of the
12 1,000 simulated second rounds of mutation we ran on each edge for each network after it had previously
13 suffered a single deleterious mutation. In general, as these representative figures indicate, the compensatory
1sa  effect could happen in many positions in a broken network, but it is more likely to be observed at sites that
15 are close to a deleterious mutation’s site.

186 Fig. (solid line) demonstrates the generality of the result indicated in Fig. It illustrates the
17 frequency among 10,000 initially-stable gene networks of compensatory mutation against different spatial
188 distances from the single deleterious mutation suffered by each network. As can be seen, compensatory
180 mutations generally occur in edges between genes close to the deleterious mutation site. We restrict the
100 analysis to these five categories because there is only a narrow range of distribution distances for randomly
101 sampled mutations (see Appendix for more details). We further conducted similar experiments for networks
102 with neutral mutations to investigate whether compensatory mutations have any special property in terms of
103 location. We found that, compared with the results of compensatory mutations, neutral mutations are more
10a  evenly distributed. Specifically, instead of measuring the frequency of a second, compensatory mutation (that
105 restores network stability for a compromised network with a single deleterious mutation), we measure the
106 frequency of a second, neutral mutation with different distance effects that retains the stability for a network
107 that has already had one neutral mutation. From Fig. (dashed line) we can see that the distance effect
108 has a much less profound role in networks with two consecutive neutral mutations than in networks with
100 one deleterious mutation and one compensatory mutation. In fact, neutral mutations tend to be enriched if
200 they are far apart in larger networks (see Appendix).

201 The point of compensation is of course to recover the network’s fitness, or here, stability. We therefore
202 next investigate whether there is an impact on the robustness of networks after deleterious followed by com-
203 pensatory mutation varies by the location of the compensatory mutation, and contrast this with differences
204 in robustness after two neutral mutations. We again find that patterns are very dependent on location.
205 Specifically, we compare robustness of stable networks following one round of deleterious and compensatory
206 mutation with that of stable networks with two consecutive neutral mutations, as shown in Fig. B[C. In gen-
207 eral, robustness is far higher when compensatory mutation occurs closer to the original deleterious mutation
208 site (see the solid line in Fig. ), whereas after two neutral mutations, closer distances are not better asso-
200 clated with higher robustness (see the dashed line in Fig. )ﬂ Even though networks with compensatory

210 mutations occurring near to the site of the deleterious mutation exhibit profoundly more robustness than

1Note that robustness is higher overall for networks having experienced two neutral mutations—this is unlikely to be caused
by the mutations, and more likely to be a characteristic of the network likely to contain neutral mutations.

10
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Figure 3: Both frequency and robustness of networks with compensatory mutations exhibit
biases in location and mutation size. For N = 5 and ¢ = 0.4, we first collected a pool of compromised
networks with deleterious mutations after a single mutation round. We then forced second mutations,
classifying these as being 0 (on the same site), 1, 2, 3 and 4 steps away from the original deleterious mutations
(A) or adding a weight from [—5, +5] (step size 0.5) to the original regulatory impact (B). For each of these
distance or weight categories, we measured the probability that the mutation was compensatory (that it
returned the network to stability, see solid lines in (A) and (B)), based on 10,000 sample networks collected
for each category. The sample networks for control groups (see dashed lines in (A) and (B)) were collected in
a similar way, except that the networks were subjected to two consecutive neutral mutations. Similarly, for
N =5 and ¢ = 0.4, we collected 10,000 sample stable networks that were subjected one deleterious mutation
and then restored by one subsequent compensatory mutation that was 0, 1, 2 and 3 steps away from the
previous deleterious mutation (C) or with different shifts in gene regulation from [—5, +5] (step size 1 and
with four additional regulation shifts: —0.5, —0.1, 0.1 and 0.5) (D). Then, we assessed the robustness of the
sample networks at each category (see solid lines in (C) and (D)). The sample networks for control groups
(see dashed lines in (C) and (D)) were collected in a similar way, except that the networks were subjected to
two consecutive neutral mutations. Error bars represent 95% confidence intervals based on 100 independent
runs.

those at other locations, their actual robustness is much lower than that of networks with neutral mutations
(see Fig. and Appendix). Nevertheless, these theoretical results indicate that these co-localised compen-
satory mutations are more likely to be accumulated, whereas compensatory mutations that are far apart

from the previous deleterious mutations are more likely to be lost during subsequent selection for network

11
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215 stability.

216 Independent of location, we also investigated how different mutation size influences the probability of com-
217 pensation in compromised networks. We found that compensation is more likely to be driven by large-effect
218 mutations. Fig. (solid line) presents the frequency of compensatory mutation against various intensities
210 of up or down regulation among 10,000 randomly-generated stable gene networks that had experienced a
220 single deleterious mutation. For a randomly-chosen site in each network, we experimented with mutations
221 across a range of regulatory strengths. As can be seen, larger regulation changes, both positive and negative,
222 are up to a point associated with an increased frequency of compensatory mutation. However, the shape
223 of the curve for compensatory mutations across all edges is not a symmetrical ‘V’. Rather, compensatory
224 mutations occur more by positive changes to gene regulation than by negative changes. The explanation for
225 this phenomenon is rooted in the fact that there are two edge types that can be affected by compensatory
226 mutation: inter-gene regulation connecting two different genes and self-regulating edges. In the simulations,
227 almost no compensatory mutations are both negative and self-regulating (see Appendix). The ‘V’ shape
228 for only inter-gene regulation is almost symmetrical (see Appendix), suggesting that for these, negative and
220 positive regulations are equally likely to be useful. It is true for both the negative and positive cases that
230 compensatory mutation is increasingly likely with greater regulatory strength up to a certain extent.

231 Although we found that compensatory mutation tends to positive, this is not a property special only
222 to compensatory mutations. From Fig. [S5A, we can see that there is more positive regulation in both
233 initially-stable networks and networks with compensatory mutations, whereas deleterious mutations in com-
232 promised networks tend to be more negative. By separating self- and non-self-regulatory edges, we find that
235 compensatory mutations have a larger effect (in terms of shifting gene regulation) on self-regulatory edges
23 than non-self-regulatory edges (see Fig. and C). We then conduct similar experiments for networks with
237 neutral mutations to investigate whether compensatory mutations have any special property in terms of
238 mutation size. We find that, compared with the results of compensatory mutations, small-size mutations are
230 more likely to be observed in networks with neutral mutations. Specifically, similar to the location experi-
2¢0 1ments, we measured the frequency of a second mutation (neutral mutation) with different mutation effects
241 that can retain the stability for a network that has already had one neutral mutation. From Fig. (dashed
2a2 line) we can see that that neutral mutations are more likely to be of small magnitude than large, and where
2a3  they are large they are more likely to be positive than negative. Compensatory mutations are more likely to
2aa  be of large magnitude than small, but are also more likely to be positive than negative.

245 As with location, we also investigated the robustness of networks subject to mutations of different sizes.
26 We found that patterns of shifting regulation-generating robustness are also quite different. Specifically,

247 we compared robustness of stable networks having one deleterious mutation and compensatory mutation
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2es with that of stable networks having two consecutive neutral mutations, as shown in Fig. [3D. In general, the
2¢0 robustness is significantly higher when compensatory mutation has a larger shift in gene regulation (see the
250 solid line in Fig. ) Although networks with neutral mutations tend to have a similar pattern (see the
251 dashed line in Fig. ), by measuring the percentage change in robustness (see Appendix), we can clearly
252 see that size has a greater impact on robustness in compensatory mutations. Here again, it should also
253 be noted that although networks with compensatory mutations exhibit a more profound biased change in
252 robustness with respect to mutation size, their actual robustness is lower than that of networks with neutral
255 mutations (see Fig. ) These theoretical results indicate that these large-effect compensatory mutations
256 are more likely to be accumulated, whereas small-effect compensatory mutations are more likely to be lost
257 by subsequent selection for network stability.

258 Note that similar patterns to those described here are also observed in networks with different sizes and

250 connectivity. See more supporting figures in the Appendix.

20 Compensatory mutation generates regulatory complexity

261 We now explore the long-term evolutionary consequences of compensatory mutations. Given the biases
262 identified in the previous section concerning location and magnitude, we might predict that the effects
263 Of these two fundamental network properties would facilitate an altered neutral evolution, at least during
22 periods of relaxed selection. Recall that we assume such relaxed periods will be interspersed between bouts
26s  Of selection for network stability, and also that selection in our model favours network stability. We in fact do
266 Observe in our simulations an increase in the complexity of gene regulatory networks, but only in a context
267 'where they have been withdrawn from the selection for network stability for at least some proportion of
2es  generations. Specifically, we first generate a pool of 10,000 stable networks (N = 10) with a simple ‘Star’
260 topology (see Fig. ), then evolve the population under different evolutionary scenarios. Fig. shows four
270 evolutionary scenarios where the population is exposed to selection for network stability in every generation
a2 such that there is no opportunity for compensatory mutation. From the typical results (networks with a

a2 median connectivity), we find that:

273 1. the median connectivity is the same as the initial population’s if it is evolved without mutation or
274 recombination (ounly by drift),

275 2. the median connectivity decreases if evolved under either a mutation but no recombination regime or
276 a recombination but no mutation regime (although the network structures are greatly altered when
277 invoking only recombination), and

13


https://doi.org/10.1101/2019.12.18.881276

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.18.881276; this version posted December 19, 2019. The copyright holder for this preprint

278

280

281

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

\ \

O
; O
Q e 7 A\N
/ N

1\
o e 7 =017 s E-030
/N\ ’
o . ERNIDN
O e} (©} t‘/ \’
No Mut. & No Rec.
Mut. & Rec.
] frs = 1
o P o Yo
¢)
SR &=0.11 4
[ )
g 5 o o © ZN
* o © IN4TANY I
> QY4 c=0.34
o g :> L srene NV
e AN \
7 @
o © o ® <
Y Evolutionary L ® o
o) =
Process o\ ® ¢=0.11 Mut. & Rec.
=1
£=0.17 . ° ot
o
Rec. & No Mut. @ 2]
o L /\o‘j L\
ﬂ\ 0 \\s4~>f ¢=0.31
O \ _ o /
b \\///Q o ©€=021 ./ 3
N
. O
o \/ /
(3 © Mut. & Rec.
Mut. & Rec. hs = Joo
A Initial Networks B with No Compensatory Mutation C with Compensatory Mutations

Figure 4: Compensatory mutation generates regulatory complexity in stable networks without
an initial variation in network structure. The initial population pool was composed of 10,000 sample
stable networks with N = 10 genes. These networks had a similar “Star” topology (one hub node and nine
non-hub nodes), varying network connectivity in [0.10,0.26]. The detailed description of generating initial
population can be found in Appendix. A representative network from the initial population is shown in (A).
The initial population was evolved for 5000 generations with the selection for network stability (frs= 0)
under no mutation and no recombination regime, mutation but no recombination regime, recombination but
no mutation regime, mutation and recombination regime (B). The initial population was also evolved for 5000
generations under relaxed selection regime (unstable networks will not be eliminated in generations under
relaxed selection) with frequency fre = 1/10, 1/25, 1/50 (C). Note that compensatory mutation cannot
happen when the population is subject to selection for network stability, since no deleterious mutations
survive to be compensated. The representative networks were selected randomly with a median connectivity
in the evolved populations.

3. the median connectivity increases to an intermediate level if evolved under a regime allowing both

mutation and recombination.

Fig. [AIC shows three evolutionary scenarios where the population is evolved with periods of relaxed
selection, invoking mutation (including compensatory mutation) and recombination. From these typical and

individual results (networks with a median connectivity), we can see that the median connectivity greatly

14


https://doi.org/10.1101/2019.12.18.881276

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.18.881276; this version posted December 19, 2019. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

283 increases and is higher than in the case when the population is subjected exclusively to the selection for
28« network stability so that no compensatory mutation can occur.

285 We would like to quantify the impact of relaxed selection on regulatory complexity. In another experiment,
2s  we collect 10,000 stable networks and then evolve them for 5,000 generations, allowing both mutation and
27 recombination. From Fig. [S6] we can see that if there is no relaxed selection at all, the mean connectivity
28 Of the population is highly preserved during evolution, whereas the network connectivity increases if we
280 allow compensatory mutations to occur in periods of relaxed selection. It should be noted that in the first
200 experiment, as shown in Fig. [4] we fix the network structure but vary the network connectivity in the
201 initial population, whereas we fix the network connectivity but vary the network structure in this second
202 experiment. These results demonstrate that selection for network stability where it impedes deleterious and
203 compensatory mutations constricts complexity, whereas compensatory mutations contribute to regulatory

20a complexity as a part of neutral process.

»s 2 Discussion

206 Compensatory mutations have long been considered the primary means by which low-fitness lineages
207 might be able to be restored to high fitness [Levin et al., 2000} |Crawford et al., 2007, [Meer et al., 2010].
208 More recently, [Dunai et al|[2019] suggest compensatory mutation may account for robust adoption of costly
200 traits that are of critical importance to an organism in certain circumstances, such as antibiotic resistance.
300 Given that most mutations are believed to be deleterious at least initially, some such process would be
301 essential for mutation to contribute to genetic innovation and evolution more generally. However, the extent
302 Of the role of compensatory mutations has often been considered to be negligible because they were considered
303 to be highly improbable and therefore rare. As such, they have not been studied extensively, and many of
30 their general properties have been unknown.

305 If the results presented here in simulation hold for in wvivo regulatory networks, then compensation
306 may be far more probable and frequent than had previously been anticipated. Our results indicate that gene
soz  networks may by their nature be surprisingly robust, such that a wide variety of alterations to a compromised
s network may effect its recovery. Significantly, we find that the frequency of compensatory mutation — unlike
300 deleterious mutations — is relatively invariant to the size of the network. This may mean that iterations
s10  of deleterious and compensatory mutation play a far larger role in evolution than previously thought. Our
s results provide a new account for why compensation can be so rapid, and also show a significant impact of
a1z effect size, both of which have been observed in the laboratory |[Moura de Sousa et all 2017, Dunai et al.,

a3 2019]. In fact, there is some indication that quasi-deleterious mutations such as initially-costly mutations
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;14 that promote antibiotic resistance, may produce a context wherein ‘compensatory’ mutations may find new

ais adaptive fitness peaks, doing more therefore than mere compensation [Moura de Sousa et al. [2017].

316 [Taylor et al| [2015] have shown that a regulatory network can be rapidly rewired through de nowvo

;17 compensatory mutation. In our simulations, we also observed that the compensatory mutation can facilitate
a1 regulatory complexity in terms of increasing network complexity (Fig. [4{and Fig. . Key in our simulations
310 were periods where networks evolved under neutral processes driven by biases in compensatory mutation,
s20 since the regulatory complexity was not directly adaptively selected. Therefore, we believe compensatory
21 mutations may be expected to play an essential role in driving regulatory complexity through neutral or
322 non-adaptive processes.

323 Bouts of deleterious and compensatory mutations might well facilitate the transition of the regulatory

;22 network to new fitness peaks [Weinreich and Chao, 2005|. Compensatory mutations have been observed

325 empirically to have a positive correlation with drug resistance mutations, where low-fitness lineages can create

326 intrinsic selection pressure to mitigate their deleterious effects through compensatory mutations w

527 [2012] [Brandis et all 2012} [de Vos et all [2013] [Brandis and Hughes| [2013] [Song et all, 2014} [Dunai et all,
328 [2019]. There is other supporting evidence that compensatory mutation can help the transition of lineages

s20  towards new fitness peaks [Martinez et all 2014, [[vankov et al [2014} [Szamecz et all 2014} Filteau et al.

330 [2015|. Moreover, some studies also show that compensatory mutations can help increase plasmid stability,

a1 and thus facilitate adaptation [San Millan et all [2014] [Porter et al., [2015], [Harrison et al., [2015]. Yet despite

;32 suggestions in the literature that peak shifts must occur through low-fitness genotypes [Wagner and Wright,

333 [2007] [Romero and Arnold], 2009, [Olson-Manning et al. 2012} [Osada and Akashil, [2012], Barreto and Burton),

s3a 2013|, few theoretical studies have focused on how the formation of regulatory networks could be influenced
335 by this process. We hope with our paper we have begun to redress this.

336 Historically, interactions in mutations in vivo have been considered hard to measure and the results

;37 usually have weak statistical significance [West et al. [1998] 1999|, though see [Moura de Sousa et al. [2017].

338 Where measurement is difficult, exploration of theoretical possibilities through simulation offers an ideal
s3s  means to identify and test for logically-coherent scientific hypotheses and to discover unanticipated conse-

30 quences of these. These unanticipated consequences are predictions arising logically from the hypotheses the

;a1 model expresses — predictions that can then inform our search for evidence in vivo [Bryson et al., [2007].

sa2  The ability to observe and manipulate thousands of modelled individuals in a matter of hours allows for a
a3 Systematic exploration of largely unknown theoretical territory. In this paper, the extension of the previous

saa  simulation approaches, while primarily conceptual, is potentially of great theoretical importance. Unlike

s the previous research seminal to our own [Wagner, 1996, [Siegal and Bergman) 2002, |Azevedo et al., [2006],

s we have been able to assess the probability and impact of compensatory mutations, providing important
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sz theoretical underpinnings to explain known laboratory outcomes.

348 The use of binary fitness outcomes (0/1 for unstable/stable networks) that are only periodically tested
a0 by selection for network stability (selection for network stability) is operationally quite useful. This allows
50 US to avoid making unrealistic assumptions about the selection coefficient distribution, and to proceed on
51 the assumption that moderately deleterious mutations may persist long enough to allow the accumulation
52 of subsequent mutations, some of which may prove to be compensatory or even advantageous. Periodic
33 assessment of the functional operation of networks, i.e., periods of selection for network stability, is still a
ssa  necessary practical consideration. The fluctuating selection regime (periods of selection for network stability)
sss - modelled in this paper is certainly biologically realistic. For example, [Siepielski et al.| [2009b| conclude that
ss6  selection is usually fluctuating following their study of the temporal dynamics of selection in a database
ss7  which contains 5,519 estimates of selection of wild populations. Similar arguments using empirical evidence
s can be found in Brachi et al.| [2013], Gompert et al.|[2014], [Seppéld [2015] and [Bijleveld et al.| [2015].

350 Previous work has been taken to indicate that compensatory mutation is not likely to play an impor-
s0 tant role in the evolution of independently acting genes. The frequency of deleterious mutation is low; the
se1  frequency at which a new mutation compensates for the previous deleterious mutation had been expected
32 to be even lower. However, mutations do not just happen in independently-acting genes. There is substan-
se3  tial molecular evidence for mutations in genes which exhibit complex interactions with other genes [Wilke
sea [and Adamil, 2001, [Wilke et al.l 2003| |Beerenwinkel et al., 2007, [Lehner| 2011} Rokyta et al., [2011], |Park and
ses  |Lehner} 2013, |Connelly et al.,[2014]. In fact, gene regulatory networks are more likely to be able to accommo-
ses  date deleterious mutations and therefore be available for compensatory mutations. The mutations simulated
se7 in models such as those presented here refer to mutations that occur in the binding sites of proteins at an
ses enhancer, but not mutations in protein coding sequences. As such, their regulatory effects could be buffered
sso by epigenetic neutrality, and evolve phenotypically neutral [Wagner| (1996 [Espinosa-Soto et al., [2011]. The
370 plasticity that evolves from such a system consequently increases the opportunity for compensatory mu-
sin tations. The frequency at which deleterious mutations compromise gene regulatory pathways is likely to
s72  be substantially higher than that for an independently acting gene because there will inevitably be more
373 possible sites to mutate. In this paper, we have demonstrated support for this possibility, that compensatory
s7za  mutation could potentially be frequent (Fig.|2) and occur to some extent regardless of patterns of selection
srs  that the networks have been through (Fig. and B). We have also shown that compensatory mutation
sre  can still occur even among seriously damaged networks (Fig. ) This is consistent with the findings of
sz empirical studies, such as that by |Sloan et al|]|2014], who found that two Silene species with fast-evolving
s7s  plastid and mitochondrial DNA exhibited increased amino acid sequence divergence in organelle genomes

s7e  but not in cytosolic ribosomes. Given that the authors found no evidence that the observed pattern was
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ss0  driven by positive selection, they concluded that the rapid organelle genome evolution had selected for com-
s pensatory mutations in nuclear-encoded proteins. More recently, both Moura de Sousa et al|[2017] and
s |Dunai et al|[2019] find that compensatory mutation rather than reversion are actually fairly outcomes for
ss3  bacteria developing resistance to multiple antibiotics at once. In our present paper, we have demonstrated
ssa  theoretical support and explanation for these empirical findings, by showing that compensatory mutations
sss  can be greatly increased if the population evolves during a phase of relaxed selection regime (Fig. . Here,
sss ‘relaxed’ is more obviously a relative term. Organisms challenged by antibiotics are already stressed, and
ss7  trade-off the costs of initial mutations with the benefits in surviving the antibiotic assault. In this climate,
sss ‘compensatory’ mutations are mutations selected because they mitigate these additional costs, reducing the
sso chance that the mutations leading to antibiotic resistance are swept through reversion from the population.
300  Although antibiotic resistance is obviously a problem in human contexts, more generally this sort of dynamic
se1  illustrates a context in which ‘relaxed’ selection might come into play — when a mutation produces both
32 costs and benefits, or these vary with the ecological context of the organism.

303 Many studies have shown that conventional de novo mutations are widely distributed throughout the
sea  genome and have a wide distribution of phenotypic effects, from complete lethality to weak benefit with
305 respect to fitness [Sanjuan et al.l |2004, Eyre-Walker and Keightleyl, [2007, [Keightley and Eyre-Walker), {2007,
sss | Mezmouk and Ross-Ibarral [2014]. Although there have been no predictive tests of the location of compen-
37 satory mutations, empirical studies show that compensatory mutations are often found in proteins that are
ses in or interact with proteins that exhibit a deleterious mutation [Poon et all, (2005, Poon and Chaol 2005,
a0 |Davis et all [2009] |(Comas et al., 2012 [Bhattacherjee et al.| 2015]. Our findings concur with this. In this
w0 paper, we have showed that there is a bias with respect to where compensatory mutations happen such
a1 that compensatory mutations tend to generate regulatory circuits that closely interact with each other (solid
w02 line, Fig. ), whereas neutral mutations tend to accumulate more evenly distributed and therefore further
203 apart from each other (dashed line, Fig. ) We also found a bias with respect to the size compensatory
sw0a mutations have in terms of shifting gene regulation, such that compensatory mutations generate regulatory
a5 circuits that have larger interactive impacts (solid line, Fig. ), compared to neutral mutations (dashed
ws line, Fig. BB).

407 Previous work has indicated that the origin of mutational robustness may come from the non-adaptive
s0s results of biophysical principles or non-adaptive evolutionary forces [Ruths and Nakhleh| 2013, |Payne and
a0 |Wagner| 2015|. During periods of relaxed selection, regulatory networks with otherwise-lethal mutations
a0 have the potential to be compensated by additional mutations. If compensatory mutation occurs frequently
a1 enough and generates different patterns of gene regulation than networks with neutral mutations, then the

a1z processes observed here could alter which types of network are lost when selection for network stability
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a3 does occur. Systematic biases in the loss of particular network configurations could allow network features
a1a  associated with compensatory mutation to accumulate in the population, even when the features do not
a5 at least initially confer differential reproductive success. In addition—as we have shown—the combination
a6 of recombination, deleterious mutation and compensatory mutation under moderately effective population
a1z sizes could then permit the evolution of increased regulatory complexity. In this paper, we have shown
a8 that stable networks with compensatory mutations generating a profound change in robustness compared
a0 to the impact on stable networks of neutral mutations (Fig. and D). These results indicate that over
a20 time, compensatory mutations that occur during generations of relaxed selection could be biased such that
a1 regulatory circuits that closely interact and have larger interactive impacts are more likely to be maintained.
422 We have also shown that, at least in our system, over time these can have profound impact on the complexity
423 of the networks.

424 Taken together, we believe these findings demonstrate that the nature of compensatory mutation has
a2s  been misunderstood theoretically. Periods of relaxed selection (as per our model) or indeed of increased
26 differential selection (as per ecological challenges e.g. of antibiotics) produce a context in which natural
427 innovations may be tolerated long enough to be combined. Combining mutations allows for a larger range of
a2s  genomic innovation. Both our models and the empirical data of others show a surprising level of resilience in
420 complex biological systems. Our models indicate that resilience may scales well with increasing complexity.
430 Overall, the biases that emerge in this process as innovations accumulate may be an important new factor

431 in understanding the evolution of gene regulatory networks, and evolution more broadly.

= Methods

433 We employed a well-established synthetic model of gene regulatory networks to simulate compensatory
43¢ mutation; see Appendix for further in-depth description of our simulations. Here we only provide a more
435 detailed explanation of the computational model used in this paper.

436 For each individual in a finite population of size M, we consider an N x N matrix W as a gene network
a7 that contains the regulatory interactions among N genes. Each element w; ; (4,5 = 1,2,..., N) represents the
a8 regulatory effect on the expression of gene i of the product of gene j. The network connectivity parameter ¢
430 determines the proportion of non-zero elements in the network W. A zero entry means there is no interaction
a0 between two genes. Through gene interactions, the regulatory effect acts on each gene expression pattern.
21 This can be denoted by a state vector S(t) = (s1(t), sa(t),...,s:(t),...,sn(t)), where s;(t) represents the
22 expression level of gene (or concentrations of proteins) ¢ at time t. Each value of expression state s;(t) is

23 within the interval [—1,41] that expresses complete repression (—1) and complete activation (+1). For a
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aaa  given gene regulatory network W, the dynamics of S for each gene i is modelled by a set of coupled difference

a5 equations:

N
sit+1)=f Zwi,jsj(t) +e |, (1)
=1

e where f() is a sigmoidal function, and ¢; is a constant which reflects either a basal transcription rate of gene
sz 4 or influences of upstream gene(s) on gene . For reasons of computational convenience, we set ¢; = 0, and
ws  follow [Siegal and Bergman! [2002] and |Azevedo et al.[[2006] to define f(z) = 2/(1 + e~ **) — 1, where a is the
a0 activation constant determining the rate of change from complete repression to complete activation.

450 In all the simulations here, we define network developmental stability as the progression from an arbitrary
«s1 Initial expression state, S(0), to an equilibrium expression state (reaching a fixed phenotypic pattern), Sgq,
a2 by iterating Equation a fixed number of times, devT. If a given network W can achieve stability over this
a3 developmental time period, it is termed ‘stable’; otherwise, it is labelled ‘unstable’. Note that this selection
e for network stability is also referred to as selection for network stability in which unstable networks will be

a5 eliminated. The equilibrium expression state can be reached when the following equation is met:

devT

LS p(se).8) <« )

-
O=devT—T1

s where ¢ is a small positive integer and set to be 107* in all simulations, and D(S,S) = Ziil (si — s’i)2/4N

ss7 measures the difference between gene expression patterns S and S which is the average of the gene expression
«ss  level over the time interval [devT — 7,devT — 7+ 1,...,devT], where 7 is a time-constant characteristic for
wse  the developmental process under consideration, and depends on biochemical parameters, such as the rate
w60 of transcription or the time necessary to export mRNA into the cytoplasm for translation |[Wagnerl 1994].
a1 Unless otherwise specified, we used a = 100, devT = 100 and 7 = 10 in all simulations, following previous

w2 studies [Wagner, [1996| Siegal and Bergman| 2002} |Azevedo et al.l 2006].

«: Initialisation

464 Each individual network in the population was generated with a gene regulatory matrix W associated
ss  with an expression state vector S(0). Specifically, the matrix was generated by randomly filling W with
asss ¢ X N? non-zero elements w; j that was drawn from a standard normal distribution N (0,1). The associated

67 initial expression state S(0) was also set by randomly choosing each s;(0) = +1 or —1.
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s Mutation

460 In the mutation operation, exactly one element w; ; picked at random in each regulatory matrix W would
a0 bereplaced by w’; j ~ N(0,1). Note that the mutation only occurs among non-zero elements. In other words,
471 the mutation process will not change the topology of the original network W in terms of forming new edges

472 or deleting existing edges between two genes.

s Recombination

474 In some simulations presented in this paper, we allowed individual networks to recombine with each
a7 other. A recombinant was produced by picking two individuals and selecting rows of the W matrices from
476 each parent with an equal probability. This process is similar to free recombination between units formed

a7z by each gene and its cis-regulatory elements, but with no recombination within regulatory regions.

«s Strong and relaxed selection for network stability

479 In the selection for network stability regime, only individuals which were able to attain developmental
a0 stability after the mutation process were selected. In contrast, all individuals can survive regardless of they

a1 were capable or incapable of reaching equilibrium when the selection for network stability was relaxed.

s Evolution

483 The evolutionary simulations were performed under the reproduction-mutation-selection life cycle. The
asa  population size M was fixed in every generation throughout the evolution in all simulations. In typical
a5 asexual evolution, an individual was chosen at random to reproduce asexually by cloning itself and was
ass then subjected to a single mutation. Similarly, in typical sexual evolution, two individuals were chosen at
a7 random to reproduce sexually by recombining two parent networks and then subjected to a single mutation.
sss  Depending on different patterns of selection, unstable networks were excluded (under the selection for network
a0 stability regime) or allowed to stay in the population (under the relaxed selection regime). This process was

a0 repeated until M number of networks were produced.

o 2.1 COde

402 Code for the simulations is available at https://bit.1ly/2ExLhYd.
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Figure S1: The influence of the size and connectivity of a gene regulatory network on its initial
stability, robustness and frequency of compensatory mutation. For each network size (N = 5, 10,
15, 20, 30 and 40) with each connectivity given from a range of values in continuous intervals ([0.2, 1], step
size 0.02), we tested the proportion of gene networks that are stable based on an initial 10,000 randomly
generated networks (A), the robustness of stable networks after exposure to a single round of mutation based
on an initial 10,000 randomly generated stable networks (B), and the frequency of compensatory mutation
based on an initial 10,000 randomly generated stable networks (C) (rescaled from Fig. . The shaded areas
represent 95% confidence intervals based on 100 independent runs.
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Figure S2: Compensatory mutations can occur in networks regardless of different patterns of
selection. For each network size (N = 5, 10, 15, 20, 30 and 40) with network connectivity ¢ = 0.76, we
collected 10,000 only stable, both stable and unstable, and only unstable networks with one to fifteen rounds
of mutation. For each round of mutation, each network was subjected to one single mutation (for unstable
networks) or two single mutations (for stable networks). Then, we measured the frequency of compensatory
mutation in networks that have been subjected to bouts of selection for network stability (A), networks that
have been subjected to bouts of relaxed selection (B), and networks with cumulative deleterious mutations
(C). The error bars represent 95% confidence intervals based on 100 independent runs.
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Figure S3: Relaxed selection stimulates compensation in gene regulatory networks. For each
network size (N = 5, 15, 10, 20, 30 and 40) with connectivity ¢ = 0.76, we measured the number of
compensatory mutations occurring after the previous relaxed selection, which happened in every 2, 5, 10,
25, 50, 100, 200 and 500 generations. The reported results are the total number of compensatory mutations
(of 10,000 networks) (A) and frequency of compensatory mutation (per network per relaxed selection cycle)
occurring over a total of 1,000 generations for populations with different sizes (B). Error bars or shaded
areas represent 95% confidence intervals based on 100 independent runs.

32


https://doi.org/10.1101/2019.12.18.881276

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.18.881276; this version posted December 19, 2019. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

22.3% 30.7%

Figure S4: Examples of the spatial probability of compensatory mutation occurring on gene
networks. In both examples, N =5 (A) and 20 (B), for a particular compromised network that was stable
initially, we executed one additional mutation round 1,000 times on each edge. Then, the percentage of
each mutation on that edge that restored GRN stability after mutation was measured. Unmarked edges
had a CM 0% of the time. Note the solid line with width also indicates the probability an edge’s mutation
was compensatory, and the dashed line to represent the edges for which mutation never compensated this
particular deleterious mutation. The original deleterious mutation occurred on the edge marked in red.
Note: The directed edge represents the interaction between two connected genes. But we do not distinguish
negative or positive regulation in the provided examples.
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Figure S5: The distribution of regulation in initially-stable, compromised and restored networks.
For randomly generated stable networks with N = 5 and ¢ = 0.4, we collected 10, 000 sample regulations. We
also collected 10,000 sample regulation weights from deleterious mutations that compromised initially-stable
networks as well as from compensatory mutations that restored the stability of previously-broken networks.
We then measured the distributions in all regulatory edges (A), in self-regulatory edges (B) and ignoring
self-regulatory edges (C). Given that the regulations are continuous values, we grouped them into 19 bins
from [—4.5, +4.5] (step size 0.5). The error bars represent 95% confidence intervals based on 100 independent
runs.
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Figure S6: Compensatory mutation generates regulatory complexity in stable networks without
an initial variation in connectivity. For the network size N = 40 and the connectivity ¢ = 0.15, we
collected 10,000 stable networks, then evolved them for 5000 generations, allowing recombination at each
generation. In every 200 generations, we measured the network connectivity of the population (stable) in
which the relaxed selection occurs in every 2, 10, 25 50 and 200 generations. We also measured the network
connectivity of the population when there was no relaxed selection as a control group. Shaded areas represent
95% confidence intervals based on 10 independent runs.
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Supplementary Text

Estimating the relative frequency of compensatory mutation

To gain an impression of the properties of the initial gene regulatory networks, we first tested the prob-
ability of network stability in randomly-generated networks. As illustrated in Fig. [STA, smaller networks
are more likely to be stable. Moreover, the relative frequency of stability in networks with low levels of
connectivity is higher than that of networks with high levels of connectivity. This is in general accordance
with previous work, typically done at connectivity ¢ = 0.75, e.g. |Azevedo et al. [2006], which indicates that
larger networks with complex topology tend to be unstable.

In the second experiment, we explored the robustness of initially-stable networks; that is, we investigated
the probability that stable networks remain stable after a single round of mutation. Here, a single mutation
means exactly one non-zero entry in an individual’s genotype would be mutated. Given that the initially-
stable networks were collected from the original randomly-generated ones, it would seem reasonable to predict
that the small stable networks are more likely to break after one mutation round, since they contain fewer
pathways and a single mutation, therefore, has a greater proportional effect. However, the results in Fig.[S1B
show the opposite effect: the stability of the small networks is still high. The mutation operation is effectively
an alternative way of generating new networks; thus, the mutated networks have the same properties as the
initial ones.

In our third experiment, we measured the compensatory mutation frequency in previously-stable net-
works. Specifically, we started from a population pool where each stable network was randomly generated.
Then, we exposed these initially-stable networks to a single round of mutation. We focused on those unstable
networks where each network contained a single deleterious mutation. Next, we exposed these compromised
networks to an additional round of mutation. Finally, we tested the stability of the resulting networks. The
stable networks at this point had experienced compensatory mutation. We then measured the frequency of
individuals that experienced compensatory mutation. As shown in Fig. (also see Fig. [2l main text),
the frequency of compensatory mutation is largely scale invariant both to the network size and the network

connectivity.

Exploring strong and relaxed selection for network stability on compensatory

mutation frequency

In this set of experiments, we investigated the frequency of compensatory mutation after many generations

of both strong and relaxed selection for network stability to test whether compensatory mutation continues
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to occur even after lengthy evolution (see Fig. and Fig. ) Specifically, under the selection for
network stability regime, we collected 10,000 stable networks at each generation where each network in
the population was subjected to one single mutation. Then, we performed another round of mutation,
focusing on the unstable networks that resulted from the previous round, and measured the probability of
a second mutation that can restore the network stability of those compromised networks. Similarly, under
the relaxed selection regime, we collected 10,000 networks at each generation where each network in the
population was subjected to one single mutation. However, for each relaxed selection generation, there were
both stable and unstable networks after the population was subjected to the single mutation, since we did
not perform selection restricting networks to being stable. The overall frequency of compensatory mutation
for the population during each relaxed selection generation was averaged over the results of stable networks
and unstable networks that were calculated separately.

In addition, we also measured the frequency of compensatory mutation among unstable networks during
each relaxed selection event to further confirm that compensatory mutation can occur even in seriously
damaged networks (see Fig. ) Specifically, we collected 10,000 unstable networks at each generation
where each network in the population was subjected to one single mutation, so really in this case we had
selected against network stability. Then, we performed another round of mutations and measured the
probability of a second mutation that could restore network stability. Note that this set of experiments
is similar to those experiments described above, but here we only focus on unstable networks, whereas we

consider both stable and unstable networks in the relaxed selection regime.

Exploring the frequency of relaxed selection in simulating compensatory muta-

tions

In this set of experiments, we tested whether frequent relaxed selection can generate more compensatory
mutations (see Fig. ) Specifically, we collected a population pool of 10, 000 stable networks that were gen-
erated randomly. The initial population was then evolved under a relaxed selection regime with a frequency
of 1/2, 1/5, 1/10, 1/25, 1/100, 1/200 and 1/500 for a total of 1,000 generations. Note that during relaxed
selection event, both stable and unstable networks can survive when the population is subjected to one single
round of mutation. The number of compensatory mutations was recorded immediately after each relaxed
selection event when the population was subjected to another single round of mutation. The reported results
are the total number of compensatory mutations (see Fig. [S3JA) and frequency of compensatory mutation

(per network per relaxed selection event, see Fig. [S3B) arising over 1,000 generations.
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Exploring population diversity for highly stable networks

In this set of experiments, we investigated how the population diversity is impacted in networks that
have been exposed to many generations of strong selection for network stability (see Fig. . Specifically, we
tested whether the increased compensatory mutation frequency shown in Fig. was due to the property
of particular networks that had been selected for, or whether it was the property of a diverse population.

Following the measurement used in |Azevedo et al|[2006|, the genetic diversity is defined as:

H=1-3p 3)
=1

where n is the total number of alleles, i.e., the unique values contained in the same site crossing all individual
networks, and p; is the frequency of allele 7. The genetic variation in a population is calculated as the mean

gene diversity over non-zero sites of the interaction matrix for a given genotype W.
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Figure S7: Population diversity of highly stable networks. For each network size (N = 5, 10, 15, 20, 30 and
40) with network connectivity ¢ = 0.76, we tested population diversity for 10,000 networks that had been
exposed to selection for network stability following up to fifteen rounds of mutation as described in Fig. [S2A.
The error bars represent 95% confidence intervals based on 100 independent runs.

From Fig. [S7] we can see that networks that have been though many generations of selection for network

stability can still maintain a high network diversity.
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Location of compensatory mutations

In this set of experiments, we first sought to visualise locations at which the compensatory mutations are
more likely to occur (see Fig.[S4)). To this end, in a set of compromised networks (those stable networks that
proved fragile to a single round of mutation), we marked the site of the deleterious mutation, then measured
the relative frequency of compensatory mutation that occurred at each possible site, including the site of the
deleterious mutation, within this compromised network. For each possible site, we measured the outcomes
over 1,000 simulated mutations on that site (so that only the extent of regulation was mutated randomly,
not the location).

To quantify the distance between deleterious and (potentially) compensatory mutation, we first define
‘distance’ as used in this paper. Suppose a given gene regulatory network, denoted as W, has two marked
edges denoted as AB (deleterious mutation) and D (compensatory mutation), where A, B, C and D
represent different genes in W and = marks the edge direction. The distance between AB and @ can be

calculated as

0 if A=C and B=D
1 if A= Dand B=C

DIS (AB,CD) = dis(A,C)+1 if B and D ¢ path(A, C) (4)
dis(A,C)  if Bor D € path(A,C)
dis(A,C) —1 if B and D € path(4,C)

where dis(A, C) is the fewest edges possible from A to C' and path(A, C) includes the vertices on the shortest
path between A and C in network W.

An example process of compensatory mutation in a gene regulatory network can be seen in Fig. [S§8 This
stable network can be compromised by a single deleterious mutation (marked in red) and compensated by
an additional mutation (marked in blue). According to Equation , the distance from deleterious mutation
site OA to compensatory mutation site CE can be calculated as: DI S(Cﬁ, @) =1

Next, we compared the relative frequencies of compensatory mutation among gene networks whose marked
edges (caused by additional mutation) were 0, 1, 2, 3, and 4 steps away from the deleterious mutation (see
Fig. [3l main text, and also see Fig.[S9)). We also performed similar experiments for medium (N = 20) and
large networks (N = 40), as shown in Fig. and Fig.
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Figure S8: An example process of compensatory mutation in a gene regulatory network. The initially
stable gene network contains five genes: A, B, C, D and E. In the initial network (on the left side),
each directional edge represents the strength (weight) of interaction between the linked two genes. The
initial gene expression pattern is s(0) = (=1, —1,+1,+1,+1). In the compromised network (in the middle),

a mutation occurs on CA (indicated in red), which leads to the failure of stabilising the gene expression
patterns (marked by dashed circles). In the compensated network (on the right side), the compromised
network is fixed by an additional mutation that occurs on CE (indicated in blue), reaching an equilibrium
expression spq = (—1,—1,+1,+1,+1).
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Figure S9: The compensatory mutation location and distance distribution of all mutations relative to the
original deleterious mutation sites (Small Networks). For initially stable networks with size N = 5 and
connectivity ¢ = 0.4, we first collected a pool of compromised networks with deleterious mutations after a
single mutation round. We then forced second mutations, classifying these as being 0 (on the same site),
1, 2, 3 and 4 steps away from the original deleterious mutations. For each of these mutation-site-distance
categories, we measured the probability that the mutation was compensatory (that it returned the network
to stability), based on 10, 000 sample networks collected for each distance category as shown in the solid line.
We also recorded the spatial distribution of second mutations (10,000 sample networks) occurring randomly
in those compromised networks with respect to their original deleterious mutation sites, shown in the dashed
line. The error bars represent 95% confidence intervals based on 100 independent runs.
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Figure S10: The compensatory mutation location and distance distribution of all mutations relative to the
original deleterious mutation sites (Medium Networks). For initially stable networks with size N = 20 and
connectivity ¢ = 0.2, we first collected a pool of compromised networks with deleterious mutations after a
single mutation round. We then forced second mutations, classifying these as being 0 (on the same site), 1,
2, 3, 4 and 5 steps away from the original deleterious mutations. For each of these mutation-site-distance
categories, we measured the probability that the mutation was compensatory (that it returned the network
to stability), based on 10, 000 sample networks collected for each distance category as shown in the solid line.
We also recorded the spatial distribution of second mutations (10,000 sample networks) occurring randomly
in those compromised networks with respect to their original deleterious mutation sites, shown in the dashed
line. The error bars represent 95% confidence intervals based on 100 independent runs.
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Figure S11: The compensatory mutation location and distance distribution of all mutations relative to the
original deleterious mutation sites (Large Networks). For initially stable networks with size N = 40 and
connectivity ¢ = 0.15, we first collected a pool of compromised networks with deleterious mutations after a
single mutation round. We then forced second mutations, classifying these as being 0 (on the same site), 1,
2, 3, 4 and 5 steps away from the original deleterious mutations. For each of these mutation-site-distance
categories, we measured the probability that the mutation was compensatory (that it returned the network
to stability), based on 10, 000 sample networks collected for each distance category as shown in the solid line.
We also recorded the spatial distribution of second mutations (10,000 sample networks) occurring randomly
in those compromised networks with respect to their original deleterious mutation sites, shown in the dashed
line. The error bars represent 95% confidence intervals based on 100 independent runs.
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Exploring the size of gene regulation on compensatory mutation frequency

In this set of experiments, we investigated effective changes in gene regulation associated with these
mutations (see Fig. 3] main text, and also see Fig. . Specifically, we conducted experiments to measure
the frequency of compensatory mutation when the second mutation had an additional weight added to it.
We studied a range of weight changes from (w = [—5,5]) with a step size of 0.05. For each step size, we
first performed one mutation round as usual on the initial population of stable networks, creating a sub-
population of 10,000 compromised networks. Then, for these mutated networks we performed a second
mutation round; however, this time instead of replacing one entry in the interaction matrix with N (0, 1),
we added a fixed value w drawn from [—5, 5] to the original value of the randomly picked site. Then, we
measured the frequency of second mutations restoring the network stability. We also performed similar

experiments for medium (N = 20) and large networks (N = 40), as shown in Fig. and Fig.
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Figure S12: The influence of different intensities of gene regulations on the frequency of compensatory
mutation (Small Networks). We first collected 10,000 sample networks that had been made unstable by a
single mutation from a pool of initially stable networks with NV =5 and ¢ = 0.4. Then, we experimented with
how a new mutation of varying intensities of gene regulation altered the chances of restoring gene stability.
Specifically, we performed new mutations to those compromised networks with deleterious mutations by
adding a weight from [—5,45] (step size 0.5) to the original regulatory impact, then assessed the resulting
patterns in all regulatory edges (A), in self-regulatory edges (B) and ignoring self-regulatory edges (C). The
shaded areas represent 95% confidence intervals based on 100 independent runs.
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Figure S13: The influence of different intensities of gene regulation on frequency of compensatory mutation
(Medium Networks). We first collected 10,000 sample networks that had been made unstable by a single
mutation from a pool of initially stable networks with N = 20 and ¢ = 0.2. Then, we experimented with
how a new mutation of varying intensities of gene regulation altered the chances of restoring gene stability.
Specifically, we performed new mutations to those compromised networks with deleterious mutations by
adding a weight from [—5,45] (step size 0.5) to the original regulatory impact, then assessed the resulting
patterns in all regulatory edges (A), in self-regulatory edges (B) and ignoring self-regulatory edges (C). The
shaded areas represent 95% confidence intervals based on 100 independent runs.
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Figure S14: The influence of different intensities of gene regulation on frequency of compensatory mutation
(Large Networks). We first collected 10,000 sample networks that had been made unstable by a single
mutation from a pool of initially stable networks with N = 40 and ¢ = 0.15. Then, we experimented with
how a new mutation of varying intensities of gene regulation altered the chances of restoring gene stability.
Specifically, we performed new mutations to those compromised networks with deleterious mutations by
adding a weight from [—5,45] (step size 0.5) to the original regulatory impact, then assessed the resulting
patterns in all regulatory edges (A), in self-regulatory edges (B) and ignoring self-regulatory edges (C). The
shaded areas represent 95% confidence intervals based on 100 independent runs.
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Exploring the distribution of regulation in initially-stable, compromised and re-

stored networks

In this set of experiments, we investigated the distribution of regulation in initially stable, compromised
and restored networks (see Fig. . Specifically, we collected 10,000 sample regulatory values each from
edges of randomly generated stable networks, edges where deleterious mutations occurred (compromising
network stability), and edges where compensatory mutations occurred (restoring previously compromised
networks). We then measured their corresponding distributions, discriminating between self- and non-self-

regulatory edges. We also performed similar experiments for medium (N = 20) and large networks (N = 40),

as shown in Fig. and Fig.
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Figure S15: The distribution of regulation in initially stable, compromised and restored networks (Medium
Networks). For randomly generated stable networks with N = 20 and ¢ = 0.2, we collected 10,000 sample
regulations. We also collected 10, 000 sample regulation weights from deleterious mutations that compromised
initially stable networks as well as from compensatory mutations that restored the stability of previously
broken networks. We then measured the distributions in all regulatory edges (A), in self-regulatory edges
(B) and ignoring self-regulatory edges (C). Given that the regulations are continuous values, we grouped
them into 19 bins from [—4.5,+4.5] (step size 0.5). The error bars represent 95% confidence intervals based
on 100 independent runs.
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Figure S16: The distribution of regulation in initially stable, compromised and restored networks (Large
Networks). For randomly generated stable networks with N = 40 and ¢ = 0.15, we collected 10,000 sample
regulations. We also collected 10, 000 sample regulation weights from deleterious mutations that compromised
initially stable networks as well as from compensatory mutations that restored the stability of previously
broken networks. We then measured the distributions in all regulatory edges (A), in self-regulatory edges
(B) and ignoring self-regulatory edges (C). Given that the regulations are continuous values, we grouped
them into 19 bins from [—4.5, +4.5] (step size 0.5). The error bars represent 95% confidence intervals based
on 100 independent runs.
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Exploring properties of location and size effects in neutral mutations

In this set of experiments, we investigated properties of location and size effects in neutral mutations
which served as control groups for solid lines in Fig. and B, main text, Specifically, to test the location
effect, we collected a population pool of stable networks that had been subjected to one round of mutation
(neutral). Then, we measured the probability of stable networks after performing a second mutation that
was 0, 1, 2, 3, and 4 steps away from the previous neutral mutation site based on 10,000 sample networks for
each distance category (see dashed line in Fig. ) Similarly, to test the mutation size effect, we collected
a population pool of stable networks that had been subjected to one round of mutation (neutral). Then,
we measured the probability of stable networks after performing a second mutation that had a particular
shift in gene regulation from [—5, +5] based on 10,000 sample networks for each shifted-weight category (see
dashed line in Fig. ) In both tests for location and size effects, we also performed similar experiments for

medium (N = 20) and large networks (N = 40), as shown in Fig. and Fig. [S18
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Figure S17: Location effect in networks with neutral mutations (Medium and Large Networks).
For medium networks (N = 20, ¢ = 0.2) and large networks (N = 40, ¢ = 0.15), we first collected a pool of
stable networks with neutral mutations after a single mutation round. We then forced second mutations,
classifying these as being 0 (on the same site), 1, 2, 3 and 4 steps away from the previous neutral mutations.
For each of these mutation-site-distance categories, we measured the probability that the mutation was
neutral (did not impair network stability) based on 10,000 sample networks collected for each distance
category. The error bars represent 95% confidence intervals based on 100 independent runs.
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Figure S18: Mutation size effect in networks with neutral mutations (Medium and Large Net-
works). We first collected 10, 000 stable networks with neutral mutations after a single mutation round from
a pool of initially stable medium networks (N = 20, ¢ = 0.2) and large networks (N = 40,¢ = 0.15). Then,
we experimented with how new mutations of varying intensities of gene regulation altered the chance of
retaining network stability. Specifically, we performed new mutations to those networks with neutral muta-
tions by adding a weight from [—5, +5] (step size 1 and with four additional regulation shifts: —0.5, —0.1,0.1
and 0.5) to the original regulatory impact, then assessed the resulting patterns. The error bars represent
95% confidence intervals based on 100 independent runs.
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Exploring the impact of distance and size effects on network robustness

In this set of experiments, we explored the effects of location and mutation size on robustness in networks
with one deleterious mutation and one compensatory mutation and in networks with two consecutive neu-
tral mutations to investigate whether networks with compensatory mutations have a different evolutionary
consequence compare with networks with neutral mutations (see Fig. and D and also see Fig. and
Fig. [S22]).

Specifically, to test the distance effect, we collected 10,000 sample networks at each distance (between
deleterious mutation and compensatory mutation). Then, for each category of distance, we measured the
proportion of stable networks after one additional round of single mutation. The reported results are both
actual robustness (see the solid line in Fig. [S19)A) and percentage change in robustness (see the solid line
in Fig. [SI9B). Similarly, for the control group, instead of collecting networks that were subjected to one
deleterious mutation and one subsequent compensatory mutation, we collected 10,000 sample networks that
were subjected to two consecutive neutral mutations at each distance (between two neutral mutations), and
then assessed the actual robustness (see the dashed line in Fig. ) as well as the percentage of robustness
change (see the dashed line in Fig. [S19B). We also performed similar experiments for medium (N = 20) and
large networks (N = 40), as shown in Fig. and Fig. [S21

Likewise, to test size effect, we collected 10,000 sample networks that were compensated by mutations
with different shifts in gene regulation. Then, for each category of mutation size, we measured the proportion
of stable networks after one additional round of single mutation. The reported results are both actual
robustness (see the solid line in Fig. [S22/A) and percentage change in robustness (see the solid line in
Fig.[S22B). Similarly, for the control group, instead of collecting networks that were subjected to one normal
deleterious mutation and one subsequent compensatory mutation with different shifts in gene regulation,
we collected 10,000 sample networks that were subjected to two consecutive neutral mutations, one normal
neutral mutation and the other neutral mutation with different shifts in gene regulation, and then assessed
the actual robustness (see the dashed line in Fig. [S22]A) as well as the percentage of robustness change
(see the dashed line in Fig. [S22B). We also performed similar experiments for medium (N = 20) and large

networks (N = 40), as shown in Fig. and Fig. [S24
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Figure S19: The impact of distance effect on network robustness (Small Networks). For small
networks (N = 5,¢ = 0.4), we collected 10,000 sample stable networks that were subjected one deleterious
mutation and then restored by one subsequent compensatory mutation that was 0, 1, 2 and 3 steps away
from the previous deleterious mutation. The sample networks for control group were collected in a similar
way, except that the networks were subjected to two consecutive neutral mutations. Then, we assessed
robustness of sample networks at each distance step. The reported results are actual robustness (A), and
change in robustness (B) (the actual robustness was normalised by subtracting the minimal value among all
categories, and then divided by the minimal value). The error bars represent 95% confidence intervals based
on 100 independent runs.
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Figure S20: The impact of distance effect on network robustness (Medium Networks). For
medium networks (N = 20,c¢ = 0.2), we collected 10,000 sample stable networks that were subjected one
deleterious mutation and then restored by one subsequent compensatory mutation that was 0, 1, 2, 3 and
4 steps away from the previous deleterious mutation. The sample networks for the control group were
collected in a similar way, except that the networks were subjected to two consecutive neutral mutations.
Then, we assessed the robustness of the sample networks at each distance step. The reported results are
actual robustness (A), and change in robustness (B) (the actual robustness was normalised by subtracting
the minimal value among all categories, and then dividing by the minimal value). The error bars represent
95% confidence intervals based on 100 independent runs.
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Figure S21: The impact of distance effect on network robustness (Large Networks). For large
networks (N = 40, ¢ = 0.15), we collected 10,000 sample stable networks that were subjected one deleterious
mutation and then restored by one subsequent compensatory mutation that was 0, 1, 2, 3 and 4 steps away
from the previous deleterious mutation. The sample networks for the control group were collected in a similar
way, except that the networks were subjected to two consecutive neutral mutations. Then, we assessed the
robustness of the sample networks at each distance step. The reported results are actual robustness (A), and
change in robustness (B) (the actual robustness was normalised by subtracting the minimal value among
all categories, and then dividing by the minimal value). The error bars represent 95% confidence intervals
based on 100 independent runs.
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Figure S22: The impact of mutation size effect on network robustness (Small Networks). For
small networks (N = 5,¢ = 0.4), we collected 10,000 sample stable networks that were subjected one
deleterious mutation and then restored by one subsequent compensatory mutation with different shifts in
gene regulation from [—5,45] (step size 1 and with four additional regulation shifts: —0.5, —0.1, 0.1 and
0.5). The sample networks for control group were collected in a similar way, except that the networks were
subjected to two consecutive neutral mutations. Note that the second neutral mutation has different shifts
in gene regulation as the compensatory mutation. Then, we assessed robustness of sample networks at
each category. The reported results are actual robustness (A), and change in robustness (B) (the actual
robustness was normalised by subtracting the minimal value among all categories, and then divided by the
minimal value). The error bars represent 95% confidence intervals based on 100 independent runs.
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Figure S23: The impact of mutation size effect on network robustness (Medium Networks). For
medium networks (N = 20,c¢ = 0.2), we collected 10,000 sample stable networks that were subjected one
deleterious mutation and then restored by one subsequent compensatory mutation with different shifts in
gene regulation from [—5, 45] (step size 1 and with four additional regulation shifts: —0.5, —0.1, 0.1 and 0.5).
The sample networks for the control group were collected in a similar way, except that the networks were
subjected to two consecutive neutral mutations. Note that the second neutral mutation has different shifts
in gene regulation to the compensatory mutation. Then, we assessed the robustness of the sample networks
at each category. The reported results are actual robustness (A), and change in robustness (B) (the actual
robustness was normalised by subtracting the minimal value among all categories, and then dividing by the
minimal value). The error bars represent 95% confidence intervals based on 100 independent runs.
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Figure S24: The impact of mutation size effect on network robustness (Large Networks). For
large networks (N = 40,¢ = 0.15), we collected 10,000 sample stable networks that were subjected one
deleterious mutation and then restored by one subsequent compensatory mutation with different shifts in
gene regulation from [—5, 45] (step size 1 and with four additional regulation shifts: —0.5, —0.1, 0.1 and 0.5).
The sample networks for the control group were collected in a similar way, except that the networks were
subjected to two consecutive neutral mutations. Note that the second neutral mutation has different shifts
in gene regulation to the compensatory mutation. Then, we assessed the robustness of the sample networks
at each category. The reported results are actual robustness (A), and change in robustness (B) (the actual
robustness was normalised by subtracting the minimal value among all categories, and then dividing by the
minimal value). The error bars represent 95% confidence intervals based on 100 independent runs.
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Exploring how network connectivity evolves under a relaxed selection regime

In this set of experiments, we investigated whether regulatory complexity (increased network connectivity)
could arise under a relaxed selection regime where compensatory mutations could occur and accumulate (see
Fig. [4| and Fig. [S6)).

In the first set of experiments, we tested whether we could observe greater complexity arising using a
population pool of 10,000 stable networks of N = 10 genes with a simple ‘Star’ topology (see fig 4, main

text). Specifically, the initial population pool was generated using the following rules:
e Randomly select a gene to be the hub node.

e There is at least one edge between the hub node and non-hub nodes (either inward or outward); there

is a possibility (0.5) of having both inward and outward edges.
e Each node has a possibility (0.5) of having a self-regulatory edge (including the hub node).
e The value (interaction strength) of each edge is drawn from the standard normal distribution N(0,1).

In theory, for network size N = 10, the minimum connectivity is ¢min = 0.09 (9 edges) and the maximum
connectivity is ¢max = 0.28 (28 edges). In the randomly generated initial population pool used in this paper,
the minimum connectivity was ¢pmin = 0.10 (10 edges), the maximum connectivity was ¢max = 0.26 (26
edges), the median connectivity was ¢ = 0.17 (17 edges) and the average connectivity was ¢ = 0.17. Then,
the initial population was evolved for 5,000 generations under strong and relaxed selection regimes: In four
scenarios with selection for network stability, the initial population was evolved under: a no mutation and no
recombination regime, a mutation but no recombination regime, a recombination but no mutation regime,
a mutation and recombination; in three other scenarios, the initial population was evolved under a relaxed
selection regime with a frequency of 1/10, 1/25, and 1/50. The statistical details for connectivity in initial
and evolved populations can be found in Table Note that compensatory mutation could only occur
during periods of relaxed selection.

In order to further test the hypothesis that relaxed selection can facilitate regulatory complexity, in
the second set of experiments, we further investigated how network connectivity evolves under a relaxed
selection regime using randomly generated networks (see Fig. . Specifically, for a network size N = 40
with connectivity ¢ = 0.15, we collected 10,000 stable networks, each of which had the same initial gene
expression pattern, all activation, i.e., s(0) = (+1,4+1,...,+1). This population was then evolved for 5,000
generations, in this case allowing for recombination with other individuals from the same generation. Note
that in the previously-described experiments in this paper, a mutation could not change the topology of

an individual network; that is, it could not change zero elements into non-zero or vice versa. In contrast,
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Table S1: Basic statistics of evolved networks with a ‘Star’ topology

Medium Mean SD (E-2)
Init. 0.17 0.17 2.17
No Mut. & No Rec. 0.17 0.17 3.94
Mut. & No Rec. 0.11 0.11 4.14F — 13
Rec. & No Mut. 0.11 0.11 2.19
Mut. & Rec. 0.21 0.20 4.42
Mut. & Rec. (frs = 1/10) 0.30 0.30 0.43
Mut. & Rec. (frs = 1/25) 0.34 0.34 0.47
Mut. & Rec. (frs =1/50) 0.31 0.31 0.51

SD: Standard Deviation

recombination can alter the topology if the non-zero sites are different in individual networks. The reported
results are the mean network connectivity of all individuals in the population in every 200 generations under
different frequencies of relaxed selection. Note that network connectivity was measured in the next generation
of network stability selection immediately after the previous relaxed selection; therefore, we only report the

results in stable networks.
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