

1 **Pinging the Brain with Transcranial Magnetic Stimulation Reveals Cortical
2 Reactivity in Time and Space**

3

4 **Sangtae Ahn^{1,2}, Flavio Fröhlich^{1,2,3,4,5,6,*}**

5

6 ¹Carolina Center for Neurostimulation, University of North Carolina at Chapel Hill, Chapel Hill NC 27599

7 ²Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill NC 27599

8 ³Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill NC 27599

9 ⁴Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill NC 27599

10 ⁵Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill NC 27599

11 ⁶Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill NC 27599

12

13 *Correspondence should be addressed to: Flavio Fröhlich, 116 Manning Dr. Mary Ellen Jones Building Suite
14 6018, Chapel Hill, NC. 27599. Phone: 1.919.966.4584. Email: flavio_frohlich@med.unc.edu

15

16 **Abstract**

17 Single-pulse transcranial magnetic stimulation (TMS) elicits an evoked
18 electroencephalography (EEG) potential (TMS-evoked potential, TEP), which is interpreted
19 as direct evidence of cortical reactivity to TMS. Thus, combining TMS with EEG may enable
20 the mechanistic investigation of how TMS treatment paradigms engage network targets in
21 the brain. However, there remains a central controversy about whether the TEP is a genuine
22 marker of cortical reactivity to TMS or the TEP is contaminated by responses to peripheral
23 somatosensory and auditory inputs. Resolving this controversy is of great significance for
24 the field and will validate TMS as a tool to probe networks of interest in cognitive and clinical
25 neuroscience. Here, we delineated the TEP's cortical origins by localizing successive TEP
26 components in time and space and modulating them subsequently with transcranial direct
27 current stimulation (tDCS). We collected both motor evoked potentials (MEPs) and TEPs
28 elicited by suprathreshold single-pulse TMS to the left primary motor cortex (M1). We found
29 that the earliest TEP component (P25) was localized on the TMS target location (left M1)
30 and the following TEP components (N45 and P60) largely were localized on the primary
31 somatosensory cortex, which may reflect afferent input by hand-muscle twitches. The later
32 TEP components (N100, P180, and N280) largely were localized to the auditory cortex. To
33 causally test that these components reflect cortical and corticospinal excitability, we applied
34 tDCS to the left M1. As hypothesized, we found that tDCS modulated cortical and
35 corticospinal excitability selectively by modulating the pre-stimulus mu-rhythm oscillatory
36 power. Together, our findings provide causal evidence that the early TEP components
37 reflect cortical reactivity to TMS.

38

39 **Key words:** cortical reactivity, source localization, motor cortex excitability, TMS, EEG,
40 tDCS

41 **Introduction**

42 Combined transcranial magnetic stimulation (TMS) and electroencephalography (EEG)
43 provide an opportunity to quantify brain network dynamics by pinging them with TMS[1]. The
44 TMS-evoked potential (TEP), which is considered a reflection of cortical reactivity to TMS,
45 has been shown to have diagnostic value in a variety of neurological and psychiatric
46 disorders[2]. However, there is ongoing controversy about the origin of the TEP. A recent
47 study claimed that the stimulation of peripheral nerves and the TMS coil's loud clicking
48 sound may confound the TEP amplitude[3]. Specifically, sham TMS elicited EEG potentials
49 that were correlated highly with those by real TMS, despite the use of sophisticated
50 procedures to attenuate the somatosensory and auditory confounds. In rebuttal of this
51 publication, it was suggested that insufficient TMS intensity and incomplete auditory
52 masking may explain the sensory-dominant evoked potentials in the experiment[4].
53 Nonetheless, residual auditory input is unavoidable in TMS studies[5] because of air and
54 bone conduction from the TMS clicking sound[6,7]. Thus, it continues to be debated whether
55 the TEP represents genuine cortical reactivity that single-pulse TMS elicits or whether it
56 reflects cortical reactivity contaminated with peripherally- and auditory-evoked potentials.
57 Here we sought to resolve this controversy and delineate TEPs by localizing the
58 electrophysiological response with high-density EEG, structural magnetic resonance (MR)
59 images, and digitized EEG electrode locations. If a TEP is localized in areas in the auditory
60 and somatosensory cortex, then it can be determined that auditory input and peripheral
61 nerve stimulation, respectively, drive this component. We chose the primary motor cortex
62 (M1) as a stimulation target because the corticospinal response (motor-evoked potential,
63 MEP) also should reflect cortical reactivity. To causally test the validity of our approach, we
64 applied transcranial direct current stimulation (tDCS) to modulate cortical and corticospinal
65 excitability[8,9]. We observed that single-pulse TMS to the M1 elicited six TEP components.
66 The earliest TEP at 25ms (P25) from the TMS onset was localized to the hand area of the
67 left M1, the TMS target location. The following two TEP components were localized to the
68 primary somatosensory cortex (N45 and P60), which may reflect afferent input by hand-
69 muscle twitches in response to suprathreshold TMS. The later TEP components (N100,
70 P180, and N280) largely were localized to the auditory cortex. Further, tDCS modulated the
71 cortical reactivity (TEP) and corticospinal response (MEP) reliably by modulating the pre-
72 stimulus mu-rhythm oscillatory power. Together, our findings demonstrated that the earliest
73 TEP component reflects genuine cortical reactivity, while the following TEP components
74 may reflect different sensory processing.

75 **Results**

76 **Cortical reactivity to single-pulse TMS**

77 We investigated cortical reactivity to TMS in 18 healthy, right-handed, male participants (Fig.
78 1a). We obtained structural MR images (T1-weighted) for each participant using a 3T-MR
79 scanner for precise targeting of the TMS with a neuronavigation system (Fig. 1b, left,
80 Supplementary Fig. 1). After determining each participant's resting motor threshold (RMT),
81 we administered single-pulse TMS to the left M1 while recording TEPs and MEPs in three
82 sessions. The tDCS condition (anodal, cathodal, and sham tDCS) was randomized for each
83 session in a double-blind, cross-over study design. For tDCS, we used the conventional two-
84 electrode montage (Fig. 1c, left, referred to as M1-SO, one for the M1, and another for the
85 supraorbital cortex). We applied 100 single pulses of TMS before and after tDCS during
86 each session. At the end of each session, we collected EEG electrode locations using a
87 stereo-camera tracking digitizer to improve accuracy of source localization.

88 Single-pulse TMS elicits multiple TEP components in the TMS-EEG recordings[10,11]. To
89 determine whether single-pulse TMS to the hand area of the left M1 elicits TEPs, we
90 computed grand-averaged TEPs (5255 epochs after bad epoch rejection) for each EEG
91 channel from the TMS-EEG recordings before tDCS application. A butterfly plot of TEPs
92 (Fig. 2a, gray lines) was obtained as a function of time (-100 to 500ms with respect to TMS
93 onset) for each EEG channel (128 channels), and an averaged TEP over the left
94 sensorimotor area (C3 channel and the 6 channels surrounding C3; see inset) was
95 computed in sensor space (Fig. 2a, thick black line). We found that the averaged TEP on
96 the left sensorimotor area exhibited three positive and three negative peaks relative to the
97 baseline period (-100 to 0ms). We refer to these peaks by their canonical names: P25, N45,
98 P60, N100, P180, and N280.

99 To investigate these TEP components' spatial distribution on the scalp, we computed
100 topographical distributions at each TEP time point (Fig. 1b). We found that the left
101 sensorimotor area was activated predominantly up to 60ms (P25, N45, and P60). After P60,
102 the centroid of activation drifted towards the midline until it centered entirely at 280ms (N100,
103 P180, and N280).

104 As the sensor-space representation captures the summed cortical activity on the scalp, we
105 next localized the TEPs on the cortex (source space). We first localized the TEPs to
106 individual cortex models (15000 voxels) for each participant and then projected the localized
107 TEPs to a template cortex model (15000 voxels, FsAverage) for group analysis and

108 computed the grand-averaged TEP (5255 epochs). For each component depicted in sensor
109 space (Fig. 2b), we projected the grand-averaged TEP onto the template cortex model (Fig.
110 2c). We found that P25, the earliest TEP component, was localized to the hand area of the
111 left M1 (TMS target, Fig. 1b). N45 showed activation that spread between the M1 and the
112 primary somatosensory cortex (Fig. 2c, second column). Next, P60 was localized to primary
113 somatosensory cortex (Fig. 2c, third column). In contrast, the N100 and P180 peaks largely
114 were localized to the auditory cortex and reflected the N100-P180 auditory complex[6,7].
115 The final TEP component (N280) also was localized to the auditory cortex, but exhibited
116 additional activation in the frontal cortex. These findings demonstrate that single-pulse TMS
117 on the hand area of the M1 elicits multiple TEP components and that the earliest (P25)
118 reflects genuine cortical reactivity to TMS. We hypothesized from this finding that the N45
119 and P60 reflect the afferent signal from the corticospinal tract attributable to hand-muscle
120 twitches. In contrast, the later TEP components (N100, P180, and N280) may reflect
121 auditory processing of the coil's clicking sound.

122

123 **Cortical reactivity and corticospinal response**

124 Having identified cortical reactivity by single-pulse TMS in the hand area of the left M1 and
125 evidence of an afferent signal from the primary somatosensory cortex, we next investigated
126 how each TEP component was associated with the TMS-induced corticospinal response
127 measured by MEPs. We averaged the TEPs and MEPs before tDCS application for each
128 session and obtained 54 averaged TEPs and MEPs (3 sessions, 18 participants). We
129 extracted the six TEP components (peaks) for each participant and performed correlation
130 analyses using the Pearson correlation between the MEPs and each TEP component at
131 each EEG channel. We found positive correlation clusters for the P25 (9 EEG channels) and
132 P60 (6 EEG channels), and a negative cluster for the N45 (5 EEG channels) in the left
133 sensorimotor area (Fig. 3a, top row, *r*-value topographical maps). The black dots in the
134 topographical maps indicate significant EEG channels ($p<0.05$). In contrast, we found no
135 significant cluster for the N100, P180, and N280 (Fig. 3a, bottom row, $p>0.05$).

136 To understand the relation between cortical reactivity and the corticospinal response better,
137 we selected the significant EEG channels for each TEP component and averaged them to
138 obtain scatter plots with MEP amplitude (Fig. 3b, $n=54$ for each TEP component). As
139 expected, we found significant positive correlations for the P25 ($r=0.52$, $p<0.001$) and P60

140 ($r=0.51, p<0.001$), and a significant negative correlation ($r=-0.58, p<0.001$) for the N45. Note
141 that right green y-axis corresponds to the N45 amplitude (negative amplitude)

142 Next, we investigated how the localized TEP components in source space were correlated
143 with MEPs. First, we defined a region of interest (ROI, Fig. 3c) for the TEP components
144 (P25, N45, and P60) based on the source-localized TEPs (Fig. 2c). Using these ROIs, we
145 performed correlation analyses between the localized TEP components and MEPs (Fig. 3d).
146 We found significant positive correlations for the P25 ($r=0.62, p<0.001$), N45 ($r=0.57,$
147 $p<0.001$), and P60 ($r=0.45, p<0.001$). These findings indicate that the first three TEP
148 components (P25, N45, and P60) in both sensor and source space are correlated with MEPs
149 at baseline. Because of their location in the sensory cortex, the N45 and P60 may reflect
150 afferent input by hand-muscle twitches.

151

152 **Modulation of motor cortex excitability by tDCS**

153 Having identified cortical reactivity by single-pulse TMS in both sensor and source space
154 and verified that the evoked activity predicted the corticospinal response, we next tested
155 causally whether cortical reactivity drove the corticospinal response using tDCS to the left
156 M1. Previous studies have shown that tDCS modulates corticospinal excitability depending
157 upon polarity[8,9]. We hypothesized that if the TEP components reflect genuine cortical
158 reactivity elicited by single-pulse TMS to the M1, then tDCS to the M1 should modulate the
159 TEP components as well as MEPs in a polarity-dependent manner. We applied three
160 different tDCS conditions (anode, cathode, and sham) at 2mA for 10 minutes and recorded
161 MEPs and TEPs before and after tDCS. To investigate the modulation of corticospinal
162 excitability by tDCS, we averaged the MEPs and calculated the ratio (post/pre) for each
163 tDCS condition. Using a linear mixed-effects model, we found a significant effect of
164 “condition” (Fig. 4a, anode vs. cathode vs. sham, $F_{2,28}=255, p<0.0001$), but not of “session”
165 (the three experimental sessions’ temporal order, $F_{2,28}=0.86, p=0.43$) or their interaction
166 ($F_{4,28}=1.56, p=0.21$). As hypothesized, this finding demonstrated that tDCS modulated
167 corticospinal excitability as measured by MEPs. Thereafter, we investigated whether tDCS
168 modulated cortical excitability. We calculated the TEPs’ local mean field power in the left
169 sensorimotor area (averaged 7 EEG channels described previously) for the entire epoch
170 and calculated the ratio (post/pre) for each tDCS condition. We found that the period of the
171 TEP from 25 to 60ms differed significantly for “condition” (Fig. 4b, shaded period; linear
172 mixed-effect model, $F_{2,28}=129, p<0.0001$), but not for “session” ($F_{2,28}=1.12, p=0.34$), or their

173 interaction ($F_{4,28}=1.31$, $p=0.29$). In contrast, we found no significant difference for the other
174 TEP components across tDCS conditions (100 to 280ms, $p>0.05$).

175 To investigate the modulated TEPs' spatial representation for each tDCS condition, we next
176 computed topographical distributions for the P25, N45, and P60. We found that the left
177 sensorimotor area for the P25, N45, and P60 differed significantly in the anodal tDCS
178 condition (Fig. 4c, top row, *t*-value topographical distributions, non-parametric cluster-based
179 permutation test, $n=1,000$; see Supplementary Fig. 2a for the N100, P180, and N280). Black
180 dots in each topography indicate significant EEG channels ($p<0.05$). Anodal tDCS amplified
181 the magnitude of TEP components in the consistent direction. In the cathodal tDCS condition,
182 we found that the sensorimotor area differed significantly for the P25 and N45, but not for
183 the P60 (Fig. 4c, middle row; see Supplementary Fig. 2a for the N100, P180, and N280).
184 Cathodal tDCS attenuated the magnitude of TEP components that contained M1 activation.
185 In the sham tDCS condition, we found no significant EEG channels for the P25, N45, or P60
186 (Fig. 4c, bottom row; see Supplementary Fig. 2a for the N100, P180, and N280).

187 We then performed correlation analyses to investigate whether tDCS modulated TEPs
188 (cortical excitability) and MEPs (corticospinal excitability) similarly across participants (Fig.
189 4d, scatter plot). We found significant positive correlations in the anodal tDCS condition for
190 the P25 ($r=0.54$, $p=0.022$), N45 ($r=0.53$, $p=0.023$), and P60 ($r=0.56$, $p=0.015$), and in the
191 cathodal tDCS condition, we found significant positive correlations for the P25 ($r=0.51$,
192 $p=0.032$) and N45 ($r=0.56$, $p=0.016$), but not for the P60 ($r=-0.14$, $p=0.57$). We found no
193 significant correlation in the sham tDCS condition for the P25 ($r=-0.15$, $p=0.54$), N45 ($r=$
194 0.36, $p=0.14$), or P60 ($r=-0.19$, $p=0.46$). Thus, the amplification or attenuation of cortical
195 excitability measured in sensor space was consistent with the modulation of corticospinal
196 excitability. Anodal tDCS amplified early TEP components and the degree of amplification
197 predicted an increase in MEP amplitude, while cathodal tDCS attenuated early TEP
198 components, which predicted a decrease in MEP amplitude.

199 Then, we investigated how tDCS modulated the localized TEP components by contrasting
200 source-localized TEPs before and after tDCS. For group-level statistical tests, we projected
201 the TEPs from individual cortex models to the template cortex model (15000 voxels). We
202 found that the P25 differed significantly on the hand area of the left M1 (Fig. 4e, first column,
203 non-parametric cluster-based permutation test, $n=1000$, $p<0.05$) in the anodal and cathodal
204 tDCS conditions. The N45 and P60 also were modulated after anodal tDCS, but the
205 modulation was localized in the primary somatosensory cortex (Fig. 4e, first row, second

206 and third columns). After cathodal tDCS, the N45 was modulated significantly in the primary
207 somatosensory cortex (Fig. 4e, second row, second column), but the P60 did not differ
208 significantly (Fig. 4e, second row, third column). We found no such significant differences in
209 the sham tDCS condition (Fig. 4e, third row). Similarly, we found no statistical difference for
210 the N100, P180, and N280 in all tDCS conditions (Supplementary Fig. 2b). These findings
211 indicate that tDCS modulates localized cortical reactivity by single-pulse TMS in the early
212 TEP components.

213 We then performed correlation analyses to investigate how the modulation of localized TEPs
214 (cortical excitability) were correlated with the modulated MEPs (corticospinal excitability)
215 across participants (Fig. 4f). We chose the ROI on the cortex model (Fig. 3c) for each
216 localized TEP component, and found significant positive correlations in the anodal tDCS
217 condition for the P25 ($r=0.65, p=0.0034$), N45 ($r=0.53, p=0.022$), and P60 ($r=0.50, p=0.034$).
218 In the cathodal tDCS condition, we found significant positive correlations for the P25 ($r=0.49,$
219 $p=0.04$) and N45 ($r=0.49, p=0.037$), but not for the P60 ($r=0.41, p=0.09$). We found no
220 significant correlations in the sham tDCS condition for the P25 ($r=0.29, p=0.24$), N45 ($r=$
221 $0.12, p=0.65$), and P60 ($r=0.1, p=0.68$). These findings support a model in which tDCS
222 selectively modulates the localized TEP components (cortical excitability) that drive the
223 corticospinal response.

224

225 **Modulation of pre-stimulus mu-rhythm by tDCS**

226 Our results showed how tDCS modulated corticospinal and cortical excitability in a targeted
227 and robust manner. These differences in response to TMS suggested that tDCS altered the
228 state of the targeted network overall. Thus, we investigated next how tDCS modulated the
229 network's excitability and its activity's oscillatory structure. We computed time-frequency
230 representations for the entire epoch (-200 to 500ms) and performed non-parametric cluster-
231 based permutations between before and after tDCS. We found that anodal tDCS increased
232 the pre-stimulus mu-rhythm significantly (Fig. 5a, first row, *t*-value time-frequency map,
233 clustered region); the increased mu-rhythm was located in the left sensorimotor area (inset,
234 topographical distribution, black dots indicate significant EEG channels, $p<0.05$). In contrast,
235 we found that cathodal tDCS decreased the pre-stimulus mu-rhythm significantly (Fig. 5a,
236 second row, *t*-value time-frequency map, clustered region) as well as post-stimulus mu-
237 rhythm around 250ms; the decreased mu-rhythm was located in the left sensorimotor area
238 (topographical distribution, black dots indicate significant EEG channels, $p<0.05$). In the

239 sham tDCS condition, we found no significant difference in the time-frequency map (Fig. 5a,
240 third row, *t*-value time-frequency map) and topographical distribution (no significant EEG
241 channel).

242 Thereafter, we investigated the relation between the pre-stimulus oscillatory modulation and
243 the modulation of corticospinal and cortical excitability. Correlations were calculated
244 between the modulated pre-stimulus mu-rhythm and both MEPs and P25 TEP component
245 in sensor and source space for each participant (Fig. 5b). We found that the ratio of the pre-
246 stimulus mu-rhythm (post/pre to tDCS) was correlated with the ratio of MEP (post/pre to
247 tDCS) for anodal ($r=0.56, p=0.017$) and cathodal tDCS ($r=0.49, p=0.037$), but not for sham
248 tDCS (Fig. 5b, first row, $r=-0.08, p=0.75$). We also found that the ratio of the pre-stimulus
249 mu-rhythm was correlated with the ratio of the P25 in sensor space for anodal tDCS ($r=0.50,$
250 $p=0.034$) and cathodal tDCS ($r=0.47, p=0.047$), but not for sham tDCS ($r=0.16, p=0.53$).
251 Similarly, we found that the ratio of the P25 in source space (ROI-based) was correlated
252 with the ratio of the mu-rhythm for anodal tDCS ($r=0.66, p=0.0028$) and cathodal tDCS
253 ($r=0.51, p=0.032$), but not for sham tDCS ($r=0.15, p=0.56$). These results show that tDCS
254 modulates the pre-stimulus mu-rhythm and that this modulation of network oscillations
255 altered corticospinal and cortical excitability.

256 **Discussion**

257 TMS-EEG studies have gained attention recently, as they may provide important insights
258 into disease processes in the central nervous system, as well as a mechanistic
259 understanding of the way clinical TMS paradigms engage brain networks[2,12]. However,
260 there is a central controversy about whether the TEP reflects genuine cortical reactivity to
261 TMS or whether it consists of reactivity from peripherally- and auditory-evoked potentials[3–
262 5]. Our study addressed this controversy directly through a unique combination of brain
263 stimulation and imaging methods. We used sophisticated procedures to attenuate the
264 peripheral and auditory confounds generated and performed source localization with high-
265 density EEG data, structural MR images, and digitized EEG electrode locations to obtain a
266 high spatial resolution picture of cortical reactivity. We observed six TEP components and
267 found that the P25, the earliest TEP component, was localized to the stimulated cortical area
268 (the left M1). The following two TEP components (N45 and P60) largely were localized to
269 the primary somatosensory cortex, which represent afferent input by hand-muscle twitches.
270 The remaining TEP components (N100, P180, and N280) were localized primarily to the
271 auditory cortex. Importantly, tDCS modulated the first two TEP components (P25 and N45)
272 selectively depending upon polarity in our double-blind, placebo-controlled study. In addition,
273 we found evidence that cortical reactivity played a causal role in predicting corticospinal
274 excitability. Thus, our findings demonstrate that the early TEP reflects genuine cortical
275 reactivity and later TEP components are associated with somatosensory and auditory
276 processing in the brain.

277 A recent study that investigated neural effects at the single-cell level has shown that
278 suprathreshold single-pulse TMS elicits a stereotyped burst of action potentials within the
279 first 30ms (10-30ms) after TMS onset in the macaque parietal cortex[13]. Another study with
280 human participants found that single-pulse TMS to the M1 resulted in significant differences
281 before 60ms compared to sham TMS[14]. Consistent with these recent findings, we found
282 that the P25 was localized to the left M1 (TMS target location), demonstrating that the P25
283 represents genuine cortical reactivity to single-pulse TMS to the M1. Although we were
284 unable to obtain earlier TEP components, such as the P10[11] or P15[15] because of the
285 TMS artifacts in our recordings, the response latency (within 30ms) is consistent with
286 previous findings. We also observed N45 and P60 components that were localized primarily
287 in the primary somatosensory cortex and reflected afferent input by hand-muscle twitches
288 produced by suprathreshold TMS. We demonstrated further that these somatosensory-

289 evoked potentials were correlated with MEP amplitude (Fig. 3b) and comparable to the
290 conventional somatosensory evoked potentials with respect to response latency[16]. For the
291 later TEP components, although we applied auditory masking using white noise that
292 removed the auditory perception of TMS pulses, we obtained the typical N100-P180 auditory
293 complex[6] by single-pulse TMS (Fig. 2a), which was localized in the auditory cortex (Fig.
294 2c). This phenomenon may derive from inevitable bone- and air-conducted sound from the
295 TMS coil[7]. The amplitude of these potentials ($>5\mu\text{V}$) was comparable with the N100
296 amplitude in our study. Thus, we conclude overall that each TEP component single-pulse
297 TMS elicits has a distinct network representation in the brain and the P25 represents
298 genuine cortical reactivity from TMS to the M1.

299 Since the first attempt to modulate motor cortex excitability by weak direct current on the
300 scalp[17], it has been shown consistently that tDCS modulates motor cortex excitability
301 depending upon polarity[8,9,18–23]. We hypothesized that if a TEP elicited by single-pulse
302 TMS on the M1 is genuine motor-related cortical reactivity, then tDCS to the M1 should
303 modulate it. We found that tDCS successfully modulated the P25 in the stimulated cortical
304 area in a polarity-dependent manner (Fig. 4e). tDCS also modulated the N45 in the same
305 manner, but only anodal tDCS modulated the P60. Consistent with the findings for the P60,
306 the relation between changes in MEP and P60 amplitude was not significant in both the
307 sensor ($r=-0.14$, $p=0.57$) and source ($r=0.41$, $p=0.09$) space. We assume that this
308 unexpected finding might be caused by the reduction of post-stimulus mu-rhythm (around
309 200 to 300ms after onset) by cathodal tDCS (Fig. 5b, second row, time-frequency t -value
310 map). We hypothesized that tDCS could modulate only the pre-stimulus mu-rhythm, but
311 cathodal tDCS actually reduced the post-stimulus mu-rhythm, which was not found in the
312 anodal tDCS condition. This inconsistency in modulation of cortical reactivity should be
313 investigated in the future. While we adopted the conventional M1-SO montage for tDCS,
314 which uses two stimulation electrodes (5x7 rectangular electrodes, one on the motor area
315 and another on the supraorbital area) to modulate motor cortex excitability, a recent study
316 used a 4x1 montage that consisted of smaller, ring-shaped electrodes (referred to as high-
317 definition tDCS, HD-tDCS) that was introduced to increase the focality of induced electric
318 field[24]. One study[19] compared the effect of modulating motor cortex excitability between
319 the two montages and found that both have a comparable effect in modulating excitability.
320 In our study, we used the M1-SO montage with two smaller electrodes (5x5cm, 25cm²) to
321 increase efficacy via a greater current intensity[20]. We performed electric field modeling

322 with structural MR images and confirmed that the induced electric field is comparable to that
323 in previous tDCS studies (Fig. 1c). As an exploratory analysis, we investigated how the
324 induced electric field in the target stimulation area is related to MEP changes
325 (Supplementary Figure 3) inspired by a study[25] that found that the intensity of the electric
326 field in the primary motor cortex can explain inter-individual variability in MEP. However, we
327 found no relation between them; thus, this finding may suggest that more factors, such as
328 phase-dependent excitability, could have affected the motor cortex excitability modulation
329 in our data[26].

330 The corticospinal response (measured by MEP) elicited by single-pulse TMS on M1 varies
331 between trials[27–30]. Recent studies have shown that this variability is associated with
332 neural oscillation power[31–37], phase[26,38,39], or their interaction[40], although one study
333 failed to replicate these findings[41]. In our study, we showed that pre-stimulus mu-rhythm
334 oscillatory power was correlated with the modulation of cortical and corticospinal excitability
335 (Fig. 5b). This finding indicates that tDCS modulates oscillatory power and thereby, the
336 modulated oscillatory power causes the modulation of cortical and corticospinal excitability.
337 Consistent with this causal role of oscillatory power, a previous study showed that anodal
338 tDCS increased neural oscillatory power and altered functional connectivity in a non-human
339 primate model[42]. Importantly, recent TMS-EEG studies have found that pre-stimulus
340 oscillatory power was correlated positively with MEP amplitude[35,37]. Together, our
341 findings may represent the causal role of oscillatory power in motor cortex excitability.

342 As with any scientific investigation, this study has limitations. First, we were unable to study
343 the earlier TEP components at 10[11] or 15ms[15] because of TMS pulse artifacts. We used
344 a TMS-compatible EEG amplifier (NetAmps 410, Philips Neuro Inc.), but we observed that
345 the TMS pulse artifact lasted up to 20ms in raw EEG traces (Supplementary Figure 5).
346 Although we demonstrated that the P25 was localized on the hand area of the M1, future
347 investigations of the earlier TEP components should be considered with an EEG amplifier
348 that has a faster recovery period. Second, although we demonstrated that the P25 reflects
349 genuine cortical reactivity from TMS to M1, we did not show TEP dynamics of single-pulse
350 TMS to other brain regions, such as the dorsolateral prefrontal cortex, which is the main
351 target in the treatment of depression[43,44]. Previous studies have shown that TEPs exhibit
352 different dynamics[45–48] thus the comparison of stimulation to different cortex regions
353 should be investigated in the future to confirm our findings.

354 The event-related potential (ERP), which is an evoked EEG potential in response to an
355 external stimulus, has been studied well over the past several decades[49]. Each ERP
356 component represents specific processing in the brain. For example, the P300, a positive
357 peak potential at approximately 300 milliseconds, reflects cognitive processing[50], while
358 the N170, a negative peak potential at approximately 170 milliseconds, is a face-recognition
359 ERP component over the ventral area of the visual cortex[51]. However, in the field of TMS-
360 EEG, few efforts have been made to determine how each TEP component is associated
361 with specific sensory processing, and the underlying mechanism remains unclear. As the
362 number of studies, used TMS as a treatment tool, has increased tremendously in recent
363 years, understanding of how the brain responds to TMS is imperative to both the research
364 and clinical fields. Without the ability to interpret TEP components appropriately, the rational
365 design and subsequent optimization of network-based treatment strategies with non-
366 invasive brain stimulation is jeopardized. In our study, thus, we sought to bridge the
367 intellectual gap and it may have a large impact on the field.

368 In summary, we demonstrated that the early TEP reflects genuine cortical reactivity elicited
369 by single-pulse TMS. We identified each TEP component in sensor and source space and
370 used tDCS to modulate the TEP components successfully in a polarity-dependent manner,
371 and found that the modulation of the pre-stimulus mu-rhythm by tDCS caused the
372 modulation of excitability. Further, we found that the TEP components (cortical excitability)
373 were correlated significantly with MEP amplitude (corticospinal excitability). These findings
374 suggest that each TEP component plays a distinct role in specific sensory processing in the
375 brain.

376

377 **Methods**

378 **Study design**

379 We performed a crossover, double-blind, sham-controlled study with three tDCS
380 conditions (anodal, cathodal, and sham tDCS) at the University of North Carolina at
381 Chapel Hill, which the Biomedical Institutional Review Board at the university approved.
382 The study protocol was registered before participants were recruited (ClinicalTrials.gov,
383 NCT03481309). We recruited 19 healthy, right-handed, male participants free of any
384 neurological disorders. All participants provided written informed consent before
385 participation. After telephone screening to assess their eligibility for the study, structural
386 MR images (T1-weighted) were obtained using a 3T-MRI scanner (Magnetom Prisma,
387 Siemens AG, Berlin, Germany) at the University of North Carolina Biomedical Research
388 Imaging Center. One of the participants dropped out of the study because of perceived
389 scalp discomfort attributable to TMS. All remaining participants completed the three tDCS
390 sessions, in which the order of the conditions was distributed equally (three participants
391 per each tDCS order). There was at least a 3-day interval between the sessions to
392 minimize any (theoretical) long-lasting effects of tDCS. Each session consisted of the
393 following procedures (Fig. 1): determination of RMT, EEG, and MEP recordings with 100
394 single-pulse TMS (5 minutes, 120% relative to RMT), tDCS (11 minutes, 2mA), EEG and
395 MEP recordings with 100 single-pulse TMS (5 minutes), and digitization of EEG electrode
396 locations using a stereo-camera tracking digitizer (GeoScan Sensor Digitization Device,
397 Philips Neuro Inc., Eugene, OR).

398 **EEG and MEP recordings with TMS**

399 Based on the structural MR images, we performed brain segmentation and determined an
400 initial target location (hand area on the left M1) using a frameless neuronavigation system
401 (Localite GmbH., Sankt Augustin, Germany). According to the initial target location, a figure-
402 of-eight coil (C-B60, MagVenture Inc., Farum, Denmark) was placed tangentially on the
403 scalp with the handle pointing backwards and laterally at 45 degree from the mid-sagittal
404 line. Participants were seated in a comfortable armchair (TMS chair) with their hands
405 positioned on the armrests. Three EMG electrodes (15x21mm, Ambu Neuroline 700, Ambu
406 Inc., Columbia, MD) were placed in a tendon-belly arrangement on the first dorsal
407 interosseous muscle (active and reference EMG electrodes) and the styloid process of the
408 ulna on the right hand (ground EMG electrode). Biphasic single-pulse TMS was applied on
409 the initial location and the location was adjusted to obtain the highest MEP at the same

410 intensity. MEP traces were visualized in a built-in display on the TMS device (MagPro X100,
411 MagVenture Inc., Farum, Denmark). The RMT was defined by the minimum TMS intensity
412 required to evoke MEPs of at least 50 uV in 50% of 5 to 10 consecutive trials[52]. The left
413 motor hotspot (hand area on the M1) was determined at this step. We used the Physio 16
414 input box (Philips Neuro Inc., Eugene, OR) connected to the EEG amplifier to record MEPs.
415 This configuration allowed us to record MEP and EEG data on the same amplifier. We used
416 a TMS-compatible EEG system with a 128-channel net (Philips Neuro Inc., Eugene, OR) at
417 a sampling rate of 1kHz. Channel Cz and one channel between Cz and Pz were used as a
418 reference and ground, respectively. Participants wore air-conducting earphone tubes (ER-
419 3C, Etymotic Research Inc., Elk Grove Village, IL) with white-noise masking to attenuate
420 auditory evoked potentials[11]. We also applied a thin layer underneath the TMS coil to
421 attenuate peripherally-evoked potentials. We applied 100 single-pulse TMS pulses (120%
422 intensity relative to RMT) with a jittered inter-trial interval between 2 and 3 seconds to
423 minimize any anticipatory effect. All TMS pulse locations were tracked in real-time using the
424 neuronavigation system and saved for verification of stimulation on the left motor hotspot.
425 The EEG and MEP recording procedures were performed both before and after tDCS.

426 **Transcranial direct current stimulation (tDCS)**

427 We applied two carbon-silicone electrodes (5x5cm) to the scalp with Ten20 conductive
428 paste (Bio-Medical Instruments, Clinton Township, MI) and used the XCSITE 100 stimulator
429 (Pulvinar Neuro LLC, Chapel Hill, NC). The stimulator does not display any information
430 about the stimulation conditions (verum or sham). The two electrodes were placed at the
431 location of the left motor hotspot (determined by RMT) and the right supra-orbital area (Fp2
432 EEG location based on the 10-20 international coordinate system). In anodal tDCS, we
433 delivered 11 minutes and +2mA of constant current, including 60 seconds of ramp-up and -
434 down (10 minutes of +2mA constant current). In cathodal tDCS, we delivered 11 minutes of
435 stimulation, including -2mA of constant current and 60 seconds of ramp-up and -down (10
436 minutes of -2mA constant current). In sham tDCS, we delivered 30 seconds of +2mA
437 constant current with 60 seconds of ramp-up and -down. The choice of such an “active”
438 sham is an established strategy to enhance blinding the participants to the stimulation
439 conditions[53]. After the trials, all participants were asked to fill out a questionnaire indicating
440 whether they received electrical stimulation or not (Yes or No) and side-effect questionnaires
441 (Supplementary Figure 6). We found no significant differences in the side-effect
442 questionnaires among the tDCS conditions.

443 **Data analysis**

444 **MEP and EEG data analysis**

445 Offline data processing was performed with custom-built scripts in MATLAB (R2015b,
446 Mathworks Inc., Natick, MA) and the EEGLAB toolbox[54]. The MEP data collected were
447 inspected visually and epochs that had less than 50uV MEP were removed (4.4 ± 7.2 of 100
448 epochs). MEP data were averaged for each condition (before and after TMS) and the ratio
449 (pre/prost) was calculated. The ratio at each session represents modulation of MEPs by
450 tDCS. To analyze the EEG data by single-pulse TMS, we identified the TMS onset and TMS-
451 induced artifacts (-10 to 20ms to the TMS onset) first. This artifact time period was replaced
452 by a value selected randomly from a Gaussian distribution made by the standard deviation
453 and mean of a reference period (-50 to -10ms to the TMS onset)[55]. Second, the data were
454 band-pass filtered from 1 to 50Hz. Third, the data were preprocessed by an artifact
455 subspace reconstruction algorithm[56] to identify high-variance data epochs and reconstruct
456 missing data. Fourth, bad channels that were found in the previous step were interpolated
457 and common average referencing was performed. Thereafter, infomax independent
458 component analysis (ICA)[57] was performed to remove eye blinking, eye movement,
459 muscle activity, and heartbeat artifacts. All ICA components were inspected visually and
460 noise components were selected manually for rejection. The selection of ICA components
461 were verified by the ICLLabel classification[58]. The preprocessed EEG data were epoched
462 from -100 to 500ms to the respective TMS onset. Each epoch was inspected visually and
463 noisy epochs were removed (3.7 ± 6.1 of 100 epochs). We found no significant difference
464 between the three conditions in the epochs rejected (one-way ANOVA, $F_{2,51}=0.72$, $p=0.49$).
465 To obtain a grand-averaged TEP for each channel, we averaged 5255 epochs after epoch
466 rejection across participants and conditions (before tDCS) as a function of time (-100 to
467 500ms). We used the Morlet wavelet transform (7 cycles) with a frequency resolution of 1Hz
468 and temporal resolution of 1ms to compute time-frequency maps of the entire epoch (-200
469 to 500ms) for each channel. The power in the time-frequency maps was obtained and was
470 used for statistical tests across tDCS conditions.

471 **EEG source localization**

472 After obtaining structural MR images for each participant, we performed skull stripping, gray-
473 white matter segmentation, reconstruction of cortical surface models (gray-white boundary
474 surface and pial surface), and labeled regions on the cortex using FreeSurfer 5.3[59].
475 Preprocessed and segmented MR images were imported in the BrainStorm toolbox[60].

476 Three fiducial points (nasion and left/right preauricular points) and anatomical points
477 (anterior/posterior commissure and inter-hemispheric point) were defined on the MR images.
478 We built a scalp model consisting of 10000 vertices from the MR images and co-registered
479 it with digitized EEG electrodes locations for each session. During this step, we confirmed
480 that all scalp EEG electrodes were projected properly on the scalp model. We used the
481 boundary element method (BEM) with OpenMEEG[61,62] to compute the lead field matrix
482 (forward modeling). The forward model consisted of 9808 vertices for the scalp (conductivity:
483 1), 1922 vertices for the skull (conductivity: 0.012), and 1922 vertices for the brain
484 (conductivity: 1). After obtaining the forward model for each session and participant, we used
485 the linearly constrained minimum variance beamformer[63] to solve the ill-posed inverse
486 problem (inverse modeling). We projected scalp EEG signals to the cortex model consisting
487 of 15000 voxels. We averaged all projected source activity on the individual cortex model
488 across trials and projected it onto the template cortex model (fsaverage, 15000 voxels) for
489 group-level analysis[64].

490 **Statistical testing**

491 We used the linear mixed-effects model in R (R Foundation for Statistical Computing, Vienna,
492 Austria) to investigate modulation of cortical and corticospinal excitability with the fixed
493 factors of “tDCS condition” (anode, cathode, and sham) and “session” (sessions 1, 2, and
494 3), with the random factor, “participant”. The dependent variables were the ratio of averaged
495 MEPs and the ratio of averaged TEPs over EEG channels.

496 To calculate the spatio-temporal statistical significance for TEPs in both sensor and source
497 space for each tDCS condition, we used a non-parametric cluster-based permutation test[65]
498 to address the multiple comparison problem of high-density EEG. First, *t*-tests were
499 conducted for each channel and time point across participants between before and after
500 tDCS for each tDCS condition. We then constructed clusters from the spatio-temporal
501 significant *t*-value map ($p < 0.05$) obtained, summed all of the positive or negative *t*-values
502 within the clusters separately, and clustered the significant *t*-values based on spatio-
503 temporal adjacency. The minimum size of a cluster was set to two points. A neighboring
504 channel was defined as spatial adjacency within 4 cm[65]. For the permutation test, we
505 shuffled all trials and divided them into two datasets. We then conducted *t*-tests for the two
506 datasets to obtain a *t*-value map. We repeated this procedure by Monte Carlo simulation
507 with 1000 iterations, and extracted the largest cluster from each permutation test to compare
508 with the original dataset. Lastly, we constructed a histogram of the 1000 values of the

509 cluster-level statistics and calculated a probability density function (PDF) to estimate cluster-
510 level p -values. The input for the PDF was the cluster-level statistics from the original dataset,
511 while the output was a p -value for each cluster-level statistic. The cluster-level p -values were
512 corrected and approximated by this cluster-based permutation test.

513

514 **Author Contributions**

515 S.A. and F.F. designed the study. S.A. collected and analyzed the data. S.A. and F.F. wrote
516 the manuscript.

517

518 **Acknowledgements**

519 The authors thank Julianna H. Prim for her assistance of tDCS electrode application, Dr. Kai
520 Xia for providing his expertise in statistical analysis, and Dr. Sankaraleengam Alagapan, Dr.
521 Justin Riddle, Trevor McPherson for their feedback in study design. The authors specially
522 thank Donghyeon Kim (Neurophet Inc.,) for providing valuable feedback on electric field
523 modeling and Dr. Zhe Charles Zhou for his work in creating randomization codes and
524 validating tDCS conditions for double-blinding. The authors thank Dr. Justin Riddle for his
525 work in validating tDCS waveforms after completion of the study. The authors thank Trevor
526 McPherson, and Dr. Justin Riddle for their feedback on the manuscript. This work was
527 supported by the National Institute of Mental Health of the National Institutes of Health under
528 Award Numbers R01MH111889 and R01MH101547. The content is solely the responsibility
529 of the authors and does not represent the official views of the National Institutes of Health.

530

531 **Data availability**

532 All data, as well as analysis codes that were used to perform analyses, can be made
533 available from the corresponding author upon reasonable request.

534 **References**

- 535 1. Ilmoniemi, R.J., and Kičić, D. (2010). Methodology for Combined TMS and EEG. *Brain Topogr.* 22, 536 233–248. Available at: <http://link.springer.com/10.1007/s10548-009-0123-4> [Accessed July 19, 2017].
- 537 2. Tremblay, S., Rogasch, N.C., Premoli, I., Blumberger, D.M., Casarotto, S., Chen, R., Di Lazzaro, V., 538 Farzan, F., Ferrarelli, F., Fitzgerald, P.B., *et al.* (2019). Clinical utility and prospective of TMS–EEG. 539 *Clin. Neurophysiol.* Available at: <https://www.sciencedirect.com/science/article/pii/S138824571930001X> [Accessed February 25, 2019].
- 540 3. Conde, V., Tomasevic, L., Akopian, I., Stanek, K., Saturnino, G.B., Thielscher, A., Bergmann, T.O., 541 and Siebner, H.R. (2019). The non-transcranial TMS-evoked potential is an inherent source of 542 ambiguity in TMS-EEG studies. *Neuroimage* 185, 300–312. Available at: 543 <https://www.sciencedirect.com/science/article/pii/S105381191832024X?via%3Dihub> [Accessed 544 January 9, 2019].
- 545 4. Belardinelli, P., Biabani, M., Blumberger, D.M., Bortolotto, M., Casarotto, S., David, O., Desideri, D., 546 Etkin, A., Ferrarelli, F., Fitzgerald, P.B., *et al.* (2019). Reproducibility in TMS–EEG studies: A call for 547 data sharing, standard procedures and effective experimental control. *Brain Stimul.* Available at: 548 <https://www.sciencedirect.com/science/article/pii/S1935861X19300415?via%3Dihub#appsec1> 549 [Accessed February 12, 2019].
- 550 5. Siebner, H.R., Conde, V., Tomasevic, L., Thielscher, A., and Bergmann, T.O. (2019). Distilling the 551 essence of TMS-evoked EEG potentials (TEPs): A call for securing mechanistic specificity and 552 experimental rigor. *Brain Stimul.* Available at: <https://www.sciencedirect.com/science/article/pii/S1935861X19301846?via%3Dihub#bib2> [Accessed 553 April 22, 2019].
- 554 6. ter Braack, E.M., de Vos, C.C., and van Putten, M.J.A.M. (2015). Masking the Auditory Evoked 555 Potential in TMS–EEG: A Comparison of Various Methods. *Brain Topogr.* 28, 520–528. Available at: 556 <http://link.springer.com/10.1007/s10548-013-0312-z> [Accessed August 5, 2019].
- 557 7. Nikouline, V., Ruohonen, J., Ilmoniemi, R.J., Ilmoniemi, R.J., Hanajima, R., Gemba-Shimuzu, K., 558 Kanazawa, I., Ugawa, Y., and George, M.S. (1999). The role of the coil click in TMS assessed with 559 simultaneous EEG. *Clin. Neurophysiol.* 110, 1325–8. Available at: <http://www.ncbi.nlm.nih.gov/pubmed/10454266> [Accessed July 19, 2017].
- 560 8. Nitsche, M.A., and Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak 561 transcranial direct current stimulation. *J. Physiol.* 527, 633–639.
- 562 9. Nitsche, M.A., and Paulus, W. (2001). Sustained excitability elevations induced by transcranial DC 563 motor cortex stimulation in humans. *Neurology* 57, 1899–1901.
- 564 10. Farzan, F., Vernet, M., Shafi, M.M.D., Rotenberg, A., Daskalakis, Z.J., and Pascual-Leone, A. (2016). 565 Characterizing and Modulating Brain Circuitry through Transcranial Magnetic Stimulation Combined 566 with Electroencephalography. *Front. Neural Circuits* 10, 73. Available at: <http://www.ncbi.nlm.nih.gov/pubmed/27713691> [Accessed July 18, 2017].
- 567 11. Massimini, M., Ferrarelli, F., Huber, R., Esser, S.K., Singh, H., and Tononi, G. (2005). Breakdown of 568 Cortical Effective Connectivity During Sleep. *Science* (80-.). 309. Available at: 569 <http://science.sciencemag.org/content/309/5744/2228> [Accessed May 8, 2017].
- 570
- 571
- 572
- 573

574 12. Hui, J., Tremblay, S., and Daskalakis, Z.J. (2019). The Current and Future Potential of TMS - EEG in
575 Psychiatry . Clin. Pharmacol. Ther.

576 13. Romero, M.C., Davare, M., Armendariz, M., and Janssen, P. (2019). Neural effects of transcranial
577 magnetic stimulation at the single-cell level. Nat. Commun. 10, 2642. Available at:
578 <http://www.nature.com/articles/s41467-019-10638-7> [Accessed July 17, 2019].

579 14. Biabani, M., Fornito, A., Mutanen, T.P., Morrow, J., and Rogasch, N.C. (2019). Characterizing and
580 minimizing the contribution of sensory inputs to TMS-evoked potentials. Brain Stimul. Available at:
581 <https://www.sciencedirect.com/science/article/pii/S1935861X19302931?via%3Dihub> [Accessed
582 August 5, 2019].

583 15. Ferrarelli, F., Massimini, M., Sarasso, S., Casali, A., Riedner, B.A., Angelini, G., Tononi, G., and Pearce,
584 R.A. (2010). Breakdown in cortical effective connectivity during midazolam-induced loss of
585 consciousness. Proc. Natl. Acad. Sci. U. S. A. 107, 2681–6. Available at:
586 <http://www.ncbi.nlm.nih.gov/pubmed/20133802> [Accessed July 18, 2017].

587 16. Henry, J.C. (2006). Electroencephalography: basic principles, clinical applications, and related fields.
588 Neurology 67, 2092.

589 17. Priori, A., Berardelli, A., Rona, S., Accornero, N., and Manfredi, M. (1998). Polarization of the human
590 motor cortex through the scalp. Neuroreport 9, 2257–2260.

591 18. Nitsche, M.A., Cohen, L.G., Wassermann, E.M., Priori, A., Lang, N., Antal, A., Paulus, W., Hummel, F.,
592 Boggio, P.S., Fregni, F., et al. (2008). Transcranial direct current stimulation: State of the art 2008.
593 Brain Stimul. 1, 206–223.

594 19. Kuo, H.-I., Bikson, M., Datta, A., Minhas, P., Paulus, W., Kuo, M.-F., and Nitsche, M.A. (2013).
595 Comparing Cortical Plasticity Induced by Conventional and High-Definition 4 × 1 Ring tDCS: A
596 Neurophysiological Study. Brain Stimul. 6, 644–648. Available at:
597 <https://www.sciencedirect.com/science/article/pii/S1935861X12001830> [Accessed May 21, 2019].

598 20. Nitsche, M.A., Doemkes, S., Karaköse, T., Antal, A., Liebetanz, D., Lang, N., Tergau, F., and Paulus,
599 W. (2007). Shaping the Effects of Transcranial Direct Current Stimulation of the Human Motor Cortex.
600 J. Neurophysiol. 97, 3109–3117. Available at: <http://www.physiology.org/doi/10.1152/jn.01312.2006>
601 [Accessed May 21, 2019].

602 21. Nitsche, M.A., Seeber, A., Frommann, K., Klein, C.C., Rochford, C., Nitsche, M.S., Fricke, K., Liebetanz,
603 D., Lang, N., and Antal, A. (2005). Modulating parameters of excitability during and after transcranial
604 direct current stimulation of the human motor cortex. J. Physiol. 568, 291–303.

605 22. Jacobson, L., Koslowsky, M., and Lavidor, M. (2012). tDCS polarity effects in motor and cognitive
606 domains: a meta-analytical review. Exp. Brain Res. 216, 1–10. Available at:
607 <http://link.springer.com/10.1007/s00221-011-2891-9> [Accessed August 9, 2019].

608 23. Mosayebi Samani, M., Agboada, D., Jamil, A., Kuo, M.-F., and Nitsche, M.A. (2019). Titrating the
609 neuroplastic effects of cathodal transcranial direct current stimulation (tDCS) over the primary motor
610 cortex. Cortex 119, 350–361. Available at:
611 <https://www.sciencedirect.com/science/article/pii/S0010945219301844?via%3Dihub> [Accessed
612 August 9, 2019].

613 24. Datta, A., Bansal, V., Diaz, J., Patel, J., Reato, D., and Bikson, M. (2009). Gyri-precise head model of

614 transcranial direct current stimulation: Improved spatial focality using a ring electrode versus
615 conventional rectangular pad. *Brain Stimul.* 2, 201-207.e1. Available at:
616 <https://www.sciencedirect.com/science/article/pii/S1935861X09000333> [Accessed May 21, 2019].

617 25. Laakso, I., Mikkonen, M., Koyama, S., Hirata, A., and Tanaka, S. (2019). Can electric fields explain
618 inter-individual variability in transcranial direct current stimulation of the motor cortex? *Sci. Rep.* 9, 626.
619 Available at: <http://www.nature.com/articles/s41598-018-37226-x> [Accessed May 21, 2019].

620 26. Zrenner, C., Desideri, D., Belardinelli, P., and Ziemann, U. (2018). Real-time EEG-defined excitability
621 states determine efficacy of TMS-induced plasticity in human motor cortex. *Brain Stimul.* 11, 374–389.
622 Available at: <https://www.sciencedirect.com/science/article/pii/S1935861X17309725#fig1> [Accessed
623 May 21, 2019].

624 27. Van der Kamp, W., Zwijderman, A.H., Ferrari, M.D., and van Dijk, J.G. (1996). Cortical excitability and
625 response variability of transcranial magnetic stimulation. *J. Clin. Neurophysiol.* 13, 164–171.

626 28. Kiers, L., Cros, D., Chiappa, K.H., and Fang, J. (1993). Variability of motor potentials evoked by
627 transcranial magnetic stimulation. *Electroencephalogr. Clin. Neurophysiol. Potentials Sect.* 89, 415–
628 423. Available at: <https://www.sciencedirect.com/science/article/pii/0168559793901156> [Accessed
629 August 9, 2019].

630 29. Rösler, K.M., Roth, D.M., and Magistris, M.R. (2008). Trial-to-trial size variability of motor-evoked
631 potentials. A study using the triple stimulation technique. *Exp. brain Res.* 187, 51–59.

632 30. Hordacre, B., Goldsworthy, M.R., Vallence, A.-M., Darvishi, S., Moezzi, B., Hamada, M., Rothwell, J.C.,
633 and Ridding, M.C. (2017). Variability in neural excitability and plasticity induction in the human cortex:
634 A brain stimulation study. *Brain Stimul.* 10, 588–595. Available at:
635 <https://www.sciencedirect.com/science/article/pii/S1935861X16303837> [Accessed August 9, 2019].

636 31. Ferreri, F., Vecchio, F., Ponzo, D., Pasqualetti, P., and Rossini, P.M. (2014). Time-varying coupling of
637 EEG oscillations predicts excitability fluctuations in the primary motor cortex as reflected by motor
638 evoked potentials amplitude: An EEG-TMS study. *Hum. Brain Mapp.* 35, 1969–1980. Available at:
639 <http://doi.wiley.com/10.1002/hbm.22306> [Accessed May 8, 2017].

640 32. Schulz, H., Ubelacker, T., Keil, J., Muller, N., and Weisz, N. (2014). Now I am Ready--Now I am not:
641 The Influence of Pre-TMS Oscillations and Corticomuscular Coherence on Motor-Evoked Potentials.
642 *Cereb. Cortex* 24, 1708–1719. Available at: <https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bht024> [Accessed February 21, 2019].

644 33. Mäki, H., and Ilmoniemi, R.J. (2010). EEG oscillations and magnetically evoked motor potentials reflect
645 motor system excitability in overlapping neuronal populations. *Clin. Neurophysiol.* 121, 492–501.
646 Available at: <https://www.sciencedirect.com/science/article/pii/S1388245709007421> [Accessed
647 February 25, 2019].

648 34. Iscan, Z., Nazarova, M., Fedele, T., Blagovechtchenski, E., and Nikulin, V. V. (2016). Pre-stimulus
649 Alpha Oscillations and Inter-subject Variability of Motor Evoked Potentials in Single- and Paired-Pulse
650 TMS Paradigms. *Front. Hum. Neurosci.* 10, 504. Available at:
651 <http://journal.frontiersin.org/article/10.3389/fnhum.2016.00504/full> [Accessed February 21, 2019].

652 35. Thies, M., Zrenner, C., Ziemann, U., and Bergmann, T.O. (2018). Sensorimotor mu-alpha power is
653 positively related to corticospinal excitability. *Brain Stimul.* 11, 1119–1122. Available at:

654 https://www.sciencedirect.com/science/article/pii/S1935861X18301980 [Accessed April 30, 2019].

655 36. Schutter, D.J.L.G., and Hortensius, R. (2011). Brain oscillations and frequency-dependent modulation
656 of cortical excitability. *Brain Stimul.* 4, 97–103. Available at:
657 <https://www.sciencedirect.com/science/article/pii/S1935861X10001099> [Accessed February 25, 2019].

658 37. Ogata, K., Nakazono, H., Uehara, T., and Tobimatsu, S. (2019). Prestimulus cortical EEG oscillations
659 can predict the excitability of the primary motor cortex. *Brain Stimul.* Available at:
660 <https://www.sciencedirect.com/science/article/pii/S1935861X19302645?via%3Dihub> [Accessed July 3,
661 2019].

662 38. Berger, B., Minarik, T., Liuzzi, G., Hummel, F.C., and Sauseng, P. (2014). EEG oscillatory phase-
663 dependent markers of corticospinal excitability in the resting brain. *Biomed Res. Int.* 2014.

664 39. Schaworonkow, N., Triesch, J., Ziemann, U., and Zrenner, C. (2019). EEG-triggered TMS reveals
665 stronger brain state-dependent modulation of motor evoked potentials at weaker stimulation intensities.
666 *Brain Stimul.* 12, 110–118. Available at:
667 <https://www.sciencedirect.com/science/article/pii/S1935861X18303115#fig1> [Accessed April 30, 2019].

668 40. Hussain, S.J., Claudino, L., Bönstrup, M., Norato, G., Cruciani, G., Thompson, R., Zrenner, C., Ziemann,
669 U., Buch, E., and Cohen, L.G. (2018). Sensorimotor Oscillatory Phase–Power Interaction Gates
670 Resting Human Corticospinal Output. *Cereb. Cortex.* Available at:
671 <https://academic.oup.com/cercor/advance-article/doi/10.1093/cercor/bhy255/5218042> [Accessed May
672 24, 2019].

673 41. Madsen, K.H., Karabanov, A.N., Krohne, L.G., Safeldt, M.G., Tomasevic, L., and Siebner, H.R. (2019).
674 No trace of phase: Corticomotor excitability is not tuned by phase of pericentral mu-rhythm. *Brain Stimul.*
675 Available at: <https://www.sciencedirect.com/science/article/pii/S1935861X19302128> [Accessed May
676 24, 2019].

677 42. Krause, M.R., Zanos, T.P., Csorba, B.A., Pilly, P.K., Choe, J., Phillips, M.E., Datta, A., and Pack, C.C.
678 (2017). Transcranial Direct Current Stimulation Facilitates Associative Learning and Alters Functional
679 Connectivity in the Primate Brain. *Curr. Biol.* 27, 3086-3096.e3. Available at:
680 <https://www.sciencedirect.com/science/article/pii/S0960982217311855> [Accessed July 30, 2019].

681 43. Pascual-Leone, A., Rubio, B., Pallardó, F., and Catalá, M.D. (1996). Rapid-rate transcranial magnetic
682 stimulation of left dorsolateral prefrontal cortex in drug-resistant depression. *Lancet* 348, 233–237.
683 Available at: <https://www.sciencedirect.com/science/article/pii/S0140673696012196> [Accessed May
684 20, 2019].

685 44. George, M.S., Lisanby, S.H., Avery, D., McDonald, W.M., Durkalski, V., Pavlicova, M., Anderson, B.,
686 Nahas, Z., Bulow, P., Zarkowski, P., et al. (2010). Daily Left Prefrontal Transcranial Magnetic
687 Stimulation Therapy for Major Depressive Disorder. *Arch. Gen. Psychiatry* 67, 507. Available at:
688 <http://archpsyc.jamanetwork.com/article.aspx?doi=10.1001/archgenpsychiatry.2010.46> [Accessed
689 May 3, 2017].

690 45. Romero Lauro, L.J., Rosanova, M., Mattavelli, G., Convento, S., Pisoni, A., Opitz, A., Bolognini, N.,
691 and Vallar, G. (2014). TDCS increases cortical excitability: Direct evidence from TMS-EEG. *Cortex* 58,
692 99–111. Available at: <http://dx.doi.org/10.1016/j.cortex.2014.05.003> [Accessed September 11, 2017].

693 46. Che, X., Cash, R., Chung, S.W., Bailey, N., Fitzgerald, P.B., and Fitzgibbon, B.M. (2019). The

694 dorsomedial prefrontal cortex as a flexible hub mediating behavioral as well as local and distributed
695 neural effects of social support context on pain: A Theta Burst Stimulation and TMS-EEG study.
696 Neuroimage 201, 116053. Available at:
697 <https://www.sciencedirect.com/science/article/pii/S1053811919306354?via%3Dihub> [Accessed July
698 29, 2019].

699 47. Chung, S.W., Rogasch, N.C., Hoy, K.E., and Fitzgerald, P.B. (2018). The effect of single and repeated
700 prefrontal intermittent theta burst stimulation on cortical reactivity and working memory. Brain Stimul.
701 Available at:
702 <http://www.sciencedirect.com/science/article/pii/S1935861X18300305?via%3Dihub#appsec1>
703 [Accessed January 22, 2018].

704 48. Chung, S.W., Rogasch, N.C., Hoy, K.E., Sullivan, C.M., Cash, R.F.H., and Fitzgerald, P.B. (2017).
705 Impact of different intensities of intermittent theta burst stimulation on the cortical properties during
706 TMS-EEG and working memory performance. Hum. Brain Mapp. Available at:
707 <http://doi.wiley.com/10.1002/hbm.23882> [Accessed November 29, 2017].

708 49. Luck, S.J. (2014). An introduction to the event-related potential technique (MIT press).

709 50. Sutton, S., Braren, M., Zubin, J., and John, E.R. (1965). Evoked-Potential Correlates of Stimulus
710 Uncertainty. Science (80-.). 150, 1187–1188. Available at:
711 <https://science.scienmag.org/content/150/3700/1187>.

712 51. Rossion, B., and Jacques, C. (2012). The N170: Understanding the time course of face perception in
713 the human brain. In The Oxford handbook of event-related potential components. Oxford library of
714 psychology. (New York, NY, US: Oxford University Press), pp. 115–141.

715 52. Rossini, P.M., Barker, A.T., Berardelli, A., Caramia, M.D., Caruso, G., Cracco, R.Q., Dimitrijević, M.R.,
716 Hallett, M., Katayama, Y., Lücking, C.H., et al. (1994). Non-invasive electrical and magnetic stimulation
717 of the brain, spinal cord and roots: basic principles and procedures for routine clinical application.
718 Report of an IFCN committee. Electroencephalogr. Clin. Neurophysiol. 91, 79–92. Available at:
719 <https://www.sciencedirect.com/science/article/pii/0013469494900299> [Accessed March 19, 2019].

720 53. Ahn, S., Mellin, J.M., Alagapan, S., Alexander, M.L., Gilmore, J.H., Jarskog, L.F., and Fröhlich, F.
721 (2019). Targeting reduced neural oscillations in patients with schizophrenia by transcranial alternating
722 current stimulation. Neuroimage 186, 126–136. Available at:
723 <https://www.sciencedirect.com/science/article/pii/S1053811918320287> [Accessed March 15, 2019].

724 54. Delorme, A., and Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG
725 dynamics including independent component analysis. J. Neurosci. Methods 134, 9–21.

726 55. Albouy, P., Weiss, A., Baillet, S., and Zatorre, R.J. (2017). Selective Entrainment of Theta Oscillations
727 in the Dorsal Stream Causally Enhances Auditory Working Memory Performance. Neuron 94, 193–
728 206.e5. Available at: <http://www.sciencedirect.com/science/article/pii/S0896627317301988> [Accessed
729 May 8, 2017].

730 56. Mullen, T., Kothe, C., Chi, Y.M., Ojeda, A., Kerth, T., Makeig, S., Cauwenberghs, G., and Tzyy-Ping
731 Jung (2013). Real-time modeling and 3D visualization of source dynamics and connectivity using
732 wearable EEG. In 2013 35th Annual International Conference of the IEEE Engineering in Medicine and
733 Biology Society (EMBC) (IEEE), pp. 2184–2187.

734 57. Jung, T.-P., Makeig, S., Humphries, C., Lee, T.-W., McKeown, M.J., Iragui, V., and Sejnowski, T.J.
735 (2000). Removing electroencephalographic artifacts by blind source separation. *Psychophysiology* 37,
736 163–178. Available at: <http://doi.wiley.com/10.1111/1469-8986.3720163> [Accessed May 22, 2017].

737 58. Pion-Tonachini, L., Kreutz-Delgado, K., and Makeig, S. (2019). The ICLLabel dataset of
738 electroencephalographic (EEG) independent component (IC) features. *Data Br.*, 104101. Available at:
739 <https://www.sciencedirect.com/science/article/pii/S235234091930455X#fig1> [Accessed June 13,
740 2019].

741 59. Dale, A.M., Fischl, B., and Sereno, M.I. (1999). Cortical Surface-Based Analysis: I. Segmentation and
742 Surface Reconstruction. *Neuroimage* 9, 179–194. Available at:
743 <https://www.sciencedirect.com/science/article/pii/S1053811998903950> [Accessed March 20, 2019].

744 60. Tadel, F., Baillet, S., Mosher, J.C., Pantazis, D., and Leahy, R.M. (2011). Brainstorm: a user-friendly
745 application for MEG/EEG analysis. *Comput. Intell. Neurosci.* 2011, 879716. Available at:
746 <http://www.ncbi.nlm.nih.gov/pubmed/21584256> [Accessed March 20, 2019].

747 61. Kybic, J., Clerc, M., Abboud, T., Faugeras, O., Keriven, R., and Papadopoulo, T. (2005). A common
748 formalism for the Integral formulations of the forward EEG problem. *IEEE Trans. Med. Imaging* 24, 12–
749 28. Available at: <http://ieeexplore.ieee.org/document/1375158/> [Accessed March 20, 2019].

750 62. Gramfort, A., Papadopoulo, T., Olivi, E., and Clerc, M. (2010). OpenMEEG: opensource software for
751 quasistatic bioelectromagnetics. *Biomed. Eng. Online* 9, 45. Available at: <http://biomedical-engineering-online.biomedcentral.com/articles/10.1186/1475-925X-9-45> [Accessed March 20, 2019].

753 63. Van Veen, B.D., Van Drongelen, W., Yuchtman, M., and Suzuki, A. (1997). Localization of brain
754 electrical activity via linearly constrained minimum variance spatial filtering. *IEEE Trans. Biomed. Eng.*
755 64. Tadel, F., Bock, E., Niso, G., Mosher, J.C., Cousineau, M., Pantazis, D., Leahy, R.M., and Baillet, S.
756 (2019). MEG/EEG Group Analysis With Brainstorm. *Front. Neurosci.* 13, 76. Available at:
757 <https://www.frontiersin.org/article/10.3389/fnins.2019.00076/full> [Accessed March 20, 2019].

758 65. Maris, E., and Oostenveld, R. (2007). Nonparametric statistical testing of EEG- and MEG-data. *J.*
759 *Neurosci. Methods* 164, 177–190.

760

761

762 **Figure Legends**

763

764 **Fig. 1. Experimental setup, stimulation setting, and electric field modeling of tDCS**
765 **and TMS.**

766 (a) Structural MR images (T1-weighted) were obtained. The resting motor threshold was
767 determined (MEP >50uV on 50% of the trials). Single-pulse TMS (100 pulses) was delivered
768 to the hand area of the left M1 while recording TEPs and MEPs. Next, tDCS (anodal,
769 cathodal, or sham tDCS) was applied for 10 minutes at 2mA current intensity with 30-sec
770 ramp up and down periods. For sham tDCS, we applied 30 seconds of anodal tDCS as an
771 active placebo. Each participant received all three tDCS conditions on a different day with
772 at least a three-day interval between sessions. The order of the tDCS conditions was
773 randomized and distributed equally across participants. Single-pulse TMS (100 pulses) was
774 delivered after tDCS. Finally, EEG electrode locations were recorded by a stereo-camera
775 tracking digitizer. (b) A representative example of the TMS target superimposed on the
776 cortex (left). Red crosshair indicates the TMS coil's position and orientation. Electric field
777 distribution of TMS (right). (c) Carbon-silicone electrodes (5x5cm) were applied to the left
778 motor hotspot (red square electrode) and supraorbital (SO) cortex (gray square electrode)
779 referred to as the M1-SO montage (left). Inward and outward electric field distribution of
780 anodal and cathodal tDCS (right).

781

782 **Fig. 2. Cortical reactivity from single-pulse TMS.**

783 Time and spatial representations of TEPs in sensor and source space. (a) Butterfly plot of
784 TEPs for all EEG channels (gray lines, 128 channels) and averaged TEP over the
785 sensorimotor area (thick black line, 7 EEG channels). The averaged EEG channels are
786 marked in the drawing of the scalp next to the legend. Each TEP component is referred to
787 as P25, N45, P60, N100, P180, and N280, respectively. (b) Topographical distribution of
788 each TEP component on the scalp. Red and blue indicate maximum and minimum EEG
789 amplitude at each time point, respectively. (c) Source localization of each TEP component
790 on the cortex. At each time point, cortical activation was auto-scaled and thresholded at 50%
791 to highlight maximum cortical activation elicited by single-pulse TMS.

792

793 **Fig. 3. Cortical reactivity and corticospinal response.**

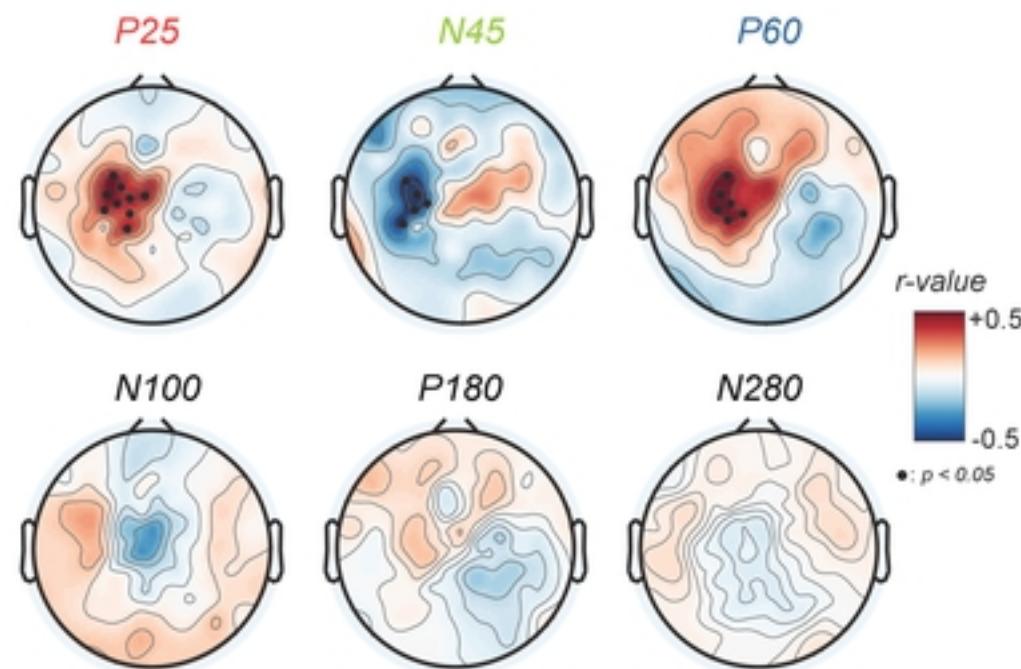
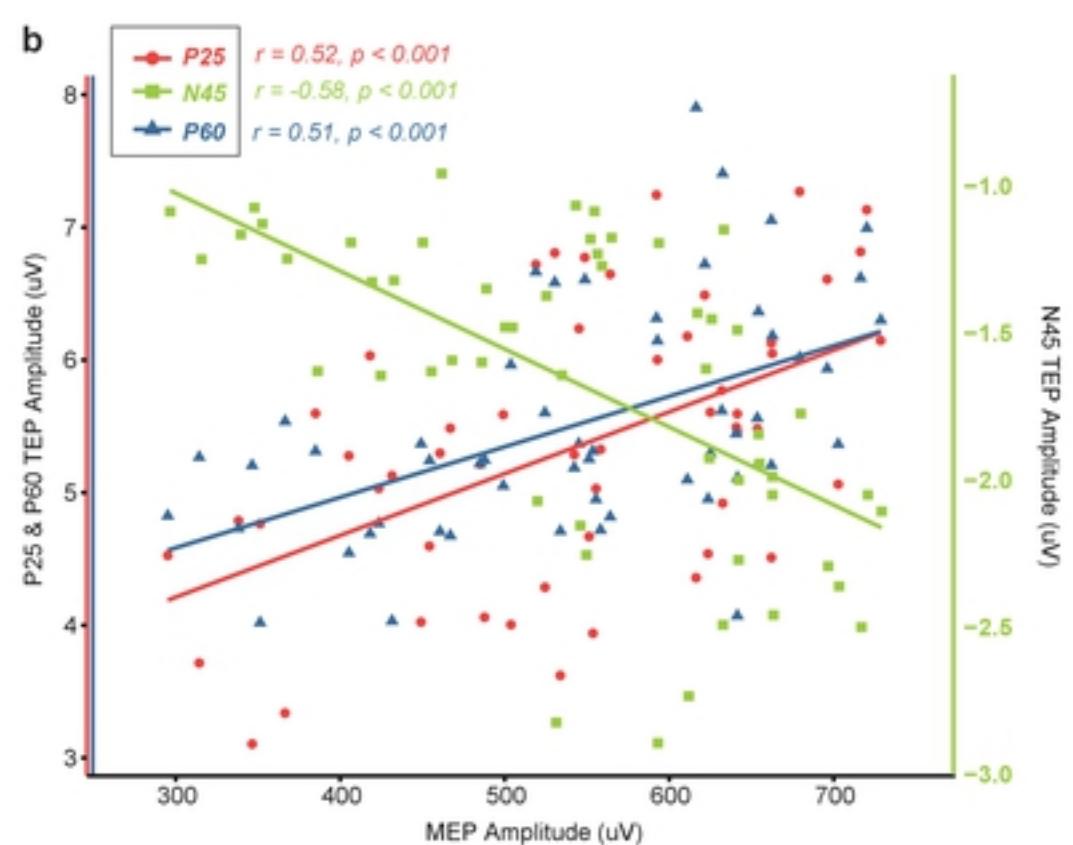
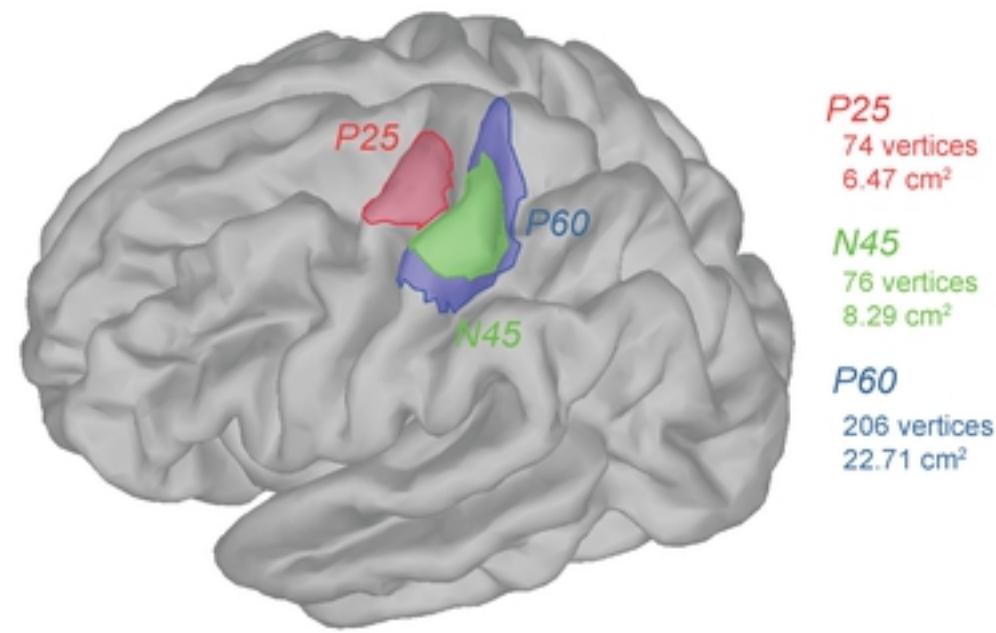
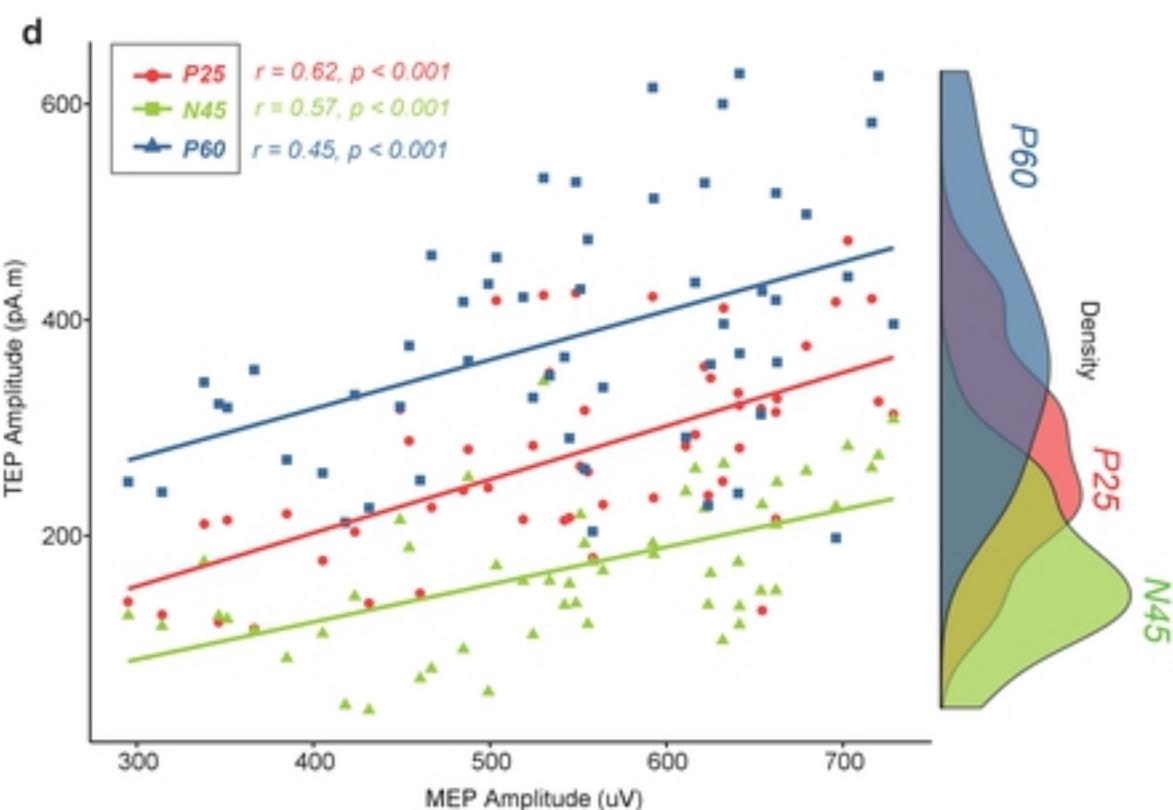
794 Correlation between cortical reactivity and corticospinal response. (a) Topographical
795 distributions of correlations between each TEP component (P25, N45, P60, N100, P180,
796 and N280) and MEPs. Black dots in topographical maps indicate significant EEG channels
797 ($p<0.05$). P25, N45, and P60 were correlated significantly with MEPs in the left sensorimotor
798 area, while no significant relation was found for the N100, P180, and N280. (b) Scatter plot
799 of the averaged significant EEG channels for the P25, N45, and P60. Note that the right,
800 green y-axis corresponds to the N45 amplitude (negative amplitude). Significant correlations
801 were found for the P25 ($r=0.52$, $p<0.001$), N45 ($r=-0.58$, $p<0.001$), and P60 ($r=0.51$,
802 $p<0.001$). (c) Selection of a ROI on the template cortex model (P25: 74 voxels, 6.47cm^2 ,
803 N45: 76 voxels, 8.29cm^2 , P60: 206 voxels, 22.71cm^2). (d) Scatter plot of the ROI for each
804 localized TEP component with MEPs. Significant correlations are obtained for the P25 ($r=-$
805 0.62, $p<0.001$), N45 ($r=0.57$, $p<0.001$), and P60. ($r=-0.45$, $p<0.001$). The density plot shows
806 the way the TEP components were correlated with MEPs.

807

808 **Fig. 4. Modulation of motor cortex excitability by tDCS.**

809 tDCS modulates corticospinal and cortical excitability. (a) The ratio (post/pre) MEPs by tDCS
810 conditions (red: anode over the left M1, blue: cathode over the left M1, gray: sham). (b) The
811 ratio (post/pre) of absolute TEPs as a function of time for each tDCS condition. Shaded time
812 window (25 to 60ms) differed significantly across tDCS conditions ($p<0.0001$). (c)
813 Topographical distributions of each TEP component (t -value maps). A non-parametric
814 cluster-based permutation test was performed. Black dots in the topographies indicate
815 significant EEG channels ($p<0.05$). (d) Scatter plot of modulated corticospinal and cortical
816 excitability in sensor space for each tDCS condition (color-coded). The markers' shape
817 indicates each TEP component (P25: circle, N45: triangle, P60: crosshair). Regression line
818 to each TEP component's scatter plot (P25: continuous line, N45: short-interval dash line,
819 P60: long-interval dashed line). (e) Modulation of localized TEP components in source
820 space (non-parametric cluster-based permutation test, $n=1000$). t -value maps are presented
821 ($p<0.05$). Each row indicates tDCS conditions (anode, cathode, and sham). Each column
822 corresponds to a TEP component (P25, N45, and P60, respectively). (f) Scatter plot between
823 modulated corticospinal and cortical excitability in source space. Color-coded lines indicate
824 tDCS conditions (red: anode, blue: cathode, gray: sham). The dots' shape indicates each
825 TEP component (P25: circle, N45: triangle, P60: crosshair). Regression line to each TEP

826 component's scatter plot (P25: continuous line, N45: short-interval dash line, P60: long-
827 interval dashed line).





828

829 **Fig. 5. Modulation of pre-stimulus mu-rhythm by tDCS.**

830 tDCS modulates pre-stimulus mu-rhythm. (a) time-frequency maps of modulated oscillations
831 and topographical distributions for anodal (top), cathodal (middle), and sham (bottom) tDCS
832 conditions. Clustered region in time-frequency maps indicates significant modulation by
833 tDCS (non-parametric permutation test, $n=1000$) and black dots in topographical
834 distributions indicate significant EEG channels ($p<0.05$). (b) Scatter plots of the ratio of the
835 pre-stimulus mu-rhythm to the ratio of MEP (top), P25 in sensor space (middle), and P25 in
836 source space (bottom). Each dot indicates a participant and the color code indicates the
837 tDCS conditions (red: anodal, blue: cathodal, gray: sham). Correlation coefficients (r -values)
838 and p -values are presented.

839

840

a**b****c****d****Figure3**

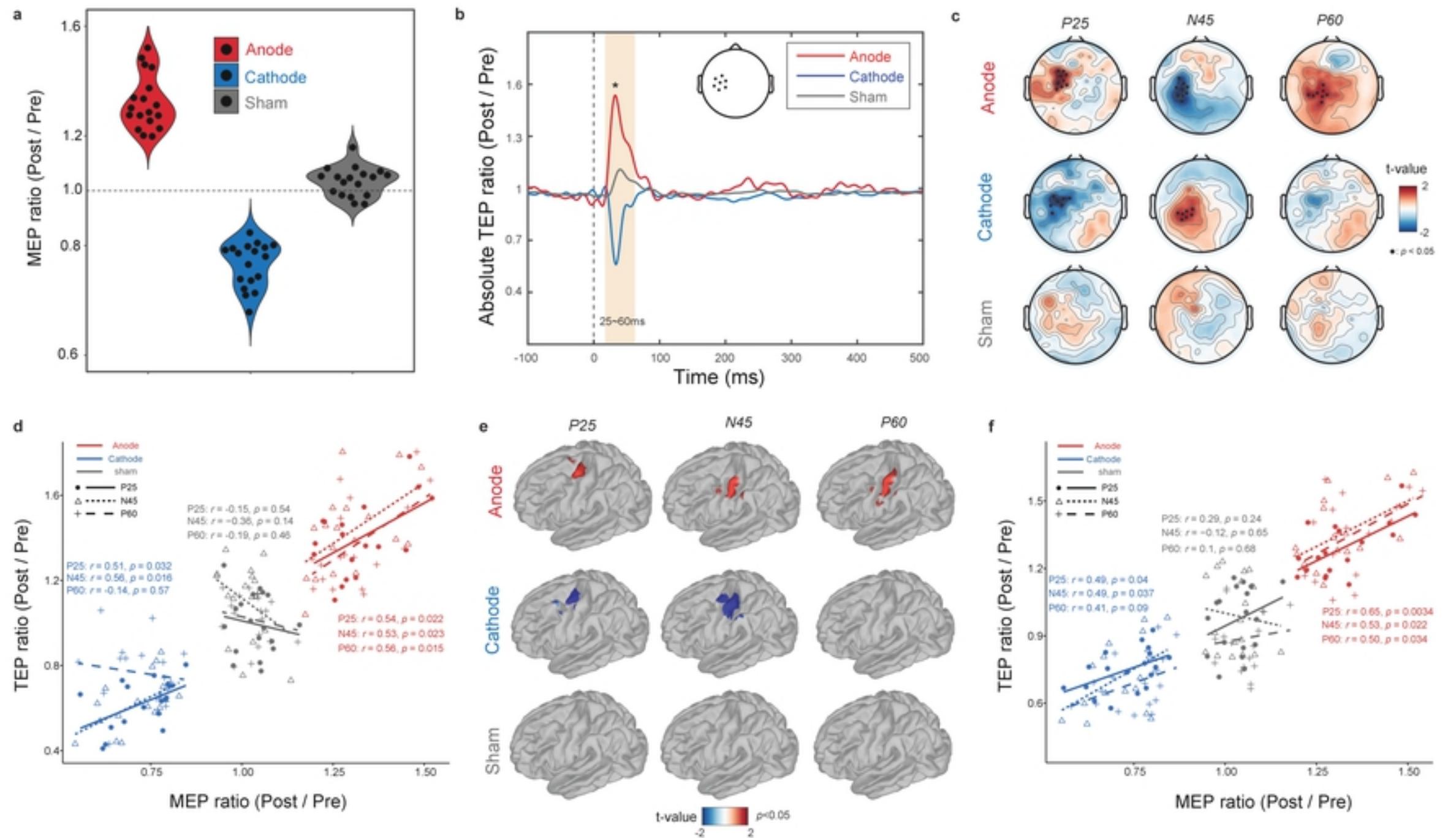
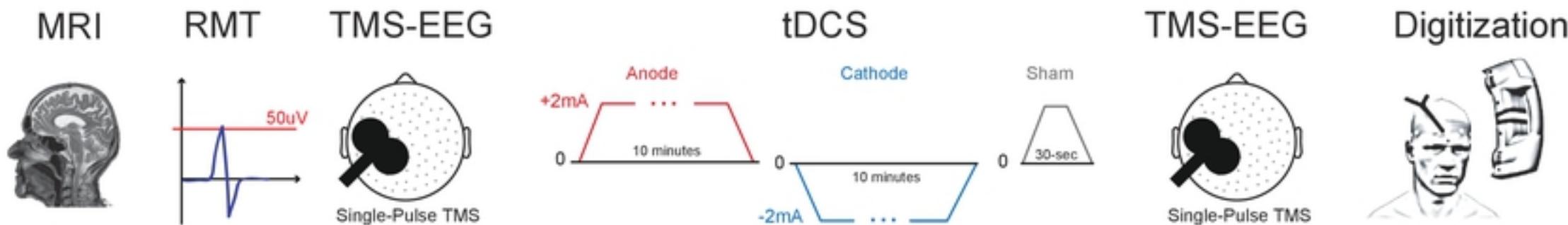
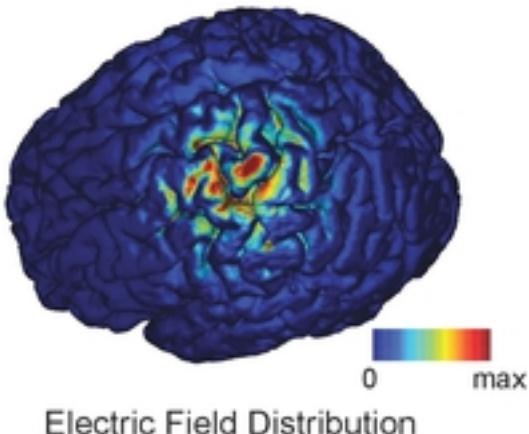
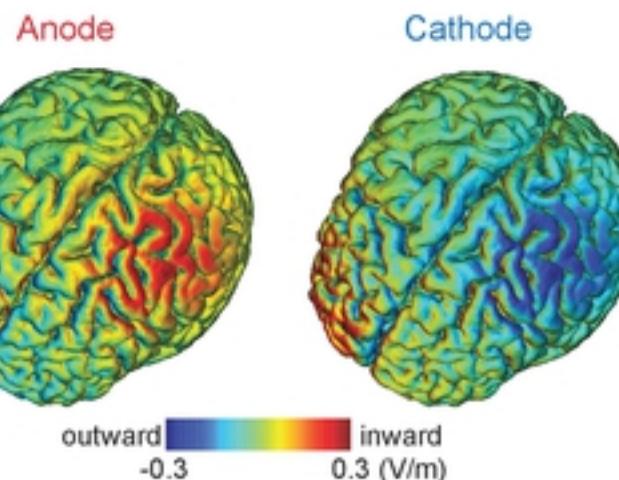
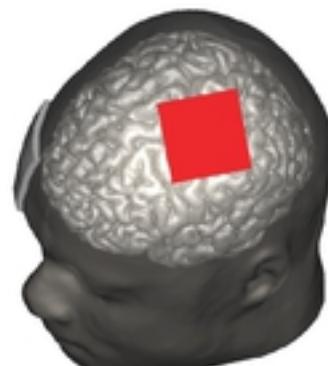






Figure4

a**b TMS****c tDCS****Figure 1**

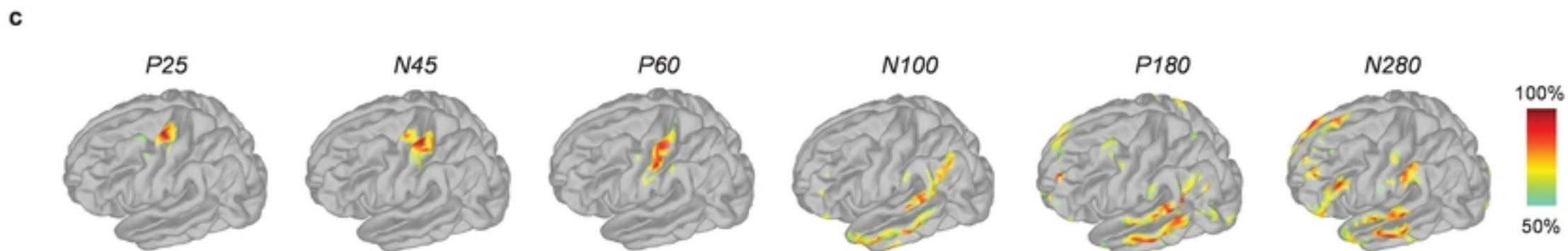
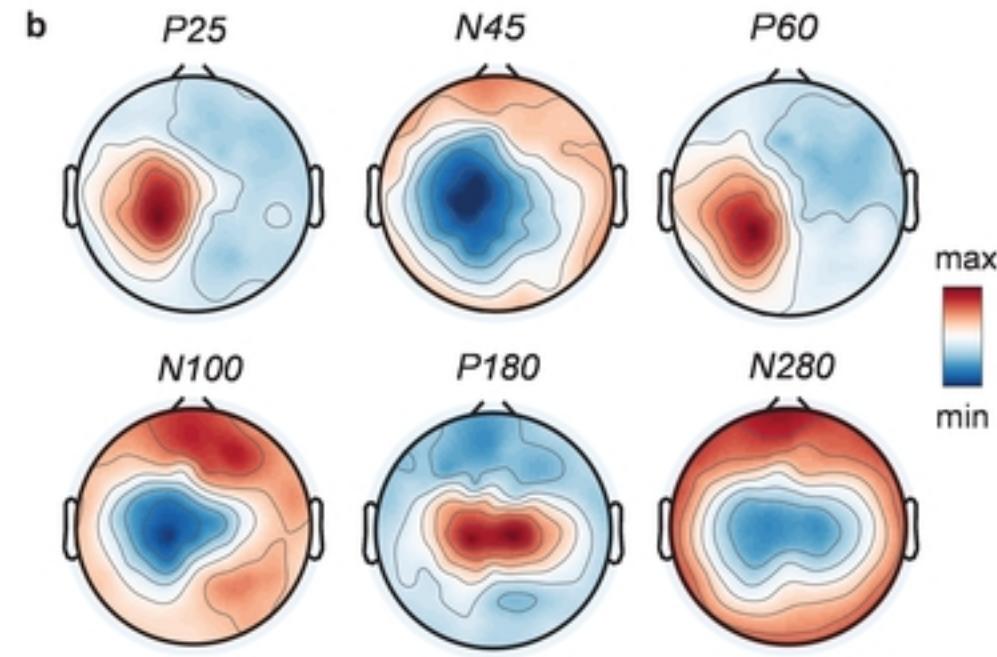
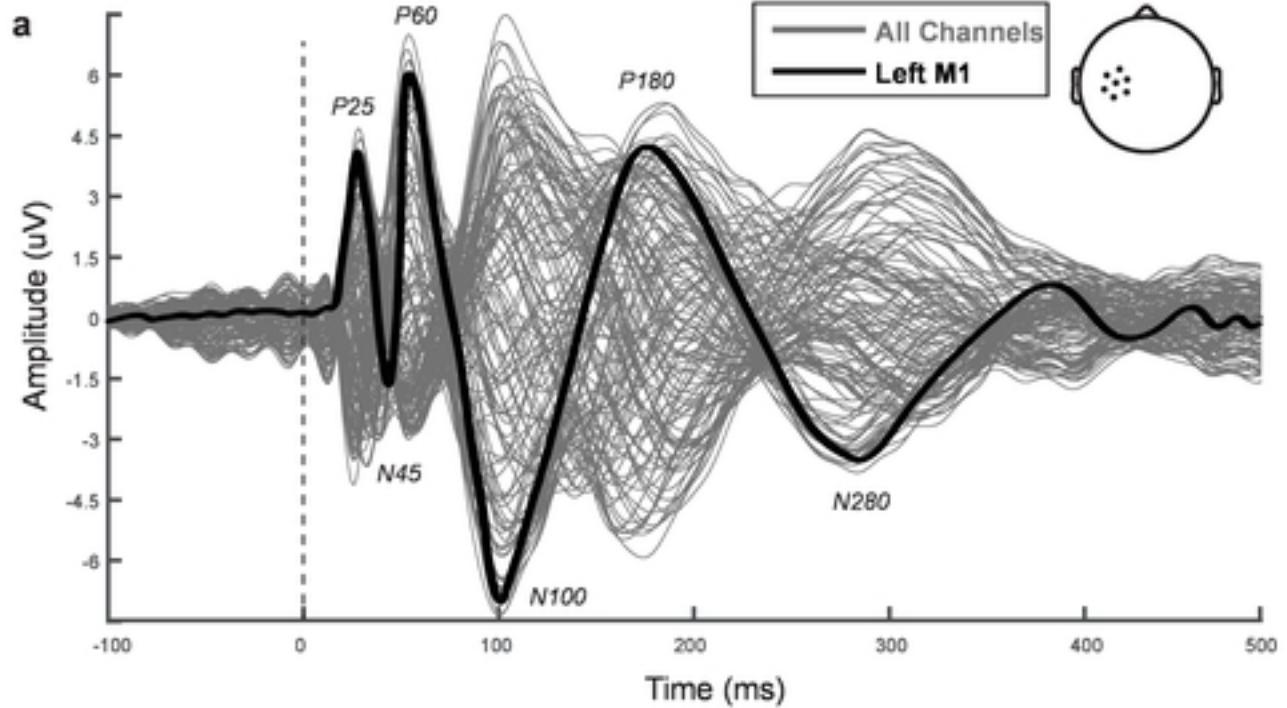




Figure 2

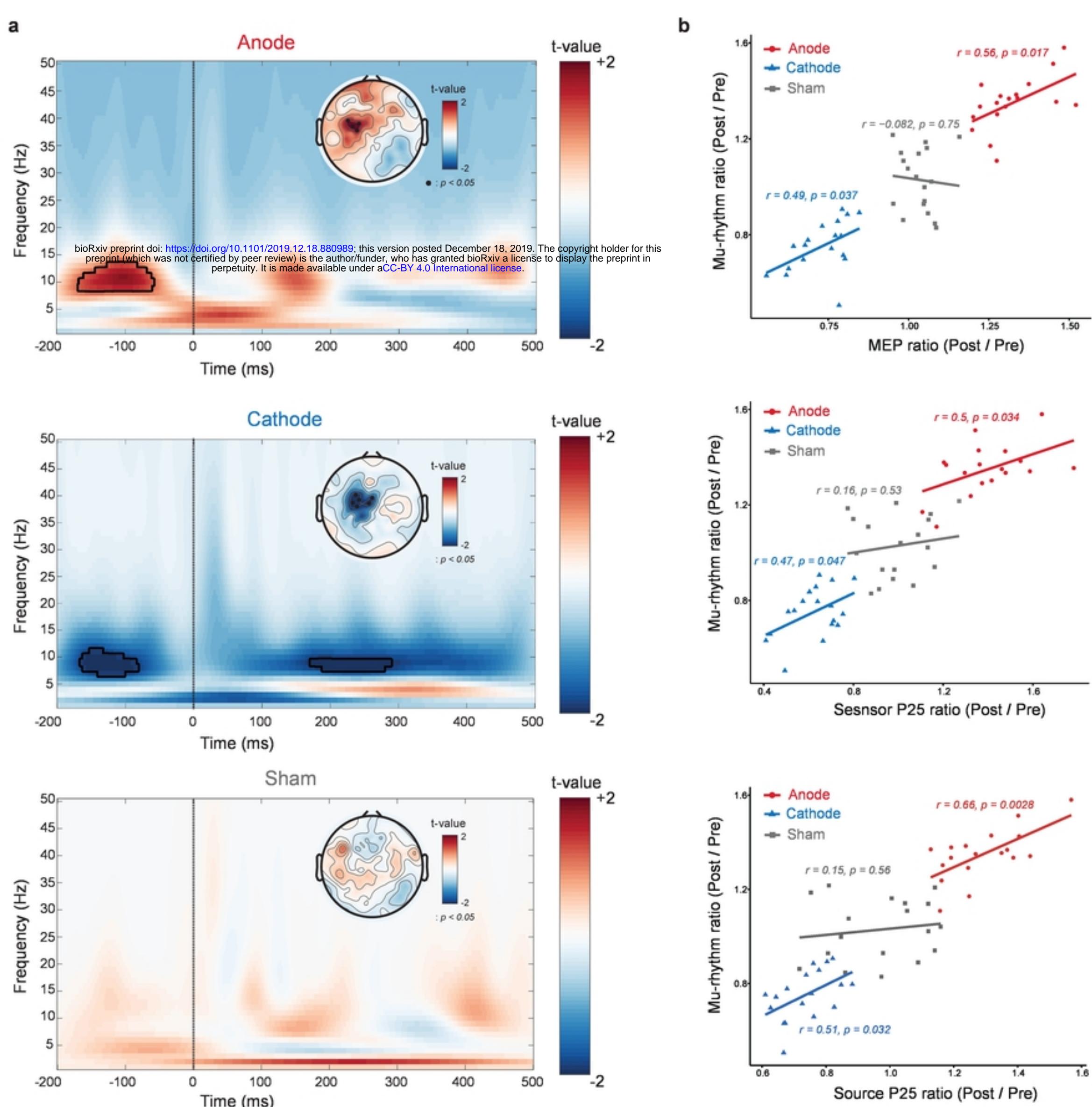


Figure5