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ABSTRACT

Protein-protein interactions are critical to protein function, but three-dimensional (3D)
arrangements of interacting proteins have proven hard to predict, even given the identities and
3D structures of the interacting partners. Specifically, identifying the relevant pairwise interaction
surfaces remains difficult, often relying on shape complementarity with molecular docking while
accounting for molecular motions to optimize rigid 3D translations and rotations. However, such
approaches can be computationally expensive, and faster, less accurate approximations may
prove useful for large-scale prediction and assembly of 3D structures of multi-protein complexes.
We asked if a reduced representation of protein geometry retains enough information about
molecular properties to predict pairwise protein interaction interfaces that are tolerant of limited
structural rearrangements. Here, we describe a cuboid transformation of 3D protein accessible
surfaces on which molecular properties such as charge, hydrophobicity, and mutation rate can be
easily mapped, implemented in the MorphProt package. Pairs of surfaces are compared to rapidly
assess partner-specific potential surface complementarity. On two available benchmarks of 85
overall known protein complexes, we observed F1 scores (a weighted combination of precision
and recall) of 19-34% at correctly identifying protein interaction surfaces, comparable to more
computationally intensive 3D docking methods in the annual Critical Assessment of PRedicted
Interactions. Furthermore, we examined the effect of molecular motion through normal mode
simulation on a benchmark receptor-ligand pair and observed no marked loss of predictive
accuracy for distortions of up to 6 A RMSD. Thus, a cuboid transformation of protein surfaces
retains considerable information about surface complementarity, offers enhanced speed of
comparison relative to more complex geometric representations, and exhibits tolerance to

conformational changes.
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INTRODUCTION

Proteins often assemble into multi-protein complexes as their native forms, mediated by
pairwise (or higher-order) protein-protein interactions. Knowledge of the participating protein-
protein interfaces involved in forming these complexes is thus critical for understanding and
perturbing protein function in a cellular context. Most of our understanding about the contact
surfaces by which proteins interact has been from direct experimental determination using
techniques such as X-ray crystallography and electron microscopy' 2, but these methods remain
costly and laborious. Other, more indirect experimental techniques, including mutagenesis® #,
mass spectrometry®, and cross-linking analysis®, can also illuminate the specific residues that
participate in these interaction interfaces. These techniques give partial information about the
three-dimensional (3D) information on the assembly of complexes, and new integrative
computational modeling strategies are increasingly able to consider such data as distance
restraints to infer 3D structures’'°. To complement such experimentally-led approaches, there
has also been a strong push to develop better computational approaches for predicting protein
interaction interfaces directly from protein amino acid sequences and 3D structures.

Importantly, the prediction of protein-protein interaction interfaces is of substantially lower
computational complexity than the problem of predicting or folding a 3D protein structure based
on its linear amino acid sequence, as interface predictions (for example, by molecular docking)
are limited to 6 degrees of rotational and translation freedom and a sampling of accompanying
intramolecular motions that might occur upon binding'". Ideally, successful interface predictors
would go beyond predicting pairwise interactions and be useful to assemble large molecular
machines from individual subunits.

Such predictions are complicated by the fact that protein-protein interactions may take
quite different forms, and interactions can be categorized in various ways, including obligate and

non-obligate, permanent and transient, and strong and weak'?. Obligate complexes consist of
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86  proteins that are not stable on their own and depend on cooperative folding between the subunits,
87  while non-obligate complexes form from proteins that fold alone and take part in transient or
88  permanent protein interactions. Transient interactions can be further divided into strong and weak
89 interactions. Several studies have determined trends in residues that form protein interfaces. For
90 example, transient interactions have been observed to have similar proportions of hydrophobic
91 residues on both the interaction interface and the remaining surface of the protein. However,
92  because these interfaces are rich in water molecules', there tend to be a larger number of polar
93 residues along the interface’. Additionally, many of the forces driving these interactions derive
94  from weak electrostatic charge'. Thus, computational approaches face a significant challenge in
95 having to predict contact interfaces that may vary significantly based on the relevant class of
96 protein-protein interaction for any particular interface.
97 Computational approaches for determining how proteins interact include predictions of
98 interaction interfaces or docking of protein structures, where the former informs the latter. It has
99  been shown that knowledge of an interaction interface can greatly improve the prediction of the
100  conformation of the proteins that are interacting'. Interface predictors may be divided into two
101 groups: intrinsic- and template-based approaches'. Intrinsic-based approaches focus on
102 features within the protein sequence or the protein structure. Template-based approaches search
103  through databases of protein complexes with known structures and use these interfaces to make
104  predictions'®. However, the latter approach requires prior structural information for the protein(s)
105 of interest. Intrinsic-based approaches take either sequence information or structural information
106 as the input of the predictor. Enhancing the intrinsic-based approaches may be challenging, as a
107 review of previous literature found that the addition of more features does not improve
108  predictions'”.
109 Sequence-based predictors utilize protein sequence information to either feed different
110  amino acid properties into a machine learning classifier or sequence alignment tools. Sequence
111 alignment methods assume that proteins of similar sequences have similar binding partners and
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112 therefore binding sites'®. Many machine learning techniques focus on features of neighboring
113 residues, where the size of the window of residues ranges from 9 to 21 amino acids'®. However,
114  proximity in sequence does not necessarily reflect proximity in structure, demonstrating one of
115 the benefits of incorporating structural information into the interface predictions. Some techniques
116  have taken an intermediate approach where the proteins are represented by a network where
117  individual nodes represent residues and residue properties, while edges represent structural
118  information providing some spatial resolution® 2°.

119 Structure-based predictors utilize structural information from either experimental data or
120  homology modeling as a constraint in formulating their prediction. Previous studies showed that
121 the quality of the prediction is dependent on the quality of the structure and that homology models
122  produce less accurate predictions'. One such structural approach involves dividing a protein
123  surface into patches and using these patches to predict interaction sites. Patches are defined as
124  either the n closest residues where n depends on the size of the protein or a set size for all
125  proteins®" 22, For these methods, patch size is predetermined and uniform, causing problems for
126  predicting interfaces of proteins with multiple binding partners or if the defined surface patch does
127  not accurately reflect the size of the true interface?'. Many predictors ignore the binding partner;
128  however, utilizing the binding partner has been shown to improve predictions’”.

129 Partner-specific interface predictors, which account for all participating proteins in the
130 interaction are less common but have the benefit of considering complementarity between specific
131 proteins. Partner-specific predictors use structures or sequences of two proteins that are assumed
132  to interact in predicting the interaction interface for each protein'’. A partner-specific approach
133  allows the user to consider complementarity, which plays a central role in molecular recognition.
134  Proteins that promiscuously bind to multiple partners present a unique challenge for predicting
135 interfaces. These multiple binding partners may all bind at the same site, or they may bind at

136 multiple sites on the protein surface®. While recent studies highlight the ability of current
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137  predictors to separate non-binding from binding residues on individual proteins, these predictors
138 fail to distinguish partner-specific interaction sites resulting in cross-prediction between sites'®.
139 Currently, many partner-specific approaches exist for predicting interactions. A majority of
140 these methods use the primary sequence and homology searches to make predictions. PAIRpred
141 utilizes a support vector machine classifier for predicting partner-specific interaction interfaces®.
142  While this approach employs multiple features, the features included in the classifier are all based
143  on solvent accessible surface area, which cannot account for proteins that undergo a dramatic
144  conformational change during binding. Another partner-specific tool is PPIPP. PPIPP uses a
145  neural network trained on interacting pairs and has been shown to outperform partner-unaware
146 models®. Similarly, HomPPI uses sequence-homology based approaches to identify conserved
147  regions between the partners?®. Both approaches only use sequence information and do not
148 incorporate spatial data. Many recent approaches have attempted to use multiple sequence
149  alignments (MSAs) to predict residues that coevolve between proteins through direct coupling
150 analysis, mutual information, or a combination of the two and show improved prediction
151  capabilities® 2" %8,

152 One important challenge that remains for partner-specific, structure-based predictors is
153  accounting for conformational changes that occur upon binding. The performance of these
154  methods decreases with increasing conformational rearrangements and dynamics of the protein
155  pairs upon binding®. For this reason, we were interested in developing a reduced representation
156  of protein structural data that does not explicitly consider shape complementarity. Here, we
157 developed and evaluated a protein shape transformation method (MorphProt) that predicts
158  partner-specific interaction interfaces by mapping properties of protein surfaces to cuboids and
159  rapidly testing for complementary surface patches on these reduced geometric representations.
160  MorphProt shows comparable predictive power to a number of more computationally intensive
161  approaches and tolerance to structural rearrangements in the interaction partners.

162
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163 MATERIALS AND METHODS

164  Benchmark set of protein-protein interactions

165 To evaluate the quality of the interaction interface predictions from MorphProt, we used a
166  benchmark set of known protein complexes. The benchmark data set for this method was version
167 5.0 of the widely used protein-protein interaction docking benchmarks®®. This benchmark set
168  provides a large library of 230 Protein Data Bank*® (PDB) files for non-redundant complexes with
169  varying rigidity, as well as enzyme-containing complexes and antibody-antigen complexes. From
170 this set, we extracted 72 complexes for which we were able to obtain mutation rate data
171 (Supplementary Information).

172 In addition to the protein docking benchmark 5.0, we used the protein docking gold
173  standard, the Critical Assessment of PRedicted Interactions (CAPRI) score set®'. CAPRI provides
174  an expanded benchmark data set for evaluating scoring functions, which includes 15 published
175  CAPRI targets. We analyzed 13 of the 15 targets. The remaining two targets did not have enough
176  sequences to produce reliable mutation rates.

177

178  Calculated properties of surfaces

179 The properties that were used in these analyses were charge, hydrophobicity, and
180 mutation rate. The atomic charge was calculated using PDB2PQR*. PDB2PQR begins by
181 rebuilding missing non-hydrogen atoms using standard amino acid topologies in conjunction with
182  the existing atomic coordinates to determine new positions for the missing atoms. Next, hydrogen
183 atoms are added and positioned to optimize the global hydrogen-bonding network. Finally,
184 PDB2PQR assigns atomic charges and radii based on the AMBER force field. Here, The
185 PDB2PQR program was run using the Opal server.

186 The Wimley-White hydrophobicity values®® were used in determining residue
187  hydrophobicity. These values are semi-empirical and based on the transfer of free energies of

188  polypeptides that show how favorable an amino acid is in a hydrophobic environment. Each atom
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189 in the atomic structure was assigned a hydrophobicity value based on the amino acid it was
190 representing.

191 Finally, the mutation rates were obtained from the ConSurf Database®. This database
192  contains information regarding pre-calculated evolutionary conservation scores. The mutation
193 rates stored in the database are calculated using the Rate4Site algorithm. This method
194  evaluates evolutionary mutation rates using a maximum likelihood estimate assuming a stochastic
195 process. Based on this, amino acid replacement probabilities were computed for each branch of
196 the phylogenetic tree. The tree is then used to cluster closely related sequences and find a
197  consensus sequence for each cluster. The consensus sequences are then compared, and each
198 position may be described as variable or conserved. The frequencies are renormalized to
199 represent a number between 1 and 9. Finally, each of the properties described was stored in the
200 surface of the protein structure as part of the appropriate atomic coordinate.

201

202  Protein shape transformation

203 To reduce the dimensionality of the intricacies of protein shape, we performed a shape
204 transformation of the 3D atomic structure into a cube. To simplify these calculations, we have
205 created a Python library, MorphProt. The input for these calculations is a PDB file (either an atomic
206  structure or homology model), a PQR file, and a conservation file produced by Consurf** when
207  considering mutation rate. First, we extracted the molecular surface using Michel Sanner's MSMS
208  program®®, which uses a 1.4 A diameter sphere to detect the solvent accessible surface area.
209 Next, we calculated a residue depth for all of the amino acids in the protein sequence using the
210  molecular surface. The residue depth was calculated using Biopython®” and was evaluated as the
211 average depth of all atoms in a residue from the calculated surface. Amino acids were said to be
212 contributing to the surface of the protein if their residue depth was less than 5 A from the
213  calculated accessible surface. We extracted the 3D coordinates for all of the atoms that satisfy

214 these surface constraints.
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215 After the atomic coordinates of the surface are extracted, we extract the maximum and
216  minimum for each x, y, and z coordinate as biased centroids, equal to 6. We then used SKLearn®
217  to perform a K-means clustering. We projected each of the clusters onto a 2D surface, creating
218  the face of the cube. Next, we binned each face of the cube into boxes, forming a grid. For these
219  experiments, a 25 A? box was used, but MorphProt allows for a customizable bin size. For each
220  binned box, we calculated the average of each property that was stored in the box, creating a 2D
221 matrix of values. Here, each matrix represents the face of an unfolded cube and a side of a
222  protein. Finally, each of these numbers in the matrix may be mapped back to a location on the
223  protein surface.

224

225  Protein interaction interface prediction

226 We computed a 2D cross-correlation, a common pattern recognition and image
227  processing tool, to predict areas of the protein surface with maximum interaction between
228  properties. The cross-correlation was calculated using MorphProt. Because each protein is
229 reduced to a total of 6 matrices, we calculated a total of 36 2D cross-correlations for each pairwise
230 interaction. In addition, we sampled all 10-degree rotations to account, in an approximate fashion,
231  for different orientations or positions of the initial protein structures.

232 Next, we extracted the top ten maximum interaction scores (high scores) as putative
233 interaction interfaces. The top ten scores represented areas of maximum interaction and
234  complementarity. For properties such as hydrophobicity, we looked for a maximum cross-
235 correlation score as our top score because we are accessing two highly conserved regions that
236  have the same degree of hydrophobicity or a hydrophobic/hydrophilic pocket. For charge, we took
237 the minimum score to represent the charge complementarity that exists between interacting
238  proteins where positively charged surfaces are likely interacting with negatively charged surfaces

239 resulting in a net charge near 0.
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After the top ten scores were selected from the cross-correlation matrix, the score was
then mapped back to the input matrices to show the position of the matrices that produced the
score. Finally, the overlapping position for each matrix is mapped back to the residues in each of
the overlapping areas. The final result is a list of residues for each protein that are predicted to be

on the partner-specific interaction interface.

Evaluation of predicted protein interaction interfaces
To evaluate our predictions, we calculated a confusion matrix to classify predicted
interface residues as true positives, false positives, false negatives, and true negatives based on

the predicted and actual classes. We defined a residue to be on the interaction interface if any

atom from the residue is within 10 A of an atom from the protein it is in complex with. We then
evaluated our confusion matrix where the precision, recall, accuracy, and F1 score are defined
accordingly:
Precision = TP
recision = TP T FP
Recall = r
= TPYFN
TP+TN
Accuracy =

TP+TN+ FP+FN

Precision * Recall

F, =

Precision + Recall

Next, we used an extreme value calculation to validate the “uniqueness” of the atomic
properties. We showed that their placement along the interface is not a random distribution of
points but rather a clustering of some property. To calculate this, we randomly shuffled the

properties associated with each atom and recalculated scores. We repeated this shuffle and
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262  scoring 1000 times to generate a distribution. If the score was an extreme value in the distribution,
263 then the score is statistically significant and represented a clustering of a property at that location.
264

265  Simulation of structural distortion by normal mode analysis

266 To distort the crystal structures from the test set we used elNémo*, a normal mode
267  analysis. eINémo predicts the possible movements of a macromolecule through low-frequency
268 normal modes. The | and r unbound subunits of PDBID: 1FQJ from the protein-protein interaction
269  docking benchmark was used. All default parameters were kept except for DQMIN and DQMAX,
270  which were adjusted to 100 and 300, respectively, to allow more extreme distortion. Normal
271 modes 1 and 2 were selected for protein r and normal modes 1 and 4 were selected for protein I.
272 PDBs can be found in the Supplementary Information. Modes were selected based on large
273  distortion from RMSD.

274

275 RESULTS

276 We wished to test if a highly simplified geometric representation of a 3D protein surface
277 embedded with properties was sufficient to predict protein-protein interaction interfaces. The
278  simplification significantly reduces computational complexity, so the question is whether the
279  algorithm would retain its predictive power using the simplified representation and whether the
280 simplified representation would be tolerant of possible molecular motions relevant to the
281 interaction. We wanted to consider protein surface properties and how opposing surfaces
282  complement each other when forming an interface, largely independently of protein shape. For
283  this reason, we began with a transformation of the irregular shape of a protein by considering
284  atoms within 5 A of the surface of the native protein. This excludes the atoms that play a role in
285  stabilizing the protein core and presumably make less of a contribution to protein-protein

286 interactions.
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287 Our simplified representation is as follows: The solvent accessible surface of the protein
288 is computed and transformed into a simplified geometric representation, the surface of a cuboid,
289 in which the size of the cuboid is proportional to the size of the protein. The transformation thus
290 retains an approximate representation of interface proportions. Recently, the idea of reducing
291 proteins to simplified shapes has gained attention in structural searches®. Our shape
292  transformation uses a K-means clustering algorithm to separate protein surface accessible amino
293 acids into 6 distinct clusters, followed by a projection of the coordinates into two-dimensions (2D)
294  (Fig. 1) to represent the surfaces. Each atomic coordinate is described by its unique properties.
295 These 2D coordinates are then binned into a grid based on the transformed atomic coordinate
296 locations, and the average property value is calculated for each square of the grid. The result is
297  a matrix of property values where the locations of the values within the matrix represent the
298 neighbors of the atoms on the protein surface with minimal distortion.

299 These reduced protein surfaces are images, making them suitable for several image
300 processing techniques. To build a partner-specific predictor that considers surface property-
301  complementarity, we performed cross-correlation of images from two partner proteins to find an
302  area of maximum similarity between the two images by computing a dot product at each position
303 after rotation and translation (Fig. 2). Cross-correlations have already proven to be invaluable in
304 various image processing techniques, including identifying single particles from electron
305 microscopy data*'. Here, this approach was used to identify an area of maximum interaction by
306 searching and calculating a complementarity score between properties in the matrix. Because our
307  protein surfaces were reduced into 6 matrices, one representing each side of the cube, we cross-
308 correlated each matrix of one binding partner with each matrix of its partner and generated a
309 score for each position of the 36 cross-correlations. The highest scores represent the positions of
310  each face of the cube where the maximum interaction occurs. The position of the matrices can

311 be mapped back onto the protein surface that they represent. We designed a Python package

12
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312  called MorphProt to perform the shape transformation, cross-correlation evaluations, and plot the
313  predicted interface residues onto the atomic structure.

314 To evaluate the significance of these predictions and their contribution to the protein
315 interface, we used an extreme value approach, which aims to illustrate the distribution of
316  properties across the surface and identify those areas where pockets of each property form.
317  These “property pockets” indicate an area that is likely contributing to a surface interaction. To
318  evaluate this, we randomly shuffled each of the properties to different atomic positions on the
319  protein surface and then recalculated our maximum interaction score with the new distribution of
320 properties. By repeating this process 1000 times, we created a distribution of scores. We selected
321 the unshuffled, predicted high scores from the distribution to determine if it was an extreme value
322  (i.e. in the tail of the distribution). This analysis showed the property of interest is not randomly
323 dispersed across the protein surface; instead, they form pockets, likely occurring on the
324  interaction interface.

325 To address the concern of any distortion by the shape transformation, we demonstrated
326 that interaction interfaces are still detectable with a proof-of-concept protein pair, the alpha-
327  chymotrypsin-eglin ¢ complex (PDBID:1ACB) (Fig. 3). We extracted the surface of each protein
328 in the complex and set the charge property to 0 at all positions with the exception of the true
329 interface. We defined the true interface as all atoms from one protein that are within 10 A of an
330  atom of the other protein in the complex. The atoms on the true interface of alpha-chymotrypsin
331  were assigned a charge of +1, and those on the true interface of eglin c were assigned a charge
332 of -1. We then performed our shape transformation and cross-correlation analysis using
333  MorphProt. The top ten interaction scores were all between the same two protein faces, which
334  cluster along the true interface. This indicates that despite any distortion that occurs from our
335 reduced representation of the protein surface, MorphProt was still able to identify the area of
336 complementarity between the two surfaces. In addition, when the surface properties were

337  shuffled, the true location of the property was identified as an extreme value. These results further
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338  support the notion that the shape transformation does not cause significant distortions and cross-
339 correlation can be used to find the true interface of complementary properties.

340 Next, our partner-specific interaction interface predictor was used to predict the interfaces
341 of the CAPRI score set®', a gold standard in protein docking. We predicted the interaction interface
342  according to charge, hydrophobicity, and mutation rate of the unbound structures and mapped
343  the prediction onto the interface of the bound structures (Fig. 4b). The interaction interface
344  predictions were scored based on the number of true positives, precision, accuracy, and F1score
345  for the top ten scores. The true positive, false negative, and false positive predictions are defined
346  in Fig. 4a for each predicted interface (see Methods). The number of true positives reflects the
347  sum of all correct predictions in the dataset. The precision, accuracy, and F1 score represent the
348 average across the CAPRI dataset. The individual CAPRI statistics were also calculated
349  (Supplementary Information). Overall, mutation rate is the most predictive property based on
350 surface complementarity with an average accuracy of 61% and F1 of 28%. For charge,
351  hydrophobicity, and mutation rate the average precision was 35%, 33%, and 42% and the
352  average F1 score was 21%, 19%, and 28%, respectively. However, on a case-by-case basis,
353  different properties can provide the best prediction for certain complexes. For example, in the
354  prediction of the interface of the colicin-E2 immunity protein and the colicin-E9 complex (PDBID:
355 2WPT, Target ID: T41), charge and hydrophobicity prove to be the most predictive properties with
356  accuracies and F1 scores 10% higher than the predictions from mutation rate. Further
357  examination of this complex shows that the complex is non-cognate, which explains why mutation
358 rate is a poor predictor. Additionally, there is a disulfide bond and extensive hydrogen bonding
359  between the interface of the two proteins*?, hence the improved prediction quality of the charge
360 and hydrophobicity based properties. In addition to the CAPRI score set, we evaluated this
361 approach on 72 of the integrated protein-protein interaction benchmark complexes
362 (Supplementary Information)*. We obtained similar results to the CAPRI data set for the
363  protein-protein interaction benchmark where the average precision was 35%, 31%, and 48%, and
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364  F1 score was 23%, 21%, and 34% for charge, hydrophobicity, and mutation rate, respectively.
365 However, individual property predictions displayed precision and F1 scores as high as 86% and
366  56% for mutation rate, 74% and 39% for charge, and 67% and 48% for hydrophobicity. Taken
367  together, MorphProt can predict interaction interfaces based on surface property complementarity
368  despite a loss of structural information.

369 Of primary interest for biological processes, is the assembly of large macromolecular
370  complexes. Using Morphprot, we can perform pairwise predictions with knowledge of subunits
371  that are directly interacting by indirect methods. We explored the assembly of a large protein
372 complex by examining our recently published Ceru+32/GFP-17 protomer structure®®, a
373  synthetically engineered supercharged GFP 16-mer. These proteins were engineered to have
374  oppositely charged variants of the normally monomeric green fluorescent proteins (GFP), which
375  resulted in the assembly of a large, ordered macromolecular structure. Because the structure is
376  known to form charge-based interactions, it served as an effective test for the ability of MorphProt
377  to predict partner-specific interactions within a large macromolecular complex where subunits
378 have multiple interaction interfaces. The input for MorphProt was the o and B supercharged
379  subunits. The top ten scores accurately predicted both of the charge-based interfaces between
380  subunits (Fig. 5).

381 To demonstrate the advantages of using a partner-specific, surface property
382  complementarity method, we considered two binding scenarios that present challenges for
383  conventional interface predictors: (1) a protein that has multiple binding partners and sites and
384  (2) a protein that undergoes a dramatic conformational change upon binding to a partner. To test
385 the multiple-binding site scenario, we used the lysozyme and anti-lysozyme complex (PDBID:
386 1BVK). The heavy and light chains of the anti-lysozyme form a hydrophobic zipper upon
387  cooperative folding * and interact with their antigen, lysozyme (Fig. 6). Here, we accurately
388 predicted the hydrophobic interaction between the heavy and light chains of the antibody and the

389  charge-driven interaction between the antibody and antigen. To validate that our algorithm can
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390 handle dramatic structural rearrangements, we tested the interleukin-1 receptor and the
391 interleukin-1 receptor antagonist complex (PDBID: 1IRA), where the interleukin-1 receptor
392  undergoes a dramatic conformational change upon complex formation (approx. 26.2 A across all
393 residue pairs). Again, we were able to accurately predict the interaction interface between the
394  protein pair despite this large-scale structural rearrangement.

395 Finally, we wanted to test the performance of our interface predictor on uncertain structural
396 models produced by homology modeling or other structural prediction algorithms. In both
397  experimental and computational structure building, there can occasionally be uncertainty
398 regarding the exact position of the side chains and backbone of the model. By distorting one of
399  our test proteins that produced a strong mutation rate interface prediction, we showed that our
400 predictions remain robust even considering a structure that is distorted by up to ~6 A (Fig. 7). The
401  crystal structures of the unbound Gnai and RGS9 (PDBID: 1FQJ) were distorted using normal
402 mode analysis. We used elNémo*® to compute the low-frequency normal modes of each of the
403  structures in the complex. In the analysis, one of the subunits (receptor or ligand) was held
404  constant, while the interface was predicted at different RMSD distortions of the other subunit
405 (receptor or ligand). Despite different configurations of the protein backbone, we were still able to
406 predict the interface based on the generalized property complementarity for a given section of the
407  protein structure.

408

409 DISCUSSION

410 Here, we have demonstrated that by using a cuboid transformation to normalize the highly
411  variable 3D protein structure to a simplified geometric shape, we are able to store layers of
412  information on a 2D representation of a protein surface while preserving atomic neighborhoods.
413  The resulting matrix of values contains the location of surface properties and their proximity to
414  other values and is a direct representation of the spatial coordinates of the 3D atomic structure.
415 We showed that converting the surface properties to an image allows us to identify areas of
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416  maximum interaction of surface properties between two proteins via a partner-specific approach.
417  We showed that MorphProt can also be used to construct large macromolecular assemblies.
418 While primary sequences provide information regarding amino acid identity and adjacent
419  residues, it can be difficult to precisely determine from sequence alone which residues reside on
420 the surface of a protein and their relation to each other in its 3D structure. Structure-based
421  approaches allow us to extract and investigate surface properties, providing a useful first step for
422 interface prediction, as the spatial position of residues is essential for macromolecular
423  recognition??. Many machine learning interaction interface predictors exist and use structure, but
424  the only information stored in feature vectors is statistical information for the surface patches and
425  not the spatial arrangement of the residues?. In addition to the lack of information regarding
426  residue neighborhoods, many of the structure-based approaches are not equipped to handle
427  dramatic conformational changes upon binding**. We have addressed these limitations of
428  previous methods through our shape transform by treating the protein surface as a simple 2D
429 matrix, where the location of a value within the matrix is a representation of the location of that
430 value on the protein surface. This novel surface-patch approach turns out to be incredibly powerful
431 in identifying the areas of maximum interaction between structures of interacting pairs.

432 In our approach, patch size is not predetermined; instead, it is dependent on the size of the
433  proteins being tested and the size of overlap between protein faces for each score calculation.
434  Traditional approaches for identifying a surface patch result in fairly uniform patch sizes®'. Our
435 method tests surface patches over a number of different sizes and arrangements because the
436  patches are determined by the position of the cross-correlation. The first patch tested is the corner
437  of two matrices and expands as the calculation continues, and the patches are both rotated and
438 adjusted in size. The result is a sample of various patches and orientations, which can be used
439 toidentify the area of maximum interaction between the pair of proteins.

440 In most structure-based interaction interface predictors, an interface is identified based on
441  features of a given area on one of the protein surfaces, ignoring properties of a partner when
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442  determining how they best fit together. A partner-specific predictor uses information regarding
443  both proteins of interest. It has been shown that prediction methods that do not employ a partner-

444  specific approach have lower reliability in predicting transient binding sites*® 7

, Whereas a partner-
445  specific approach can identify locations that are highly conserved for transient protein-protein
446 interactions®. A significant advantage of using a partner-specific predictor is its ability to find
447  specific surface areas that form interactions with different partners. One significant challenge of
448  many partner-specific predictors is their use of unbound protein structures to search for interaction
449 interfaces'. In many biological processes, proteins undergo a dramatic conformational change
450  upon binding, which complicates predicting an interface based on unbound structures. We have
451  demonstrated that using a reduced surface representation of a protein in combination with stored
452  information of highly predictive properties, we can make partner-specific interface predictions for
453  unbound proteins, including those that undergo at least moderate structural rearrangements, an
454  important feature for building multi-protein assemblies.

455 Our results using MorphProt are promising when compared to other available partner-specific
456 interaction predictors. The developers of PAIRpred reported the identification of a true positive in
457  the top 15 predictions for 7 of the 9 complexes tested using the CAPRI score-set. PAIRpred was
458  unable to predict for targets 3FM8 (T39) and 2VDU (T29). These targets have been reported as
459  being challenging complexes to evaluate in CAPRI?**. However, MorphProt yielded accurate
460 predictions for 2VDU based on mutation rate (78% accuracy and F1 score of 48%) and 3FM8
461  based on hydrophobicity (73% accuracy and F1 score of 25%). From the results of CAPRI rounds
462  15-19, T32, T35, T36, T38, and T39 presented the greatest challenges for docking predictors?®.
463  While we did not test T35 or T38, our interface predictions for the remaining targets remain robust.
464  3BX1 had an interaction interface prediction accuracy of 65% and F1 score of 24%, while 2W5F
465 (T36) had an interaction interface prediction accuracy of 73% and an F1 score of 21% (T39

466 summarized above). Taken together, these results show that MorphProt can perform accurate
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467 and precise interface predictions for some of the most challenging CAPRI targets despite not
468  considering shape.

469 Furthermore, we showed that despite introduced structural distortion, we are still able to
470  predict interfaces based on complementarity. This is increasingly important for predicting
471 interaction interfaces with the widespread use of homology models and lower-resolution
472  structures. Here, greater weight is put on the neighborhoods of properties on the surface rather
473  than their exact location. The ability to predict the interface for homology models is significant for
474  assembling macromolecular complexes where little is known regarding the structure of the
475 individual subunits. Theoretically, one could produce models for the subunits and then arrange
476  them according to their interaction interfaces to predict the structure for large assemblies. Such
477 analyses would also benefit from protein docking following the interface prediction to improve
478  positioning.

479 While discrepancies between interface prediction and protein docking occur often, the
480 techniques are effective when used in conjunction with one another. Protein-protein docking is a
481 partner-specific technique that is highly dependent on shape complementarity and energetics®.
482  One of the limitations of protein-protein docking is the large sample size that must be tested and
483 then scored by an energy function to produce a prediction of the arrangement of two proteins.
484  The number of arrangements would be drastically reduced by using an interface prediction as a
485  preliminary step before docking. Previous studies showed that using a partner-specific, homology-
486 based interface prediction prior to docking significantly improves the scoring of the docked
487  proteins*. Notably, the HADDOCK server allows for the incorporation of a predicted interaction
488 interface, however, this interface is computed from a single protein rather than a partner-specific
489 interface®. Incorporating our interface prediction into a protein-protein docking pipeline would
490 increase computational efficiency because it is independent of shape complementarity and

491  energetics.
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492 Another significant application of partner-specific interaction interface predictor is the
493  screening of small molecule inhibitors or drugs. These often interact via transient interactions?,
494  making predicting transient interactions imperative. Small molecules that interact with protein-
495  protein interfaces and alter these interactions have demonstrated to be effective drugs and the
496  prediction of these interfaces could be useful in finding potential targets®'. This poses a challenge
497 because many protein interfaces have been described as large, featureless surfaces that lack
498  obvious binding pockets®®. Because our method reduces the protein surface to essentially the
499 same, we would likely be able to make more accurate predictions using physicochemical
500 properties stored on the surface of the protein. Furthermore, predictions and scores for small
501 molecule inhibitors or drugs could be optimized by understanding the area of interaction produced
502 by our method.

503

504 CONCLUSIONS

505 To address the inherent variability of protein shape, conformational changes, and structural
506  approximations while reducing computation time, we were interested in determining if a simplified
507 geometry retains enough spatial information to predict interaction interfaces based on
508 complementary properties. Specifically, our aim was to develop a pipeline that was robust to
509 molecular motions while gaining computational power to assemble larger multimeric protein
510 complexes. Using MorphProt, we performed a cuboid transformation of the accessible surface of
511  a protein into the surface of a cuboid. This reduced representation allows for easy storage of
512  intrinsic properties of the protein such as hydrophobicity, charge, and mutation rate to be
513 embedded within each surface image. The result is a quantitative description of these properties
514  across a protein surface enabling image processing techniques to identify complementarity
515  between the properties of two interacting protein surfaces. We show this method can be useful
516  when one of the above properties is the driving force of the interaction. MorphProt was able to

517  predict interaction interfaces for the unbound CAPRI targets and the protein-protein interaction
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518 benchmark complexes with comparable results to a number of other predictors. Additionally,
519  MorphProt was able to predict interfaces for a large 16-subunit oligomer, proteins with multiple
520 binding sites, and crystal structures that have been distorted by up to ~6 A to mimic models built
521  from lower resolution density maps or imperfect homology models, demonstrating a utility to
522  integrated platforms that aim to assemble complicated protein complexes.
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707  Fig. 1: Shape transformation of a protein into a cuboid. a, K-means surface clustering of a
708 representative protein structure (PDBID: 1A2K) reduced to a cube. b, The atomic properties of
709  each face are binned based on their coordinates (default side length is 5 A). Average property
710  values are calculated for each box. ¢, The property matrices can be mapped back to the original
711 structure. Potential properties include charge, hydrophobicity, and mutation rate.
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Atomic Structure Shape Transform Matrix Generation Cross-Correlation Position Mapping Residue Identification

Fig. 2: The MorphProt pipeline for interaction interface prediction. The program uses a PDB
as input to generate the cube transformation, which is then unwrapped into 6 matrices. Cross-
correlations between the faces of the two proteins of interest are calculated. The area of maximum
interaction based on complementary is selected from the cross-correlation matrices and mapped
back onto the protein structure. In this example, the interaction interface between protein Numb
homolog (light blue) and its ligand/inhibitor PTBi peptide (gold) was predicted using charge
(PDBID:5NJJ). Positive and negative charges are depicted by red and blue, respectively. In the
cross-correlation matrix, the darkest red represents the maximum interaction.
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a Score 1-10

b
Protein 1 Face Protein 2 Face Angle Score Prole?e:c::lerface Proleifr’leicg:lllerface
3 0 175 24.57 | 85.71 52.63
3 0 0 23.80 | 85.71 55.74
3 0 210 23.67 | 85.71 51.79
3 0 245 23.33 | 85.71 51.79
3 0 70 23.28 | 85.71 55.00
3 0 35 23.07 | 85.71 55.00
3 0 350 22.34 | 85.71 55.73
3 0 315 22.29 | 85.71 55.73
3 0 105 22.21 | 85.71 52.63
3 0 280 21.66 | 85.71 52.63
¢ Score Distribution of Shuffled Properties
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728

729  Fig. 3: Demonstration of detectable interfaces using the cuboid transformation. a, The
730 experimentally determined structure of the alpha-chymotrypsin-elgin ¢ protein complex
731  (PDBID:1ACB). All charge values were set to 0 on the surface of both proteins. The ligand or |
732  (gold) interface residues were set to -1 and the receptor or r (light blue) interface residues were
733  setto +1. The predicted interface (red) was mapped onto the protein complex. b, The table shows
734  the faces of the top 10 scores. The interface percent shows the percent of residues that are within
735 10 A of the partner protein. ¢, The cross-correlation scores produced from 1000 shuffles of the
736  engineered charge property across the surface of the protein. The point represents the top score
737  from the prediction.
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False Negative:
@

CAPRI Target Results
True Positives Precision Accuracy F1 Score

2299 35% 60% 21%
Hydrophobicity 2103 33% 60% 20%
Mutation Rate 2829 42% 61% 28%

A False Positives
True Positives
RND1 and PLXB1

ARF6 and SPAGY9

Fig. 4: MorphProt validation with the CAPRI score set. a, True positive, false negative, and
false positive residue predictions are shown for a representative protein (PDBID: 2REX). The
results for the CAPRI score set are summarized in the table. Red, pink, and green represent
charge, hydrophobicity, and mutation rate, respectively. b, Results of six representative CAPRI
score set protein complexes (PDBID: 2VDU, 3FM8, 4JW3, 2W83, 3E8L, 2W5F) are depicted.
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771

772

773

774  Fig. 5: An example of MorphProt applied to predict contact interfaces in a large multimeric
775  protein assembly. MorphProt predicts interfaces of the Ceru+32/GFP-17 protomer (PDBID:
776  6MDR) between the alpha and beta subunits. The charge predicted interface is shown (red) for a
777  score 2 and b score 9 predictions of the top 10 scores.
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l ‘. Unbound conformation Hydrophobic interface
- Bound conformation . Charge interface

a. Case 1: Multi-binding site proteins b. Case 2: Conformational change upon binding proteins

Fig. 6: MorphProt successfully predicts interfaces for challenging binding scenarios. a, For
proteins with multiple binding sites, MorphProt can predict each distinct partner-specific
interaction interface. Shown is the antibody-antigen interaction between lysozyme and anti-
lysozyme (PDBID: 1BVK). The interaction interface between the heavy chain and the light chain
of the anti-lysozyme is predicted using hydrophobicity, while the interaction interface between the
anti-lysozyme chains and lysozyme are predicted using charge. b, Because MorphProt utilizes
charge, hydrophobicity, and mutation rate to predict interfaces, it accurately predicts binding
pockets for proteins that undergo dramatic structural rearrangements. Depicted is the interleukin-
1 receptor and the interleukin-1 receptor—antagonist complex (PDBID:1IRA) interface. As shown
from the unbound and bound structure, the receptor undergoes a striking conformational change
upon antagonist binding.
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\

6.0 A Receptor Distortion ) 6.1 A Ligand Distortion
C
True Positive Precision F1 Score True Positive Precision F1 Score
1FQJ native 661 64% 51% 1FQJ native 661 64% 51%
1FQJ_rA0.7A 640 61% 49% 1FQJ_1A 0.5 A 534 65% 45%
1FQJ_rA1.4A 695 65% 53% TFQIIATTA 542 67% 46%
1FQ)_ra28A [ 592 64% 48% 1FQJ 1A1.8A 564 68% 47%
1FQJ_rA3.1A 610 60% 47% 1FQJ_I A 2.9A 472 60% 40%
1FQ rA37A ] 666 65% 52% 1FQJ_1A39A 676 65% 52%
1FQJ_rA4.4A 664 62% 51% 1FQJ_1A42A 622 68% 50%
1FQJ rA5.2A 649 66% 51% 1FQJ_IA52A 513 59% 42%
1FQJ rA6.0A 594 64% 48% 1FQJ_IA6.1A 660 66% 52%

798 Fig. 7: MorphProt can predict interaction interfaces despite structural distortion. a,
799  Unbound structure of Gnai and RGS9 (PDBID: 1FQJ). The ligand and receptor are depicted in
800 gold and blue, respectively. The interface is predicted using mutation rate. The predicted interface
801 is colored green on the bound structure. b, The receptor and ligand were distorted using eINémo
802  normal mode analysis. While the receptor was distorted up to ~6 A, the ligand was held constant
803 and vice versa. The interfaces were again predicted using mutation rate and the distorted
804  structure. The close-up depicts the native structure (grey) superimposed onto the distorted
805  structure to show the change in position of residues on the interface. The predicted interface is
806 mapped onto the distorted structure. ¢, The precision-recall curves and diagnostic table show that
807 there is little change in the prediction despite structural distortion for multiple distorted protein
808  structures. The true positive, false, positive, and false negative parameters are illustrated in Fig.3.
809
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