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Abstract

The retina encodes visual stimuli across light intensities spanning 10-12 orders of magnitude from starlight to
sunlight. To accommodate this enormous range, adaptation alters retinal output, changing both the signal and
noise among populations of retinal ganglion cells (RGCs). Here we determine how these light level-dependent
changes in signal and noise impact decoding of retinal output. In particular, we consider the importance of
accounting for noise correlations among RGCs to optimally read out retinal activity. We find that at moonlight
conditions, correlated noise is greater and assuming independent noise severely diminished decoding
performance. In fact, assuming independence among a local population of RGCs produced worse decoding than
using a single RGC, demonstrating a failure of population codes when correlated noise is substantial and
ignored. We generalize these results with a simple model to determine the signal and noise conditions under
which this failure of population processing can occur. This work elucidates the circumstances in which accounting
for noise correlations is necessary to take advantage of population-level codes and shows that sensory

adaptation can strongly impact decoding requirements on downstream brain areas.
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Introduction

Population activity is the currency of sensory systems because individual neurons have limited signal
capacity and variable responses to repeated presentations of the same stimuli. This variability is often shared
across neurons (termed “noise correlations”), adding a rich complexity to the issue of information processing in
neural populations (Averbeck et al., 2006). There is a large body of work showing that these noise correlations
can enhance or degrade signaling of sensory information, depending on the structure of noise correlations and
their relationship to stimulus-evoked signals (Zohary et al., 1994; Dan et al., 1998; Abbott and Dayan, 1999; Wu
et al., 2001; Romo et al., 2003; Zylberberg et al., 2016). A crucial question is how downstream regions can best
integrate signals given the noise correlations among their inputs. Perhaps ignoring correlations, or considering
input activity as independent, has no adverse effect on computations. On the other hand, downstream regions
may need to take correlated activity into account to appropriately process their inputs. Answering this question
is critical for understanding how the activity of sensory populations represents stimuli as well as generating
informed hypotheses about how downstream circuits process these signals.

In the visual system, populations of retinal ganglion cells (RGCs)—the brain’s sole source of visual
information—exhibit activity correlations. Previous work has shown that failing to account for these correlations
decreases decoded information by 0-20% (Nirenberg et al., 2001; Pillow et al., 2008; Meytlis et al., 2012).
However, these studies were performed under daylight conditions, just part of the retina’s broad operating range
that spans 10-12 log units of light intensity. Importantly, the structure of correlated activity changes over light
intensities: correlated activity is generally stronger at lower light levels, exhibiting higher peak correlations that
extend over longer spatial and temporal scales (Mastronarde, 1983a; Greschner et al., 2011). This shift in
correlated activity across populations of RGCs raises the intriguing possibility that light adaptation changes the
impact of these correlations on decoding retinal output.

To determine the impact of light adaptation and associated changes in correlated activity, we recorded
from populations of rat RGCs with a large-scale multielectrode array (MEA) over conditions spanning rod-
mediated (scotopic) to cone-mediated (photopic) light levels. Using a generalized linear model (GLM) to decode
retinal activity, we show that at photopic light levels, accounting for correlations among RGCs improves decoding
by ~20% compared to assuming the RGCs are independent, similar to previous results in other mammals
(Nirenberg et al., 2001; Pillow et al., 2008; Meytlis et al., 2012). However, under scotopic conditions, accounting
for correlations showed a significantly larger impact on decoding performance with a ~100% improvement in
decoded information. Strikingly, assuming independence across a local population of RGCs produced poorer
decoding performance than decoding with a single RGC. In this way, we demonstrate a failure in decoding neural
populations when noise correlations are substantial and ignored. Importantly, these results depended on the
RGC type that was analyzed, with decoding from OFF-brisk transient RGCs exhibiting greater sensitivity to
correlations than decoding from OFF-brisk sustained RGCs. To generalize these results, we created a model of
tuned, correlated neurons to identify conditions under which assuming independence causes decoding from the
population to perform worse than decoding from a single cell. This model elucidates the circumstances where
accounting for correlations not only improves visual processing but is necessary to take advantage of population
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codes. More generally, this work demonstrates the large impact of context-dependent correlations in sensory
processing and raises important questions about how downstream brain areas process retinal signals across

light levels.

Results

RGCs exhibit greater noise correlations at scotopic light levels

To examine the consequences of pairwise noise correlations on retinal population codes, we recorded
RGC responses across a range of light intensities from segments of rat retina on a large-scale MEA
(Anishchenko et al., 2010; Ravi et al., 2018). The retina was stimulated with spatiotemporal checkerboard noise
to estimate the receptive fields (RFs), contrast response functions and autocorrelation functions of RGCs over
the MEA. RGCs were functionally classified according to their light response properties and spiking dynamics,
using previously described methods (Yu et al., 2017; Ravi et al., 2018). The results of the classification were
validated by observing that each functionally defined RGC type exhibited a mosaic-like organization of RFs that
approximately tiled space (Fig. 1A) (Wassle et al., 1981; Devries and Baylor, 1997; Ravi et al., 2018). We initially
focus our analysis of correlated activity onto a single cell type: OFF-brisk transient (-bt) RGCs (Fig. 1A). These
cells are likely homologous to OFF parasol cells and other transient alpha-like RGCs in other mammals: they
exhibit center-surround RFs, short-latency, transient light responses and high contrast sensitivity (Crook et al.,
2008; Manookin et al., 2008; Krieger et al., 2017; Ravi et al., 2018). Focusing first on this RGC type facilitated
comparing our results to previous work in the primate and rodent retina (Nirenberg et al., 2001; Pillow et al.,
2008; Meytlis et al., 2012).

Understanding the role of light adaptation in retinal coding required tracking the same population of RGCs
across rod-mediated (scotopic) and cone-mediated (photopic) conditions. This tracking was achieved by utilizing
the electrical image (El) of each RGC. The El is computed from the spike-triggered electrical activity of an
identified RGC across the MEA (Petrusca et al., 2007). Els serve as electrical footprints of each cell and are
stable despite changes in responses across light levels (Field et al., 2009) (Fig. 1B). This tracking procedure
was further validated by observing a nearly identical mosaic-like organization of RFs across the scotopic (1.0
Rh*/rod/s) and photopic (10,000 Rh*/rod/s) light levels examined in these experiments (see Methods).

The pairwise noise correlations among OFF-bt RGCs were greater under the scotopic condition (Fig. 1D
& E). We computed all cross-correlograms between OFF-bt RGCs responding to the white noise stimulus and
estimated noise correlations by removing stimulus-induced correlations (see Methods). The area under the peak
and width of the noise correlations between primary neighbors were greater under the scotopic conditions (Fig.
1D; Table 1). The spatial scale of correlations over the population of OFF-bt RGCs was also larger at the scotopic
light level (Fig. 1E; Table 1). To verify that these noise correlations are not critically influenced by the white noise
stimulus, we also considered correlated noise during spontaneous activity (Supp. Fig. 1). Those measurements
revealed similar changes in correlation structure across light levels. Cumulatively, these observations indicate
higher magnitude correlations that have broader temporal and spatial scales across the population of OFF-bt
RGCs at the scotopic light level, consistent with previous studies (Mastronarde, 1983a; DeVries, 1999;
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Greschner et al., 2011). In the subsequent sections we utilize a model-based decoding approach to determine

the impact these changes in correlation structure have on decoding visual stimuli from populations of OFF-bt

RGCs.
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Photopic

0.105 + 0.004

0.037 +0.001

205 +4

128

OFF-bt

Scotopic

0.253 £0.013

0.045 + 0.001

280 + 4

99

Change over light levels

0.165 = 0.001

0.012 +.001

74 +5

99

Photopic

0.029 + 0.003

0.033+ 0.001

141 +6

96

OFF-bs

Scotopic

0.063 + 0.005

0.035 + 0.001

167 £5

72

Change over light levels

0.037 +0.001

0.013 £ 0.002

26 +8

72

P values

OFF-bt: photopic vs scotopic

p « 0.001

p « 0.001

p <0.005

OFF-bs: photopic vs scotopic

p « 0.001

p =0.29

p <0.05

Photopic: OFF-bt vs OFF-bs

p « 0.001

p <0.01

p < 0.001

Scotopic: OFF-bt vs OFF-bs

p « 0.001

p « 0.001

p <0.001

Light level change: OFF-bt vs OFF-bs

p « 0.001

p =0.63

p < 0.005

Table 1: Measurements of correlation structure across light levels for the two RGC types. Values are mean + s.e.m. All
data comes from 4 retinas for the photopic condition and 3 retinas for the scotopic condition (3 retinas in common between
conditions).
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RGC responses are fit well by the GLM across light levels

The model-based decoding approach we used involves first fitting an encoding model to capture the

relationship between visual stimuli and RGC spiking. This model will be inverted to estimate stimuli given RGC

spike trains. Importantly, we are not claiming that this exact model-inversion procedure is used in brain areas

downstream of the RGCs. Since the
exact computations downstream of the
retina are unknown, we chose an
optimal decoding approach. This
procedure yields a way to estimate how
well an ideal downstream system could
estimate the stimulus, given the RGC
spike trains using different assumptions
about correlations between cells
(Averbeck et al., 2006; Pillow et al.,
2008).

To quantitatively describe RGC
spiking in response to a checkerboard
stimulus, we use the Generalized
Linear Model (GLM), a
phenomenological model for retinal
encoding that can also be used for
Bayesian decoding (Pillow et al., 2008).
The GLM transforms visual stimuli to
spike times by first filtering the stimulus
through the spatiotemporal RF and
applying a spike history filter to account
for refractoriness and spike bursts (Fig.
2A). This signal is then passed through a
static nonlinearity to yield a predicted
firing rate, and spike times are generated
with a Poisson process. We first fit OFF-
bt RGCs with an independent version of
the GLM, in which each cell is fit
individually and the spiking of one RGC
is independent of the other RGCs (except
for stimulus-induced correlations). Cells

were fit at each light condition separately
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Figure 2: A generalized linear model (GLM) captures RGC responses and
pairwise correlation structure. A. GLM diagram for two coupled cells,
adapted from Pillow et al. 2008. The stimulus is filtered by a RF, this
generator signal is passed through a nonlinearity to generate firing rates, and
then stochastic spikes are created. Spike history and coupling filters (for the
coupled GLM) also influence the generator signal. B. Example local group
of RGCs to which the GLM model is fit. C. Example recorded raster (blue),
GLM predicted raster (red), and PSTH and predicted PSTH (bottom) for
cell i in B. Left column shows photopic light level and right column shows
scotopic light level. D. Distribution of explained variances for the GLM
predicted PSTHs for photopic (left) and scotopic (right) light levels (18 Off-
bt RGCs from 1 retina). E. CCFs and GLM predicted CCFs of cell pairs
shown in B at two light levels. F. The coupled GLM predicts close to the
measured noise correlation values, while the independent GLM predicts no
noise correlations (189 pairs from 11 groups of RGCs from 1 retina; see
Supp. Fig. 2 legend for data from all retinas).

5


https://doi.org/10.1101/2019.12.18.881201
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.18.881201; this version posted December 19, 2019. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

to optimize model performance at each light level. The independent GLM predicted held-out responses well at
both light levels, as measured by the explained variance in firing rates (photopic: 0.59 + 0.01, mean + s.e.m.,
97 cells from 4 retinas, scotopic: 0.58 + 0.01, 66 cells from 3 retinas; Fig. 2C, D). Furthermore, the GLM captured
changes known to occur in light adaptation, such as larger spatial RFs, slower temporal integration, and
expanded interspike interval distributions at the scotopic light level (Barlow et al., 1957; Enroth-Cugell and
Shapley, 1973) (Fig. 1B and Supp. Fig. 2).

To account for correlations between RGCs and determine their impact on decoding, we separately fit a
coupled version of the GLM. The coupled GLM includes pairwise coupling filters so that the activity of one RGC
can influence the responses of other RGCs, allowing the coupled GLM to capture noise correlations in RGC
activity (Pillow et al., 2008). Because correlations decrease rapidly with distance between pairs of cells (Fig 1E),
we used local groups of RGCs in the coupled GLM, choosing each group based on a central RGC and all of its
recorded neighbors (Fig. 2B). For single cell PSTHs, the coupled GLM predictions and performances were very
similar to those of the independent GLM at both light levels (Supp. Fig. 2). The coupled model predicted noise
correlations well, while the independent model did not predict any, as expected (Fig. 2E, F). Having established
the GLM as an accurate description of RGC activity under scotopic and photopic conditions, we next use the

independent and coupled versions to probe the impact of correlations on decoding retinal output over light levels.
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Figure 3: Schematic showing GLM-based Bayesian decoding. A. One stimulus pixel, highlighted in red, is chosen over
several frames (left), yielding a sequence of intensity values (right). B. The corresponding response of a single RGC
(top) or population of RGCs (middle and bottom) are extracted. C. The probability of each possible stimulus given the
input response is computed under a GLM fit to that population. D. Summing over the possible stimuli weighted by their
probabilities gives the optimal Bayesian estimate of the stimulus. In general, each GLM provides a different estimate
of the original stimulus.

Scotopic decoding performance is severely decreased when RGC correlations are ignored

We estimated white noise stimuli from recorded responses to elucidate the impact of correlations on
processing OFF-bt RGC output. To perform model-based decoding of responses, we inverted the independent
and coupled GLMs fit to recorded OFF-bt RGCs (see Fig. 3). We compared the decoding performance between
these two models to determine the extent to which ignoring noise correlations between RGCs diminished
decoding performance. We performed Bayesian decoding, which optimally extracts stimulus information

available in the RGC response structure that is captured by the GLM (Pillow et al., 2008). Given a set of spike
6
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times from a local group of RGCs, we decoded the intensity of a single stimulus pixel over six sequential frames.
For this analysis, the stimulus pixels and RGCs were chosen such that the pixel was predominantly covered by
the center-most RGC of the group of cells (see Methods). We report decoding performance with a signal-to-
noise ratio (SNR), which quantifies the information rate in bits/s that the decoded estimate provides about the
actual stimulus (Warland et al., 1997).

At the photopic light level, the coupled GLM is a more accurate decoder, providing 22 + 3 % (mean +
s.e.m.) more information than the independent GLM over all groups of OFF-bt RGCs (Fig. 4A, B; 55 groups of
RGCs from 4 retinas). However, at the scotopic light level, the importance of correlations for accurate decoding
substantially increased for OFF-bt RGCs. Accounting for noise correlations with the coupled GLM provided 104
+ 18 % more information than the independent GLM (Fig. 4B; 37 groups of RGCs from 3 retinas, difference over
light levels p << 0.001). Furthermore, the improvement in decoding for a given group of cells correlated positively
with the strength of noise correlations in that group, indicating that accounting for correlated activity enhances

decoding most when correlated noise is largest (Fig. 4C).

Population failure: Single RGCs can outperform populations when assuming independence

To better understand the significance of the information loss due to ignoring correlations, we compared
the decoding performance of the independent GLM to that of the best-performing single cell model. This single
cell model was simply the individual GLM for the RGC centered over the decoded pixel. Surprisingly, in many of
the tested groups, the single cell GLM outperformed the independent population GLM (Fig. 4A). We call this
effect ‘population failure’ because the GLM fit to a population of RGCs decodes less information than from a
single RGC when the population is assumed to be independent.

Population failure primarily occurred at the scotopic light level (Fig. 4D). In that condition, the majority of
groups of RGCs exhibit this population failure mode (83 + 5.7 %, mean frequency of population failure + s.e.m.,
37 groups of RGCs, photopic: 50 + 5.9 %, 55 groups of RGCs), and among those groups the single cell GLM
provided 73 + 23 % more information than the independent GLM (Fig. 4E; photopic: 19 + 4 %). Notably, the
single cell GLM uses the exact same parameters as its corresponding cell in the independent GLM, so our
findings are not a consequence of model fitting issues. Rather, this result demonstrates that decoding under the
assumption that a population of RGCs is independent can be so suboptimal that it extracts less information than
a single cell. This population failure under the assumption of independence is a striking example of the
importance of accurately accounting for correlations in processing population activity, particularly in scotopic
conditions.

We next performed a series of controls to assess how particular details of our decoding analysis might
influence these results. In the analyses above, we chose local groups of cells based on a central RGC with its
nearest neighbors. There the majority of the RFs over the population of RGCs had some overlap with the
decoded stimulus pixel so that each cell provided nonzero decoding information about that pixel intensity (e.g.
Fig 4A; note RF outlines are plotted at a 1 SD contour of a Gaussian fit, so the RFs extend well beyond the RF

outline). To determine how this choice of population impacts decoding, we also decoded using larger groups of
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cell clusters, including secondary and tertiary neighbors. Including RGCs with RFs far away from the decoded
stimulus pixel did not significantly alter the performances of the coupled or independent GLMs because those
cells contribute minimal information to decoding and do not exhibit strong correlations with RGCs close to the
decoded stimulus pixel, as expected (Supp. Fig. 3). Thus, our selection of local groups of RGCs is not a crucial
factor in the role of correlations for decoding.

We further sought to ascertain whether population failure generalizes beyond temporal decoding by
instead decoding spatial patterns of stimulus pixels for one movie frame. Under this decoding task, the coupled
GLM continues to perform substantially better than the independent GLM at the scotopic light level (52 + 16 %,
mean + SD over bootstraps; Supp. Fig. 4). In addition, the independent GLM decodes less information than
smaller groups of coupled RGCs, exhibiting population failure because 18 cells in the independent GLM perform
worse than 7 cells in a coupled GLM. These results demonstrate that the large cost of ignoring correlations is a
general feature of spatial and temporal decoding from OFF-bt RGCs.

Finally, to verify that changes in correlation structure causally affect the difference in decoding
performance between coupled and independent GLMs, we simulated RGC population responses with the GLM

and then used the GLM to decode these simulated responses. As we observed when decoding measured
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responses at the scotopic light level, we
hypothesized that stronger coupling among
neurons would lead to a higher percent
improvement in decoding SNR when
accounting for noise correlations versus
assuming independence. Indeed, larger
correlation strength between RGCs causes
the coupled decoder to perform much better
than the independent decoder (Supp. Fig.
5). This simulation emphasizes how the
of correlated noise

amount impacts

decoding performance under the

independence assumption.

of
depends on RGC type

The cost ignoring correlations

We next investigated the extent to
which the population failure phenomenon
occurs in a distinct RGC type, the OFF-brisk
sustained (-bs) RGCs. These cells likely
correspond to RGCs called OFF delta or
OFF sustained alpha cells in other studies
(Manookin et al., 2008; Krieger et al., 2017;
Ravi et al., 2018). The correlation structure
across the OFF-bs RGC population shows
that the magnitude, timescale and spatial
scale of correlations is smaller than in OFF-
bt RGCs (Fig. 5A; Table 1). In addition, the
correlations among OFF-bs RGCs do not
change with light adaptation as much as in
OFF-bt RGCs (Table 1). To determine the
role of accounting for correlations in
decoding OFF-bs RGC activity, we next
compared independent and coupled GLM
decoders fit to groups of OFF-bs RGCs (Fig.
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Figure 5: Diminished decoding performance when assuming
independence depends on RGC type. A. Correlation structure of OFF-
bs RGC population across light levels (left) and RF mosaic (right) in the
same retina as Fig. 1 (351 RGC pairs). B. Decoding result for an
example group of cells over light levels. In this instance the independent
and coupled GLMs perform similarly. C. Average percent improvement
in decoded SNR across light levels when using the coupled GLM over
the independent GLM. Note the compressed y-axis compared to Fig.
4B. D. Relationship between percent improvement in decoding and
summed noise correlations between a centered RGC and its neighboring
cells. Note the compressed x-axis compare to Fig. 4C. E. Distribution
of population failure frequencies. F. Population failure as a function of
the amount of noise correlation in a group of RGCs. For panels C-F:
photopic: 37 groups of RGCs from 4 retinas, scotopic: 20 groups of
RGCs from 3 retinas (3 retinas in common between conditions).

5). Accounting for correlations only improved decoded SNR by 2.9 + 0.7 % in the photopic condition and 4.4 +
0.8 % in the scotopic condition (Fig. 5C; photopic: 37 groups of RGCs from 4 retinas, scotopic: 20 groups of
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RGCS from 3 retinas, difference over light levels p = 0.45). While some single cell GLMs decode better than the
independent GLM, the frequency and amount of this population failure under the independence assumption was
much smaller than in OFF-bt RGCs (Fig. S5E, F; photopic: frequency of population failure = 19 + 5 %, mean +
s.e.m., % improvement when there is population failure = 1.9 + 1 %, scotopic: frequency of population failure =
28 + 8 %, % improvement when there is population failure = 0.7 + 0.2 %). These results demonstrate that the

role of noise correlations in decoding RGC activity depends on both adaptation state and cell type.

A simple geometric model reproduces population failure

Under the scotopic condition, assuming noise independence among OFF-bt RGCs frequently caused
population failure. To provide an intuition for this potentially counterintuitive result, we utilized a previously
developed geometric visualization of noise correlations and decoding performance (Averbeck et al., 2006) (Fig
6). We created a simplified model of two neurons responding to two stimuli, using the d prime metric to quantify
how well the neurons could discriminate the stimuli with their firing rates (Averbeck and Lee, 2006). In one case,
the two cells exhibit strong noise correlations causing elliptical joint response distributions (Fig 6A, green and
blue solid ellipses). The optimal decoder (red line) accurately discriminates the two populations (Fig 6C, red bar).
However, if the noise is assumed to be independent between the two cells (Fig 6A, green and blue dashed
circles), the decoder is nearly orthogonal to the optimal decoder (compare black and red lines). This
independence assumption causes a large decrease in decoding performance (Fig 6C, light blue bar). Next, we

discriminated the two stimuli using just the response distributions for cell 1 (Fig 6B). In this example, the single
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cell outperforms the two-cell decoder that assumes independence among the cells (Fig 6C). In a second case,
the noise correlations are weaker, resulting in a close similarity between the decoder under the independence
assumption and the optimal decoder (Fig 6D, black and red lines). Assuming independence causes a very small
decrease in discrimination performance and outperforms discrimination from a single cell (Fig 6E, F). This model
demonstrates how population failure can occur in a very simple system—where decoding from a single neuron
performs better than decoding from two neurons with non-zero stimulus information. Between these two cases
we examined (Fig 6A, D), we only changed the strength of the noise correlations and held constant all other
parameters, namely, the stimulus-dependent firing rates and variances of the two neurons. Thus, changes in
noise correlations alone can cause conditions under which population failure occurs. In general, however, the
relative sign and strength of the signal and noise correlations are the key elements in determining the
consequences of decoding correlated responses under the independence assumption (Averbeck et al., 2006).
In the next section we examine how these parameters shape decoding performance in a population model that

more closely relates to our experiments.

Receptive field overlap, correlation strength and its spatial scale dictate population failure

To investigate the conditions under which a single RGC can outperform a population that is assumed to
be independent, we modeled our experimental findings by simulating a two-dimensional grid of RGCs (Fig 7A).
We systematically varied three parameters that determine correlation structure across this population: peak
correlation strength, the spatial scale of correlation, and RF overlap (Fig. 7A). The model consists of linear RGCs
responding to a white noise stimulus. We arranged the RFs in a hexagonal grid to approximate the mosaic of
one RGC type, with the relationship between RF and stimulus pixel sizes set similarly to those in our experiments.
We again used discriminability (d prime) to quantify how well intensity values in the central stimulus pixel can be
discriminated given the neural responses (Averbeck and Lee, 2006). As with our GLM-based approach, we
compared the performance of a decoder that accounts for correlations among cells (coupled decoder), one that
assumes independence among cells (independent decoder), and one that just uses the responses of one RGC
(single cell decoder).

When there is little overlap between RFs and noise correlations are present, the independent decoder
often discriminates the stimulus worse than the single cell model (Fig. 7D, top rows, purple areas). The cost of
assuming independence in the population becomes more severe as the noise correlations are made stronger
and/or broader. As RF overlap increases, the independent decoder performs better than the single cell decoder
when correlations have a small spatial scale and magnitude (Fig. 7D, left columns). This improved performance
results from neighboring cells providing more signal about the intensity of the decoded pixel, which overcomes
the errors due to ignoring small noise correlations. However, ignoring larger and broader noise correlations
eventually outweighs this advantage, resulting in more extreme population failure (up to 50% less discriminability
than the single cell decoder for the parameters we explored; Fig. 7D, right columns). Note that the coupled
decoder discriminates much better than the independent decoder in the presence of strong and broad noise

correlations (Fig. 7E). This simplified model highlights that accounting for correlated noise is most important for
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Figure 7: RF overlap, peak correlation, and spatial extent of correlations
dictate the conditions under which accounting for correlations is necessary
for population failure. A. Correlation structure (left) and RF mosaic (right) of
an example model with the given RF overlap, maximum correlation, and
spatial scale of correlations. B. Decoding results from the model parameters
shown in A illustrate a state in which the assumption of independence causes
the population to perform worse than a single cell. C. Color map of
discriminability for the coupled decoder over all values for RF overlap,
maximum noise correlation, and spatial scale of noise correlations. D. Same
as C but for the independent decoder. As the magnitude and scale of noise
correlations increases, the independent decoder discriminates less
information. Purple regions indicate states in which the population decoding
assuming independence performs worse than decoding from a single cell. E.
Percent improvement in discriminability achieved by the coupled decoder
over the independent decoder.

process the visual information conveyed by populations of RGCs. Central to this question is the impact of

correlated activity among RGCs, which can be a significant factor in neural computations depending on context.

Here we examine how light adaptation alters the role of correlations in decoding visual stimuli from RGC
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populations in the rat retina. We find that under moonlight conditions, decoders assuming independent
responses among OFF-bt RGCs recover much less visual information than decoders that account for pairwise
correlations. This reduction in performance can be so large that decoders assuming independence perform
worse than decoding from a single RGC (Figs 4, 6, and 7). We call this state ‘population failure’ because
decoding the population fails to reach the performance of a single cell. Accounting for correlations, however,
avoids this state and enables decoders to benefit from population codes. We use a simple model to demonstrate
how the structure of activity correlations determines the cost of assuming independent responses, accounting
for why our results depend both on light level and RGC type. These findings raise several questions about the

role of correlations in adaptation and visual processing that we discuss below.

Comparison to previous studies, interpretation and caveats

The importance of correlated activity is a much-debated topic in vision research (Dan et al., 1998;
Nirenberg et al., 2001; Schneidman et al., 2003; Schnitzer and Meister, 2003; Puchalla et al., 2005; Montani et
al., 2007; Pillow et al., 2008; Graf et al., 2011; Berens et al., 2012; Meytlis et al., 2012). Previous studies have
examined the role of correlated spiking in both visual encoding and decoding, yielding a range of conclusions.
For decoding, studies have concluded that between 0-40% more information is available when decoders account
for correlations (Dan et al., 1998; Nirenberg et al., 2001; Pillow et al., 2008; Meytlis et al., 2012). Our results are
most comparable to the Pillow et al. 2008 and Meytlis et al. 2012 studies because they analyzed similar
population sizes and employed the same GLM-based decoding strategy. The decoding improvement we find at
the photopic light level agrees relatively well with their 20% and 13% results, respectively. Our study departs
from previous work by determining how this decoding improvement depends on adaptation state and cell types
that encode distinct visual features (OFF-bt vs OFF-bs RGCs). The effect of light level on OFF-bt RGCs is
particularly striking: decoded information can be doubled by accounting for correlations. This improvement is a
substantially larger effect than previous results at photopic light levels, illustrating the potent impact of light
adaptation on retinal output.

How could accounting for correlations improve retinal decoding? One possibility is that correlated activity
conveys visual features that are unavailable from individual responses, such as fine spatial features at the
intersection between two RFs (Meister et al., 1995; Meister, 1996; Dan et al., 1998). To check for this possibility,
we analyzed synchronous spike triggered averages (sSTAs) from pairs of RGCs. We did not find evidence that
synchronous spikes provide a higher acuity representation of visual space (Supp. Fig. 6). An alternative
possibility is that accurate decoding requires an accurate model of the noise in RGC populations (Averbeck et
al., 2006). When correlated noise is large and spatially extensive, such as for OFF-bt RGCs at scotopic light
levels, assuming independence is the wrong noise model, and this assumption diminishes decoding so much
that performance can fall below that of decoding from a single cell.

A simple intuition for the population failure effect can be achieved by considering the following situation.
If a single OFF-bt RGC generates a brief volley of spikes, a decoder will interpret this response as resulting from

a transient decrease in light intensity. If all the OFF-bt RGCs around that cell also generated spikes, the decoder
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will estimate a large decrease in light intensity because many cells were driven to spike together. However, this
interpretation may only be correct if the OFF-bt RGCs are acting independently. If the decoder knows the cells
are strongly correlated, then it should discount this conclusion in favor of a smaller decrease in light intensity.
Many of the findings presented here are based on GLM fits to the responses of RGC populations, raising
the possibility that at least some of these conclusions are model-dependent. The GLM captures a majority of the
response variance to white noise stimuli (up to 80%), but remains an imperfect model of RGC encoding
(McFarland et al., 2013; Heitman et al., 2016). This mismatch between model and data is likely to impact the
quantitative estimates that we and others have made on the cost of assuming RGCs are independent (Pillow et
al., 2008; Meytlis et al., 2012). Of particular concern is whether assuming independence in a population of RGCs
can actually yield worse performance than decoding a single RGC. To address this issue, we also utilized a more
general examination of how correlations can impact decoding. Fig. 6 demonstrates that population failure is
certainly possible. Fig. 7 shows that this effect depends on the amount of RF overlap and strength of noise
correlations, both of which change with light level. This simplified model has many differences from our data,
with uniform, circular RFs, uniform RF overlap, firing rates that depend linearly on the stimulus, and decoding
using discriminability (d prime) rather than GLM-based optimal stimulus estimation. Nevertheless, the simplified
model in Fig. 7 reproduced the trends in our data. Furthermore, we show that population failure can occur when
decoding spatial stimulus patterns from RGC responses (Supp. Fig 4), indicating that these results are not
specific to temporal decoding. Together, these analyses show that ignoring strong correlations can degrade
decoding and reproduce population failure in a manner that does not depend strongly on the details of the

decoding task or the precise nature of the RGC output.

Light adaptation

Light adaptation crucially influences how retinal circuits encode visual scenes. Between scotopic and
photopic light levels, input to RGCs switches from rod- to cone-mediated pathways. This circuit switch alters both
single RGC response properties and correlated activity. For individual RGCs, spatial and temporal integration
increases under scotopic conditions (Barlow et al., 1957; Enroth-Cugell and Shapley, 1973). Other aspects of
RGC activity also depend on light level, including the polarity of stimuli that drive responses, firing rates, and the
extent to which spatial integration is linear (Barlow and Levick, 1969; Grimes et al., 2014; Tikidji-Hamburyan et
al., 2015). The switch from rod- to cone-mediated circuits also results in altered common input to RGCs, one of
the underlying causes of RGC correlations (Mastronarde, 1983a, b; Greschner et al., 2011). In general, weaker
RF surrounds in scotopic conditions result in greater overlap between RF centers and thus more common input
between neighboring RGCs. Furthermore, at the low light level used here (1R*/rod/s), All amacrine cells are
expected to be extensively coupled by gap junctions (Bloomfield and Volgyi, 2004), which would also tend to
increase the amount of common input between nearby RGCs. Finally, a subset of RGC types are electrically
coupled (Volgyi et al., 2009), and the strength of this coupling can be altered by light level (Hu et al., 2010). Thus,

there are several mechanisms by which light adaptation can strongly impact correlated spiking.

14


https://doi.org/10.1101/2019.12.18.881201
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.18.881201; this version posted December 19, 2019. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

These changes in signal and noise across light levels raise the question of how light adaptation influences
information across populations of RGCs. Efficient coding theory—the idea that sensory systems are optimized
to encode natural stimuli—has been successful at explaining why RF structure changes across light levels
(Attneave, 1954; Barlow, 1961; Atick and Redlich, 1990; Van Hateren, 1993). However, this theory assumes that
RGCs do not exhibit correlated noise, much less that this correlated noise changes with light level. Therefore, a
useful direction for future examinations of efficient coding theory is to determine how light-level dependent
changes in correlated activity impact predictions about the optimality of adaptation in RGC responses.

Our results showing that the importance of noise correlations in decoding can change across light levels
highlight how the role of correlated activity in neural computations can be altered by context. This context-
dependent change parallels work demonstrating modulation of correlations in other brain regions. For example,
attention has been shown to alter the structure of noise correlations in cortical areas such as MT and V4, resulting
in more informative population activity and likely causing improved behavioral performance on visual
discrimination tasks (Cohen and Maunsell, 2009; Mitchell et al., 2009). Note that unlike the present work, these
studies assumed a downstream computation that averages population activity, yielding increased information
when noise correlations are reduced because correlated noise cannot be averaged away (Zohary et al., 1994).
However, the general point still stands that context can change the structure of signal and noise correlations,

which in turn impacts circuit computations.

Implications for downstream processing

Our results highlight several implications for how downstream circuits may process retinal output.
Although the impact of ignoring RGC correlations may depend on particular post-retinal computations, assuming
independence among correlated RGCs likely reduces information that can be extracted from retinal activity. Even
in the context of a simple linear readout of RGC responses, ignoring strong noise correlations among RGCs can
result in suboptimal weighting of RGC inputs compared to weighting determined by an accurate model of
correlated noise (Adibi et al., 2014). In addition, light level-dependent changes in RGC signals and correlated
noise may place important constraints on post-retinal computations across light levels. For example, downstream
circuits that receive input from OFF-bt RGCs may fail to effectively process this input unless they too adapt their
processing across light levels. Meanwhile, circuits that receive input from OFF-bs RGCs may be afforded a more
static processing strategy. Thus, our results suggest that post-retinal areas may need to differentially process
cell type inputs. Recent work elucidating LGN processing of RGC output confirm that some LGN neurons receive
predominant input from a single type of RGC (Rompani et al., 2017; Liang et al., 2018; Roman Roson et al.,
2019). These studies also find LGN neurons with input from diverse types of RGCs, posing further questions of
how correlations between RGCs of different types may affect early visual processing.

Studies of light adaptation that span rod-to-cone signaling are relatively common in retina, but remain
sparse in visual cortex. The few studies that have been performed suggest that V1 RFs are relatively invariant
to changes in light level (Duffy and Hubel, 2007). The insights that RGC responses to the same stimulus change

across light levels (Tikidji-Hamburyan et al., 2015), combined with the fact that correlated noise depends on light
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adaptation, motivates more research to understand the extent to which V1 and other regions can preserve an

invariant representation of visual scenes across light levels.
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Methods

MEA Recordings: All experiments were performed in accordance with the guidelines of Duke University’s

Institutional Animal Care and Use Committee. Long-Evans rats were dark adapted overnight and euthanized
with intraperitoneal injection of ketamine/xylazine followed by decapitation. Euthanasia and retinal dissections
were performed in darkness with the assistance of infrared converters. We dissected dorsal pieces of retina that
were approximately 3mm x 2mm large and placed them RGC-side down on an electrode array. The tissue was
perfused with oxygenated Ames solution at a rate of 6-8 mL/min. Recordings were performed at 34°C. The MEA
consisted of 512 electrodes with 60 um spacing, covering an area of 0.9 x 1.8mm (Frechette et al., 2005; Ravi

et al., 2018). The voltage on each electrode was sampled at 20 kHz and filtered between 80 and 2000 Hz.

Visual Stimuli: Stimuli were presented with a gamma-corrected OLED display (SVGA+XL Rev3, Emagin, Santa
Clara, CA). The image from the display was focused onto the photoreceptors using an inverted microscope (Ti-
E, Nikon Instruments) with a 4x objective (CFI Super Fluor 4x, Nikon Instruments). Optimal focus was confirmed
by presenting a high spatial resolution checkerboard noise stimulus (20x20 um, refreshing at 15 Hz) and
adjusting the focus to maximize the spike rate of RGCs over the MEA. The intensity of the stimulus was set using
neutral density filters in the light path, and calibration was performed using previously described methods (Yao
et al., 2018). In each recording, stimuli were first presented at the scotopic light level (1 Rh*/rod/s) while the
retina was in a dark-adapted state. The tissue was adapted to the photopic light level (10,000 Rh*/rod/s) for 30
minutes before continuing recordings at that light level. The refresh rate of the stimulus was 60 Hz and 30 Hz at
the photopic and scotopic light levels, respectively. The change in stimulus refresh offset effective contrast
changes due to a ~2-fold increase in temporal integration of RGCs from the photopic to scotopic conditions. For

GLM fitting and decoding, stimuli consisted of non-repeated, binary white noise interleaved with repeated, binary
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white noise segments (5 or 10s) to control for nonstationarities in recordings. Stimulus pixels in the checkerboard
noise were squares with 240um sides. For cell type classification, we followed previously described methods
and presented drifting gratings and finer pixel checkerboard noise (60 um squares, refreshing at 60 Hz) (Ravi et
al., 2018).

Spike Sorting and Neuron Identification: The spike sorting procedures have been described previously (Field et

al., 2007). In brief, spikes on each electrode were identified by thresholding the voltage traces at 4 SD of a
robust-estimate of the voltage SD. Spike sorting was performed by an automated PCA algorithm and verified by
hand with a custom software (Shlens et al., 2006). Spike waveform clusters were identified as neurons only if
they exhibited a refractory period (1.5ms) with <10% estimated contamination. To track identified RGCs across
light conditions, cell clusters were sorted in the same PCA subspace at each light level. Neuron identity was
verified by checking that electrical images (Els) and RF locations were stable across conditions (Petrusca et al.,
2007; Field et al., 2009). RGC types were classified at the photopic light level by first removing direction selective

RGCs, and then clustering using RF properties and autocorrelation shapes (Ravi et al., 2018).

Measuring noise correlations: Correlated noise was estimated by subtracting stimulus-driven correlations from

the combined signal and noise correlations. Correlations were computed using responses to 100 (or 200) repeats
of 10s (or 5s) white noise segments, binned at 5ms. First, the raw CCF was found by averaging the CCFs
between two RGCs over all trials. Next, the shuffled CCF (shift predictor (Perkel et al., 1967)) was found by using
spikes from one repeat for the first cell with spikes from a different repeat for the second cell. The shuffled CCF
was averaged over all possible repeat combinations. Subtracting the shuffled CCF from the raw CCF gives the
noise CCF. Correlation was quantified with the positive area under each correlogram, the full width of the peak,
or the peak height at 0-time lag. The spatial scale of correlations for a population was found by fitting the data
(e.g. Fig. 1E) to a single term exponential function. The coefficient of the exponential was the length scale of the

correlations.

Generalized Linear Model fitting: GLMs were fit separately at each light level. 50 minutes of non-repeated white

noise were used to fit GLM parameters, with 100 (or 200) 10s (or 5s) segments of repeated white noise used for
cross-validation. GLM RFs were approximated as rank one: they were composed of the outer product of a spatial
filter and temporal filter (which approximated the spatial and temporal RFs, respectively). The temporal filter,
spike history filter, and coupling filters were parameterized with a basis of 8 cosine functions. The nonlinearity
used was the logexp2 function (https://github.com/pillowlab/GLMspiketools); no significant improvement was
found using a spline nonlinearity. Only RGCs that had stable responses over the course of the recording were
used in the GLM analysis (as judged by a consistent mean firing rate and uniform raster structure to repeated
white noise sequences measured early and late in the experiment). For the coupled GLM fits, local populations

of RGCs were chosen based on a central RGC and its neighbors. Only RGCs with an average firing rate above
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a threshold were included in the GLM; the threshold was given by the mean minus 1 SD of the firing rate of all

recorded cells of a certain type. Across light levels, the same groups of RGCs were used to fit GLMs.

Decoding: Following previous work (Pillow et al., 2008), GLM-based decoding was performed by computing the
likelihood p; that a stimulus x; caused a recorded population response, where x; is one stimulus option of all
possible binary white noise sequences. The decoded estimate comes from Bayes’ least squares estimate: ¥ =
X prjx)/Xpj)- We decoded the intensity of one stimulus pixel over 6 frames in time, or 6 stimulus pixels in one
frame for spatial decoding controls (Supp. Fig. 4). This decoding was repeated for 5000 trials on 16 minutes of
non-repeated white noise data (held out from the fitting data). Decoding performance is reported with log SNR
calculated from the mutual information between the decoded estimates and presented stimuli (Warland et al.,
1997; Pillow et al., 2008). Bootstrapped SNRs for error bars were computed for each GLM using 500 subsamples
of 3000 trials.

Simple RF Model: The RF grid model consisted of 25-169 neurons with circular RFs arranged in a hexagonal

grid. RF diameters were 250 um, slightly larger than the stimulus pixel size of 240 um. Cells responded linearly
to white noise pixels according to the amount of overlap between that cell’'s RF and the pixel. Each cell’s
maximum firing rate was set to 30Hz. Noise correlation strength was set to decrease exponentially with distance
between two cells and the coefficient of the exponential was the length scale of the correlations. We computed
the discriminability of the center pixel’s intensity using d? = AuTQ~'Au, where Au is the vector of differences in
mean neural firing rates between the decoded pixel value as black or white, and Q is the mean covariance matrix
(Averbeck and Lee, 2006). To match the GLM decoding, here the covariance includes covariance of neurons
and outer pixel intensities. This allowed conditioning the discrimination on the intensities of non-decoded pixels.
Thus, decoding was performed given the population responses and intensity of outer stimulus pixels. The
coupled decoder utilized the full covariance matrix, while the independent decoder ignored non-diagonal entries

in the neuron-neuron covariance block.

Statistics: Significance tests were performed using Student’s paired sample t test (for comparisons of one cell

type across light levels) and Student’s 2 sample t test (for comparisons across cell types).
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Supp. Figure 1: Spontaneous noise correlations depend on light level and cell type. A. RF mosaic of OFF-bt
RGCs. B. Strength of noise correlations, measured with a static, full-screen black stimulus, over pairwise
distances for the OFF-bt RGC population. Each point shows the cross-correlogram height at O-time lag for a given
pair of cells (1225 RGC pairs from 1 retina; photopic light level: 1000 Rh*/rod/s; scotopic light level: 0.1
Rh*/rod/s). C & D. same as A & B for OFF-bs RGCs (595 RGC pairs from 1 retina).

19


https://doi.org/10.1101/2019.12.18.881201
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.18.881201; this version posted December 19, 2019. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

STA

Spatial
RF o

Off

Temporal
RF

Contrast

05 025 O
Time Before Spike (s)

Independent
Explained Variance

0.2
02 04 06 08

Coupled
Explained Variance

Independent
Explained Variance

1

Contrast

\r

0.5

Contrast

025 O 0.5
Time Before Spike (s)

0.25
Time Before Spike (s)

0

GLM RF

Coupled and Independent GLM Similarity

02 04 06 08
Coupled
Explained Variance

1

S

Number of Cell

Number of Cells

N
o

20

0

0.7 08 09
Explained Variance

0.7 08 09
Explained Variance

Single Cell Predictions

Number of Cells

0 0.5
Explained Variance

1

Number of Cells

o =N WO

0 0.5
Explained Variance

1

1

1

S

Number of Cell

Number of Cells

GLM Prediction

N
o

20

0

Contrast

0.5

dva

025 0

Time Before Spike (s)

07 08 09 1
Explained Variance

07 08 09 1
Explained Variance

Peak Height (Hz)
x Coupled

o Independent

Data

Supp. Figure 2: Summary of GLM
fitting performance. A. Spike triggered
average (STA) of an example OFF-bt
RGC across light levels. Note that these
RGCs have space-time separable RFs
(Ravi et al.,, 2018). Top row, spatial
components of the STA estimate the
spatial RF. Bottom row, time courses of
the STA estimate the temporal RFs (also
called temporal filters). Notice the slower
time course at the scotopic light level. B.
Same as A but spatial and temporal filters
are from the GLM fit. C. Comparing
coupled and independent GLM
performances for OFF-bt RGCs. Left,
performances in predicting firing rates are
similar for the coupled and independent
GLMs (101 cells from 16 groups of RGCs
from 1 retina; all data: photopic:
independent GLM explained variance =
0.59 + 0.013, mean + s.e.m., 97 RGCs
from 4 retinas, coupled GLM explained
variance = 0.59 %+ 0.007, 55 groups of
RGCs from 4 retinas, scotopic:
independent GLM explained variance =
0.58 £ 0.01, 66 RGCs from 3 retinas,
coupled GLM explained variance = 0.51
+ 0.008, 37 groups of RGCs from 4
retinas). Most RGCs were used once in
the independent GLMs but are part of
multiple coupled GLMs. Middle,
distribution of explained variance
between coupled and independent PSTH
predictions at the photopic light level (all
data: 0.94 £+ 0.002). Right, distribution of
explained variance between coupled and

independent PSTH predictions at the scotopic light level (all data: 0.94 £+ 0.002). D. Same as C for OFF-bs RGCs (44 cells
from 8 groups of RGCs from 1 retina; all data: photopic: independent GLM explained variance = 0.51 £ 0.02, 69 RGCs
from 4 retinas, coupled GLM explained variance = 0.52 £ 0.01, explained variance between independent and coupled GLMs
=0.9 £ 0.006, 37 groups of RGCs from 4 retinas, scotopic: independent GLM explained variance = 0.65 + 0.02, 42 RGCs
from 3 retinas, coupled GLM explained variance = 0.63 £ 0.01, explained variance between independent and coupled GLMs
=0.93 £ 0.005, 20 groups of RGCs from 3 retinas). E. Distribution of explained variances for the GLM predicted PSTHs
in OFF-bs RGCs (15 RGCs from 1 retina). F. Cross-correlogram peak predictions for the independent and coupled GLMs
across the OFF-bs RGC population (102 pairs from 9 groups of RGCs from 1 retina).
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Supp. Figure 3: Including RGCs beyond immediate neighbors does not significantly impact temporal decoding results. A.
OFF-bt RF mosaics colored to show the four different populations that were compared with GLM decoding. The first group
included an RGC centered over the decoded stimulus pixel and all of its primary neighbors. The second group adds
secondary neighbors, the third group adds some far away RGCs, and the fourth group uses the whole recorded population.
B. Decoded SNR for the independent and coupled GLMs fit with the groups in A at the photopic light level. Error bars (SD)
come from bootstrapping SNR. C. Same as B for the scotopic light level. D. Percent improvement in decoded SNR between
the coupled and independent GLMs for the different RGC groups.
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Supp. Figure 4: Population failure as a function of group size and decoding in time (panels A-D) or space (panels E-I). A.
RF mosaic for 6 OFF-bt RGCs used to decode the temporal sequence of the stimulus pixel in red. B. Decoded SNR for
independent GLMs as a function of number of cells included in the population. All possible combinations of 1-6 RGCs
were used. The independent GLM with all 6 cells decodes less information than GLMs with some combinations of 1-6
RGCs. Points are slightly jittered in the x direction for visualization. C. Same as B for coupled GLMs. Several combinations
of 2-6 coupled GLMs (including 1 single cell GLM) decode more information than the independent GLM with 6 cells (gray
region). D. Decoded SNR for independent and coupled GLMs, where models using the same group of RGCs are connected
by a line. For visualization, the coupled SNRs are plotted slightly to the right of the independent SNRs. E. RF mosaic for
18 OFF-bt RGCs used to decode the spatial pattern of stimulus pixels in red. Here we consider when an independent GLM
consisting of many RGCs decodes worse than a GLM made up of a smaller population. This scenario exhibits population
failure because the decoder with more cells fails to take advantage of the information provided by larger population input.
Expanding to larger populations in this way is necessary because of the large size of stimulus pixels relative the RGC RFs,
which makes it unlikely that a single RGC can decode a large spatial pattern well. F. Cumulative RF coverage for the 18
RGCs. The spatial pattern of stimulus pixels that was decoded is outlined in black. This plot shows that the decoded stimulus
pixels are well represented by the group of RGCs. G. Decoded SNR for independent GLMs as a function of number of cells
included in the population. For groups with 2-17 RGCs, all possible combinations of RGCs were subsampled. Note that
decoded SNR appears to plateau at ~15 cells. H. Same as G for coupled GLMs. The independent GLM using all 18 RGCs
decodes less information than coupled GLMs with some combinations of 7, 9-17 RGCs (gray region). Note that decoded
SNR would likely continue growing with a larger population of RGCs. I. Decoded SNR for independent and coupled GLMs,
where models using the same group of RGCs are connected by a line. For visualization, the coupled SNRs are plotted
slightly to the right of the independent SNRs. For a population of 18 RGCs, the coupled model performs 52 + 16.61 %
(mean % SD) better than the independent model.
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Supp. Figure 5: Stronger coupling causes a greater improvement in decoding when accounting for correlations relative to
assuming independence. We started with a coupled GLM fit to a population of OFF-bt RGCs at the scotopic light level
(inset in A). We then altered all coupling filters in the model by a constant factor, simulated spike trains, refit coupled and
independent GLMs and decoded stimuli from the simulated spike trains to determine the impact of directly altering coupling
strengths on decoding performance. A. Coupling filters between two RGCs in the population (highlighted in the inset) for
the indicated coupling modulation factors. These coupling filters were used in the GLM to simulate responses. B. Resulting
noise CCFs from simulated spike trains of the gray and black cells in A). C. Percent improvement in decoded SNR between
the coupled and independent GLM as a function of coupling modulation. Stronger coupling filters make ignoring correlated
activity more deleterious for decoding. D. Same as but comparing decoding with a single cell and the independent GLM to
demonstrate population failure. Population failure does not occur for the original group of cells (coupling modulation = 1),
but increasing coupling strength causes the independent GLM to decode less information than the single cell.
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Supp. Figure 6: Synchronous spikes between pairs of RGCs do not encode finer spatial information. A. Top, spatial RF of
an example OFF-bt RGC at the photopic light level measured with a fine spatial resolution. Middle, the same cell’s RF at
the spatial resolution used for GLM decoding at the photopic light level. Bottom, the cell’s RF at the scotopic light level.
B. RFs for an RGC neighboring the cell in A. C. sSTAs between the RGCs of A & B. The sSTAs do not resemble the
intersection of the two individual RFs. D. The union of the RFs from A & B.
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