

1
2
3
4
5
6
7
**8 Simplified geometric representations of protein structures
9 identify complementary interaction interfaces**
10

11
12
13 Caitlyn L. McCafferty^{1-3*}, Edward M. Marcotte^{1-3*}, David W. Taylor^{1-4*}
14

15 ¹Department of Molecular Biosciences

16 ²Center for Systems and Synthetic Biology

17 ³Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712,
18 USA

19 ⁴LIVESTRONG Cancer Institutes, Dell Medical School, Austin, TX 78712, USA

20
21
22
23
24
25
26
27
28
29
30
31
32 *Correspondence: clmccafferty@utexas.edu, marcotte@icmb.utexas.edu, dtaylor@utexas.edu
33
34

35 **ABSTRACT**

36

37 Protein-protein interactions are critical to protein function, but three-dimensional (3D)
38 arrangements of interacting proteins have proven hard to predict, even given the identities and
39 3D structures of the interacting partners. Specifically, identifying the relevant pairwise interaction
40 surfaces remains difficult, often relying on shape complementarity with molecular docking while
41 accounting for molecular motions to optimize rigid 3D translations and rotations. However, such
42 approaches can be computationally expensive, and faster, less accurate approximations may
43 prove useful for large-scale prediction and assembly of 3D structures of multi-protein complexes.
44 We asked if a reduced representation of protein geometry retains enough information about
45 molecular properties to predict pairwise protein interaction interfaces that are tolerant of limited
46 structural rearrangements. Here, we describe a cuboid transformation of 3D protein accessible
47 surfaces on which molecular properties such as charge, hydrophobicity, and mutation rate can be
48 easily mapped, implemented in the MorphProt package. Pairs of surfaces are compared to rapidly
49 assess partner-specific potential surface complementarity. On two available benchmarks of 85
50 overall known protein complexes, we observed F1 scores (a weighted combination of precision
51 and recall) of 19-34% at correctly identifying protein interaction surfaces, comparable to more
52 computationally intensive 3D docking methods in the annual Critical Assessment of PRedicted
53 Interactions. Furthermore, we examined the effect of molecular motion through normal mode
54 simulation on a benchmark receptor-ligand pair and observed no marked loss of predictive
55 accuracy for distortions of up to 6 Å RMSD. Thus, a cuboid transformation of protein surfaces
56 retains considerable information about surface complementarity, offers enhanced speed of
57 comparison relative to more complex geometric representations, and exhibits tolerance to
58 conformational changes.

59

60 **INTRODUCTION**

61

62 Proteins often assemble into multi-protein complexes as their native forms, mediated by
63 pairwise (or higher-order) protein-protein interactions. Knowledge of the participating protein-
64 protein interfaces involved in forming these complexes is thus critical for understanding and
65 perturbing protein function in a cellular context. Most of our understanding about the contact
66 surfaces by which proteins interact has been from direct experimental determination using
67 techniques such as X-ray crystallography and electron microscopy^{1, 2}, but these methods remain
68 costly and laborious. Other, more indirect experimental techniques, including mutagenesis^{3, 4},
69 mass spectrometry⁵, and cross-linking analysis⁶, can also illuminate the specific residues that
70 participate in these interaction interfaces. These techniques give partial information about the
71 three-dimensional (3D) information on the assembly of complexes, and new integrative
72 computational modeling strategies are increasingly able to consider such data as distance
73 restraints to infer 3D structures⁷⁻¹⁰. To complement such experimentally-led approaches, there
74 has also been a strong push to develop better computational approaches for predicting protein
75 interaction interfaces directly from protein amino acid sequences and 3D structures.

76 Importantly, the prediction of protein-protein interaction interfaces is of substantially lower
77 computational complexity than the problem of predicting or folding a 3D protein structure based
78 on its linear amino acid sequence, as interface predictions (for example, by molecular docking)
79 are limited to 6 degrees of rotational and translation freedom and a sampling of accompanying
80 intramolecular motions that might occur upon binding¹¹. Ideally, successful interface predictors
81 would go beyond predicting pairwise interactions and be useful to assemble large molecular
82 machines from individual subunits.

83 Such predictions are complicated by the fact that protein-protein interactions may take
84 quite different forms, and interactions can be categorized in various ways, including obligate and
85 non-obligate, permanent and transient, and strong and weak¹². Obligate complexes consist of

86 proteins that are not stable on their own and depend on cooperative folding between the subunits,
87 while non-obligate complexes form from proteins that fold alone and take part in transient or
88 permanent protein interactions. Transient interactions can be further divided into strong and weak
89 interactions. Several studies have determined trends in residues that form protein interfaces. For
90 example, transient interactions have been observed to have similar proportions of hydrophobic
91 residues on both the interaction interface and the remaining surface of the protein. However,
92 because these interfaces are rich in water molecules¹³, there tend to be a larger number of polar
93 residues along the interface¹⁴. Additionally, many of the forces driving these interactions derive
94 from weak electrostatic charge¹⁵. Thus, computational approaches face a significant challenge in
95 having to predict contact interfaces that may vary significantly based on the relevant class of
96 protein-protein interaction for any particular interface.

97 Computational approaches for determining how proteins interact include predictions of
98 interaction interfaces or docking of protein structures, where the former informs the latter. It has
99 been shown that knowledge of an interaction interface can greatly improve the prediction of the
100 conformation of the proteins that are interacting¹⁶. Interface predictors may be divided into two
101 groups: intrinsic- and template-based approaches¹⁷. Intrinsic-based approaches focus on
102 features within the protein sequence or the protein structure. Template-based approaches search
103 through databases of protein complexes with known structures and use these interfaces to make
104 predictions¹⁸. However, the latter approach requires prior structural information for the protein(s)
105 of interest. Intrinsic-based approaches take either sequence information or structural information
106 as the input of the predictor. Enhancing the intrinsic-based approaches may be challenging, as a
107 review of previous literature found that the addition of more features does not improve
108 predictions¹⁷.

109 Sequence-based predictors utilize protein sequence information to either feed different
110 amino acid properties into a machine learning classifier or sequence alignment tools. Sequence
111 alignment methods assume that proteins of similar sequences have similar binding partners and

112 therefore binding sites¹⁸. Many machine learning techniques focus on features of neighboring
113 residues, where the size of the window of residues ranges from 9 to 21 amino acids¹⁸. However,
114 proximity in sequence does not necessarily reflect proximity in structure, demonstrating one of
115 the benefits of incorporating structural information into the interface predictions. Some techniques
116 have taken an intermediate approach where the proteins are represented by a network where
117 individual nodes represent residues and residue properties, while edges represent structural
118 information providing some spatial resolution^{19, 20}.

119 Structure-based predictors utilize structural information from either experimental data or
120 homology modeling as a constraint in formulating their prediction. Previous studies showed that
121 the quality of the prediction is dependent on the quality of the structure and that homology models
122 produce less accurate predictions¹⁸. One such structural approach involves dividing a protein
123 surface into patches and using these patches to predict interaction sites. Patches are defined as
124 either the n closest residues where n depends on the size of the protein or a set size for all
125 proteins^{21, 22}. For these methods, patch size is predetermined and uniform, causing problems for
126 predicting interfaces of proteins with multiple binding partners or if the defined surface patch does
127 not accurately reflect the size of the true interface²¹. Many predictors ignore the binding partner;
128 however, utilizing the binding partner has been shown to improve predictions¹⁷.

129 Partner-specific interface predictors, which account for all participating proteins in the
130 interaction are less common but have the benefit of considering complementarity between specific
131 proteins. Partner-specific predictors use structures or sequences of two proteins that are assumed
132 to interact in predicting the interaction interface for each protein¹⁷. A partner-specific approach
133 allows the user to consider complementarity, which plays a central role in molecular recognition.
134 Proteins that promiscuously bind to multiple partners present a unique challenge for predicting
135 interfaces. These multiple binding partners may all bind at the same site, or they may bind at
136 multiple sites on the protein surface²³. While recent studies highlight the ability of current

137 predictors to separate non-binding from binding residues on individual proteins, these predictors
138 fail to distinguish partner-specific interaction sites resulting in cross-prediction between sites¹⁸.

139 Currently, many partner-specific approaches exist for predicting interactions. A majority of
140 these methods use the primary sequence and homology searches to make predictions. PAIRpred
141 utilizes a support vector machine classifier for predicting partner-specific interaction interfaces²⁴.
142 While this approach employs multiple features, the features included in the classifier are all based
143 on solvent accessible surface area, which cannot account for proteins that undergo a dramatic
144 conformational change during binding. Another partner-specific tool is PPIPP. PPIPP uses a
145 neural network trained on interacting pairs and has been shown to outperform partner-unaware
146 models²⁵. Similarly, HomPPI uses sequence-homology based approaches to identify conserved
147 regions between the partners²⁶. Both approaches only use sequence information and do not
148 incorporate spatial data. Many recent approaches have attempted to use multiple sequence
149 alignments (MSAs) to predict residues that coevolve between proteins through direct coupling
150 analysis, mutual information, or a combination of the two and show improved prediction
151 capabilities^{8, 27, 28}.

152 One important challenge that remains for partner-specific, structure-based predictors is
153 accounting for conformational changes that occur upon binding. The performance of these
154 methods decreases with increasing conformational rearrangements and dynamics of the protein
155 pairs upon binding²⁵. For this reason, we were interested in developing a reduced representation
156 of protein structural data that does not explicitly consider shape complementarity. Here, we
157 developed and evaluated a protein shape transformation method (MorphProt) that predicts
158 partner-specific interaction interfaces by mapping properties of protein surfaces to cuboids and
159 rapidly testing for complementary surface patches on these reduced geometric representations.
160 MorphProt shows comparable predictive power to a number of more computationally intensive
161 approaches and tolerance to structural rearrangements in the interaction partners.

162

163 **MATERIALS AND METHODS**

164 *Benchmark set of protein-protein interactions*

165 To evaluate the quality of the interaction interface predictions from MorphProt, we used a
166 benchmark set of known protein complexes. The benchmark data set for this method was version
167 5.0 of the widely used protein-protein interaction docking benchmarks²⁹. This benchmark set
168 provides a large library of 230 Protein Data Bank³⁰ (PDB) files for non-redundant complexes with
169 varying rigidity, as well as enzyme-containing complexes and antibody-antigen complexes. From
170 this set, we extracted 72 complexes for which we were able to obtain mutation rate data
171 (**Supplementary Information**).

172 In addition to the protein docking benchmark 5.0, we used the protein docking gold
173 standard, the Critical Assessment of PRedicted Interactions (CAPRI) score set³¹. CAPRI provides
174 an expanded benchmark data set for evaluating scoring functions, which includes 15 published
175 CAPRI targets. We analyzed 13 of the 15 targets. The remaining two targets did not have enough
176 sequences to produce reliable mutation rates.

177

178 *Calculated properties of surfaces*

179 The properties that were used in these analyses were charge, hydrophobicity, and
180 mutation rate. The atomic charge was calculated using PDB2PQR³². PDB2PQR begins by
181 rebuilding missing non-hydrogen atoms using standard amino acid topologies in conjunction with
182 the existing atomic coordinates to determine new positions for the missing atoms. Next, hydrogen
183 atoms are added and positioned to optimize the global hydrogen-bonding network. Finally,
184 PDB2PQR assigns atomic charges and radii based on the AMBER force field. Here, The
185 PDB2PQR program was run using the Opal server.

186 The Wimley-White hydrophobicity values³³ were used in determining residue
187 hydrophobicity. These values are semi-empirical and based on the transfer of free energies of
188 polypeptides that show how favorable an amino acid is in a hydrophobic environment. Each atom

189 in the atomic structure was assigned a hydrophobicity value based on the amino acid it was
190 representing.

191 Finally, the mutation rates were obtained from the ConSurf Database³⁴. This database
192 contains information regarding pre-calculated evolutionary conservation scores. The mutation
193 rates stored in the database are calculated using the Rate4Site algorithm³⁵. This method
194 evaluates evolutionary mutation rates using a maximum likelihood estimate assuming a stochastic
195 process. Based on this, amino acid replacement probabilities were computed for each branch of
196 the phylogenetic tree. The tree is then used to cluster closely related sequences and find a
197 consensus sequence for each cluster. The consensus sequences are then compared, and each
198 position may be described as variable or conserved. The frequencies are renormalized to
199 represent a number between 1 and 9. Finally, each of the properties described was stored in the
200 surface of the protein structure as part of the appropriate atomic coordinate.

201

202 *Protein shape transformation*

203 To reduce the dimensionality of the intricacies of protein shape, we performed a shape
204 transformation of the 3D atomic structure into a cube. To simplify these calculations, we have
205 created a Python library, MorphProt. The input for these calculations is a PDB file (either an atomic
206 structure or homology model), a PQR file, and a conservation file produced by Consurf³⁴ when
207 considering mutation rate. First, we extracted the molecular surface using Michel Sanner's MSMS
208 program³⁶, which uses a 1.4 Å diameter sphere to detect the solvent accessible surface area.
209 Next, we calculated a residue depth for all of the amino acids in the protein sequence using the
210 molecular surface. The residue depth was calculated using Biopython³⁷ and was evaluated as the
211 average depth of all atoms in a residue from the calculated surface. Amino acids were said to be
212 contributing to the surface of the protein if their residue depth was less than 5 Å from the
213 calculated accessible surface. We extracted the 3D coordinates for all of the atoms that satisfy
214 these surface constraints.

215 After the atomic coordinates of the surface are extracted, we extract the maximum and
216 minimum for each x, y, and z coordinate as biased centroids, equal to 6. We then used SKLearn³⁸
217 to perform a K-means clustering. We projected each of the clusters onto a 2D surface, creating
218 the face of the cube. Next, we binned each face of the cube into boxes, forming a grid. For these
219 experiments, a 25 Å² box was used, but MorphProt allows for a customizable bin size. For each
220 binned box, we calculated the average of each property that was stored in the box, creating a 2D
221 matrix of values. Here, each matrix represents the face of an unfolded cube and a side of a
222 protein. Finally, each of these numbers in the matrix may be mapped back to a location on the
223 protein surface.

224

225 *Protein interaction interface prediction*

226 We computed a 2D cross-correlation, a common pattern recognition and image
227 processing tool, to predict areas of the protein surface with maximum interaction between
228 properties. The cross-correlation was calculated using MorphProt. Because each protein is
229 reduced to a total of 6 matrices, we calculated a total of 36 2D cross-correlations for each pairwise
230 interaction. In addition, we sampled all 10-degree rotations to account, in an approximate fashion,
231 for different orientations or positions of the initial protein structures.

232 Next, we extracted the top ten maximum interaction scores (high scores) as putative
233 interaction interfaces. The top ten scores represented areas of maximum interaction and
234 complementarity. For properties such as hydrophobicity, we looked for a maximum cross-
235 correlation score as our top score because we are accessing two highly conserved regions that
236 have the same degree of hydrophobicity or a hydrophobic/hydrophilic pocket. For charge, we took
237 the minimum score to represent the charge complementarity that exists between interacting
238 proteins where positively charged surfaces are likely interacting with negatively charged surfaces
239 resulting in a net charge near 0.

240 After the top ten scores were selected from the cross-correlation matrix, the score was
241 then mapped back to the input matrices to show the position of the matrices that produced the
242 score. Finally, the overlapping position for each matrix is mapped back to the residues in each of
243 the overlapping areas. The final result is a list of residues for each protein that are predicted to be
244 on the partner-specific interaction interface.

245

246 *Evaluation of predicted protein interaction interfaces*

247 To evaluate our predictions, we calculated a confusion matrix to classify predicted
248 interface residues as true positives, false positives, false negatives, and true negatives based on
249 the predicted and actual classes. We defined a residue to be on the interaction interface if any
250 atom from the residue is within 10 Å of an atom from the protein it is in complex with. We then
251 evaluated our confusion matrix where the precision, recall, accuracy, and F1 score are defined
252 accordingly:

253
$$Precision = \frac{TP}{TP + FP}$$

254
$$Recall = \frac{TP}{TP + FN}$$

255
$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

256
$$F_1 = 2 \frac{Precision * Recall}{Precision + Recall}$$

257

258 Next, we used an extreme value calculation to validate the “uniqueness” of the atomic
259 properties. We showed that their placement along the interface is not a random distribution of
260 points but rather a clustering of some property. To calculate this, we randomly shuffled the
261 properties associated with each atom and recalculated scores. We repeated this shuffle and

262 scoring 1000 times to generate a distribution. If the score was an extreme value in the distribution,
263 then the score is statistically significant and represented a clustering of a property at that location.

264

265 *Simulation of structural distortion by normal mode analysis*

266 To distort the crystal structures from the test set we used elNémo³⁹, a normal mode
267 analysis. elNémo predicts the possible movements of a macromolecule through low-frequency
268 normal modes. The l and r unbound subunits of PDBID: 1FQJ from the protein-protein interaction
269 docking benchmark was used. All default parameters were kept except for DQMIN and DQMAX,
270 which were adjusted to 100 and 300, respectively, to allow more extreme distortion. Normal
271 modes 1 and 2 were selected for protein r and normal modes 1 and 4 were selected for protein l.
272 PDBs can be found in the **Supplementary Information**. Modes were selected based on large
273 distortion from RMSD.

274

275 **RESULTS**

276 We wished to test if a highly simplified geometric representation of a 3D protein surface
277 embedded with properties was sufficient to predict protein-protein interaction interfaces. The
278 simplification significantly reduces computational complexity, so the question is whether the
279 algorithm would retain its predictive power using the simplified representation and whether the
280 simplified representation would be tolerant of possible molecular motions relevant to the
281 interaction. We wanted to consider protein surface properties and how opposing surfaces
282 complement each other when forming an interface, largely independently of protein shape. For
283 this reason, we began with a transformation of the irregular shape of a protein by considering
284 atoms within 5 Å of the surface of the native protein. This excludes the atoms that play a role in
285 stabilizing the protein core and presumably make less of a contribution to protein-protein
286 interactions.

287 Our simplified representation is as follows: The solvent accessible surface of the protein
288 is computed and transformed into a simplified geometric representation, the surface of a cuboid,
289 in which the size of the cuboid is proportional to the size of the protein. The transformation thus
290 retains an approximate representation of interface proportions. Recently, the idea of reducing
291 proteins to simplified shapes has gained attention in structural searches⁴⁰. Our shape
292 transformation uses a K-means clustering algorithm to separate protein surface accessible amino
293 acids into 6 distinct clusters, followed by a projection of the coordinates into two-dimensions (2D)
294 (**Fig. 1**) to represent the surfaces. Each atomic coordinate is described by its unique properties.
295 These 2D coordinates are then binned into a grid based on the transformed atomic coordinate
296 locations, and the average property value is calculated for each square of the grid. The result is
297 a matrix of property values where the locations of the values within the matrix represent the
298 neighbors of the atoms on the protein surface with minimal distortion.

299 These reduced protein surfaces are images, making them suitable for several image
300 processing techniques. To build a partner-specific predictor that considers surface property-
301 complementarity, we performed cross-correlation of images from two partner proteins to find an
302 area of maximum similarity between the two images by computing a dot product at each position
303 after rotation and translation (**Fig. 2**). Cross-correlations have already proven to be invaluable in
304 various image processing techniques, including identifying single particles from electron
305 microscopy data⁴¹. Here, this approach was used to identify an area of maximum interaction by
306 searching and calculating a complementarity score between properties in the matrix. Because our
307 protein surfaces were reduced into 6 matrices, one representing each side of the cube, we cross-
308 correlated each matrix of one binding partner with each matrix of its partner and generated a
309 score for each position of the 36 cross-correlations. The highest scores represent the positions of
310 each face of the cube where the maximum interaction occurs. The position of the matrices can
311 be mapped back onto the protein surface that they represent. We designed a Python package

312 called MorphProt to perform the shape transformation, cross-correlation evaluations, and plot the
313 predicted interface residues onto the atomic structure.

314 To evaluate the significance of these predictions and their contribution to the protein
315 interface, we used an extreme value approach, which aims to illustrate the distribution of
316 properties across the surface and identify those areas where pockets of each property form.
317 These “property pockets” indicate an area that is likely contributing to a surface interaction. To
318 evaluate this, we randomly shuffled each of the properties to different atomic positions on the
319 protein surface and then recalculated our maximum interaction score with the new distribution of
320 properties. By repeating this process 1000 times, we created a distribution of scores. We selected
321 the unshuffled, predicted high scores from the distribution to determine if it was an extreme value
322 (i.e. in the tail of the distribution). This analysis showed the property of interest is not randomly
323 dispersed across the protein surface; instead, they form pockets, likely occurring on the
324 interaction interface.

325 To address the concern of any distortion by the shape transformation, we demonstrated
326 that interaction interfaces are still detectable with a proof-of-concept protein pair, the alpha-
327 chymotrypsin-eglin c complex (PDBID:1ACB) (**Fig. 3**). We extracted the surface of each protein
328 in the complex and set the charge property to 0 at all positions with the exception of the true
329 interface. We defined the true interface as all atoms from one protein that are within 10 Å of an
330 atom of the other protein in the complex. The atoms on the true interface of alpha-chymotrypsin
331 were assigned a charge of +1, and those on the true interface of eglin c were assigned a charge
332 of -1. We then performed our shape transformation and cross-correlation analysis using
333 MorphProt. The top ten interaction scores were all between the same two protein faces, which
334 cluster along the true interface. This indicates that despite any distortion that occurs from our
335 reduced representation of the protein surface, MorphProt was still able to identify the area of
336 complementarity between the two surfaces. In addition, when the surface properties were
337 shuffled, the true location of the property was identified as an extreme value. These results further

338 support the notion that the shape transformation does not cause significant distortions and cross-
339 correlation can be used to find the true interface of complementary properties.

340 Next, our partner-specific interaction interface predictor was used to predict the interfaces
341 of the CAPRI score set³¹, a gold standard in protein docking. We predicted the interaction interface
342 according to charge, hydrophobicity, and mutation rate of the unbound structures and mapped
343 the prediction onto the interface of the bound structures (**Fig. 4b**). The interaction interface
344 predictions were scored based on the number of true positives, precision, accuracy, and F1score
345 for the top ten scores. The true positive, false negative, and false positive predictions are defined
346 in **Fig. 4a** for each predicted interface (see **Methods**). The number of true positives reflects the
347 sum of all correct predictions in the dataset. The precision, accuracy, and F1 score represent the
348 average across the CAPRI dataset. The individual CAPRI statistics were also calculated
349 (**Supplementary Information**). Overall, mutation rate is the most predictive property based on
350 surface complementarity with an average accuracy of 61% and F1 of 28%. For charge,
351 hydrophobicity, and mutation rate the average precision was 35%, 33%, and 42% and the
352 average F1 score was 21%, 19%, and 28%, respectively. However, on a case-by-case basis,
353 different properties can provide the best prediction for certain complexes. For example, in the
354 prediction of the interface of the colicin-E2 immunity protein and the colicin-E9 complex (PDBID:
355 2WPT, Target ID: T41), charge and hydrophobicity prove to be the most predictive properties with
356 accuracies and F1 scores 10% higher than the predictions from mutation rate. Further
357 examination of this complex shows that the complex is non-cognate, which explains why mutation
358 rate is a poor predictor. Additionally, there is a disulfide bond and extensive hydrogen bonding
359 between the interface of the two proteins⁴², hence the improved prediction quality of the charge
360 and hydrophobicity based properties. In addition to the CAPRI score set, we evaluated this
361 approach on 72 of the integrated protein-protein interaction benchmark complexes
362 (**Supplementary Information**)²⁹. We obtained similar results to the CAPRI data set for the
363 protein-protein interaction benchmark where the average precision was 35%, 31%, and 48%, and

364 F1 score was 23%, 21%, and 34% for charge, hydrophobicity, and mutation rate, respectively.
365 However, individual property predictions displayed precision and F1 scores as high as 86% and
366 56% for mutation rate, 74% and 39% for charge, and 67% and 48% for hydrophobicity. Taken
367 together, MorphProt can predict interaction interfaces based on surface property complementarity
368 despite a loss of structural information.

369 Of primary interest for biological processes, is the assembly of large macromolecular
370 complexes. Using Morphprot, we can perform pairwise predictions with knowledge of subunits
371 that are directly interacting by indirect methods. We explored the assembly of a large protein
372 complex by examining our recently published Ceru+32/GFP-17 protomer structure⁴³, a
373 synthetically engineered supercharged GFP 16-mer. These proteins were engineered to have
374 oppositely charged variants of the normally monomeric green fluorescent proteins (GFP), which
375 resulted in the assembly of a large, ordered macromolecular structure. Because the structure is
376 known to form charge-based interactions, it served as an effective test for the ability of MorphProt
377 to predict partner-specific interactions within a large macromolecular complex where subunits
378 have multiple interaction interfaces. The input for MorphProt was the α and β supercharged
379 subunits. The top ten scores accurately predicted both of the charge-based interfaces between
380 subunits (**Fig. 5**).

381 To demonstrate the advantages of using a partner-specific, surface property
382 complementarity method, we considered two binding scenarios that present challenges for
383 conventional interface predictors: (1) a protein that has multiple binding partners and sites and
384 (2) a protein that undergoes a dramatic conformational change upon binding to a partner. To test
385 the multiple-binding site scenario, we used the lysozyme and anti-lysozyme complex (PDBID:
386 1BVK). The heavy and light chains of the anti-lysozyme form a hydrophobic zipper upon
387 cooperative folding ⁴⁴ and interact with their antigen, lysozyme (**Fig. 6**). Here, we accurately
388 predicted the hydrophobic interaction between the heavy and light chains of the antibody and the
389 charge-driven interaction between the antibody and antigen. To validate that our algorithm can

390 handle dramatic structural rearrangements, we tested the interleukin-1 receptor and the
391 interleukin-1 receptor antagonist complex (PDBID: 1IRA), where the interleukin-1 receptor
392 undergoes a dramatic conformational change upon complex formation (approx. 26.2 Å across all
393 residue pairs). Again, we were able to accurately predict the interaction interface between the
394 protein pair despite this large-scale structural rearrangement.

395 Finally, we wanted to test the performance of our interface predictor on uncertain structural
396 models produced by homology modeling or other structural prediction algorithms. In both
397 experimental and computational structure building, there can occasionally be uncertainty
398 regarding the exact position of the side chains and backbone of the model. By distorting one of
399 our test proteins that produced a strong mutation rate interface prediction, we showed that our
400 predictions remain robust even considering a structure that is distorted by up to ~6 Å (**Fig. 7**). The
401 crystal structures of the unbound G α i and RGS9 (PDBID: 1FQJ) were distorted using normal
402 mode analysis. We used eNémo³⁹ to compute the low-frequency normal modes of each of the
403 structures in the complex. In the analysis, one of the subunits (receptor or ligand) was held
404 constant, while the interface was predicted at different RMSD distortions of the other subunit
405 (receptor or ligand). Despite different configurations of the protein backbone, we were still able to
406 predict the interface based on the generalized property complementarity for a given section of the
407 protein structure.

408

409 **DISCUSSION**

410 Here, we have demonstrated that by using a cuboid transformation to normalize the highly
411 variable 3D protein structure to a simplified geometric shape, we are able to store layers of
412 information on a 2D representation of a protein surface while preserving atomic neighborhoods.
413 The resulting matrix of values contains the location of surface properties and their proximity to
414 other values and is a direct representation of the spatial coordinates of the 3D atomic structure.
415 We showed that converting the surface properties to an image allows us to identify areas of

416 maximum interaction of surface properties between two proteins via a partner-specific approach.

417 We showed that MorphProt can also be used to construct large macromolecular assemblies.

418 While primary sequences provide information regarding amino acid identity and adjacent
419 residues, it can be difficult to precisely determine from sequence alone which residues reside on
420 the surface of a protein and their relation to each other in its 3D structure. Structure-based
421 approaches allow us to extract and investigate surface properties, providing a useful first step for
422 interface prediction, as the spatial position of residues is essential for macromolecular
423 recognition²². Many machine learning interaction interface predictors exist and use structure, but
424 the only information stored in feature vectors is statistical information for the surface patches and
425 not the spatial arrangement of the residues²². In addition to the lack of information regarding
426 residue neighborhoods, many of the structure-based approaches are not equipped to handle
427 dramatic conformational changes upon binding⁴⁵. We have addressed these limitations of
428 previous methods through our shape transform by treating the protein surface as a simple 2D
429 matrix, where the location of a value within the matrix is a representation of the location of that
430 value on the protein surface. This novel surface-patch approach turns out to be incredibly powerful
431 in identifying the areas of maximum interaction between structures of interacting pairs.

432 In our approach, patch size is not predetermined; instead, it is dependent on the size of the
433 proteins being tested and the size of overlap between protein faces for each score calculation.

434 Traditional approaches for identifying a surface patch result in fairly uniform patch sizes²¹. Our
435 method tests surface patches over a number of different sizes and arrangements because the
436 patches are determined by the position of the cross-correlation. The first patch tested is the corner
437 of two matrices and expands as the calculation continues, and the patches are both rotated and
438 adjusted in size. The result is a sample of various patches and orientations, which can be used
439 to identify the area of maximum interaction between the pair of proteins.

440 In most structure-based interaction interface predictors, an interface is identified based on
441 features of a given area on one of the protein surfaces, ignoring properties of a partner when

442 determining how they best fit together. A partner-specific predictor uses information regarding
443 both proteins of interest. It has been shown that prediction methods that do not employ a partner-
444 specific approach have lower reliability in predicting transient binding sites^{46,47}, whereas a partner-
445 specific approach can identify locations that are highly conserved for transient protein-protein
446 interactions²⁶. A significant advantage of using a partner-specific predictor is its ability to find
447 specific surface areas that form interactions with different partners. One significant challenge of
448 many partner-specific predictors is their use of unbound protein structures to search for interaction
449 interfaces¹⁷. In many biological processes, proteins undergo a dramatic conformational change
450 upon binding, which complicates predicting an interface based on unbound structures. We have
451 demonstrated that using a reduced surface representation of a protein in combination with stored
452 information of highly predictive properties, we can make partner-specific interface predictions for
453 unbound proteins, including those that undergo at least moderate structural rearrangements, an
454 important feature for building multi-protein assemblies.

455 Our results using MorphProt are promising when compared to other available partner-specific
456 interaction predictors. The developers of PAIRpred reported the identification of a true positive in
457 the top 15 predictions for 7 of the 9 complexes tested using the CAPRI score-set. PAIRpred was
458 unable to predict for targets 3FM8 (T39) and 2VDU (T29). These targets have been reported as
459 being challenging complexes to evaluate in CAPRI²⁴. However, MorphProt yielded accurate
460 predictions for 2VDU based on mutation rate (78% accuracy and F1 score of 48%) and 3FM8
461 based on hydrophobicity (73% accuracy and F1 score of 25%). From the results of CAPRI rounds
462 15-19, T32, T35, T36, T38, and T39 presented the greatest challenges for docking predictors⁴⁸.
463 While we did not test T35 or T38, our interface predictions for the remaining targets remain robust.
464 3BX1 had an interaction interface prediction accuracy of 65% and F1 score of 24%, while 2W5F
465 (T36) had an interaction interface prediction accuracy of 73% and an F1 score of 21% (T39
466 summarized above). Taken together, these results show that MorphProt can perform accurate

467 and precise interface predictions for some of the most challenging CAPRI targets despite not
468 considering shape.

469 Furthermore, we showed that despite introduced structural distortion, we are still able to
470 predict interfaces based on complementarity. This is increasingly important for predicting
471 interaction interfaces with the widespread use of homology models and lower-resolution
472 structures. Here, greater weight is put on the neighborhoods of properties on the surface rather
473 than their exact location. The ability to predict the interface for homology models is significant for
474 assembling macromolecular complexes where little is known regarding the structure of the
475 individual subunits. Theoretically, one could produce models for the subunits and then arrange
476 them according to their interaction interfaces to predict the structure for large assemblies. Such
477 analyses would also benefit from protein docking following the interface prediction to improve
478 positioning.

479 While discrepancies between interface prediction and protein docking occur often, the
480 techniques are effective when used in conjunction with one another. Protein-protein docking is a
481 partner-specific technique that is highly dependent on shape complementarity and energetics²².
482 One of the limitations of protein-protein docking is the large sample size that must be tested and
483 then scored by an energy function to produce a prediction of the arrangement of two proteins.
484 The number of arrangements would be drastically reduced by using an interface prediction as a
485 preliminary step before docking. Previous studies showed that using a partner-specific, homology-
486 based interface prediction prior to docking significantly improves the scoring of the docked
487 proteins⁴⁹. Notably, the HADDOCK server allows for the incorporation of a predicted interaction
488 interface, however, this interface is computed from a single protein rather than a partner-specific
489 interface⁵⁰. Incorporating our interface prediction into a protein-protein docking pipeline would
490 increase computational efficiency because it is independent of shape complementarity and
491 energetics.

492 Another significant application of partner-specific interaction interface predictor is the
493 screening of small molecule inhibitors or drugs. These often interact via transient interactions²²,
494 making predicting transient interactions imperative. Small molecules that interact with protein-
495 protein interfaces and alter these interactions have demonstrated to be effective drugs and the
496 prediction of these interfaces could be useful in finding potential targets⁵¹. This poses a challenge
497 because many protein interfaces have been described as large, featureless surfaces that lack
498 obvious binding pockets⁵². Because our method reduces the protein surface to essentially the
499 same, we would likely be able to make more accurate predictions using physicochemical
500 properties stored on the surface of the protein. Furthermore, predictions and scores for small
501 molecule inhibitors or drugs could be optimized by understanding the area of interaction produced
502 by our method.

503

504 CONCLUSIONS

505 To address the inherent variability of protein shape, conformational changes, and structural
506 approximations while reducing computation time, we were interested in determining if a simplified
507 geometry retains enough spatial information to predict interaction interfaces based on
508 complementary properties. Specifically, our aim was to develop a pipeline that was robust to
509 molecular motions while gaining computational power to assemble larger multimeric protein
510 complexes. Using MorphProt, we performed a cuboid transformation of the accessible surface of
511 a protein into the surface of a cuboid. This reduced representation allows for easy storage of
512 intrinsic properties of the protein such as hydrophobicity, charge, and mutation rate to be
513 embedded within each surface image. The result is a quantitative description of these properties
514 across a protein surface enabling image processing techniques to identify complementarity
515 between the properties of two interacting protein surfaces. We show this method can be useful
516 when one of the above properties is the driving force of the interaction. MorphProt was able to
517 predict interaction interfaces for the unbound CAPRI targets and the protein-protein interaction

518 benchmark complexes with comparable results to a number of other predictors. Additionally,
519 MorphProt was able to predict interfaces for a large 16-subunit oligomer, proteins with multiple
520 binding sites, and crystal structures that have been distorted by up to ~6 Å to mimic models built
521 from lower resolution density maps or imperfect homology models, demonstrating a utility to
522 integrated platforms that aim to assemble complicated protein complexes.

523

524 **ACKNOWLEDGEMENTS**

525 The MorphProt package is available at <https://github.com/cmccaffe/MorphProt>. This work was
526 supported in part by Welch Foundation Research Grants F-1938 (to D.W.T.) and F-1515 (to
527 E.M.M.), National Institutes of Health (R35 GM122480, R01 HD085901, and R01 DK110520 to
528 E. M. M.), Army Research Office Grant W911NF-15-1-0120 (to D.W.T.), and a Robert J. Kleberg,
529 Jr. and Helen C. Kleberg Foundation Medical Research Award (to D.W.T.). C.L.M is an NSF
530 Graduate Research Fellow supported by the National Science Foundation (2019238253), D.W.T
531 is a CPRIT Scholar supported by the Cancer Prevention and Research Institute of Texas
532 (RR160088) and an Army Young Investigator supported by the Army Research Office (W911NF-
533 19-1-0021).

534

535 **REFERENCES**

536 1. Bai, X.-c.; Fernandez, I. S.; McMullan, G.; Scheres, S. H., Ribosome structures to near-
537 atomic resolution from thirty thousand cryo-EM particles. *elife* **2013**, 2, e00461.

538 2. Lowe, J.; Stock, D.; Jap, B.; Zwickl, P.; Baumeister, W.; Huber, R., Crystal structure of
539 the 20S proteasome from the archaeon *T. acidophilum* at 3.4 Å resolution. *Science* **1995**, 268,
540 533-539.

541 3. Kortemme, T.; Kim, D. E.; Baker, D., Computational alanine scanning of protein-protein
542 interfaces. *Sci. STKE* **2004**, 2004, pl2-pl2.

543 4. Schreiber, G.; Fersht, A. R., Energetics of protein-protein interactions: Analysis of the
544 Barnase-Barstar interface by single mutations and double mutant cycles. *Journal of molecular
545 biology* **1995**, 248, 478-486.

546 5. Wan, C.; Borgeson, B.; Phanse, S.; Tu, F.; Drew, K.; Clark, G.; Xiong, X.; Kagan, O.;
547 Kwan, J.; Bezginov, A., Panorama of ancient metazoan macromolecular complexes. *Nature*
548 **2015**, 525, 339.

549 6. Jessulat, M.; Pitre, S.; Gui, Y.; Hooshyar, M.; Omidi, K.; Samanfar, B.; Tan, L. H.;
550 Alamgir, M.; Green, J.; Dehne, F., Recent advances in protein-protein interaction prediction:
551 experimental and computational methods. *Expert opinion on drug discovery* **2011**, 6, 921-935.

552 7. Russel, D.; Lasker, K.; Webb, B.; Velázquez-Muriel, J.; Tjioe, E.; Schneidman-Duhovny,
553 D.; Peterson, B.; Sali, A., Putting the pieces together: integrative modeling platform software for
554 structure determination of macromolecular assemblies. *PLoS biology* **2012**, 10, e1001244.

555 8. Cong, Q.; Anishchenko, I.; Ovchinnikov, S.; Baker, D., Protein interaction networks
556 revealed by proteome coevolution. *Science* **2019**, 365, 185-189.

557 9. Leitner, A.; Faini, M.; Stengel, F.; Aebersold, R., Crosslinking and mass spectrometry:
558 an integrated technology to understand the structure and function of molecular machines.
559 *Trends in biochemical sciences* **2016**, 41, 20-32.

560 10. Braitbard, M.; Schneidman-Duhovny, D.; Kalisman, N., Integrative structure modeling:
561 overview and assessment. *Annual review of biochemistry* **2019**, 88.

562 11. Xu, D.; Tsai, C.-J.; Nussinov, R., Hydrogen bonds and salt bridges across protein-
563 protein interfaces. *Protein engineering* **1997**, 10, 999-1012.

564 12. Acuner Ozbabacan, S. E.; Engin, H. B.; Gursoy, A.; Keskin, O., Transient protein-
565 protein interactions. *Protein engineering, design and selection* **2011**, 24, 635-648.

566 13. Perkins, J. R.; Diboun, I.; Dessailly, B. H.; Lees, J. G.; Orengo, C., Transient protein-
567 protein interactions: structural, functional, and network properties. *Structure* **2010**, 18, 1233-
568 1243.

569 14. Kuroda, D.; Gray, J. J., Shape complementarity and hydrogen bond preferences in
570 protein-protein interfaces: implications for antibody modeling and protein-protein docking.
571 *Bioinformatics* **2016**, 32, 2451-2456.

572 15. Tang, C.; Iwahara, J.; Clore, G. M., Visualization of transient encounter complexes in
573 protein-protein association. *Nature* **2006**, 444, 383.

574 16. Xue, L. C.; Jordan, R. A.; El-Manzalawy, Y.; Dobbs, D.; Honavar, V. Ranking docked
575 models of protein-protein complexes using predicted partner-specific protein-protein interfaces:
576 a preliminary study. In Proceedings of the 2nd ACM Conference on Bioinformatics,
577 Computational Biology and Biomedicine, 2011; ACM: 2011; pp 441-445.

578 17. Esmaielbeiki, R.; Krawczyk, K.; Knapp, B.; Nebel, J.-C.; Deane, C. M., Progress and
579 challenges in predicting protein interfaces. *Briefings in bioinformatics* **2015**, 17, 117-131.

580 18. Zhang, J.; Kurgan, L., Review and comparative assessment of sequence-based
581 predictors of protein-binding residues. *Briefings in bioinformatics* **2017**, 19, 821-837.

582 19. Hamer, R.; Luo, Q.; Armitage, J. P.; Reinert, G.; Deane, C. M., i-Patch: Interprotein
583 contact prediction using local network information. *Proteins: Structure, Function, and
584 Bioinformatics* **2010**, 78, 2781-2797.

585 20. Fout, A.; Byrd, J.; Shariat, B.; Ben-Hur, A. Protein interface prediction using graph
586 convolutional networks. In *Advances in Neural Information Processing Systems*, 2017; 2017; pp
587 6530-6539.

588 21. Jones, S.; Thornton, J. M., Prediction of protein-protein interaction sites using patch
589 analysis. *Journal of molecular biology* **1997**, 272, 133-143.

590 22. Xue, L. C.; Dobbs, D.; Bonvin, A. M.; Honavar, V., Computational prediction of protein
591 interfaces: A review of data driven methods. *FEBS letters* **2015**, 589, 3516-3526.

592 23. Teppa, E.; Zea, D. J.; Marino-Buslje, C., Protein–protein interactions leave evolutionary
593 footprints: High molecular coevolution at the core of interfaces. *Protein Science* **2017**, 26, 2438-
594 2444.

595 24. Afsar Minhas, F. u. A.; Geiss, B. J.; Ben-Hur, A., PAIRpred: Partner-specific prediction of
596 interacting residues from sequence and structure. *Proteins: Structure, Function, and*
597 *Bioinformatics* **2014**, 82, 1142-1155.

598 25. Ahmad, S.; Mizuguchi, K., Partner-aware prediction of interacting residues in protein-
599 protein complexes from sequence data. *PLoS One* **2011**, 6, e29104.

600 26. Xue, L. C.; Dobbs, D.; Honavar, V., HomPPI: a class of sequence homology based
601 protein-protein interface prediction methods. *BMC bioinformatics* **2011**, 12, 244.

602 27. Mishra, S. K.; Cooper, S. J.; Parks, J. M.; Mitchell, J. C., Hotspot coevolution at protein-
603 protein interfaces is a key identifier of native protein complexes. *BioRxiv* **2019**, 698233.

604 28. Vajdi, A.; Zarringhalam, K.; Haspel, N., Patch-DCA: Improved Protein Interface
605 Prediction by utilizing Structural Information and Clustering DCA scores. *BioRxiv* **2019**, 656074.

606 29. Vreven, T.; Moal, I. H.; Vangone, A.; Pierce, B. G.; Kastritis, P. L.; Torchala, M.; Chaleil,
607 R.; Jiménez-García, B.; Bates, P. A.; Fernandez-Recio, J., Updates to the integrated protein-
608 protein interaction benchmarks: docking benchmark version 5 and affinity benchmark version 2.
609 *Journal of molecular biology* **2015**, 427, 3031-3041.

610 30. Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.; Weissig, H.;
611 Shindyalov, I. N.; Bourne, P. E., The protein data bank. *Nucleic acids research* **2000**, 28, 235-
612 242.

613 31. Lensink, M. F.; Wodak, S. J., Score_set: a CAPRI benchmark for scoring protein
614 complexes. *Proteins: Structure, Function, and Bioinformatics* **2014**, 82, 3163-3169.

615 32. Dolinsky, T. J.; Nielsen, J. E.; McCammon, J. A.; Baker, N. A., PDB2PQR: an automated
616 pipeline for the setup of Poisson–Boltzmann electrostatics calculations. *Nucleic acids research*
617 **2004**, 32, W665-W667.

618 33. Wimley, W. C.; White, S. H., Experimentally determined hydrophobicity scale for proteins
619 at membrane interfaces. *Nature Structural and Molecular Biology* **1996**, 3, 842.

620 34. Goldenberg, O.; Erez, E.; Nimrod, G.; Ben-Tal, N., The ConSurf-DB: pre-calculated
621 evolutionary conservation profiles of protein structures. *Nucleic acids research* **2008**, 37, D323-
622 D327.

623 35. Pupko, T.; Bell, R. E.; Mayrose, I.; Glaser, F.; Ben-Tal, N., Rate4Site: an algorithmic tool
624 for the identification of functional regions in proteins by surface mapping of evolutionary
625 determinants within their homologues. *Bioinformatics* **2002**, 18, S71-S77.

626 36. Sanner, M. F.; Olson, A. J.; Spehner, J. C., Reduced surface: an efficient way to
627 compute molecular surfaces. *Biopolymers* **1996**, 38, 305-320.

628 37. Cock, P. J.; Antao, T.; Chang, J. T.; Chapman, B. A.; Cox, C. J.; Dalke, A.; Friedberg, I.;
629 Hamelryck, T.; Kauff, F.; Wilczynski, B., Biopython: freely available Python tools for
630 computational molecular biology and bioinformatics. *Bioinformatics* **2009**, 25, 1422-1423.

631 38. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel,
632 M.; Prettenhofer, P.; Weiss, R.; Dubourg, V., Scikit-learn: Machine learning in Python. *Journal of*
633 *machine learning research* **2011**, 12, 2825-2830.

634 39. Suhre, K.; Sanejouand, Y.-H., ElNemo: a normal mode web server for protein movement
635 analysis and the generation of templates for molecular replacement. *Nucleic acids research*
636 **2004**, 32, W610-W614.

637 40. Suzuki, H.; Kawabata, T.; Nakamura, H., Omokage search: shape similarity search
638 service for biomolecular structures in both the PDB and EMDB. *Bioinformatics* **2015**, 32, 619-
639 620.

640 41. Radermacher, M.; Ruiz, T., On cross-correlations, averages and noise in electron
641 microscopy. *Acta Crystallographica Section F: Structural Biology Communications* **2019**, 75, 12-
642 18.

643 42. Meenan, N. A.; Sharma, A.; Fleishman, S. J.; MacDonald, C. J.; Morel, B.; Boetzel, R.;
644 Moore, G. R.; Baker, D.; Kleanthous, C., The structural and energetic basis for high selectivity in
645 a high-affinity protein-protein interaction. *Proceedings of the National Academy of Sciences*
646 **2010**, 107, 10080-10085.

647 43. Simon, A. J.; Zhou, Y.; Ramasubramani, V.; Glaser, J.; Pothukuchi, A.; Gollihar, J.;
648 Gerberich, J. C.; Leggere, J. C.; Morrow, B. R.; Jung, C., Supercharging enables organized
649 assembly of synthetic biomolecules. *Nature chemistry* **2019**, 1.

650 44. Tan, P. H.; Sandmaier, B. M.; Stayton, P. S., Contributions of a highly conserved VH/VL
651 hydrogen bonding interaction to scFv folding stability and refolding efficiency. *Biophysical
652 journal* **1998**, 75, 1473-1482.

653 45. Zhou, H.-X.; Qin, S., Interaction-site prediction for protein complexes: a critical
654 assessment. *Bioinformatics* **2007**, 23, 2203-2209.

655 46. de Vries, S. J.; Bonvin, A. M., How proteins get in touch: interface prediction in the study
656 of biomolecular complexes. *Current protein and peptide science* **2008**, 9, 394-406.

657 47. Panchenko, A. R.; Kondrashov, F.; Bryant, S., Prediction of functional sites by analysis
658 of sequence and structure conservation. *Protein science* **2004**, 13, 884-892.

659 48. Gong, X.; Wang, P.; Yang, F.; Chang, S.; Liu, B.; He, H.; Cao, L.; Xu, X.; Li, C.; Chen,
660 W., Protein-protein docking with binding site patch prediction and network-based terms
661 enhanced combinatorial scoring. *Proteins: Structure, Function, and Bioinformatics* **2010**, 78,
662 3150-3155.

663 49. Xue, L. C.; Jordan, R. A.; Yasser, E. M.; Dobbs, D.; Honavar, V., DockRank: Ranking
664 docked conformations using partner-specific sequence homology-based protein interface
665 prediction. *Proteins: Structure, Function, and Bioinformatics* **2014**, 82, 250-267.

666 50. De Vries, S. J.; Van Dijk, M.; Bonvin, A. M., The HADDOCK web server for data-driven
667 biomolecular docking. *Nature protocols* **2010**, 5, 883.

668 51. Cukuroglu, E.; Engin, H. B.; Gursoy, A.; Keskin, O., Hot spots in protein-protein
669 interfaces: Towards drug discovery. *Progress in biophysics and molecular biology* **2014**, 116,
670 165-173.

671 52. Jin, L.; Wang, W.; Fang, G., Targeting protein-protein interaction by small molecules.
672 *Annual review of pharmacology and toxicology* **2014**, 54, 435-456.

673

674

675
676

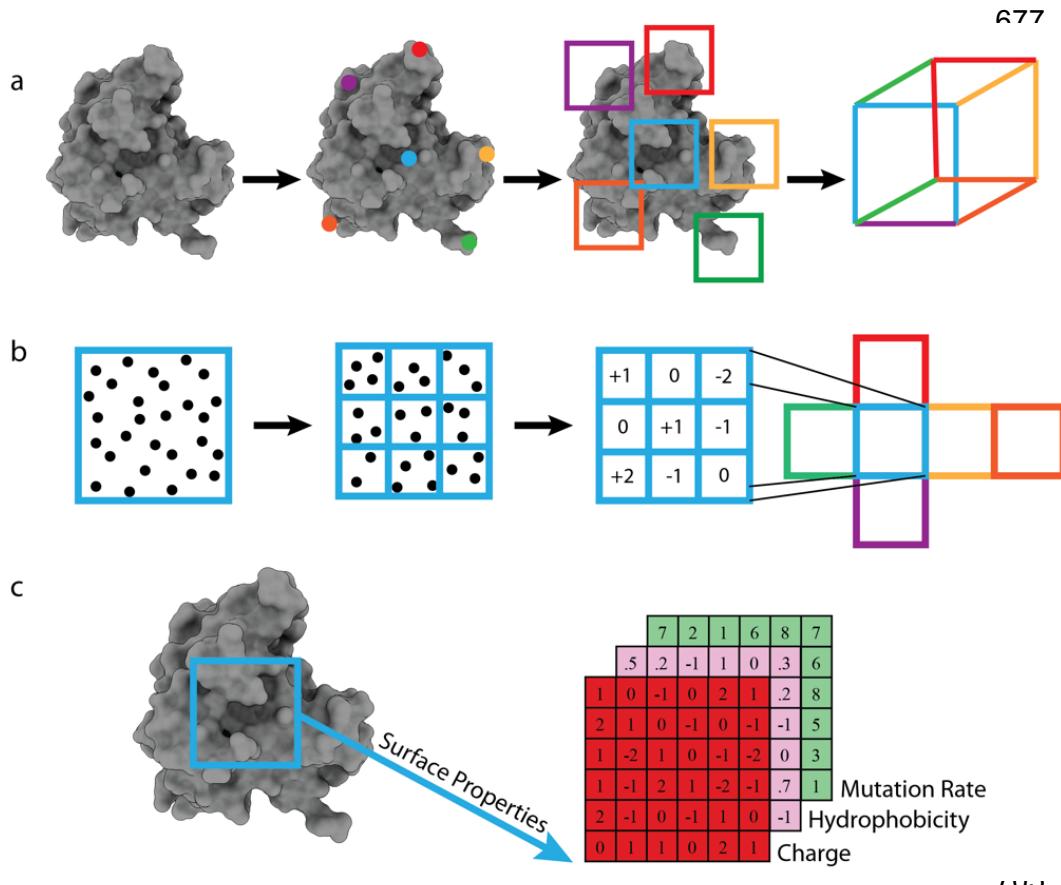
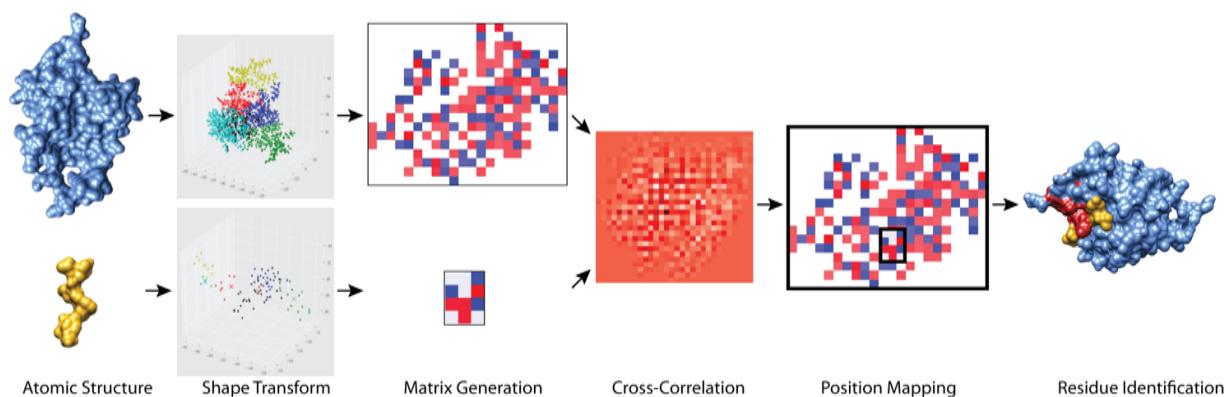


Fig. 1: Shape transformation of a protein into a cuboid. **a**, K-means surface clustering of a representative protein structure (PDBID: 1A2K) reduced to a cube. **b**, The atomic properties of each face are binned based on their coordinates (default side length is 5 Å). Average property values are calculated for each box. **c**, The property matrices can be mapped back to the original structure. Potential properties include charge, hydrophobicity, and mutation rate.

714



715

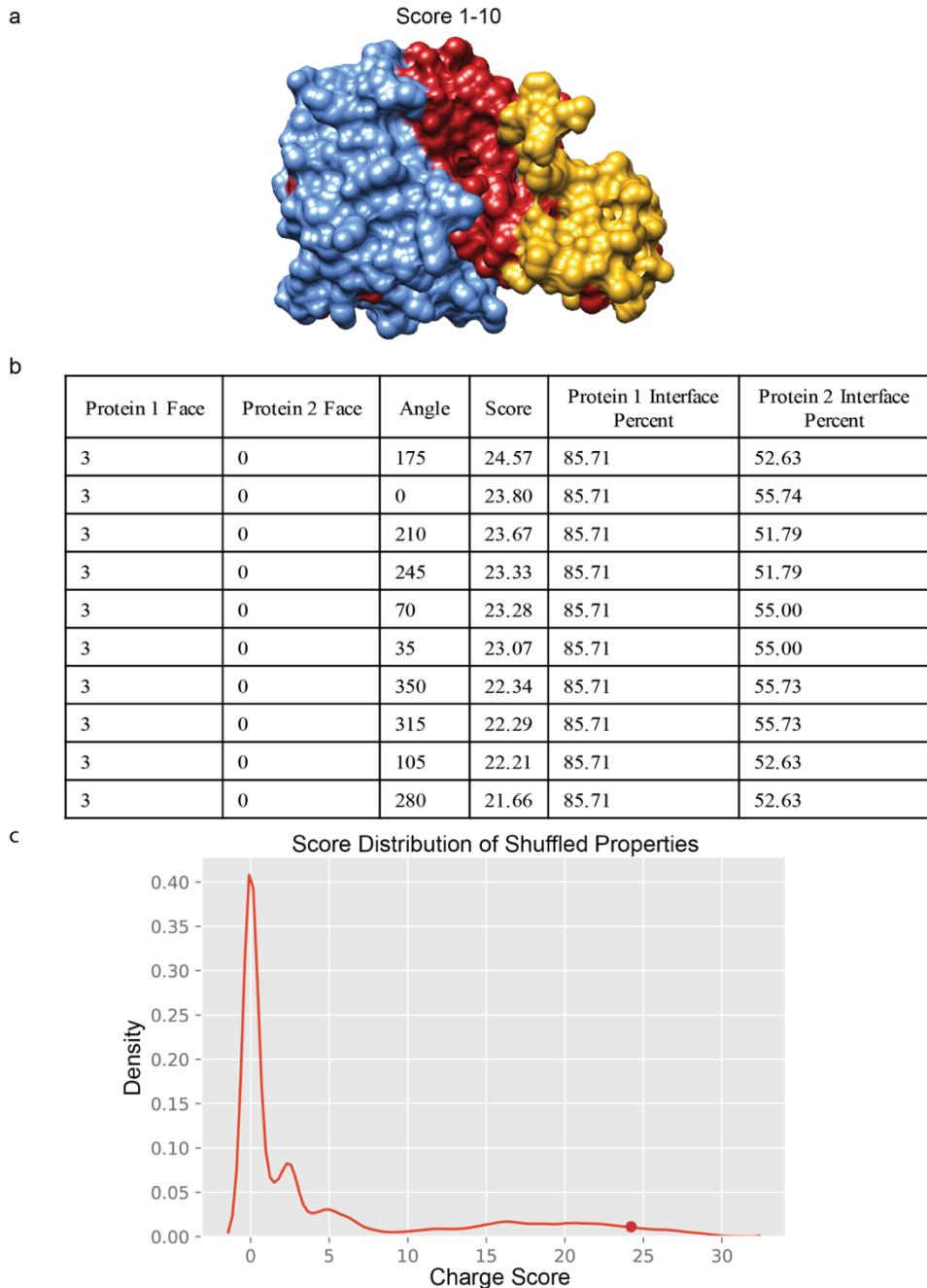
716

717 **Fig. 2: The MorphProt pipeline for interaction interface prediction.** The program uses a PDB
718 as input to generate the cube transformation, which is then unwrapped into 6 matrices. Cross-
719 correlations between the faces of the two proteins of interest are calculated. The area of maximum
720 interaction based on complementary is selected from the cross-correlation matrices and mapped
721 back onto the protein structure. In this example, the interaction interface between protein Numb
722 homolog (light blue) and its ligand/inhibitor PTBi peptide (gold) was predicted using charge
723 (PDBID:5NJJ). Positive and negative charges are depicted by red and blue, respectively. In the
724 cross-correlation matrix, the darkest red represents the maximum interaction.

725

726

727



728

729

730

731

732

733

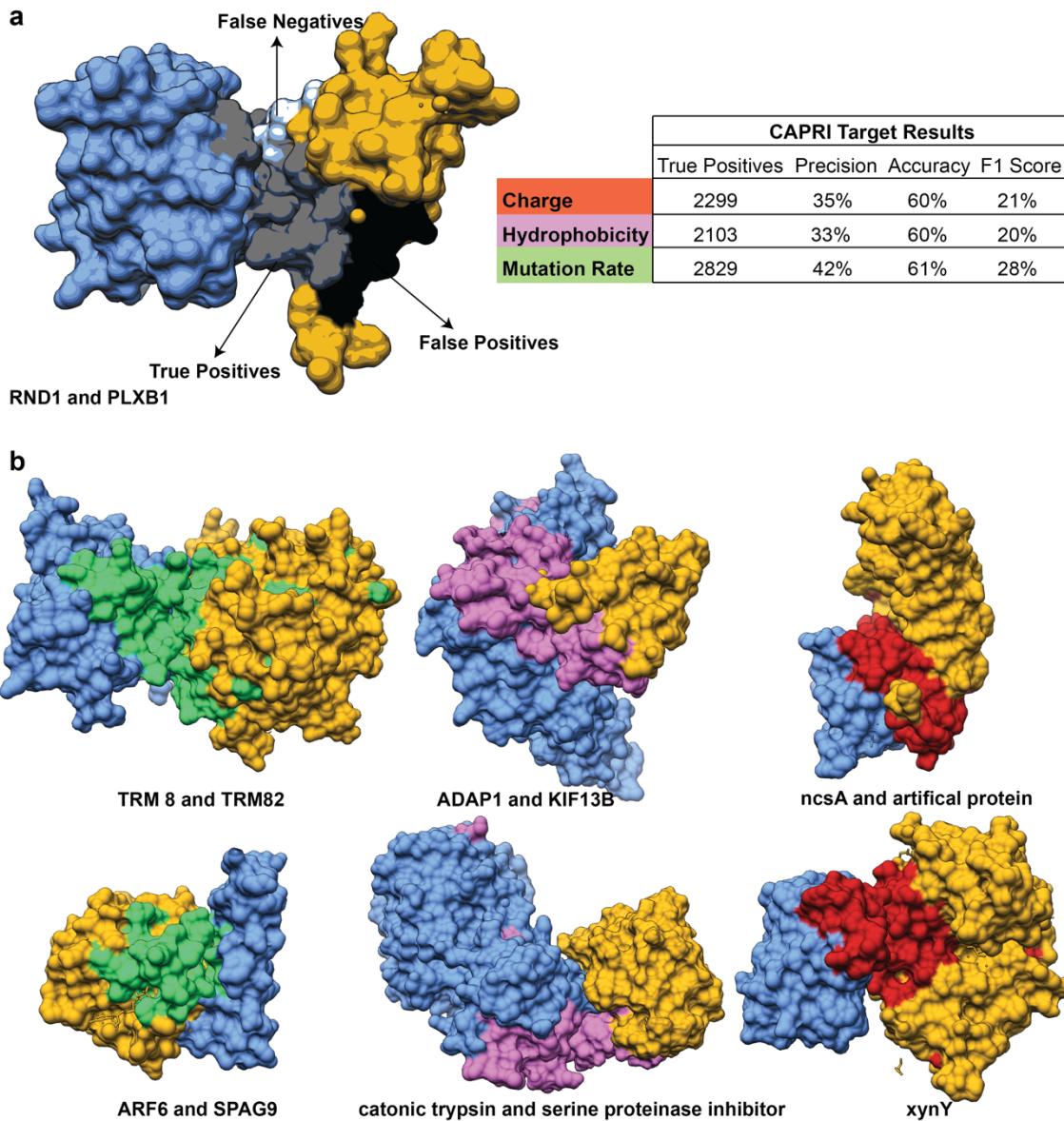
734

735

736

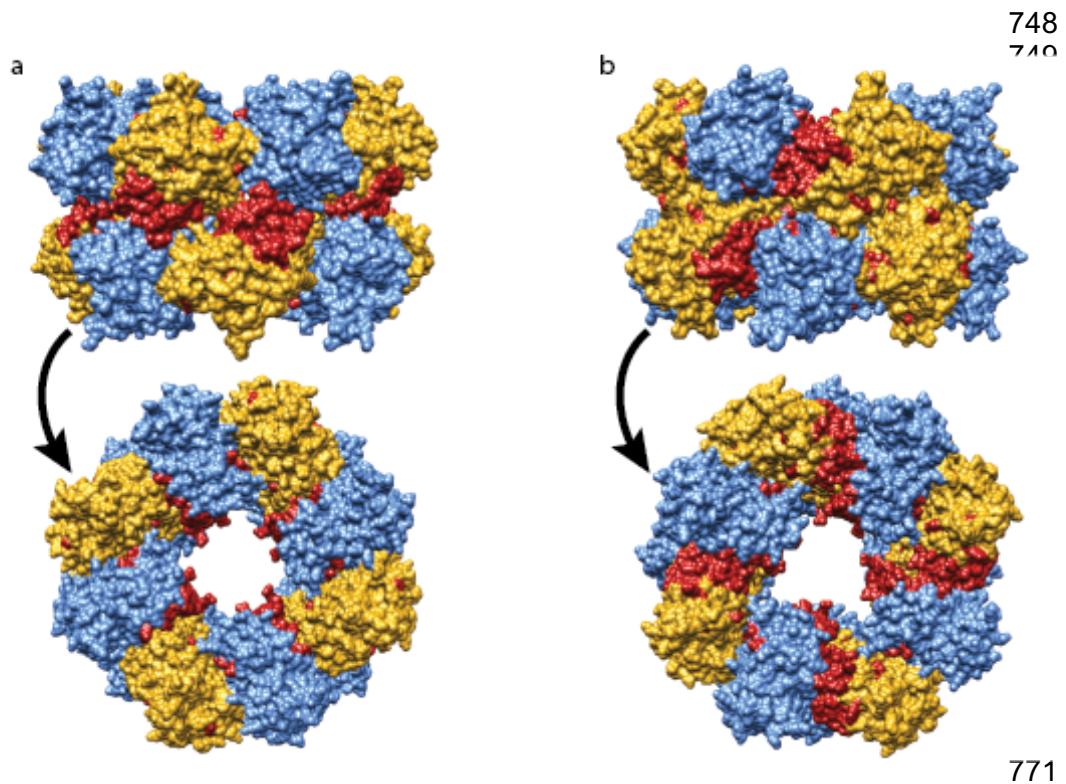
737

Fig. 3: Demonstration of detectable interfaces using the cuboid transformation. a, The experimentally determined structure of the alpha-chymotrypsin-elgin c protein complex (PDBID:1ACB). All charge values were set to 0 on the surface of both proteins. The ligand or I (gold) interface residues were set to -1 and the receptor or r (light blue) interface residues were set to +1. The predicted interface (red) was mapped onto the protein complex. b, The table shows the faces of the top 10 scores. The interface percent shows the percent of residues that are within 10 Å of the partner protein. c, The cross-correlation scores produced from 1000 shuffles of the engineered charge property across the surface of the protein. The point represents the top score from the prediction.

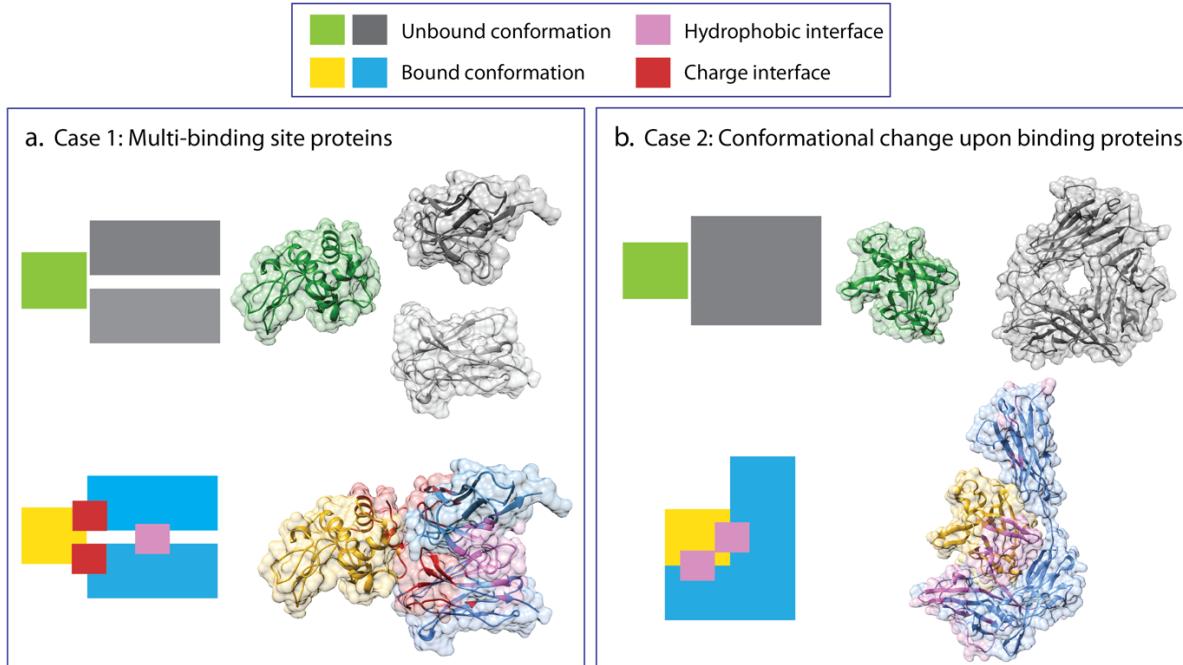


738
739
740
741
742
743
744
745
746

Fig. 4: MorphProt validation with the CAPRI score set. a, True positive, false negative, and false positive residue predictions are shown for a representative protein (PDBID: 2REX). The results for the CAPRI score set are summarized in the table. Red, pink, and green represent charge, hydrophobicity, and mutation rate, respectively. **b**, Results of six representative CAPRI score set protein complexes (PDBID: 2VDU, 3FM8, 4JW3, 2W83, 3E8L, 2W5F) are depicted.



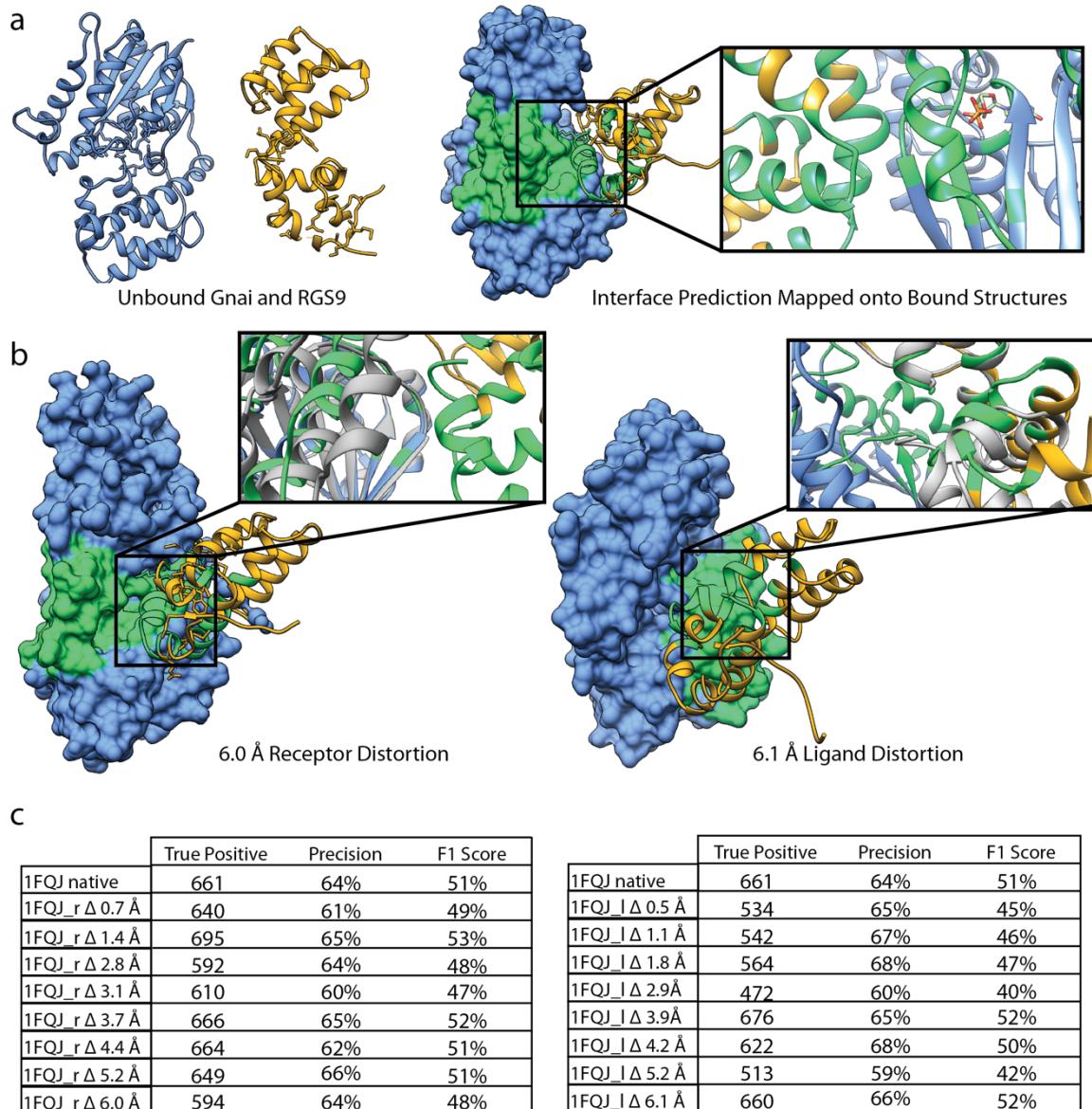
772
773
774 **Fig. 5: An example of MorphProt applied to predict contact interfaces in a large multimeric**
775 **protein assembly.** MorphProt predicts interfaces of the Ceru+32/GFP-17 protomer (PDBID:
776 6MDR) between the alpha and beta subunits. The charge predicted interface is shown (red) for **a**
777 score 2 and **b** score 9 predictions of the top 10 scores.
778
779
780
781



782
783

784 **Fig. 6: MorphProt successfully predicts interfaces for challenging binding scenarios.** **a**, For
785 proteins with multiple binding sites, MorphProt can predict each distinct partner-specific
786 interface. Shown is the antibody-antigen interaction between lysozyme and anti-
787 lysozyme (PDBID: 1BVK). The interaction interface between the heavy chain and the light chain
788 of the anti-lysozyme is predicted using hydrophobicity, while the interaction interface between the
789 anti-lysozyme chains and lysozyme are predicted using charge. **b**, Because MorphProt utilizes
790 charge, hydrophobicity, and mutation rate to predict interfaces, it accurately predicts binding
791 pockets for proteins that undergo dramatic structural rearrangements. Depicted is the interleukin-
792 1 receptor and the interleukin-1 receptor-antagonist complex (PDBID:1IRA) interface. As shown
793 from the unbound and bound structure, the receptor undergoes a striking conformational change
794 upon antagonist binding.

795
796
797



798 **Fig. 7: MorphProt can predict interaction interfaces despite structural distortion.** **a**,
799 Unbound structure of Gnai and RGS9 (PDBID: 1FQJ). The ligand and receptor are depicted in
800 gold and blue, respectively. The interface is predicted using mutation rate. The predicted interface
801 is colored green on the bound structure. **b**, The receptor and ligand were distorted using eINémo
802 normal mode analysis. While the receptor was distorted up to ~6 Å, the ligand was held constant
803 and vice versa. The interfaces were again predicted using mutation rate and the distorted
804 structure. The close-up depicts the native structure (grey) superimposed onto the distorted
805 structure to show the change in position of residues on the interface. The predicted interface is
806 mapped onto the distorted structure. **c**, The precision-recall curves and diagnostic table show that
807 there is little change in the prediction despite structural distortion for multiple distorted protein
808 structures. The true positive, false, positive, and false negative parameters are illustrated in **Fig.3**.
809