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ABSTRACT 35 
 36 

Protein-protein interactions are critical to protein function, but three-dimensional (3D) 37 

arrangements of interacting proteins have proven hard to predict, even given the identities and 38 

3D structures of the interacting partners. Specifically, identifying the relevant pairwise interaction 39 

surfaces remains difficult, often relying on shape complementarity with molecular docking while 40 

accounting for molecular motions to optimize rigid 3D translations and rotations. However, such 41 

approaches can be computationally expensive, and faster, less accurate approximations may 42 

prove useful for large-scale prediction and assembly of 3D structures of multi-protein complexes. 43 

We asked if a reduced representation of protein geometry retains enough information about 44 

molecular properties to predict pairwise protein interaction interfaces that are tolerant of limited 45 

structural rearrangements.  Here, we describe a cuboid transformation of 3D protein accessible 46 

surfaces on which molecular properties such as charge, hydrophobicity, and mutation rate can be 47 

easily mapped, implemented in the MorphProt package. Pairs of surfaces are compared to rapidly 48 

assess partner-specific potential surface complementarity. On two available benchmarks of 85 49 

overall known protein complexes, we observed F1 scores (a weighted combination of precision 50 

and recall) of 19-34% at correctly identifying protein interaction surfaces, comparable to more 51 

computationally intensive 3D docking methods in the annual Critical Assessment of PRedicted 52 

Interactions. Furthermore, we examined the effect of molecular motion through normal mode 53 

simulation on a benchmark receptor-ligand pair and observed no marked loss of predictive 54 

accuracy for distortions of up to 6 Å RMSD. Thus, a cuboid transformation of protein surfaces 55 

retains considerable information about surface complementarity, offers enhanced speed of 56 

comparison relative to more complex geometric representations, and exhibits tolerance to 57 

conformational changes.   58 

  59 
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INTRODUCTION 60 
 61 

Proteins often assemble into multi-protein complexes as their native forms, mediated by 62 

pairwise (or higher-order) protein-protein interactions. Knowledge of the participating protein-63 

protein interfaces involved in forming these complexes is thus critical for understanding and 64 

perturbing protein function in a cellular context. Most of our understanding about the contact 65 

surfaces by which proteins interact has been from direct experimental determination using 66 

techniques such as X-ray crystallography and electron microscopy1, 2, but these methods remain 67 

costly and laborious. Other, more indirect experimental techniques, including mutagenesis3, 4, 68 

mass spectrometry5, and cross-linking analysis6, can also illuminate the specific residues that 69 

participate in these interaction interfaces. These techniques give partial information about the 70 

three-dimensional (3D) information on the assembly of complexes, and new integrative 71 

computational modeling strategies are increasingly able to consider such data as distance 72 

restraints to infer 3D structures7-10. To complement such experimentally-led approaches, there 73 

has also been a strong push to develop better computational approaches for predicting protein 74 

interaction interfaces directly from protein amino acid sequences and 3D structures.  75 

Importantly, the prediction of protein-protein interaction interfaces is of substantially lower 76 

computational complexity than the problem of predicting or folding a 3D protein structure based 77 

on its linear amino acid sequence, as interface predictions (for example, by molecular docking) 78 

are limited to 6 degrees of rotational and translation freedom and a sampling of accompanying 79 

intramolecular motions that might occur upon binding11. Ideally, successful interface predictors 80 

would go beyond predicting pairwise interactions and be useful to assemble large molecular 81 

machines from individual subunits. 82 

Such predictions are complicated by the fact that protein-protein interactions may take 83 

quite different forms, and interactions can be categorized in various ways, including obligate and 84 

non-obligate, permanent and transient, and strong and weak12. Obligate complexes consist of 85 
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proteins that are not stable on their own and depend on cooperative folding between the subunits, 86 

while non-obligate complexes form from proteins that fold alone and take part in transient or 87 

permanent protein interactions. Transient interactions can be further divided into strong and weak 88 

interactions. Several studies have determined trends in residues that form protein interfaces. For 89 

example, transient interactions have been observed to have similar proportions of hydrophobic 90 

residues on both the interaction interface and the remaining surface of the protein. However, 91 

because these interfaces are rich in water molecules13, there tend to be a larger number of polar 92 

residues along the interface14. Additionally, many of the forces driving these interactions derive 93 

from weak electrostatic charge15. Thus, computational approaches face a significant challenge in 94 

having to predict contact interfaces that may vary significantly based on the relevant class of 95 

protein-protein interaction for any particular interface. 96 

Computational approaches for determining how proteins interact include predictions of 97 

interaction interfaces or docking of protein structures, where the former informs the latter. It has 98 

been shown that knowledge of an interaction interface can greatly improve the prediction of the 99 

conformation of the proteins that are interacting16. Interface predictors may be divided into two 100 

groups: intrinsic- and template-based approaches17. Intrinsic-based approaches focus on 101 

features within the protein sequence or the protein structure. Template-based approaches search 102 

through databases of protein complexes with known structures and use these interfaces to make 103 

predictions18. However, the latter approach requires prior structural information for the protein(s) 104 

of interest. Intrinsic-based approaches take either sequence information or structural information 105 

as the input of the predictor. Enhancing the intrinsic-based approaches may be challenging, as a 106 

review of previous literature found that the addition of more features does not improve 107 

predictions17. 108 

Sequence-based predictors utilize protein sequence information to either feed different 109 

amino acid properties into a machine learning classifier or sequence alignment tools. Sequence 110 

alignment methods assume that proteins of similar sequences have similar binding partners and 111 
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therefore binding sites18. Many machine learning techniques focus on features of neighboring 112 

residues, where the size of the window of residues ranges from 9 to 21 amino acids18. However, 113 

proximity in sequence does not necessarily reflect proximity in structure, demonstrating one of 114 

the benefits of incorporating structural information into the interface predictions. Some techniques 115 

have taken an intermediate approach where the proteins are represented by a network where 116 

individual nodes represent residues and residue properties, while edges represent structural 117 

information providing some spatial resolution19, 20.    118 

Structure-based predictors utilize structural information from either experimental data or 119 

homology modeling as a constraint in formulating their prediction. Previous studies showed that 120 

the quality of the prediction is dependent on the quality of the structure and that homology models 121 

produce less accurate predictions18. One such structural approach involves dividing a protein 122 

surface into patches and using these patches to predict interaction sites. Patches are defined as 123 

either the n closest residues where n depends on the size of the protein or a set size for all 124 

proteins21, 22. For these methods, patch size is predetermined and uniform, causing problems for 125 

predicting interfaces of proteins with multiple binding partners or if the defined surface patch does 126 

not accurately reflect the size of the true interface21. Many predictors ignore the binding partner; 127 

however, utilizing the binding partner has been shown to improve predictions17.  128 

Partner-specific interface predictors, which account for all participating proteins in the 129 

interaction are less common but have the benefit of considering complementarity between specific 130 

proteins. Partner-specific predictors use structures or sequences of two proteins that are assumed 131 

to interact in predicting the interaction interface for each protein17. A partner-specific approach 132 

allows the user to consider complementarity, which plays a central role in molecular recognition. 133 

Proteins that promiscuously bind to multiple partners present a unique challenge for predicting 134 

interfaces. These multiple binding partners may all bind at the same site, or they may bind at 135 

multiple sites on the protein surface23. While recent studies highlight the ability of current 136 
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predictors to separate non-binding from binding residues on individual proteins, these predictors 137 

fail to distinguish partner-specific interaction sites resulting in cross-prediction between sites18. 138 

Currently, many partner-specific approaches exist for predicting interactions. A majority of 139 

these methods use the primary sequence and homology searches to make predictions. PAIRpred 140 

utilizes a support vector machine classifier for predicting partner-specific interaction interfaces24. 141 

While this approach employs multiple features, the features included in the classifier are all based 142 

on solvent accessible surface area, which cannot account for proteins that undergo a dramatic 143 

conformational change during binding. Another partner-specific tool is PPIPP. PPIPP uses a 144 

neural network trained on interacting pairs and has been shown to outperform partner-unaware 145 

models25. Similarly, HomPPI uses sequence-homology based approaches to identify conserved 146 

regions between the partners26. Both approaches only use sequence information and do not 147 

incorporate spatial data. Many recent approaches have attempted to use multiple sequence 148 

alignments (MSAs) to predict residues that coevolve between proteins through direct coupling 149 

analysis, mutual information, or a combination of the two and show improved prediction 150 

capabilities8, 27, 28. 151 

  One important challenge that remains for partner-specific, structure-based predictors is 152 

accounting for conformational changes that occur upon binding. The performance of these 153 

methods decreases with increasing conformational rearrangements and dynamics of the protein 154 

pairs upon binding25. For this reason, we were interested in developing a reduced representation 155 

of protein structural data that does not explicitly consider shape complementarity. Here, we 156 

developed and evaluated a protein shape transformation method (MorphProt) that predicts 157 

partner-specific interaction interfaces by mapping properties of protein surfaces to cuboids and 158 

rapidly testing for complementary surface patches on these reduced geometric representations. 159 

MorphProt shows comparable predictive power to a number of more computationally intensive 160 

approaches and tolerance to structural rearrangements in the interaction partners. 161 

 162 
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MATERIALS AND METHODS 163 

Benchmark set of protein-protein interactions  164 

 To evaluate the quality of the interaction interface predictions from MorphProt, we used a 165 

benchmark set of known protein complexes. The benchmark data set for this method was version 166 

5.0 of the widely used protein-protein interaction docking benchmarks29. This benchmark set 167 

provides a large library of 230 Protein Data Bank30 (PDB) files for non-redundant complexes with 168 

varying rigidity, as well as enzyme-containing complexes and antibody-antigen complexes.  From 169 

this set, we extracted 72 complexes for which we were able to obtain mutation rate data 170 

(Supplementary Information).   171 

In addition to the protein docking benchmark 5.0, we used the protein docking gold 172 

standard, the Critical Assessment of PRedicted Interactions (CAPRI) score set31. CAPRI provides 173 

an expanded benchmark data set for evaluating scoring functions, which includes 15 published 174 

CAPRI targets. We analyzed 13 of the 15 targets. The remaining two targets did not have enough 175 

sequences to produce reliable mutation rates.  176 

 177 

Calculated properties of surfaces 178 

 The properties that were used in these analyses were charge, hydrophobicity, and 179 

mutation rate. The atomic charge was calculated using PDB2PQR32. PDB2PQR begins by 180 

rebuilding missing non-hydrogen atoms using standard amino acid topologies in conjunction with 181 

the existing atomic coordinates to determine new positions for the missing atoms. Next, hydrogen 182 

atoms are added and positioned to optimize the global hydrogen-bonding network. Finally, 183 

PDB2PQR assigns atomic charges and radii based on the AMBER force field. Here, The 184 

PDB2PQR program was run using the Opal server. 185 

 The Wimley-White hydrophobicity values33 were used in determining residue 186 

hydrophobicity. These values are semi-empirical and based on the transfer of free energies of 187 

polypeptides that show how favorable an amino acid is in a hydrophobic environment. Each atom 188 
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in the atomic structure was assigned a hydrophobicity value based on the amino acid it was 189 

representing.  190 

 Finally, the mutation rates were obtained from the ConSurf Database34. This database 191 

contains information regarding pre-calculated evolutionary conservation scores. The mutation 192 

rates stored in the database are calculated using the Rate4Site algorithm35. This method 193 

evaluates evolutionary mutation rates using a maximum likelihood estimate assuming a stochastic 194 

process. Based on this, amino acid replacement probabilities were computed for each branch of 195 

the phylogenetic tree. The tree is then used to cluster closely related sequences and find a 196 

consensus sequence for each cluster. The consensus sequences are then compared, and each 197 

position may be described as variable or conserved. The frequencies are renormalized to 198 

represent a number between 1 and 9. Finally, each of the properties described was stored in the 199 

surface of the protein structure as part of the appropriate atomic coordinate. 200 

 201 

Protein shape transformation 202 

 To reduce the dimensionality of the intricacies of protein shape, we performed a shape 203 

transformation of the 3D atomic structure into a cube. To simplify these calculations, we have 204 

created a Python library, MorphProt. The input for these calculations is a PDB file (either an atomic 205 

structure or homology model), a PQR file, and a conservation file produced by Consurf34 when 206 

considering mutation rate. First, we extracted the molecular surface using Michel Sanner’s MSMS 207 

program36, which uses a 1.4 Å diameter sphere to detect the solvent accessible surface area. 208 

Next, we calculated a residue depth for all of the amino acids in the protein sequence using the 209 

molecular surface. The residue depth was calculated using Biopython37 and was evaluated as the 210 

average depth of all atoms in a residue from the calculated surface. Amino acids were said to be 211 

contributing to the surface of the protein if their residue depth was less than 5 Å from the 212 

calculated accessible surface. We extracted the 3D coordinates for all of the atoms that satisfy 213 

these surface constraints.  214 
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After the atomic coordinates of the surface are extracted, we extract the maximum and 215 

minimum for each x, y, and z coordinate as biased centroids, equal to 6. We then used SKLearn38 216 

to perform a K-means clustering. We projected each of the clusters onto a 2D surface, creating 217 

the face of the cube. Next, we binned each face of the cube into boxes, forming a grid. For these 218 

experiments, a 25 Å2 box was used, but MorphProt allows for a customizable bin size. For each 219 

binned box, we calculated the average of each property that was stored in the box, creating a 2D 220 

matrix of values. Here, each matrix represents the face of an unfolded cube and a side of a 221 

protein. Finally, each of these numbers in the matrix may be mapped back to a location on the 222 

protein surface. 223 

 224 

Protein interaction interface prediction 225 

 We computed a 2D cross-correlation, a common pattern recognition and image 226 

processing tool, to predict areas of the protein surface with maximum interaction between 227 

properties. The cross-correlation was calculated using MorphProt. Because each protein is 228 

reduced to a total of 6 matrices, we calculated a total of 36 2D cross-correlations for each pairwise 229 

interaction. In addition, we sampled all 10-degree rotations to account, in an approximate fashion, 230 

for different orientations or positions of the initial protein structures.  231 

Next, we extracted the top ten maximum interaction scores (high scores) as putative 232 

interaction interfaces. The top ten scores represented areas of maximum interaction and 233 

complementarity. For properties such as hydrophobicity, we looked for a maximum cross-234 

correlation score as our top score because we are accessing two highly conserved regions that 235 

have the same degree of hydrophobicity or a hydrophobic/hydrophilic pocket. For charge, we took 236 

the minimum score to represent the charge complementarity that exists between interacting 237 

proteins where positively charged surfaces are likely interacting with negatively charged surfaces 238 

resulting in a net charge near 0.  239 
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 After the top ten scores were selected from the cross-correlation matrix, the score was 240 

then mapped back to the input matrices to show the position of the matrices that produced the 241 

score. Finally, the overlapping position for each matrix is mapped back to the residues in each of 242 

the overlapping areas. The final result is a list of residues for each protein that are predicted to be 243 

on the partner-specific interaction interface. 244 

 245 

Evaluation of predicted protein interaction interfaces 246 

 To evaluate our predictions, we calculated a confusion matrix to classify predicted 247 

interface residues as true positives, false positives, false negatives, and true negatives based on 248 

the predicted and actual classes. We defined a residue to be on the interaction interface if any 249 

atom from the residue is within 10 Å of an atom from the protein it is in complex with. We then 250 

evaluated our confusion matrix where the precision, recall, accuracy, and F1 score are defined 251 

accordingly: 252 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 253 

𝑅𝑒𝑐𝑎𝑙𝑙 = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 254 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 255 

𝐹5 = 2	
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 256 

 257 

Next, we used an extreme value calculation to validate the “uniqueness” of the atomic 258 

properties. We showed that their placement along the interface is not a random distribution of 259 

points but rather a clustering of some property. To calculate this, we randomly shuffled the 260 

properties associated with each atom and recalculated scores. We repeated this shuffle and 261 
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scoring 1000 times to generate a distribution. If the score was an extreme value in the distribution, 262 

then the score is statistically significant and represented a clustering of a property at that location.  263 

 264 

Simulation of structural distortion by normal mode analysis 265 

 To distort the crystal structures from the test set we used elNémo39, a normal mode 266 

analysis. elNémo predicts the possible movements of a macromolecule through low-frequency 267 

normal modes. The l and r unbound subunits of PDBID: 1FQJ from the protein-protein interaction 268 

docking benchmark was used. All default parameters were kept except for DQMIN and DQMAX, 269 

which were adjusted to 100 and 300, respectively, to allow more extreme distortion. Normal 270 

modes 1 and 2 were selected for protein r and normal modes 1 and 4 were selected for protein l. 271 

PDBs can be found in the Supplementary Information. Modes were selected based on large 272 

distortion from RMSD. 273 

 274 

RESULTS 275 

We wished to test if a highly simplified geometric representation of a 3D protein surface 276 

embedded with properties was sufficient to predict protein-protein interaction interfaces. The 277 

simplification significantly reduces computational complexity, so the question is whether the 278 

algorithm would retain its predictive power using the simplified representation and whether the 279 

simplified representation would be tolerant of possible molecular motions relevant to the 280 

interaction.  We wanted to consider protein surface properties and how opposing surfaces 281 

complement each other when forming an interface, largely independently of protein shape. For 282 

this reason, we began with a transformation of the irregular shape of a protein by considering 283 

atoms within 5 Å of the surface of the native protein. This excludes the atoms that play a role in 284 

stabilizing the protein core and presumably make less of a contribution to protein-protein 285 

interactions.  286 
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Our simplified representation is as follows: The solvent accessible surface of the protein 287 

is computed and transformed into a simplified geometric representation, the surface of a cuboid, 288 

in which the size of the cuboid is proportional to the size of the protein. The transformation thus 289 

retains an approximate representation of interface proportions. Recently, the idea of reducing 290 

proteins to simplified shapes has gained attention in structural searches40. Our shape 291 

transformation uses a K-means clustering algorithm to separate protein surface accessible amino 292 

acids into 6 distinct clusters, followed by a projection of the coordinates into two-dimensions (2D) 293 

(Fig. 1) to represent the surfaces. Each atomic coordinate is described by its unique properties. 294 

These 2D coordinates are then binned into a grid based on the transformed atomic coordinate 295 

locations, and the average property value is calculated for each square of the grid. The result is 296 

a matrix of property values where the locations of the values within the matrix represent the 297 

neighbors of the atoms on the protein surface with minimal distortion.   298 

 These reduced protein surfaces are images, making them suitable for several image 299 

processing techniques. To build a partner-specific predictor that considers surface property-300 

complementarity, we performed cross-correlation of images from two partner proteins to find an 301 

area of maximum similarity between the two images by computing a dot product at each position 302 

after rotation and translation (Fig. 2). Cross-correlations have already proven to be invaluable in 303 

various image processing techniques, including identifying single particles from electron 304 

microscopy data41. Here, this approach was used to identify an area of maximum interaction by 305 

searching and calculating a complementarity score between properties in the matrix. Because our 306 

protein surfaces were reduced into 6 matrices, one representing each side of the cube, we cross-307 

correlated each matrix of one binding partner with each matrix of its partner and generated a 308 

score for each position of the 36 cross-correlations. The highest scores represent the positions of 309 

each face of the cube where the maximum interaction occurs. The position of the matrices can 310 

be mapped back onto the protein surface that they represent. We designed a Python package 311 
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called MorphProt to perform the shape transformation, cross-correlation evaluations, and plot the 312 

predicted interface residues onto the atomic structure. 313 

 To evaluate the significance of these predictions and their contribution to the protein 314 

interface, we used an extreme value approach, which aims to illustrate the distribution of 315 

properties across the surface and identify those areas where pockets of each property form. 316 

These “property pockets” indicate an area that is likely contributing to a surface interaction. To 317 

evaluate this, we randomly shuffled each of the properties to different atomic positions on the 318 

protein surface and then recalculated our maximum interaction score with the new distribution of 319 

properties. By repeating this process 1000 times, we created a distribution of scores. We selected 320 

the unshuffled, predicted high scores from the distribution to determine if it was an extreme value 321 

(i.e. in the tail of the distribution). This analysis showed the property of interest is not randomly 322 

dispersed across the protein surface; instead, they form pockets, likely occurring on the 323 

interaction interface. 324 

To address the concern of any distortion by the shape transformation, we demonstrated 325 

that interaction interfaces are still detectable with a proof-of-concept protein pair, the alpha-326 

chymotrypsin-eglin c complex (PDBID:1ACB) (Fig. 3). We extracted the surface of each protein 327 

in the complex and set the charge property to 0 at all positions with the exception of the true 328 

interface. We defined the true interface as all atoms from one protein that are within 10 Å of an 329 

atom of the other protein in the complex.  The atoms on the true interface of alpha-chymotrypsin 330 

were assigned a charge of +1, and those on the true interface of eglin c were assigned a charge 331 

of -1. We then performed our shape transformation and cross-correlation analysis using 332 

MorphProt. The top ten interaction scores were all between the same two protein faces, which 333 

cluster along the true interface. This indicates that despite any distortion that occurs from our 334 

reduced representation of the protein surface, MorphProt was still able to identify the area of 335 

complementarity between the two surfaces. In addition, when the surface properties were 336 

shuffled, the true location of the property was identified as an extreme value. These results further 337 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 23, 2019. ; https://doi.org/10.1101/2019.12.18.880575doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.18.880575
http://creativecommons.org/licenses/by/4.0/


14 
 

support the notion that the shape transformation does not cause significant distortions and cross-338 

correlation can be used to find the true interface of complementary properties. 339 

Next, our partner-specific interaction interface predictor was used to predict the interfaces 340 

of the CAPRI score set31, a gold standard in protein docking. We predicted the interaction interface 341 

according to charge, hydrophobicity, and mutation rate of the unbound structures and mapped 342 

the prediction onto the interface of the bound structures (Fig. 4b). The interaction interface 343 

predictions were scored based on the number of true positives, precision, accuracy, and F1score 344 

for the top ten scores. The true positive, false negative, and false positive predictions are defined 345 

in Fig. 4a for each predicted interface (see Methods). The number of true positives reflects the 346 

sum of all correct predictions in the dataset. The precision, accuracy, and F1 score represent the 347 

average across the CAPRI dataset. The individual CAPRI statistics were also calculated 348 

(Supplementary Information). Overall, mutation rate is the most predictive property based on 349 

surface complementarity with an average accuracy of 61% and F1 of 28%. For charge, 350 

hydrophobicity, and mutation rate the average precision was 35%, 33%, and 42% and the 351 

average F1 score was 21%, 19%, and 28%, respectively. However, on a case-by-case basis, 352 

different properties can provide the best prediction for certain complexes. For example, in the 353 

prediction of the interface of the colicin-E2 immunity protein and the colicin-E9 complex (PDBID: 354 

2WPT, Target ID: T41), charge and hydrophobicity prove to be the most predictive properties with 355 

accuracies and F1 scores 10% higher than the predictions from mutation rate. Further 356 

examination of this complex shows that the complex is non-cognate, which explains why mutation 357 

rate is a poor predictor. Additionally, there is a disulfide bond and extensive hydrogen bonding 358 

between the interface of the two proteins42, hence the improved prediction quality of the charge 359 

and hydrophobicity based properties. In addition to the CAPRI score set, we evaluated this 360 

approach on 72 of the integrated protein-protein interaction benchmark complexes 361 

(Supplementary Information)29. We obtained similar results to the CAPRI data set for the 362 

protein-protein interaction benchmark where the average precision was 35%, 31%, and 48%, and 363 
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F1 score was 23%, 21%, and 34% for charge, hydrophobicity, and mutation rate, respectively. 364 

However, individual property predictions displayed precision and F1 scores as high as 86% and 365 

56% for mutation rate, 74% and 39% for charge, and 67% and 48% for hydrophobicity. Taken 366 

together, MorphProt can predict interaction interfaces based on surface property complementarity 367 

despite a loss of structural information.  368 

 Of primary interest for biological processes, is the assembly of large macromolecular 369 

complexes. Using Morphprot, we can perform pairwise predictions with knowledge of subunits 370 

that are directly interacting by indirect methods. We explored the assembly of a large protein 371 

complex by examining our recently published Ceru+32/GFP-17 protomer structure43, a 372 

synthetically engineered supercharged GFP 16-mer. These proteins were engineered to have 373 

oppositely charged variants of the normally monomeric green fluorescent proteins (GFP), which 374 

resulted in the assembly of a large, ordered macromolecular structure. Because the structure is 375 

known to form charge-based interactions, it served as an effective test for the ability of MorphProt 376 

to predict partner-specific interactions within a large macromolecular complex where subunits 377 

have multiple interaction interfaces. The input for MorphProt was the a and b supercharged 378 

subunits. The top ten scores accurately predicted both of the charge-based interfaces between 379 

subunits (Fig. 5). 380 

To demonstrate the advantages of using a partner-specific, surface property 381 

complementarity method, we considered two binding scenarios that present challenges for 382 

conventional interface predictors: (1) a protein that has multiple binding partners and sites and 383 

(2) a protein that undergoes a dramatic conformational change upon binding to a partner. To test 384 

the multiple-binding site scenario, we used the lysozyme and anti-lysozyme complex (PDBID: 385 

1BVK). The heavy and light chains of the anti-lysozyme form a hydrophobic zipper upon 386 

cooperative folding 44 and interact with their antigen, lysozyme (Fig. 6). Here, we accurately 387 

predicted the hydrophobic interaction between the heavy and light chains of the antibody and the 388 

charge-driven interaction between the antibody and antigen. To validate that our algorithm can 389 
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handle dramatic structural rearrangements, we tested the interleukin-1 receptor and the 390 

interleukin-1 receptor antagonist complex (PDBID: 1IRA), where the interleukin-1 receptor 391 

undergoes a dramatic conformational change upon complex formation (approx. 26.2 Å across all 392 

residue pairs). Again, we were able to accurately predict the interaction interface between the 393 

protein pair despite this large-scale structural rearrangement. 394 

Finally, we wanted to test the performance of our interface predictor on uncertain structural 395 

models produced by homology modeling or other structural prediction algorithms. In both 396 

experimental and computational structure building, there can occasionally be uncertainty 397 

regarding the exact position of the side chains and backbone of the model. By distorting one of 398 

our test proteins that produced a strong mutation rate interface prediction, we showed that our 399 

predictions remain robust even considering a structure that is distorted by up to ~6 Å (Fig. 7). The 400 

crystal structures of the unbound Gnai and RGS9 (PDBID: 1FQJ) were distorted using normal 401 

mode analysis. We used elNémo39 to compute the low-frequency normal modes of each of the 402 

structures in the complex. In the analysis, one of the subunits (receptor or ligand) was held 403 

constant, while the interface was predicted at different RMSD distortions of the other subunit 404 

(receptor or ligand). Despite different configurations of the protein backbone, we were still able to 405 

predict the interface based on the generalized property complementarity for a given section of the 406 

protein structure.  407 

 408 

DISCUSSION 409 

Here, we have demonstrated that by using a cuboid transformation to normalize the highly 410 

variable 3D protein structure to a simplified geometric shape, we are able to store layers of 411 

information on a 2D representation of a protein surface while preserving atomic neighborhoods. 412 

The resulting matrix of values contains the location of surface properties and their proximity to 413 

other values and is a direct representation of the spatial coordinates of the 3D atomic structure. 414 

We showed that converting the surface properties to an image allows us to identify areas of 415 
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maximum interaction of surface properties between two proteins via a partner-specific approach. 416 

We showed that MorphProt can also be used to construct large macromolecular assemblies. 417 

While primary sequences provide information regarding amino acid identity and adjacent 418 

residues, it can be difficult to precisely determine from sequence alone which residues reside on 419 

the surface of a protein and their relation to each other in its 3D structure. Structure-based 420 

approaches allow us to extract and investigate surface properties, providing a useful first step for 421 

interface prediction, as the spatial position of residues is essential for macromolecular 422 

recognition22.  Many machine learning interaction interface predictors exist and use structure, but 423 

the only information stored in feature vectors is statistical information for the surface patches and 424 

not the spatial arrangement of the residues22. In addition to the lack of information regarding 425 

residue neighborhoods, many of the structure-based approaches are not equipped to handle 426 

dramatic conformational changes upon binding45. We have addressed these limitations of 427 

previous methods through our shape transform by treating the protein surface as a simple 2D 428 

matrix, where the location of a value within the matrix is a representation of the location of that 429 

value on the protein surface. This novel surface-patch approach turns out to be incredibly powerful 430 

in identifying the areas of maximum interaction between structures of interacting pairs. 431 

In our approach, patch size is not predetermined; instead, it is dependent on the size of the 432 

proteins being tested and the size of overlap between protein faces for each score calculation. 433 

Traditional approaches for identifying a surface patch result in fairly uniform patch sizes21. Our 434 

method tests surface patches over a number of different sizes and arrangements because the 435 

patches are determined by the position of the cross-correlation. The first patch tested is the corner 436 

of two matrices and expands as the calculation continues, and the patches are both rotated and 437 

adjusted in size. The result is a sample of various patches and orientations, which can be used 438 

to identify the area of maximum interaction between the pair of proteins. 439 

In most structure-based interaction interface predictors, an interface is identified based on 440 

features of a given area on one of the protein surfaces, ignoring properties of a partner when 441 
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determining how they best fit together. A partner-specific predictor uses information regarding 442 

both proteins of interest. It has been shown that prediction methods that do not employ a partner-443 

specific approach have lower reliability in predicting transient binding sites46, 47, whereas a partner-444 

specific approach can identify locations that are highly conserved for transient protein-protein 445 

interactions26. A significant advantage of using a partner-specific predictor is its ability to find 446 

specific surface areas that form interactions with different partners. One significant challenge of 447 

many partner-specific predictors is their use of unbound protein structures to search for interaction 448 

interfaces17. In many biological processes, proteins undergo a dramatic conformational change 449 

upon binding, which complicates predicting an interface based on unbound structures. We have 450 

demonstrated that using a reduced surface representation of a protein in combination with stored 451 

information of highly predictive properties, we can make partner-specific interface predictions for 452 

unbound proteins, including those that undergo at least moderate structural rearrangements, an 453 

important feature for building multi-protein assemblies. 454 

Our results using MorphProt are promising when compared to other available partner-specific 455 

interaction predictors. The developers of PAIRpred reported the identification of a true positive in 456 

the top 15 predictions for 7 of the 9 complexes tested using the CAPRI score-set. PAIRpred was 457 

unable to predict for targets 3FM8 (T39) and 2VDU (T29). These targets have been reported as 458 

being challenging complexes to evaluate in CAPRI24. However, MorphProt yielded accurate 459 

predictions for 2VDU based on mutation rate (78% accuracy and F1 score of 48%) and 3FM8 460 

based on hydrophobicity (73% accuracy and F1 score of 25%). From the results of CAPRI rounds 461 

15-19, T32, T35, T36, T38, and T39 presented the greatest challenges for docking predictors48. 462 

While we did not test T35 or T38, our interface predictions for the remaining targets remain robust. 463 

3BX1 had an interaction interface prediction accuracy of 65% and F1 score of 24%, while 2W5F 464 

(T36) had an interaction interface prediction accuracy of 73% and an F1 score of 21% (T39 465 

summarized above).  Taken together, these results show that MorphProt can perform accurate 466 
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and precise interface predictions for some of the most challenging CAPRI targets despite not 467 

considering shape. 468 

Furthermore, we showed that despite introduced structural distortion, we are still able to 469 

predict interfaces based on complementarity. This is increasingly important for predicting 470 

interaction interfaces with the widespread use of homology models and lower-resolution 471 

structures. Here, greater weight is put on the neighborhoods of properties on the surface rather 472 

than their exact location. The ability to predict the interface for homology models is significant for 473 

assembling macromolecular complexes where little is known regarding the structure of the 474 

individual subunits. Theoretically, one could produce models for the subunits and then arrange 475 

them according to their interaction interfaces to predict the structure for large assemblies. Such 476 

analyses would also benefit from protein docking following the interface prediction to improve 477 

positioning.  478 

While discrepancies between interface prediction and protein docking occur often, the 479 

techniques are effective when used in conjunction with one another. Protein-protein docking is a 480 

partner-specific technique that is highly dependent on shape complementarity and energetics22. 481 

One of the limitations of protein-protein docking is the large sample size that must be tested and 482 

then scored by an energy function to produce a prediction of the arrangement of two proteins. 483 

The number of arrangements would be drastically reduced by using an interface prediction as a 484 

preliminary step before docking. Previous studies showed that using a partner-specific, homology-485 

based interface prediction prior to docking significantly improves the scoring of the docked 486 

proteins49. Notably, the HADDOCK server allows for the incorporation of a predicted interaction 487 

interface, however, this interface is computed from a single protein rather than a partner-specific 488 

interface50. Incorporating our interface prediction into a protein-protein docking pipeline would 489 

increase computational efficiency because it is independent of shape complementarity and 490 

energetics.  491 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 23, 2019. ; https://doi.org/10.1101/2019.12.18.880575doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.18.880575
http://creativecommons.org/licenses/by/4.0/


20 
 

Another significant application of partner-specific interaction interface predictor is the 492 

screening of small molecule inhibitors or drugs. These often interact via transient interactions22, 493 

making predicting transient interactions imperative. Small molecules that interact with protein-494 

protein interfaces and alter these interactions have demonstrated to be effective drugs and the 495 

prediction of these interfaces could be useful in finding potential targets51.  This poses a challenge 496 

because many protein interfaces have been described as large, featureless surfaces that lack 497 

obvious binding pockets52. Because our method reduces the protein surface to essentially the 498 

same, we would likely be able to make more accurate predictions using physicochemical 499 

properties stored on the surface of the protein. Furthermore, predictions and scores for small 500 

molecule inhibitors or drugs could be optimized by understanding the area of interaction produced 501 

by our method. 502 

 503 

CONCLUSIONS 504 

To address the inherent variability of protein shape, conformational changes, and structural 505 

approximations while reducing computation time, we were interested in determining if a simplified 506 

geometry retains enough spatial information to predict interaction interfaces based on 507 

complementary properties. Specifically, our aim was to develop a pipeline that was robust to 508 

molecular motions while gaining computational power to assemble larger multimeric protein 509 

complexes. Using MorphProt, we performed a cuboid transformation of the accessible surface of 510 

a protein into the surface of a cuboid. This reduced representation allows for easy storage of 511 

intrinsic properties of the protein such as hydrophobicity, charge, and mutation rate to be 512 

embedded within each surface image. The result is a quantitative description of these properties 513 

across a protein surface enabling image processing techniques to identify complementarity 514 

between the properties of two interacting protein surfaces. We show this method can be useful 515 

when one of the above properties is the driving force of the interaction. MorphProt was able to 516 

predict interaction interfaces for the unbound CAPRI targets and the protein-protein interaction 517 
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benchmark complexes with comparable results to a number of other predictors. Additionally, 518 

MorphProt was able to predict interfaces for a large 16-subunit oligomer, proteins with multiple 519 

binding sites, and crystal structures that have been distorted by up to ~6 Å to mimic models built 520 

from lower resolution density maps or imperfect homology models, demonstrating a utility to 521 

integrated platforms that aim to assemble complicated protein complexes. 522 
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 706 
Fig. 1: Shape transformation of a protein into a cuboid. a, K-means surface clustering of a 707 
representative protein structure (PDBID: 1A2K) reduced to a cube. b, The atomic properties of 708 
each face are binned based on their coordinates (default side length is 5 Å). Average property 709 
values are calculated for each box. c, The property matrices can be mapped back to the original 710 
structure. Potential properties include charge, hydrophobicity, and mutation rate. 711 
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 715 
 716 
Fig. 2:  The MorphProt pipeline for interaction interface prediction. The program uses a PDB 717 
as input to generate the cube transformation, which is then unwrapped into 6 matrices.  Cross-718 
correlations between the faces of the two proteins of interest are calculated. The area of maximum 719 
interaction based on complementary is selected from the cross-correlation matrices and mapped 720 
back onto the protein structure. In this example, the interaction interface between protein Numb 721 
homolog (light blue) and its ligand/inhibitor PTBi peptide (gold) was predicted using charge 722 
(PDBID:5NJJ). Positive and negative charges are depicted by red and blue, respectively. In the 723 
cross-correlation matrix, the darkest red represents the maximum interaction. 724 
 725 
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 728 
Fig. 3: Demonstration of detectable interfaces using the cuboid transformation. a, The 729 
experimentally determined structure of the alpha-chymotrypsin-elgin c protein complex 730 
(PDBID:1ACB). All charge values were set to 0 on the surface of both proteins. The ligand or l 731 
(gold) interface residues were set to -1 and the receptor or r (light blue) interface residues were 732 
set to +1. The predicted interface (red) was mapped onto the protein complex. b, The table shows 733 
the faces of the top 10 scores. The interface percent shows the percent of residues that are within 734 
10 Å of the partner protein. c, The cross-correlation scores produced from 1000 shuffles of the 735 
engineered charge property across the surface of the protein. The point represents the top score 736 
from the prediction.  737 
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 738 
Fig. 4: MorphProt validation with the CAPRI score set. a, True positive, false negative, and 739 
false positive residue predictions are shown for a representative protein (PDBID: 2REX). The 740 
results for the CAPRI score set are summarized in the table. Red, pink, and green represent 741 
charge, hydrophobicity, and mutation rate, respectively. b, Results of six representative CAPRI 742 
score set protein complexes (PDBID: 2VDU, 3FM8, 4JW3, 2W83, 3E8L, 2W5F) are depicted. 743 
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 773 
Fig. 5: An example of MorphProt applied to predict contact interfaces in a large multimeric 774 
protein assembly. MorphProt predicts interfaces of the Ceru+32/GFP-17 protomer (PDBID: 775 
6MDR) between the alpha and beta subunits. The charge predicted interface is shown (red) for a 776 
score 2 and b score 9 predictions of the top 10 scores. 777 
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 783 
Fig. 6: MorphProt successfully predicts interfaces for challenging binding scenarios. a, For 784 
proteins with multiple binding sites, MorphProt can predict each distinct partner-specific 785 
interaction interface. Shown is the antibody-antigen interaction between lysozyme and anti-786 
lysozyme (PDBID: 1BVK). The interaction interface between the heavy chain and the light chain 787 
of the anti-lysozyme is predicted using hydrophobicity, while the interaction interface between the 788 
anti-lysozyme chains and lysozyme are predicted using charge.  b, Because MorphProt utilizes 789 
charge, hydrophobicity, and mutation rate to predict interfaces, it accurately predicts binding 790 
pockets for proteins that undergo dramatic structural rearrangements. Depicted is the interleukin-791 
1 receptor and the interleukin-1 receptor–antagonist complex (PDBID:1IRA) interface. As shown 792 
from the unbound and bound structure, the receptor undergoes a striking conformational change 793 
upon antagonist binding. 794 
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Fig. 7: MorphProt can predict interaction interfaces despite structural distortion. a, 798 
Unbound structure of Gnai and RGS9 (PDBID: 1FQJ). The ligand and receptor are depicted in 799 
gold and blue, respectively. The interface is predicted using mutation rate. The predicted interface 800 
is colored green on the bound structure. b, The receptor and ligand were distorted using elNémo 801 
normal mode analysis. While the receptor was distorted up to ~6 Å, the ligand was held constant 802 
and vice versa. The interfaces were again predicted using mutation rate and the distorted 803 
structure. The close-up depicts the native structure (grey) superimposed onto the distorted 804 
structure to show the change in position of residues on the interface. The predicted interface is 805 
mapped onto the distorted structure. c, The precision-recall curves and diagnostic table show that 806 
there is little change in the prediction despite structural distortion for multiple distorted protein 807 
structures. The true positive, false, positive, and false negative parameters are illustrated in Fig.3.   808 
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