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Abstract 
The retina encodes visual stimuli across light intensities spanning 10-12 orders of magnitude from starlight to 

sunlight. To accommodate this enormous range, adaptation alters retinal output, changing both the signal and 

noise among populations of retinal ganglion cells (RGCs). Here we determine how these light level-dependent 

changes in signal and noise impact decoding of retinal output. In particular, we consider the importance of 

accounting for noise correlations among RGCs to optimally read out retinal activity. We find that at moonlight 

conditions, correlated noise is greater and assuming independent noise severely diminished decoding 

performance. In fact, assuming independence among a local population of RGCs produced worse decoding than 

using a single RGC, demonstrating a failure of population codes when correlated noise is substantial and 

ignored. We generalize these results with a simple model to determine the signal and noise conditions under 

which this failure of population processing can occur. This work elucidates the circumstances in which accounting 

for noise correlations is necessary to take advantage of population-level codes and shows that sensory 

adaptation can strongly impact decoding requirements on downstream brain areas.  
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Introduction 
Population activity is the currency of sensory systems because individual neurons have limited signal 

capacity and variable responses to repeated presentations of the same stimuli. This variability is often shared 

across neurons (termed “noise correlations”), adding a rich complexity to the issue of information processing in 

neural populations (Averbeck et al., 2006). There is a large body of work showing that these noise correlations 

can enhance or degrade signaling of sensory information, depending on the structure of noise correlations and 

their relationship to stimulus-evoked signals (Zohary et al., 1994; Dan et al., 1998; Abbott and Dayan, 1999; Wu 

et al., 2001; Romo et al., 2003; Zylberberg et al., 2016). A crucial question is how downstream regions can best 

integrate signals given the noise correlations among their inputs. Perhaps ignoring correlations, or considering 

input activity as independent, has no adverse effect on computations. On the other hand, downstream regions 

may need to take correlated activity into account to appropriately process their inputs. Answering this question 

is critical for understanding how the activity of sensory populations represents stimuli as well as generating 

informed hypotheses about how downstream circuits process these signals. 

In the visual system, populations of retinal ganglion cells (RGCs)—the brain’s sole source of visual 

information—exhibit activity correlations. Previous work has shown that failing to account for these correlations 

decreases decoded information by 0-20% (Nirenberg et al., 2001; Pillow et al., 2008; Meytlis et al., 2012). 

However, these studies were performed under daylight conditions, just part of the retina’s broad operating range 

that spans 10-12 log units of light intensity. Importantly, the structure of correlated activity changes over light 

intensities: correlated activity is generally stronger at lower light levels, exhibiting higher peak correlations that 

extend over longer spatial and temporal scales (Mastronarde, 1983a; Greschner et al., 2011). This shift in 

correlated activity across populations of RGCs raises the intriguing possibility that light adaptation changes the 

impact of these correlations on decoding retinal output.  

To determine the impact of light adaptation and associated changes in correlated activity, we recorded 

from populations of rat RGCs with a large-scale multielectrode array (MEA) over conditions spanning rod-

mediated (scotopic) to cone-mediated (photopic) light levels. Using a generalized linear model (GLM) to decode 

retinal activity, we show that at photopic light levels, accounting for correlations among RGCs improves decoding 

by ~20% compared to assuming the RGCs are independent, similar to previous results in other mammals 

(Nirenberg et al., 2001; Pillow et al., 2008; Meytlis et al., 2012). However, under scotopic conditions, accounting 

for correlations showed a significantly larger impact on decoding performance with a ~100% improvement in 

decoded information. Strikingly, assuming independence across a local population of RGCs produced poorer 

decoding performance than decoding with a single RGC. In this way, we demonstrate a failure in decoding neural 

populations when noise correlations are substantial and ignored. Importantly, these results depended on the 

RGC type that was analyzed, with decoding from OFF-brisk transient RGCs exhibiting greater sensitivity to 

correlations than decoding from OFF-brisk sustained RGCs. To generalize these results, we created a model of 

tuned, correlated neurons to identify conditions under which assuming independence causes decoding from the 

population to perform worse than decoding from a single cell. This model elucidates the circumstances where 

accounting for correlations not only improves visual processing but is necessary to take advantage of population 
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codes. More generally, this work demonstrates the large impact of context-dependent correlations in sensory 

processing and raises important questions about how downstream brain areas process retinal signals across 

light levels. 

 

Results 
RGCs exhibit greater noise correlations at scotopic light levels 
 To examine the consequences of pairwise noise correlations on retinal population codes, we recorded 

RGC responses across a range of light intensities from segments of rat retina on a large-scale MEA 

(Anishchenko et al., 2010; Ravi et al., 2018). The retina was stimulated with spatiotemporal checkerboard noise 

to estimate the receptive fields (RFs), contrast response functions and autocorrelation functions of RGCs over 

the MEA. RGCs were functionally classified according to their light response properties and spiking dynamics, 

using previously described methods (Yu et al., 2017; Ravi et al., 2018). The results of the classification were 

validated by observing that each functionally defined RGC type exhibited a mosaic-like organization of RFs that 

approximately tiled space (Fig. 1A) (Wassle et al., 1981; Devries and Baylor, 1997; Ravi et al., 2018). We initially 

focus our analysis of correlated activity onto a single cell type: OFF-brisk transient (-bt) RGCs (Fig. 1A). These 

cells are likely homologous to OFF parasol cells and other transient alpha-like RGCs in other mammals: they 

exhibit center-surround RFs, short-latency, transient light responses and high contrast sensitivity (Crook et al., 

2008; Manookin et al., 2008; Krieger et al., 2017; Ravi et al., 2018). Focusing first on this RGC type facilitated 

comparing our results to previous work in the primate and rodent retina (Nirenberg et al., 2001; Pillow et al., 

2008; Meytlis et al., 2012).  

Understanding the role of light adaptation in retinal coding required tracking the same population of RGCs 

across rod-mediated (scotopic) and cone-mediated (photopic) conditions. This tracking was achieved by utilizing 

the electrical image (EI) of each RGC. The EI is computed from the spike-triggered electrical activity of an 

identified RGC across the MEA (Petrusca et al., 2007). EIs serve as electrical footprints of each cell and are 

stable despite changes in responses across light levels (Field et al., 2009) (Fig. 1B). This tracking procedure 

was further validated by observing a nearly identical mosaic-like organization of RFs across the scotopic (1.0 

Rh*/rod/s) and photopic (10,000 Rh*/rod/s) light levels examined in these experiments (see Methods). 

The pairwise noise correlations among OFF-bt RGCs were greater under the scotopic condition (Fig. 1D 

& E). We computed all cross-correlograms between OFF-bt RGCs responding to the white noise stimulus and 

estimated noise correlations by removing stimulus-induced correlations (see Methods). The area under the peak 

and width of the noise correlations between primary neighbors were greater under the scotopic conditions (Fig. 

1D; Table 1). The spatial scale of correlations over the population of OFF-bt RGCs was also larger at the scotopic 

light level (Fig. 1E; Table 1). To verify that these noise correlations are not critically influenced by the white noise 

stimulus, we also considered correlated noise during spontaneous activity (Supp. Fig. 1). Those measurements 

revealed similar changes in correlation structure across light levels. Cumulatively, these observations indicate 

higher magnitude correlations that have broader temporal and spatial scales across the population of OFF-bt 

RGCs at the scotopic light level, consistent with previous studies (Mastronarde, 1983a; DeVries, 1999; 
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Greschner et al., 2011). In the subsequent sections we utilize a model-based decoding approach to determine 

the impact these changes in correlation structure have on decoding visual stimuli from populations of OFF-bt 

RGCs. 
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Figure 1: Noise correlation structure and 
receptive fields of RGCs depend on light level. 
A. Receptive field (RF) mosaic of OFF-bt 
RGCs. Each ellipse is the 1 SD Gaussian fit to 
an RGC’s spatial RF. B. Top row: Electrical 
image (EI) of an example cell at two light levels, 
which enables tracking RGCs across light 
conditions. Middle row: Spatial RFs at the two 
light levels. Bottom row: Temporal RF. Both 
spatial and temporal integration increase in the 
scotopic condition. C. Spike raster of two 
neighboring RGCs at photopic (top) and 
scotopic (bottom) light levels responding to 
white noise stimuli. D. Example noise cross-
correlograms across light levels of two primary 
neighbor cells i and ii in A (left) and two 
secondary neighbor cells i and iii (right). E. 
Strength of noise correlations over pairwise 
distances for the OFF-bt RGC population. Each 
point shows the positive area under the cross-
correlation function (CCF) for a given pair of 
cells. Light adaptation causes expanded 
correlated noise in time and space for the 
scotopic condition (561 RGC pairs from 1 
retina; see Supp. Fig. 1 for correlated spiking 
from spontaneous firing). 

 

CCF area (spikes) CCF width (s) Correlation !
spatial scale (μm)

OFF-bt

OFF-bs

P values

Photopic 0.105 ± 0.004 0.037 ± 0.001 205 ± 4

Change over light levels 0.037  ± 0.001 0.013 ± 0.002 26 ± 8
Scotopic 0.063 ± 0.005 0.035 ± 0.001 167 ± 5
Photopic 0.029 ± 0.003 0.033± 0.001 141 ± 6
Change over light levels 0.165 ± 0.001  0.012 ± .001 74 ± 5
Scotopic 0.253 ± 0.013 0.045 ± 0.001 280 ± 4

OFF-bt: photopic vs scotopic p ≪ 0.001 p ≪ 0.001 p < 0.005
OFF-bs: photopic vs scotopic p ≪ 0.001 p = 0.29 p < 0.05
Photopic: OFF-bt vs OFF-bs p ≪ 0.001 p < 0.01 p < 0.001
Scotopic: OFF-bt vs OFF-bs p ≪ 0.001 p ≪ 0.001 p < 0.001
Light level change: OFF-bt vs OFF-bs p ≪ 0.001 p < 0.005p = 0.63

n (primary !
RGC pairs)

128
99
99
96
72
72

Table 1: Measurements of correlation structure across light levels for the two RGC types. Values are mean ± s.e.m. All 
data comes from 4 retinas for the photopic condition and 3 retinas for the scotopic condition (3 retinas in common between 
conditions). 
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RGC responses are fit well by the GLM across light levels 
The model-based decoding approach we used involves first fitting an encoding model to capture the 

relationship between visual stimuli and RGC spiking. This model will be inverted to estimate stimuli given RGC 

spike trains. Importantly, we are not claiming that this exact model-inversion procedure is used in brain areas 

downstream of the RGCs. Since the 

exact computations downstream of the 

retina are unknown, we chose an 

optimal decoding approach. This 

procedure yields a way to estimate how 

well an ideal downstream system could 

estimate the stimulus, given the RGC 

spike trains using different assumptions 

about correlations between cells 

(Averbeck et al., 2006; Pillow et al., 

2008).  

To quantitatively describe RGC 

spiking in response to a checkerboard 

stimulus, we use the Generalized 

Linear Model (GLM), a 

phenomenological model for retinal 

encoding that can also be used for 

Bayesian decoding (Pillow et al., 2008). 

The GLM transforms visual stimuli to 

spike times by first filtering the stimulus 

through the spatiotemporal RF and 

applying a spike history filter to account 

for refractoriness and spike bursts (Fig. 

2A). This signal is then passed through a 

static nonlinearity to yield a predicted 

firing rate, and spike times are generated 

with a Poisson process. We first fit OFF-

bt RGCs with an independent version of 

the GLM, in which each cell is fit 

individually and the spiking of one RGC 

is independent of the other RGCs (except 

for stimulus-induced correlations). Cells 

were fit at each light condition separately 
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Figure 2: A generalized linear model (GLM) captures RGC responses and 
pairwise correlation structure. A. GLM diagram for two coupled cells, 
adapted from Pillow et al. 2008. The stimulus is filtered by a RF, this 
generator signal is passed through a nonlinearity to generate firing rates, and 
then stochastic spikes are created. Spike history and coupling filters (for the 
coupled GLM) also influence the generator signal. B. Example local group 
of RGCs to which the GLM model is fit. C. Example recorded raster (blue), 
GLM predicted raster (red), and PSTH and predicted PSTH (bottom) for 
cell i in B. Left column shows photopic light level and right column shows 
scotopic light level. D. Distribution of explained variances for the GLM 
predicted PSTHs for photopic (left) and scotopic (right) light levels (18 Off-
bt RGCs from 1 retina). E. CCFs and GLM predicted CCFs of cell pairs 
shown in B at two light levels. F. The coupled GLM predicts close to the 
measured noise correlation values, while the independent GLM predicts no 
noise correlations (189 pairs from 11 groups of RGCs from 1 retina; see 
Supp. Fig. 2 legend for data from all retinas). 
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to optimize model performance at each light level. The independent GLM predicted held-out responses well at 

both light levels, as measured by the explained variance in firing rates (photopic: 0.59 ± 0.01, mean ± s.e.m., 

97 cells from 4 retinas, scotopic: 0.58 ± 0.01, 66 cells from 3 retinas; Fig. 2C, D). Furthermore, the GLM captured 

changes known to occur in light adaptation, such as larger spatial RFs, slower temporal integration, and 

expanded interspike interval distributions at the scotopic light level (Barlow et al., 1957; Enroth-Cugell and 

Shapley, 1973) (Fig. 1B and Supp. Fig. 2). 

To account for correlations between RGCs and determine their impact on decoding, we separately fit a 

coupled version of the GLM. The coupled GLM includes pairwise coupling filters so that the activity of one RGC 

can influence the responses of other RGCs, allowing the coupled GLM to capture noise correlations in RGC 

activity (Pillow et al., 2008). Because correlations decrease rapidly with distance between pairs of cells (Fig 1E), 

we used local groups of RGCs in the coupled GLM, choosing each group based on a central RGC and all of its 

recorded neighbors (Fig. 2B). For single cell PSTHs, the coupled GLM predictions and performances were very 

similar to those of the independent GLM at both light levels (Supp. Fig. 2). The coupled model predicted noise 

correlations well, while the independent model did not predict any, as expected (Fig. 2E, F). Having established 

the GLM as an accurate description of RGC activity under scotopic and photopic conditions, we next use the 

independent and coupled versions to probe the impact of correlations on decoding retinal output over light levels. 
 

Scotopic decoding performance is severely decreased when RGC correlations are ignored 
We estimated white noise stimuli from recorded responses to elucidate the impact of correlations on 

processing OFF-bt RGC output. To perform model-based decoding of responses, we inverted the independent 

and coupled GLMs fit to recorded OFF-bt RGCs (see Fig. 3). We compared the decoding performance between 

these two models to determine the extent to which ignoring noise correlations between RGCs diminished 

decoding performance. We performed Bayesian decoding, which optimally extracts stimulus information 

available in the RGC response structure that is captured by the GLM (Pillow et al., 2008). Given a set of spike 
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Figure 3: Schematic showing GLM-based Bayesian decoding. A. One stimulus pixel, highlighted in red, is chosen over 
several frames (left), yielding a sequence of intensity values (right). B. The corresponding response of a single RGC 
(top) or population of RGCs (middle and bottom) are extracted. C. The probability of each possible stimulus given the 
input response is computed under a GLM fit to that population. D. Summing over the possible stimuli weighted by their 
probabilities gives the optimal Bayesian estimate of the stimulus. In general, each GLM provides a different estimate 
of the original stimulus. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 19, 2019. ; https://doi.org/10.1101/2019.12.18.881201doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.18.881201
http://creativecommons.org/licenses/by-nc-nd/4.0/


 7 

times from a local group of RGCs, we decoded the intensity of a single stimulus pixel over six sequential frames. 

For this analysis, the stimulus pixels and RGCs were chosen such that the pixel was predominantly covered by 

the center-most RGC of the group of cells (see Methods). We report decoding performance with a signal-to-

noise ratio (SNR), which quantifies the information rate in bits/s that the decoded estimate provides about the 

actual stimulus (Warland et al., 1997).  

At the photopic light level, the coupled GLM is a more accurate decoder, providing 22 ± 3 % (mean ± 

s.e.m.) more information than the independent GLM over all groups of OFF-bt RGCs (Fig. 4A, B; 55 groups of 

RGCs from 4 retinas). However, at the scotopic light level, the importance of correlations for accurate decoding 

substantially increased for OFF-bt RGCs. Accounting for noise correlations with the coupled GLM provided 104 

± 18 % more information than the independent GLM (Fig. 4B; 37 groups of RGCs from 3 retinas, difference over 

light levels p << 0.001). Furthermore, the improvement in decoding for a given group of cells correlated positively 

with the strength of noise correlations in that group, indicating that accounting for correlated activity enhances 

decoding most when correlated noise is largest (Fig. 4C).  

 

Population failure: Single RGCs can outperform populations when assuming independence 
 To better understand the significance of the information loss due to ignoring correlations, we compared 

the decoding performance of the independent GLM to that of the best-performing single cell model. This single 

cell model was simply the individual GLM for the RGC centered over the decoded pixel. Surprisingly, in many of 

the tested groups, the single cell GLM outperformed the independent population GLM (Fig. 4A). We call this 

effect ‘population failure’ because the GLM fit to a population of RGCs decodes less information than from a 

single RGC when the population is assumed to be independent. 

 Population failure primarily occurred at the scotopic light level (Fig. 4D). In that condition, the majority of 

groups of RGCs exhibit this population failure mode (83 ±	5.7 %, mean frequency of population failure ± s.e.m., 

37 groups of RGCs, photopic: 50 ± 5.9 %, 55 groups of RGCs), and among those groups the single cell GLM 

provided 73 ± 23 % more information than the independent GLM (Fig. 4E; photopic: 19 ± 4 %). Notably, the 

single cell GLM uses the exact same parameters as its corresponding cell in the independent GLM, so our 

findings are not a consequence of model fitting issues. Rather, this result demonstrates that decoding under the 

assumption that a population of RGCs is independent can be so suboptimal that it extracts less information than 

a single cell. This population failure under the assumption of independence is a striking example of the 

importance of accurately accounting for correlations in processing population activity, particularly in scotopic 

conditions. 

We next performed a series of controls to assess how particular details of our decoding analysis might 

influence these results. In the analyses above, we chose local groups of cells based on a central RGC with its 

nearest neighbors. There the majority of the RFs over the population of RGCs had some overlap with the 

decoded stimulus pixel so that each cell provided nonzero decoding information about that pixel intensity (e.g. 

Fig 4A; note RF outlines are plotted at a 1 SD contour of a Gaussian fit, so the RFs extend well beyond the RF 

outline). To determine how this choice of population impacts decoding, we also decoded using larger groups of 
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cell clusters, including secondary and tertiary neighbors. Including RGCs with RFs far away from the decoded 

stimulus pixel did not significantly alter the performances of the coupled or independent GLMs because those 

cells contribute minimal information to decoding and do not exhibit strong correlations with RGCs close to the 

decoded stimulus pixel, as expected (Supp. Fig. 3). Thus, our selection of local groups of RGCs is not a crucial 

factor in the role of correlations for decoding.  

We further sought to ascertain whether population failure generalizes beyond temporal decoding by 

instead decoding spatial patterns of stimulus pixels for one movie frame. Under this decoding task, the coupled 

GLM continues to perform substantially better than the independent GLM at the scotopic light level (52 ± 16 %, 

mean ± SD over bootstraps; Supp. Fig. 4). In addition, the independent GLM decodes less information than 

smaller groups of coupled RGCs, exhibiting population failure because 18 cells in the independent GLM perform 

worse than 7 cells in a coupled GLM. These results demonstrate that the large cost of ignoring correlations is a 

general feature of spatial and temporal decoding from OFF-bt RGCs. 

Finally, to verify that changes in correlation structure causally affect the difference in decoding 

performance between coupled and independent GLMs, we simulated RGC population responses with the GLM 

and then used the GLM to decode these simulated responses. As we observed when decoding measured 
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Figure 4: Assuming population independence 
yields poor decoding performance under 
scotopic light levels and can perform worse than 
decoding individual RGC responses. A. 
Decoding examples for two groups of OFF-bt 
RGCs. In these examples the coupled and single 
cell GLMs decode better than the independent 
GLM at scotopic light levels: see dashed lines in 
bar plots. Error bars are from bootstrapping 
decoded SNR. B. Average percent improvement 
in decoded SNR at each light level when using 
the coupled GLM over the independent GLM. C. 
Percent improvement in decoding relates 
positively to the amount of noise correlation in 
the groups of RGCs (R2 = 0.6 for a single term 
exponential). Noise correlation for each group of 
RGCs is quantified by accumulating the peaks of 
CCFs between the centered RGC and its 
neighboring cells. D. Distribution of frequencies 
of the single cell GLM decoding better than the 
independent GLM, termed population failure. 
Frequency of population failure for each group 
is computed over bootstraps. E. Population 
failure relates positively to the amount of noise 
correlation. For panels B-E: photopic: 55 groups 
of RGCs from 4 retinas, scotopic: 37 groups of 
RGCs from 3 retinas (3 retinas in common 
between conditions). 
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responses at the scotopic light level, we 

hypothesized that stronger coupling among 

neurons would lead to a higher percent 

improvement in decoding SNR when 

accounting for noise correlations versus 

assuming independence. Indeed, larger 

correlation strength between RGCs causes 

the coupled decoder to perform much better 

than the independent decoder (Supp. Fig. 

5). This simulation emphasizes how the 

amount of correlated noise impacts 

decoding performance under the 

independence assumption.  

 

The cost of ignoring correlations 
depends on RGC type 

We next investigated the extent to 

which the population failure phenomenon 

occurs in a distinct RGC type, the OFF-brisk 

sustained (-bs) RGCs. These cells likely 

correspond to RGCs called OFF delta or 

OFF sustained alpha cells in other studies 

(Manookin et al., 2008; Krieger et al., 2017; 

Ravi et al., 2018). The correlation structure 

across the OFF-bs RGC population shows 

that the magnitude, timescale and spatial 

scale of correlations is smaller than in OFF-

bt RGCs (Fig. 5A; Table 1). In addition, the 

correlations among OFF-bs RGCs do not 

change with light adaptation as much as in 

OFF-bt RGCs (Table 1). To determine the 

role of accounting for correlations in 

decoding OFF-bs RGC activity, we next 

compared independent and coupled GLM 

decoders fit to groups of OFF-bs RGCs (Fig. 

5). Accounting for correlations only improved decoded SNR by 2.9 ± 0.7 % in the photopic condition and 4.4 ± 

0.8 % in the scotopic condition (Fig. 5C; photopic: 37 groups of RGCs from 4 retinas, scotopic: 20 groups of 
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Figure 5: Diminished decoding performance when assuming 
independence depends on RGC type. A. Correlation structure of OFF-
bs RGC population across light levels (left) and RF mosaic (right) in the 
same retina as Fig. 1 (351 RGC pairs). B. Decoding result for an 
example group of cells over light levels. In this instance the independent 
and coupled GLMs perform similarly. C. Average percent improvement 
in decoded SNR across light levels when using the coupled GLM over 
the independent GLM. Note the compressed y-axis compared to Fig. 
4B. D. Relationship between percent improvement in decoding and 
summed noise correlations between a centered RGC and its neighboring 
cells. Note the compressed x-axis compare to Fig. 4C. E. Distribution 
of population failure frequencies. F. Population failure as a function of 
the amount of noise correlation in a group of RGCs. For panels C-F: 
photopic: 37 groups of RGCs from 4 retinas, scotopic: 20 groups of 
RGCs from 3 retinas (3 retinas in common between conditions). 
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RGCS from 3 retinas, difference over light levels p = 0.45). While some single cell GLMs decode better than the 

independent GLM, the frequency and amount of this population failure under the independence assumption was 

much smaller than in OFF-bt RGCs (Fig. 5E, F; photopic: frequency of population failure = 19 ± 5 %, mean ± 

s.e.m., % improvement when there is population failure = 1.9 ± 1 %, scotopic: frequency of population failure = 

28 ± 8 %, % improvement when there is population failure = 0.7 ± 0.2 %). These results demonstrate that the 

role of noise correlations in decoding RGC activity depends on both adaptation state and cell type.  

 
A simple geometric model reproduces population failure 

Under the scotopic condition, assuming noise independence among OFF-bt RGCs frequently caused 

population failure. To provide an intuition for this potentially counterintuitive result, we utilized a previously 

developed geometric visualization of noise correlations and decoding performance (Averbeck et al., 2006) (Fig 

6). We created a simplified model of two neurons responding to two stimuli, using the d prime metric to quantify 

how well the neurons could discriminate the stimuli with their firing rates (Averbeck and Lee, 2006). In one case, 

the two cells exhibit strong noise correlations causing elliptical joint response distributions (Fig 6A, green and 

blue solid ellipses). The optimal decoder (red line) accurately discriminates the two populations (Fig 6C, red bar). 

However, if the noise is assumed to be independent between the two cells (Fig 6A, green and blue dashed 

circles), the decoder is nearly orthogonal to the optimal decoder (compare black and red lines). This 

independence assumption causes a large decrease in decoding performance (Fig 6C, light blue bar). Next, we 

discriminated the two stimuli using just the response distributions for cell 1 (Fig 6B). In this example, the single 
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cell outperforms the two-cell decoder that assumes independence among the cells (Fig 6C). In a second case, 

the noise correlations are weaker, resulting in a close similarity between the decoder under the independence 

assumption and the optimal decoder (Fig 6D, black and red lines). Assuming independence causes a very small 

decrease in discrimination performance and outperforms discrimination from a single cell (Fig 6E, F). This model 

demonstrates how population failure can occur in a very simple system—where decoding from a single neuron 

performs better than decoding from two neurons with non-zero stimulus information. Between these two cases 

we examined (Fig 6A, D), we only changed the strength of the noise correlations and held constant all other 

parameters, namely, the stimulus-dependent firing rates and variances of the two neurons. Thus, changes in 

noise correlations alone can cause conditions under which population failure occurs. In general, however, the 

relative sign and strength of the signal and noise correlations are the key elements in determining the 

consequences of decoding correlated responses under the independence assumption (Averbeck et al., 2006). 

In the next section we examine how these parameters shape decoding performance in a population model that 

more closely relates to our experiments. 

 

Receptive field overlap, correlation strength and its spatial scale dictate population failure 
To investigate the conditions under which a single RGC can outperform a population that is assumed to 

be independent, we modeled our experimental findings by simulating a two-dimensional grid of RGCs (Fig 7A). 

We systematically varied three parameters that determine correlation structure across this population: peak 

correlation strength, the spatial scale of correlation, and RF overlap (Fig. 7A). The model consists of linear RGCs 

responding to a white noise stimulus. We arranged the RFs in a hexagonal grid to approximate the mosaic of 

one RGC type, with the relationship between RF and stimulus pixel sizes set similarly to those in our experiments. 

We again used discriminability (d prime) to quantify how well intensity values in the central stimulus pixel can be 

discriminated given the neural responses (Averbeck and Lee, 2006). As with our GLM-based approach, we 

compared the performance of a decoder that accounts for correlations among cells (coupled decoder), one that 

assumes independence among cells (independent decoder), and one that just uses the responses of one RGC 

(single cell decoder).  

When there is little overlap between RFs and noise correlations are present, the independent decoder 

often discriminates the stimulus worse than the single cell model (Fig. 7D, top rows, purple areas). The cost of 

assuming independence in the population becomes more severe as the noise correlations are made stronger 

and/or broader. As RF overlap increases, the independent decoder performs better than the single cell decoder 

when correlations have a small spatial scale and magnitude (Fig. 7D, left columns). This improved performance 

results from neighboring cells providing more signal about the intensity of the decoded pixel, which overcomes 

the errors due to ignoring small noise correlations. However, ignoring larger and broader noise correlations 

eventually outweighs this advantage, resulting in more extreme population failure (up to 50% less discriminability 

than the single cell decoder for the parameters we explored; Fig. 7D, right columns). Note that the coupled 

decoder discriminates much better than the independent decoder in the presence of strong and broad noise 

correlations (Fig. 7E). This simplified model highlights that accounting for correlated noise is most important for 
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decoding the stimulus when 

correlations are large, in agreement 

with our experimental findings. By 

considering the transition into 

population failure modes based on 

noise correlation parameters, this 

model demonstrates how changing 

correlation structure in OFF-bt RGCs 

across light levels can alter the 

frequency and magnitude of population 

failure. The correlations in OFF-bs 

RGCs, however, are generally too 

small at both light levels for population 

failure to occur. 

These modeling results also 

reproduce a point about the limits that 

noise correlations can place on a 

neural system. Focusing only on the 

correlated decoder, there are several 

conditions where high noise 

correlations limit the discriminability of 

the neural population compared to 

weak noise correlations (Fig. 7C, 

bottom rows). This phenomenon has 

been previously described, and since 

we are primarily focused on the 

consequences of assuming 

independence given the presence of 

noise correlations, we do not consider it 

further (Averbeck et al., 2006).  

 
Discussion 

A major question in early vision 

is how circuits downstream of the retina 

process the visual information conveyed by populations of RGCs. Central to this question is the impact of 

correlated activity among RGCs, which can be a significant factor in neural computations depending on context. 

Here we examine how light adaptation alters the role of correlations in decoding visual stimuli from RGC 
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populations in the rat retina. We find that under moonlight conditions, decoders assuming independent 

responses among OFF-bt RGCs recover much less visual information than decoders that account for pairwise 

correlations. This reduction in performance can be so large that decoders assuming independence perform 

worse than decoding from a single RGC (Figs 4, 6, and 7). We call this state ‘population failure’ because 

decoding the population fails to reach the performance of a single cell. Accounting for correlations, however, 

avoids this state and enables decoders to benefit from population codes. We use a simple model to demonstrate 

how the structure of activity correlations determines the cost of assuming independent responses, accounting 

for why our results depend both on light level and RGC type. These findings raise several questions about the 

role of correlations in adaptation and visual processing that we discuss below.  

 

Comparison to previous studies, interpretation and caveats  
The importance of correlated activity is a much-debated topic in vision research (Dan et al., 1998; 

Nirenberg et al., 2001; Schneidman et al., 2003; Schnitzer and Meister, 2003; Puchalla et al., 2005; Montani et 

al., 2007; Pillow et al., 2008; Graf et al., 2011; Berens et al., 2012; Meytlis et al., 2012). Previous studies have 

examined the role of correlated spiking in both visual encoding and decoding, yielding a range of conclusions. 

For decoding, studies have concluded that between 0-40% more information is available when decoders account 

for correlations (Dan et al., 1998; Nirenberg et al., 2001; Pillow et al., 2008; Meytlis et al., 2012). Our results are 

most comparable to the Pillow et al. 2008 and Meytlis et al. 2012 studies because they analyzed similar 

population sizes and employed the same GLM-based decoding strategy. The decoding improvement we find at 

the photopic light level agrees relatively well with their 20% and 13% results, respectively. Our study departs 

from previous work by determining how this decoding improvement depends on adaptation state and cell types 

that encode distinct visual features (OFF-bt vs OFF-bs RGCs). The effect of light level on OFF-bt RGCs is 

particularly striking: decoded information can be doubled by accounting for correlations. This improvement is a 

substantially larger effect than previous results at photopic light levels, illustrating the potent impact of light 

adaptation on retinal output. 

How could accounting for correlations improve retinal decoding? One possibility is that correlated activity 

conveys visual features that are unavailable from individual responses, such as fine spatial features at the 

intersection between two RFs (Meister et al., 1995; Meister, 1996; Dan et al., 1998). To check for this possibility, 

we analyzed synchronous spike triggered averages (sSTAs) from pairs of RGCs. We did not find evidence that 

synchronous spikes provide a higher acuity representation of visual space (Supp. Fig. 6). An alternative 

possibility is that accurate decoding requires an accurate model of the noise in RGC populations (Averbeck et 

al., 2006). When correlated noise is large and spatially extensive, such as for OFF-bt RGCs at scotopic light 

levels, assuming independence is the wrong noise model, and this assumption diminishes decoding so much 

that performance can fall below that of decoding from a single cell.  

 A simple intuition for the population failure effect can be achieved by considering the following situation. 

If a single OFF-bt RGC generates a brief volley of spikes, a decoder will interpret this response as resulting from 

a transient decrease in light intensity. If all the OFF-bt RGCs around that cell also generated spikes, the decoder 
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will estimate a large decrease in light intensity because many cells were driven to spike together. However, this 

interpretation may only be correct if the OFF-bt RGCs are acting independently. If the decoder knows the cells 

are strongly correlated, then it should discount this conclusion in favor of a smaller decrease in light intensity.  

Many of the findings presented here are based on GLM fits to the responses of RGC populations, raising 

the possibility that at least some of these conclusions are model-dependent. The GLM captures a majority of the 

response variance to white noise stimuli (up to 80%), but remains an imperfect model of RGC encoding 

(McFarland et al., 2013; Heitman et al., 2016). This mismatch between model and data is likely to impact the 

quantitative estimates that we and others have made on the cost of assuming RGCs are independent (Pillow et 

al., 2008; Meytlis et al., 2012). Of particular concern is whether assuming independence in a population of RGCs 

can actually yield worse performance than decoding a single RGC. To address this issue, we also utilized a more 

general examination of how correlations can impact decoding. Fig. 6 demonstrates that population failure is 

certainly possible. Fig. 7 shows that this effect depends on the amount of RF overlap and strength of noise 

correlations, both of which change with light level. This simplified model has many differences from our data, 

with uniform, circular RFs, uniform RF overlap, firing rates that depend linearly on the stimulus, and decoding 

using discriminability (d prime) rather than GLM-based optimal stimulus estimation. Nevertheless, the simplified 

model in Fig. 7 reproduced the trends in our data. Furthermore, we show that population failure can occur when 

decoding spatial stimulus patterns from RGC responses (Supp. Fig 4), indicating that these results are not 

specific to temporal decoding. Together, these analyses show that ignoring strong correlations can degrade 

decoding and reproduce population failure in a manner that does not depend strongly on the details of the 

decoding task or the precise nature of the RGC output.  

  

Light adaptation 

Light adaptation crucially influences how retinal circuits encode visual scenes. Between scotopic and 

photopic light levels, input to RGCs switches from rod- to cone-mediated pathways. This circuit switch alters both 

single RGC response properties and correlated activity. For individual RGCs, spatial and temporal integration 

increases under scotopic conditions (Barlow et al., 1957; Enroth-Cugell and Shapley, 1973). Other aspects of 

RGC activity also depend on light level, including the polarity of stimuli that drive responses, firing rates, and the 

extent to which spatial integration is linear (Barlow and Levick, 1969; Grimes et al., 2014; Tikidji-Hamburyan et 

al., 2015). The switch from rod- to cone-mediated circuits also results in altered common input to RGCs, one of 

the underlying causes of RGC correlations (Mastronarde, 1983a, b; Greschner et al., 2011). In general, weaker 

RF surrounds in scotopic conditions result in greater overlap between RF centers and thus more common input 

between neighboring RGCs. Furthermore, at the low light level used here (1R*/rod/s), AII amacrine cells are 

expected to be extensively coupled by gap junctions (Bloomfield and Volgyi, 2004), which would also tend to 

increase the amount of common input between nearby RGCs. Finally, a subset of RGC types are electrically 

coupled (Völgyi et al., 2009), and the strength of this coupling can be altered by light level (Hu et al., 2010). Thus, 

there are several mechanisms by which light adaptation can strongly impact correlated spiking.  
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These changes in signal and noise across light levels raise the question of how light adaptation influences 

information across populations of RGCs. Efficient coding theory—the idea that sensory systems are optimized 

to encode natural stimuli—has been successful at explaining why RF structure changes across light levels 

(Attneave, 1954; Barlow, 1961; Atick and Redlich, 1990; Van Hateren, 1993). However, this theory assumes that 

RGCs do not exhibit correlated noise, much less that this correlated noise changes with light level. Therefore, a 

useful direction for future examinations of efficient coding theory is to determine how light-level dependent 

changes in correlated activity impact predictions about the optimality of adaptation in RGC responses. 

 Our results showing that the importance of noise correlations in decoding can change across light levels 

highlight how the role of correlated activity in neural computations can be altered by context. This context-

dependent change parallels work demonstrating modulation of correlations in other brain regions. For example, 

attention has been shown to alter the structure of noise correlations in cortical areas such as MT and V4, resulting 

in more informative population activity and likely causing improved behavioral performance on visual 

discrimination tasks (Cohen and Maunsell, 2009; Mitchell et al., 2009). Note that unlike the present work, these 

studies assumed a downstream computation that averages population activity, yielding increased information 

when noise correlations are reduced because correlated noise cannot be averaged away (Zohary et al., 1994). 

However, the general point still stands that context can change the structure of signal and noise correlations, 

which in turn impacts circuit computations. 

 

Implications for downstream processing 

Our results highlight several implications for how downstream circuits may process retinal output. 

Although the impact of ignoring RGC correlations may depend on particular post-retinal computations, assuming 

independence among correlated RGCs likely reduces information that can be extracted from retinal activity. Even 

in the context of a simple linear readout of RGC responses, ignoring strong noise correlations among RGCs can 

result in suboptimal weighting of RGC inputs compared to weighting determined by an accurate model of 

correlated noise (Adibi et al., 2014). In addition, light level-dependent changes in RGC signals and correlated 

noise may place important constraints on post-retinal computations across light levels. For example, downstream 

circuits that receive input from OFF-bt RGCs may fail to effectively process this input unless they too adapt their 

processing across light levels. Meanwhile, circuits that receive input from OFF-bs RGCs may be afforded a more 

static processing strategy. Thus, our results suggest that post-retinal areas may need to differentially process 

cell type inputs. Recent work elucidating LGN processing of RGC output confirm that some LGN neurons receive 

predominant input from a single type of RGC (Rompani et al., 2017; Liang et al., 2018; Roman Roson et al., 

2019). These studies also find LGN neurons with input from diverse types of RGCs, posing further questions of 

how correlations between RGCs of different types may affect early visual processing.  

Studies of light adaptation that span rod-to-cone signaling are relatively common in retina, but remain 

sparse in visual cortex. The few studies that have been performed suggest that V1 RFs are relatively invariant 

to changes in light level (Duffy and Hubel, 2007). The insights that RGC responses to the same stimulus change 

across light levels (Tikidji-Hamburyan et al., 2015), combined with the fact that correlated noise depends on light 
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adaptation, motivates more research to understand the extent to which V1 and other regions can preserve an 

invariant representation of visual scenes across light levels. 
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Methods 
MEA Recordings: All experiments were performed in accordance with the guidelines of Duke University’s 

Institutional Animal Care and Use Committee. Long-Evans rats were dark adapted overnight and euthanized 

with intraperitoneal injection of ketamine/xylazine followed by decapitation. Euthanasia and retinal dissections 

were performed in darkness with the assistance of infrared converters. We dissected dorsal pieces of retina that 

were approximately 3mm x 2mm large and placed them RGC-side down on an electrode array. The tissue was 

perfused with oxygenated Ames solution at a rate of 6-8 mL/min. Recordings were performed at 34ºC. The MEA 

consisted of 512 electrodes with 60 µm spacing, covering an area of 0.9 x 1.8mm (Frechette et al., 2005; Ravi 

et al., 2018). The voltage on each electrode was sampled at 20 kHz and filtered between 80 and 2000 Hz.  

 

Visual Stimuli: Stimuli were presented with a gamma-corrected OLED display (SVGA+XL Rev3, Emagin, Santa 

Clara, CA). The image from the display was focused onto the photoreceptors using an inverted microscope (Ti-

E, Nikon Instruments) with a 4x objective (CFI Super Fluor 4x, Nikon Instruments). Optimal focus was confirmed 

by presenting a high spatial resolution checkerboard noise stimulus (20x20 µm, refreshing at 15 Hz) and 

adjusting the focus to maximize the spike rate of RGCs over the MEA. The intensity of the stimulus was set using 

neutral density filters in the light path, and calibration was performed using previously described methods (Yao 

et al., 2018). In each recording, stimuli were first presented at the scotopic light level (1 Rh*/rod/s) while the 

retina was in a dark-adapted state. The tissue was adapted to the photopic light level (10,000 Rh*/rod/s) for 30 

minutes before continuing recordings at that light level. The refresh rate of the stimulus was 60 Hz and 30 Hz at 

the photopic and scotopic light levels, respectively. The change in stimulus refresh offset effective contrast 

changes due to a ~2-fold increase in temporal integration of RGCs from the photopic to scotopic conditions. For 

GLM fitting and decoding, stimuli consisted of non-repeated, binary white noise interleaved with repeated, binary 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 19, 2019. ; https://doi.org/10.1101/2019.12.18.881201doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.18.881201
http://creativecommons.org/licenses/by-nc-nd/4.0/


 17 

white noise segments (5 or 10s) to control for nonstationarities in recordings. Stimulus pixels in the checkerboard 

noise were squares with 240µm sides. For cell type classification, we followed previously described methods 

and presented drifting gratings and finer pixel checkerboard noise (60 µm squares, refreshing at 60 Hz) (Ravi et 

al., 2018).    
 

Spike Sorting and Neuron Identification: The spike sorting procedures have been described previously (Field et 

al., 2007). In brief, spikes on each electrode were identified by thresholding the voltage traces at 4 SD of a 

robust-estimate of the voltage SD. Spike sorting was performed by an automated PCA algorithm and verified by 

hand with a custom software (Shlens et al., 2006). Spike waveform clusters were identified as neurons only if 

they exhibited a refractory period (1.5ms) with <10% estimated contamination. To track identified RGCs across 

light conditions, cell clusters were sorted in the same PCA subspace at each light level. Neuron identity was 

verified by checking that electrical images (EIs) and RF locations were stable across conditions (Petrusca et al., 

2007; Field et al., 2009). RGC types were classified at the photopic light level by first removing direction selective 

RGCs, and then clustering using RF properties and autocorrelation shapes (Ravi et al., 2018).  

 

Measuring noise correlations: Correlated noise was estimated by subtracting stimulus-driven correlations from 

the combined signal and noise correlations. Correlations were computed using responses to 100 (or 200) repeats 

of 10s (or 5s) white noise segments, binned at 5ms. First, the raw CCF was found by averaging the CCFs 

between two RGCs over all trials. Next, the shuffled CCF (shift predictor (Perkel et al., 1967)) was found by using 

spikes from one repeat for the first cell with spikes from a different repeat for the second cell. The shuffled CCF 

was averaged over all possible repeat combinations. Subtracting the shuffled CCF from the raw CCF gives the 

noise CCF. Correlation was quantified with the positive area under each correlogram, the full width of the peak, 

or the peak height at 0-time lag. The spatial scale of correlations for a population was found by fitting the data 

(e.g. Fig. 1E) to a single term exponential function. The coefficient of the exponential was the length scale of the 

correlations. 

 

Generalized Linear Model fitting: GLMs were fit separately at each light level. 50 minutes of non-repeated white 

noise were used to fit GLM parameters, with 100 (or 200) 10s (or 5s) segments of repeated white noise used for 

cross-validation. GLM RFs were approximated as rank one: they were composed of the outer product of a spatial 

filter and temporal filter (which approximated the spatial and temporal RFs, respectively). The temporal filter, 

spike history filter, and coupling filters were parameterized with a basis of 8 cosine functions. The nonlinearity 

used was the logexp2 function (https://github.com/pillowlab/GLMspiketools); no significant improvement was 

found using a spline nonlinearity. Only RGCs that had stable responses over the course of the recording were 

used in the GLM analysis (as judged by a consistent mean firing rate and uniform raster structure to repeated 

white noise sequences measured early and late in the experiment). For the coupled GLM fits, local populations 

of RGCs were chosen based on a central RGC and its neighbors. Only RGCs with an average firing rate above 
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a threshold were included in the GLM; the threshold was given by the mean minus 1 SD of the firing rate of all 

recorded cells of a certain type. Across light levels, the same groups of RGCs were used to fit GLMs.  

 

Decoding: Following previous work (Pillow et al., 2008), GLM-based decoding was performed by computing the 

likelihood 𝑝$ that a stimulus 𝑥$ caused a recorded population response, where 𝑥$ is one stimulus option of all 

possible binary white noise sequences. The decoded estimate comes from Bayes’ least squares estimate: 𝑥& =

(∑𝑝$ 𝑥$)/(∑ 𝑝$). We decoded the intensity of one stimulus pixel over 6 frames in time, or 6 stimulus pixels in one 

frame for spatial decoding controls (Supp. Fig. 4). This decoding was repeated for 5000 trials on 16 minutes of 

non-repeated white noise data (held out from the fitting data). Decoding performance is reported with log SNR 

calculated from the mutual information between the decoded estimates and presented stimuli (Warland et al., 

1997; Pillow et al., 2008). Bootstrapped SNRs for error bars were computed for each GLM using 500 subsamples 

of 3000 trials. 

 

Simple RF Model: The RF grid model consisted of 25-169 neurons with circular RFs arranged in a hexagonal 

grid. RF diameters were 250 µm, slightly larger than the stimulus pixel size of 240 µm. Cells responded linearly 

to white noise pixels according to the amount of overlap between that cell’s RF and the pixel. Each cell’s 

maximum firing rate was set to 30Hz. Noise correlation strength was set to decrease exponentially with distance 

between two cells and the coefficient of the exponential was the length scale of the correlations. We computed 

the discriminability of the center pixel’s intensity using 𝑑. = 	∆𝜇1𝑄34∆𝜇, where ∆𝜇 is the vector of differences in 

mean neural firing rates between the decoded pixel value as black or white, and 𝑄 is the mean covariance matrix 

(Averbeck and Lee, 2006). To match the GLM decoding, here the covariance includes covariance of neurons 

and outer pixel intensities. This allowed conditioning the discrimination on the intensities of non-decoded pixels. 

Thus, decoding was performed given the population responses and intensity of outer stimulus pixels. The 

coupled decoder utilized the full covariance matrix, while the independent decoder ignored non-diagonal entries 

in the neuron-neuron covariance block.  

 

Statistics: Significance tests were performed using Student’s paired sample t test (for comparisons of one cell 

type across light levels) and Student’s 2 sample t test (for comparisons across cell types). 
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Supplementary Figures 
 

  
Supp. Figure 1: Spontaneous noise correlations depend on light level and cell type. A. RF mosaic of OFF-bt 
RGCs. B. Strength of noise correlations, measured with a static, full-screen black stimulus, over pairwise 
distances for the OFF-bt RGC population. Each point shows the cross-correlogram height at 0-time lag for a given 
pair of cells (1225 RGC pairs from 1 retina; photopic light level: 1000 Rh*/rod/s; scotopic light level: 0.1 
Rh*/rod/s). C & D. same as A & B for OFF-bs RGCs (595 RGC pairs from 1 retina). 
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Supp. Figure 2: Summary of GLM 
fitting performance. A. Spike triggered 
average (STA) of an example OFF-bt 
RGC across light levels. Note that these 
RGCs have space-time separable RFs 
(Ravi et al., 2018). Top row, spatial 
components of the STA estimate the 
spatial RF. Bottom row, time courses of 
the STA estimate the temporal RFs (also 
called temporal filters). Notice the slower 
time course at the scotopic light level. B. 
Same as A but spatial and temporal filters 
are from the GLM fit. C. Comparing 
coupled and independent GLM 
performances for OFF-bt RGCs. Left, 
performances in predicting firing rates are 
similar for the coupled and independent 
GLMs (101 cells from 16 groups of RGCs 
from 1 retina; all data: photopic: 
independent GLM explained variance = 
0.59 ± 0.013, mean ± s.e.m., 97 RGCs 
from 4 retinas, coupled GLM explained 
variance = 0.59 ± 0.007, 55 groups of 
RGCs from 4 retinas, scotopic: 
independent GLM explained variance = 
0.58 ± 0.01, 66 RGCs from 3 retinas, 
coupled GLM explained variance = 0.51 
± 0.008, 37 groups of RGCs from 4 
retinas). Most RGCs were used once in 
the independent GLMs but are part of 
multiple coupled GLMs. Middle, 
distribution of explained variance 
between coupled and independent PSTH 
predictions at the photopic light level (all 
data: 0.94 ±	0.002). Right, distribution of 
explained variance between coupled and 

independent PSTH predictions at the scotopic light level (all data: 0.94 ±	0.002). D. Same as C for OFF-bs RGCs (44 cells 
from 8 groups of RGCs from 1 retina; all data: photopic: independent GLM explained variance = 0.51 ± 0.02, 69 RGCs 
from 4 retinas, coupled GLM explained variance = 0.52 ± 0.01, explained variance between independent and coupled GLMs 
= 0.9 ± 0.006, 37 groups of RGCs from 4 retinas, scotopic: independent GLM explained variance = 0.65 ± 0.02, 42 RGCs 
from 3 retinas, coupled GLM explained variance = 0.63 ± 0.01, explained variance between independent and coupled GLMs 
= 0.93 ± 0.005, 20 groups of RGCs from 3 retinas). E. Distribution of explained variances for the GLM predicted PSTHs 
in OFF-bs RGCs (15 RGCs from 1 retina). F. Cross-correlogram peak predictions for the independent and coupled GLMs 
across the OFF-bs RGC population (102 pairs from 9 groups of RGCs from 1 retina). 
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Supp. Figure 3: Including RGCs beyond immediate neighbors does not significantly impact temporal decoding results. A. 
OFF-bt RF mosaics colored to show the four different populations that were compared with GLM decoding. The first group 
included an RGC centered over the decoded stimulus pixel and all of its primary neighbors. The second group adds 
secondary neighbors, the third group adds some far away RGCs, and the fourth group uses the whole recorded population. 
B. Decoded SNR for the independent and coupled GLMs fit with the groups in A at the photopic light level. Error bars (SD) 
come from bootstrapping SNR. C. Same as B for the scotopic light level. D. Percent improvement in decoded SNR between 
the coupled and independent GLMs for the different RGC groups. 
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Supp. Figure 4: Population failure as a function of group size and decoding in time (panels A-D) or space (panels E-I). A. 
RF mosaic for 6 OFF-bt RGCs used to decode the temporal sequence of the stimulus pixel in red. B. Decoded SNR for 
independent GLMs as a function of number of cells included in the population. All possible combinations of 1-6 RGCs 
were used. The independent GLM with all 6 cells decodes less information than GLMs with some combinations of 1-6 
RGCs. Points are slightly jittered in the x direction for visualization. C. Same as B for coupled GLMs. Several combinations 
of 2-6 coupled GLMs (including 1 single cell GLM) decode more information than the independent GLM with 6 cells (gray 
region). D. Decoded SNR for independent and coupled GLMs, where models using the same group of RGCs are connected 
by a line. For visualization, the coupled SNRs are plotted slightly to the right of the independent SNRs. E. RF mosaic for 
18 OFF-bt RGCs used to decode the spatial pattern of stimulus pixels in red. Here we consider when an independent GLM 
consisting of many RGCs decodes worse than a GLM made up of a smaller population. This scenario exhibits population 
failure because the decoder with more cells fails to take advantage of the information provided by larger population input. 
Expanding to larger populations in this way is necessary because of the large size of stimulus pixels relative the RGC RFs, 
which makes it unlikely that a single RGC can decode a large spatial pattern well. F. Cumulative RF coverage for the 18 
RGCs. The spatial pattern of stimulus pixels that was decoded is outlined in black. This plot shows that the decoded stimulus 
pixels are well represented by the group of RGCs. G. Decoded SNR for independent GLMs as a function of number of cells 
included in the population. For groups with 2-17 RGCs, all possible combinations of RGCs were subsampled. Note that 
decoded SNR appears to plateau at ~15 cells. H. Same as G for coupled GLMs. The independent GLM using all 18 RGCs 
decodes less information than coupled GLMs with some combinations of 7, 9-17 RGCs (gray region). Note that decoded 
SNR would likely continue growing with a larger population of RGCs. I. Decoded SNR for independent and coupled GLMs, 
where models using the same group of RGCs are connected by a line. For visualization, the coupled SNRs are plotted 
slightly to the right of the independent SNRs. For a population of 18 RGCs, the coupled model performs 52 ± 16.61 % 
(mean ± SD) better than the independent model.  
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Supp. Figure 5: Stronger coupling causes a greater improvement in decoding when accounting for correlations relative to 
assuming independence. We started with a coupled GLM fit to a population of OFF-bt RGCs at the scotopic light level 
(inset in A). We then altered all coupling filters in the model by a constant factor, simulated spike trains, refit coupled and 
independent GLMs and decoded stimuli from the simulated spike trains to determine the impact of directly altering coupling 
strengths on decoding performance. A. Coupling filters between two RGCs in the population (highlighted in the inset) for 
the indicated coupling modulation factors. These coupling filters were used in the GLM to simulate responses. B. Resulting 
noise CCFs from simulated spike trains of the gray and black cells in A). C. Percent improvement in decoded SNR between 
the coupled and independent GLM as a function of coupling modulation. Stronger coupling filters make ignoring correlated 
activity more deleterious for decoding. D. Same as but comparing decoding with a single cell and the independent GLM to 
demonstrate population failure. Population failure does not occur for the original group of cells (coupling modulation = 1), 
but increasing coupling strength causes the independent GLM to decode less information than the single cell. 
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Supp. Figure 6: Synchronous spikes between pairs of RGCs do not encode finer spatial information. A. Top, spatial RF of 
an example OFF-bt RGC at the photopic light level measured with a fine spatial resolution. Middle, the same cell’s RF at 
the spatial resolution used for GLM decoding at the photopic light level. Bottom, the cell’s RF at the scotopic light level. 
B. RFs for an RGC neighboring the cell in A. C. sSTAs between the RGCs of A & B. The sSTAs do not resemble the 
intersection of the two individual RFs. D. The union of the RFs from A & B. 
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