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Abstract 

The genetic architecture of complex human traits remains largely unknown. The 

distribution of heritability across the minor allele frequency (MAF) spectrum for a trait 

will be a function of the MAF of its causal variants and their effect sizes. Assumptions 

about these relationships underpin the tools used to estimate heritability. We examine 

the performance of two widely used tools, Haseman-Elston (HE) Regression and 

genomic-relatedness-based restricted maximum-likelihood (GREML). Our simulations 

show that HE is less biased than GREML under a wide variety of models and that the 

estimated standard error for HE tends to be substantially overestimated. We then 

applied HE Regression to infer the heritability of 72 quantitative biomedical traits from 

up to 50,000 individuals with genotype and imputation data from the UK Biobank. We 

found that adding each individuals’ geolocation as covariates corrected for population 

stratification that could not be accounted for by principal components alone (particularly 

for rare variants). The biomedical traits we analyzed had an average heritability of 0.27, 

with low frequency variants (MAF≤0.05) explaining an average of 47.7% of the total 

heritability (and lower frequency variants with MAF≤0.02 explaining a majority of our 

increased heritability over previous estimates). Variants in regions of low linkage 

disequilibrium (LD) accounted for 3.3-fold more heritability than the variants in regions 

of high LD, an effect primarily driven by low frequency variants. These findings suggest 

a moderate action of negative selection on the causal variants of these traits.  
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Introduction 

Complex traits are caused by a combination of environmental factors and genetic 

variants scattered throughout the genome of an organism. The mechanisms by which 

the alleles at those sites induce differences in traits among individuals in a population is 

often unknown and can be intertwined with many loci influencing many traits (Boyle, Li, 

& Pritchard, 2017). The collective fraction of the variance of a trait between individuals 

in a population that can be explained by the genetic variance between people is known 

as heritability, specifically the trait’s broad-sense heritability, H2. Family studies have 

measured the heritability of many complex human traits to be as high as 90% for height 

(Silventoinen et al., 2003), 72% for type 2 diabetes (Willemsen et al., 2015), and 83% 

for autism (Sandin et al., 2017). 

In the search for causal loci, genome-wide association studies (GWAS) are performed 

(typically assuming an additive contribution of variants), and many sites have been 

statistically associated with a bevy of traits. However, while the collective fraction of a 

trait’s variance explained by the additive effects of all causal variants (the narrow-sense 

heritability, h2) can be approximated by the statistically associated variants (h2
GWAS), this 

estimate often remains much lower than the estimates of broad sense heritability [e.g. 

only 16% for height (Wood et al., 2014), and 10% for type 2 diabetes (Ali, 2013)]. Even 

the collective fraction of variance in height explained by additive effects across all 

genotyped and imputed sites in these GWAS is only 60% in cohorts with n>250,000 

(Wood et al., 2014). One of the potential explanations for this so-called “missing 
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heritability” problem is the contribution of rare variants. Indeed, recent studies have 

implicated rare variants as a major source of missing heritability for height and BMI 

(Wainschtein et al., 2019)as well as gene expression (Hernandez et al., 2019), but a 

broader understanding of the extent to which rare variants contribute to the heritability of 

complex traits is needed. 

The minor allele frequency (MAF) of a variant represents the frequency of the less-

common allele in a sample of individuals from a population. Populations that have 

recently experienced rapid population growth will exhibit a larger fraction of rare alleles 

than populations that have not been rapidly growing. However, population genetic 

theory suggests that population growth alone is insufficient to drive rare variants to 

constitute a substantial fraction of heritability (Uricchio, Zaitlen, Ye, Witte, & Hernandez, 

2016; Uricchio, 2019; Sanjak, Long, & Thornton, 2017). Natural selection is the 

evolutionary force that puts pressure on deleterious alleles to stay at low frequency (or 

be eliminated from the population) and increases the chance that advantageous alleles 

will increase in frequency (toward fixation in the population). If alleles that have major 

causal effects on a phenotype are evolutionarily deleterious, then natural selection will 

preferentially keep large effect alleles at low frequency, and this process can indeed 

drive rare variants to constitute a substantial fraction of heritability (Pritchard, 2001; 

Eyre-Walker, 2010; Simons, Turchin, Pritchard, & Sella, 2014; Uricchio et al., 2016). 

When strong effect alleles are deleterious in a population that has recently expanded 

(like many European and Asian populations), these evolutionary forces can act in 

concert to cause the genetic architecture of a trait to be dominated by rare variants 

(Uricchio et al., 2016; Hernandez et al., 2019; Lohmueller, 2014).  
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Note that a particular trait itself does not need to be under selective pressure directly to 

drive an effect of rare variants. If pleiotropy is common, then causal variants for a trait 

will have widespread phenotypic effects through interconnected networks [e.g. an 

omnigenic model, (Boyle et al., 2017)], and, if any one of the affected traits negatively 

impacts reproductive fitness, then the causal alleles could be evolutionarily deleterious. 

Indeed, much evidence supports the omnigenic model: 1) conserved regions of the 

genome tend to account for a disproportionate fraction of heritability of several complex 

traits (Finucane et al., 2015), 2) several attempts to infer the contribution of rare variants 

to heritability have found substantial evidence for it (Mancuso et al., 2016; Hernandez et 

al., 2019; Wainschtein et al., 2019), and 3) efforts to model the genetic architecture of 

complex traits as a function of purifying selection have argued that purifying selection is 

a prevalent force acting on causal variants (Gazal et al., 2018; Gazal et al., 2017; Zeng 

et al., 2018). 

The primary tools for inferring narrow-sense heritability from genotypes of unrelated 

individuals are variance component models: Haseman-Elston (HE) regression 

(Haseman & Elston, 1972; Elston, Buxbaum, Jacobs, & Olson, 2000; Sham & Purcell, 

2001; Bulik-Sullivan, 2015; Golan, Lander, & Rosset, 2014), Genome-based Restricted 

Estimation Maximum Likelihood (GREML) (Yang, Lee, Goddard, & Visscher, 2011; 

(Yang et al., 2010), and Linkage Disequilibrium Adjusted Kinships (LDAK) (Speed, 

Hemani, Johnson, & Balding, 2012). A separate category of tools, Linkage 

Disequilibrium (LD) Score Regression, makes use of summary statistics from genome-

wide association studies to narrow-sense heritability (Bulik-Sullivan, 2015). Each 

approach makes assumptions regarding the genetic architecture of complex traits (such 
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as the number of causal sites, the distribution of effect sizes, or the relationship 

between effect size and MAF or linkage disequilibrium), and the estimates from these 

techniques can be biased when models are misspecified (Evans et al., 2018; Speed, 

Cai, Johnson, Nejentsev, & Balding, 2017; Speed & Balding, 2019). Unfortunately, since 

the true underlying genetic architecture is not known in advance for a given trait, 

correcting for biases introduced by model misspecification may be challenging. A 

particularly common form of bias for variance component models is introduced when 

sites with different statistical properties are pooled together (e.g. heteroscedasticity). 

While the true causes of heteroscedasticity are often unknown, a first step to alleviate 

such biases is to partition sites by MAF and degree of LD (Yang et al., 2015; Evans et 

al., 2018). Additionally, we have noted that partitioning sites based on the MAF inferred 

from a larger external cohort can further reduce bias for rare variants (Hernandez et al., 

2019). 

The ability to study the effect of rare alleles is fundamentally limited by the difficulty and 

expense of accurately identifying and collecting rare variants in sufficiently large 

cohorts. Investigators have leveraged information from large whole genome sequencing 

databases such as the Haplotype Reference Consortium (HRC) (McCarthy et al., 2016) 

to impute millions of rare variants in cohorts of hundreds of thousands of samples [e.g. 

the UK Biobank (Howie, Donnelly, & Marchini, 2009; Bycroft et al., 2018)]. The UK 

Biobank in particular has measured a wide variety of phenotypes that we can use to ask 

about heritability and the genetic architecture of complex traits. However, before 

estimating the contribution of rare and common variants to the heritability of complex 

traits, we must first understand the accuracy of various inference procedures. We 
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conducted thousands of simulations of phenotypes from genetic data and assessed 

how well two methods for heritability inference perform. We then explored the impact of 

sample size on the bias and standard errors of the estimated heritability. Lastly, we 

explored the impact of excluding rare MAF partitions on the inference of heritability for 

common variant partitions. We then applied our framework for studying variants across 

the MAF spectrum to infer the heritability of 72 quantitative human traits from the UK 

Biobank.  
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Methods and Materials 

Genomic and Phenotypic Data 

The primary genomic data for both simulations and the heritability inference came from 

the UK Biobank (Bycroft et al., 2018). The UK Biobank consists of a cohort of roughly 

500,000 individuals recruited from the United Kingdom (UK) National Health Services. 

Individuals were recruited on the basis of age between 40 and 69 at the time of 

assessment. The total dataset collected included blood samples, urine samples, body 

measurements, self-reported ancestry, medical history, and lifestyle exposures (Bycroft 

et al., 2018). 

The blood samples allowed the extraction and genotyping of DNA on one of two 

genotyping arrays designed for the UK Biobank. These genotype data were quality 

controlled then imputed to the HRC (McCarthy et al., 2016) with additional sites imputed 

to a whole genome sequence reference panel consisting of UK10K haplotype reference 

pane l and the 1000 Genomes Phase 3 reference panel (Chou et al., 2016). These 

imputed allelic dosages were retrieved as BGEN filetype (Band & Marchini, 2018). We 

used PLINK 2.0 (Chang et al., 2015) for further quality control and to export variants to 

PLINK 1 format for downstream analysis. Post-imputation quality control consisted of 

restricting to sites with imputation info score greater than 0.3 (Howie et al., 2009), with 

greater than 95% genotype hard-calls from dosage, and no deviation from Hardy-

Weinberg Equilibrium (p-values > 1⨉10-5) (Winkler et al., 2014). 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 19, 2019. ; https://doi.org/10.1101/2019.12.18.879916doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.18.879916
http://creativecommons.org/licenses/by-nc/4.0/


From all the individuals of the UK Biobank we applied the filtration steps described in 

Table 1. These filters retained a total of 366,647 high-quality, unrelated  individuals. For 

computational reasons, we selected a subset of 50,000 of these individuals at random 

for both our inference of heritability and for our simulation studies. To evaluate the role 

of sample size, we also selected random subsets of 500 and 5,000 individuals to be 

used for some of the simulations. 

We examined all 72 quantitative phenotypes that had at least 25,000 reported values 

within our 50,000 person cohort. This included 42 blood measurements, 22 

anthropometric traits, 5 respiratory traits, and 3 urinary traits. 

Computing MAF and LD Score Partitions 

Variable sites in the 50,000 individual cohort were partitioned in two ways. First, using 

MAF computed using PLINK 2.0 across the full set of >360,000 unrelated, quality-

controlled individuals, sites were divided into 17 MAF bins according to the following 

upper (closed) breakpoints: 2×10-6, 5×10-6, 1×10-5, 2×10-5, 5×10-5, 1×10-4, 2×10-4, 

5×10-4, 1×10-3, 2×10-3, 5×10-3, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5. We next used GCTA 

(Yang et al., 2011) to compute LD scores across the full set of quality-controlled 

individuals within each MAF bin, in sliding windows of 10 megabases along each 

chromosome. We then partitioned each MAF bin into high and low LD score bins using 

the median value LD score for that partition. This procedure resulted in a total of 34 bins 

of sites. 
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Simulation Framework 

Simulations were performed to compare two inference methods, Haseman-Elston (HE) 

Regression and genomic-relatedness-based restricted maximum-likelihood (GREML), 

as well as to identify the most suitable conditions for inference. We used PLINK 1.9 

(Purcell et al., 2007) to recode the genotypes for the selected individuals into a 

genotype matrix, , where the genotype of individual  at variant  ( ) is 0, 1, or 2 

copies of the non-reference allele. In each simulation, we selected a specified number 

of causal variants. For each causal variant, we drew effect sizes, ,  from a standard 

normal distribution, , with the effect sizes of the non-causal variants 

implicitly 0. The unscaled genetic component of the phenotype for individual , , was 

then the sum of the product of the effect sizes with their corresponding genotypes, 

 or . This unscaled genetic component was rescaled to give the 

appropriate variance, , where  is the simulated heritability. The 

phenotype of individual , , was the sum of the scaled genetic component and a 

residual of appropriate variance , where . 

In simulations where total heritability, , was partitioned across  collections of variants 

(or bins) as , we represented each collection of variants as genotype 

matrices: , , …, . Letting, , be the vector of effect sizes in collection  with the 

specified number of causal sites drawn from that partition as  and the 
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remaining non-causal sites with effect size 0, the unscaled genetic component of the 

phenotype from collection  was , which we rescale by the appropriate 

heritability, . The phenotypes were then the sum of the genetic 

components and a residual term: , where  as before.  
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Simulation Parameters 

We conducted a series of 4 sets of simulations, the parameters of which are 

summarized in Table 2. 

For Sets 1-3, causal variants were drawn from the entire genome of 500 unrelated 

individuals. The variants were partitioned by MAF computed within the 500 individual 

cohort itself. In Set 1 we varied the total heritability as well as the fraction of causal 

variants drawn from MAF < 0.01 with uniform effect size across the MAF partitions, with 

9 combinations with 500 simulations of each combination. In sets 2 and 3 we simulated 

500 individuals with heritability distributed across 7 and 8 MAF partitions respectively 

with 500 simulations of each heritability distribution. 

For Set 4, we simulated phenotypes for 50,000 individuals using genotypes from 

chromosomes 18-22. We partitioned these variants by their MAF in the >360,000 

unrelated individuals into 17 MAF partitions. We further subdivided each of these by LD, 

and simulated heritability on each of the 34 MAF-LD bins, with 500 simulations.  
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Heritability Inference 

We used GCTA to compute the genetic relatedness matrices of individuals from the 

variants of each partition described. We inferred GREML heritability using GCTA’s 

unconstrained restricted maximum likelihood method (“--reml-no-constrain” flag) using 

multiple genetic relatedness matrices (GRMs). For HE heritability, we used either HE 

Regression as implemented in GCTA or in our own implementation in R, which we 

verified gave the same results to single floating-point precision. When inferring the 

heritability of the UK Biobank quantitative traits, we progressively included the first 15 

principal components (PCs) of genetic variation and three geographic parameters of the 

subjects location (North-South coordinate, East-West coordinate, and distance to coast) 

as covariates. As the HE method of GCTA did not allow the inclusion of covariates 

directly, these were included as pseudo-GRMs [as per (Hernandez et al., 2019); See 

Supplemental Methods].  
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Summarizing Inference Performance 

Three metrics were used to summarize the quality of the inference for each set of 

simulations: bias, mean squared error, and empirical standard errors. The bias reported 

represents the mean of the difference between the estimated and true value. . Empirical 

standard errors were calculated as the average of the standard deviation of the inferred 

heritability for each set of simulations weighted by the number of simulations in each 

set. 

Software 

We used PLINK1.9 v1.90b6.9 and PLINK 2.0 v2.00a2LM to manipulate the genomic 

data including computing MAF, filtering sites, and exporting to formats. We used GCTA 

version 1.92.0 to compute GRMs and to perform REML and HE regression. We used R 

version 3.5.1 with packages ggplot2_3.0.0, dplyr_0.8.0.1 to analyze results and 

generate figures. We used Python version 2.7.5 to compute covariate GRMs. 
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Results 

The Role of Genetic Architecture on the Distribution of Heritability 

The first set of simulations we conducted evaluated the impact of varying the fraction of 

causal variants that were rare (MAF < 0.01), when all variants had the same distribution 

of effect sizes. The distributions of these simulated heritabilities are shown in Figure 1. 

In this size cohort, rare variants accounted for roughly 10% of variants. Under a “neutral 

model” where causal variants are randomly selected from the set of all variants, ~10% 

of causal variants are rare, yet they accounted for less than 1% of the simulated 

heritability. When we push the simulation to have an extreme excess of rare causal 

variants (e.g. when 90% of causal variants were rare but effect sizes maintain the same 

distribution across frequencies), rare variants still account for only 13% of the total 

heritability. These trends held regardless of total heritability (Figure S1). In all cases, the 

majority of heritability came from the (0.2, 0.5] MAF partition, ranging from 67% of 

heritability when 10% causal variants were rare to 58% when 90% causal variants were 

rare. 

Rare variants can account for a greater fraction of heritability if the distribution of effect 

sizes is allowed to be a function of MAF. However, the actual model relating number of 

causal alleles, effect size, and MAF for actual complex traits is unknown. Instead of 

specifying such a model and, in order to test the tools of heritability inference on the full 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 19, 2019. ; https://doi.org/10.1101/2019.12.18.879916doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.18.879916
http://creativecommons.org/licenses/by-nc/4.0/


range of possible heritability distributions, we simulated phenotypes where we directly 

specified the heritability coming from each MAF bin.  
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Comparing HE Regression and GREML 

We compared the accuracy of two common methods for heritability inference: HE and 

GREML (both implemented in GCTA, see Methods). Specifically, we examined how well 

the two methods inferred heritability across partitions of MAF when the true underlying 

heritability was known. We simulated a wide range of genetic architectures with 

heritability distributed across 8 MAF partitions using a sample size of 500 individuals 

and a total heritability of 0.8 (Simulation Set 3). We found that when n=500 individuals 

are simulated and analyzed using 8 MAF bins, GREML fails to converge ~65% of the 

time, regardless of the fraction of heritability deriving from rare variants (Figure 2a). 

When GREML does converge, the resulting heritability estimates can be biased (Figure 

2b). In contrast, the regression framework of HE always provides a heritability estimate, 

and the inferred values tend to be unbiased under a broad range of conditions (Figure 

2c).  Figure S2 shows a direct comparison of heritability estimates across simulated 

parameters for the two algorithms and shows that the standard deviation of the 

heritability estimates across simulations tend to be comparable between HE and 

GREML. 

Both HE and GREML report theoretical standard errors (SE) of the estimated 

heritability, but we found that neither algorithm report estimates of the SE that reliably 

reflected the empirical standard errors. While the SE reported by both algorithms are 

comparable for the higher MAF bins analyzed (MAF > 0.02), the reported SEs for the 

lowest MAF bin analyzed (0.001 ≤ MAF < 0.002) exhibit conflicting patterns (Figure S2). 
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When compared to the empirical standard error across simulations in a set, HE tends to 

grossly overestimate the SE of the estimate for the lowest MAF bin, while GREML tends 

to underestimate the SE of the estimate. As a result, approximate 95% confidence 

intervals ( ) of the estimates for the lowest MAF bin are highly conservative for 

HE (100% of confidence intervals overlap the true ) but become anti-conservative for 

GREML as the simulated  increases (only 83.8% of confidence intervals overlap the 

true  when the true ;  Figure S2). Given that HE tends to be less biased than 

GREML and not suffer from convergence issues, we exclusively used HE for the 

remainder of our analyses. 

Heritability Inference Quality as a Function of MAF Partitioning 

Prior research has suggested that bias can be introduced when sites of differing MAF 

are pooled into the same GRM (Lee et al., 2013; Yang et al., 2015). We assessed this 

form of bias in a cohort of 500 individuals using heritability simulated across 8 MAF 

partitions (Simulation Set 3). We inferred the heritability of these simulated phenotypes 

either with the same 8 MAF partitions upon which they were simulated or pooled MAF 

bins (diagrammed in Figure 3a). The results of these inferences show that when 

variants are finely partitioned by MAF, the estimates are unbiased. As more of the MAF 

spectrum is included with the rarest partition, the estimate is upwardly biased by as 

much as 0.24 (30% of the total simulated heritability) when sites 0.001 ≤ MAF < 0.1 

were pooled together. These biases in the total h2 estimates were driven by the 

estimates from the pooled variants, with the estimates from the remaining bins being 

relatively unbiased. 
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Using the same set of simulations, we assessed the impact of pooling high and 

intermediate MAF partitions on the performance of HE regression (Figure S3 and Figure 

S4, respectively). We found that inference of heritability showed moderate downward 

bias when the highest MAF partitions are pooled, with the worst bias occurring when 

pooling MAF range (0.005, 0.5] with a bias of -0.08 (-10% of the total simulated 

heritability). Pooling variants of intermediate MAF resulted in less bias than the pooling 

of high MAF variants. 

In any given study, issues of genotyping error, imputation, and MAF-dependent 

standard errors limit the lowest MAF that can be examined, and such sites are often 

excluded. We examined whether excluding the lowest MAF bins would bias the 

heritability estimates from the remaining MAF bins. We simulated phenotypes on 500 

individuals using heritability distributed across 7 partitions (Simulation Set 2). We 

inferred heritability across the full 7 original partitions and successively excluding rare 

variants. The distributions of inferred heritability are shown in Figure 4. We found that 

exclusion of rare variants did not induce a bias in the estimates of heritability of the 

included bins, rather that the total estimated heritability would be an unbiased estimate 

of the variants that are included. As a result, any heritability attributed to the excluded 

MAF bins would simply remain as missing heritability. 

Impact of Sample Size on Heritability Inference Quality 

The forces of natural selection will drive causal variants to different frequencies in the 

population. We sought to investigate how finely we can explore the population level 
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MAF-heritability spectrum for different sample sizes. To this end, we simulated 

heritability partitioned across 34 LD-MAF partitions of quality-controlled, unrelated UK 

Biobank European population (17 MAF partitions each split by median LD score) on 

50,000 individuals. We then inferred the heritability of these 34 partitions using the full 

cohort of 50,000 individuals, as well as subsets of 5,000 and 500 individuals. The 

magnitude of bias (Figure 5a) was generally larger for the lower MAF bins, and the 

scale of the bias was much higher for smaller sample sizes. Standard error (Figure 5b) 

generally increased for more rare partitions and decreased dramatically with larger 

sample sizes (dropping by more than a factor of 10 for each factor of 10 increase in 

sample size in many of the partitions).   
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Heritability of Complex Human Traits in the UK Biobank 

We randomly selected 50,000 unrelated individuals to infer the genetic architecture of 

quantitative human traits. We restricted the analysis to the 72 quantitative traits among 

the biomedical categories blood, body, breath, and urine that were measured in at least 

25,000 individuals. We used HE regression to infer the heritability of each trait using 

variants with MAF ≥ , partitioned across 11 MAF bins, each split into 2 LD bins 

(see Methods). To correct for population structure, we progressively added principal 

components (PCs) as covariates up to 15 PCs. We then added three geolocation 

covariates that describe where each individual lives (north/south, east/west, and 

distance from the coast; Figure S6). We found that there is only a subtle effect of adding 

additional PCs beyond the fifth PC. However, geolocation covariates corrected for an 

additional source of rare variant stratification (particularly for variants with low LD). For 

further analysis, we focus on the inclusion of 15 PCs and the three geolocation 

covariates. 

The average total heritability of these traits was 0.269 (full list of  in Figure S5). 

Figure 6A shows the heritability estimates across MAF/LD bins. The plurality of 

heritability derives from the most common MAF bin ( , representing 

34.3% of the average total heritability; Figure 6a). However, there is considerable 

variation in the contribution of different MAF bins to heritability of different traits (Figure 

6B, which shows the cumulative, left, and reverse-cumulative, right, heritability across 

MAF bins for each of the 72 traits). Averaging across traits (Figure 6C), we find that little 
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heritability derives from ultrarare variants. Superimposing the cumulative and reverse-

cumulative heritability plots allows us to easily identify the MAF at which half the 

heritability has been described (the intersection of the cumulative and reverse-

cumulative heritabilities). Overall, approximately half the heritability is explained by 

variants with MAF ≤ 0.05. Partitioning alleles by low versus high LD, we find that low LD 

variants constitute 3.3-fold more heritability than high LD variants, which is largely 

driven by low frequency variants (approximately half the heritability of low LD variants is 

explained by variants with MAF≤0.02), while heritability of high LD variants is primarily 

driven by common variants (approximately half the heritability of high LD variants is 

explained by the highest MAF bin alone). 

Previous estimates of heritability from these data have been calculated using LD Score 

(LDS) regression (Walters et al., n.d.). Our estimates of total heritability using HE 

regression have a reasonable concordance with the LDS estimates (Figure 6D), with a 

correlation of . The discrepancies between our HE estimates and the LDS 

estimates are mostly driven by the contribution of low frequency variants (MAF ≤ 0.02) 

to our HE-based estimates (Figure 6e). 

Discussion 

Our simulations show that drawing causal alleles and the effect sizes for those alleles 

independently of MAF will result in the majority of heritability arising from common 

alleles. While certain models could propose a relationship between probability of being 
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drawn as a causal allele, effect size distribution, and minor allele frequency the actual 

relationship underlying actual traits remains unknown. If heritability inference 

procedures are tested and calibrated on a small subset of possible models, the 

performance on traits that do not fit that model may not be accurate. Indeed we found 

that REML exhibited substantial bias in many of our simulations. HE Regression, in 

contrast, was much more robust to a variety simulated heritabilities. 

Our investigation into the performance of HE Regression underscored the importance of 

partitioning variant by MAF. The simulations we conducted also highlighted the 

importance of sample size in assessing the contribution of rare variants. A ten-fold 

increase in sample size reduced standard errors by more than a factor of ten for rare 

variants. The computational efficiency of HE Regression based methods should allow 

for examination of greater sample sizes, and therefore the examination of the 

contribution of rarer variants, as compared to REML. 

Using a cohort of 50,000 individuals from the UK Biobank, we were able to examine the 

heritability of 72 biomedical traits down to a MAF of 0.01%. We found that these traits 

had average heritability was 0.269. Of this, 34.3% of the total heritability was found in 

the highest MAF partition and 34.9% of the total heritability was explained by variants 

with MAF ≤ 1%. These data are inconsistent with simulations that have independent 

and identically distributed effect sizes across MAF bins (where we inferred 67% of 

heritability to be due to the highest MAF bin; Figure 1). This suggests that causal 

variants are disportionately at low frequency or that these low frequency causal variants 

have larger effect sizes than common causal variants. The variants in regions of low LD 
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accounted for 3.3-fold more heritability than those in regions of high LD, consistent with 

past findings (Zeng et al., 2018; Wainschtein et al., 2019) and is considered evidence of 

negative selection. That the variants with MAF≤0.02 explain roughly half of the 

heritability of the low LD variants may be further suggestive of negative selection acting 

upon the genetic architecture of these traits. 

One important caveat to our analysis is that we have only considered variants identified 

through genotyping and imputing samples to an external reference panel. This means 

that a majority of ultrarare variants that are carried by the 50,000 individuals we studied 

were not included in our analysis. Indeed a recent study showed that there were more 

than ten times as many variants with MAF < 0.01% revealed through whole exome 

sequencing in a cohort of 50,000 UK Biobank individuals than in a genotyped and 

imputed comparable cohort (Hout et al., 2019). While rare-variant association studies 

are just as well powered with genotyped and imputed variants as they are with whole 

genome sequencing (Tong & Hernandez, n.d.), our ability to infer the contribution of 

these ultrarare variants to heritability of complex traits is nonexistent. While we did not 

conduct simulations directly to assess the impact of genotyping and imputation error, 

these effects would mostly be observed in the most rare MAF bins, where we only 

observed modest amounts of heritability. As technologies for collection of genetic 

material improve and computational feasibility of ever-larger cohorts is achieved, we will 

be better able to examine the contribution of ultrarare variants to heritability of human 

traits. 
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The findings here relate to the specific population studied, a non-random sample of the 

UK population. While findings may have some sensitivity to the inclusion of additional 

covariates, covariates must be examined on a case-by-case basis to avoid altering the 

interpretation of particular phenotypes. Future work can examine how these findings 

generalize to other populations.  
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Figures 

 

Figure 1. Distribution of Simulated Heritability Varying Fraction of Rare Causal Alleles. 

The fraction of the simulated heritability coming from different MAF partitions (horizontal 

panels) when varying the fraction of causal rare (MAF < 0.01) shows that under 

“neutral” models where variants have uniform effect sizes across the MAF spectrum, the 

rare variants account for very little heritability. Even when 90% of causal variants are 

rare, more common variants account for the majority of heritability. 
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Figure 2. Simulations comparing GREML and HE. (A) The fraction of simulations that 

failed to converge as a function of the fraction of h2 that derives from rare variants 

(MAF<0.02). Each point represents 500 simulations of a different genetic architecture 

(see methods). For the GREML iterations that did converge, the distribution of mean h2 

inferred across genetic architectures is shown for each MAF bin analyzed. True h2 

shown as vertical bars. Similarly, (C) shows the distribution of mean h2 inferred for HE. 

Direct comparisons of point estimates and standard errors are shown in Figure S2. 
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Figure 3. Impact of MAF Partitioning on Heritability Inference. (A) The partitioning 

scheme of the MAF spectrum. (B) Bias of the total inferred heritability for different 

partitioning schemes. (C) Mean squared error of different partitioning schemes. 
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Figure 4. Impact of Excluding Low Frequency Variants on Heritability Inference. (A) The 

partitioning scheme of the MAF spectrum showing the exclusion of increasing range of 

the MAF spectrum. (B) The average bias of the inferred heritability of each partition 
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included in the inference. (C) The mean squared error of the inferred heritability of each 

partition included in the inference. 

  

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 19, 2019. ; https://doi.org/10.1101/2019.12.18.879916doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.18.879916
http://creativecommons.org/licenses/by-nc/4.0/


 

Figure 5: Impact of Sample Size on Bias and Mean Squared Error of Estimates. (A) 

Bias of inferred heritability with different sample sizes. (B) Mean squared error of 

inferred heritability with different sample sizes. 
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Figure 6: Heritability of Human Traits in UK Biobank. (A) Stacked bar plot of average 

heritability in each MAF-LD partition across 69 biomedical traits. (B) Cumulative and 

reverse cumulative heritability of all biomedical traits (with traits colored according to 

their total heritability, see Figure S5). (C) Average cumulative and reverse cumulative 

heritability across traits (solid line) with envelope showing the 95% quantile range from 

1000 bootstrap samples. Dashed and dotted lines represent low and high LD partitions, 

respectively. (D) Comparison of the inferred total heritability across traits using HE 

regression (y-axis) versus LD Score (LDS) regression (x-axis). (E) Difference between 

HE and LDS heritability estimates versus our inferred rare variant (MAF≤0.02) 
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heritability estimate. In D-E, points are colored according to the four biomedical 

categories of traits, with diagonal line show for reference.  
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Tables 

Table 1: Quality Control of Genomic Data 

Quality control step Remaining Individuals 
Initial 473,850 
Restrict to samples where self-reported and genetic sex 
match 473,482 
Restrict to self-reported ethnicity 445,826 
Restrict to samples with principal components 1 and 2 
within 5 standard deviations from the mean 440,222 
Remove samples with inappropriate sex-specific 
cancers 440,148 
Restrict to samples in imputation sample file 439,317 
Restrict sample those with Dish Quality Control score 
(DQC) >= 0.82 439,317 

Restrict samples to those with hard call rates ≥ 97%,  438,287 
Restrict to samples with heterozygosity within 5 
standard deviations of the mean 437,331 
Exclude at least one of any pair of individuals with 3rd 
degree or closer relationship (kinship ), 
prioritizing exclusion of those with more relationships 366,647 
  

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 19, 2019. ; https://doi.org/10.1101/2019.12.18.879916doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.18.879916
http://creativecommons.org/licenses/by-nc/4.0/


Table 2: Simulation Parameters 

Set Number of 
individuals 

Total 
h2 

MAF 
Partitions 

Distribution of 
causal variants 

Distribution of 
heritability  

Total Number of 
Simulations 

1 500 {0.15, 
0.5, 
0.8} 

(0,0.01], 
(0.01, 0.05], 
(0.05, 0.2], 
(0.2, 0.5] 

1000 Total 
Fraction of 
causal variants 
with MAF < 
0.01 each of 
{0.1, 0.5, 0.9} 

Uniform effect 
size 

4,500 

2 500 0.8 (0, 0.002] 
(0.002, 
0.005], 
(0.005, 0.01], 
(0.01, 0.05], 
(0.05, 0.1], 
(0.1, 0.2], 
(0.2, 0.5] 

1000 Total 
143 from each 
of the 6 lowest 
MAF partitions 
and 142 from 
the last 

All 42 
permutations 
of the set: 
{0.4, 0.2, 0.04, 
0.04, 0.04, 
0.04, 0.04} 

21,000 

3 500 0.8 (0, 0.002] 
(0.002, 
0.005], 
(0.005, 0.01], 
(0.01, 0.02], 
(0.02, 0.05], 
(0.05, 0.1], 
(0.1, 0.2], 
(0.2, 0.5] 

625 Total 
125 from each 
partition with 
non-zero h2  
 

1000 
permutations 
of the set: 
{0.4, 0.2, 0.1, 
0.05, 0.05, 0, 
0, 0} 

500,000 

4 50,000 0.68 (0, 
0.000002], 
(000002, 
0.000005], 
(0.000005, 
0.00001], 
(0.00001, 
0.00002], 
(0.00002, 
0.00005], 
(0.00005, 
0.0001], 
(0.0001, 
0.0002], 
(0.0002, 
0.0005], 
(0.0005,  
0.001], 
(0.001, 

50014 Total 
1471 from 
each MAF-LD 
partition 

0.02 from 
each MAF-LD 
partition 

500 
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0.002], 
(0.002, 
0.005], 
(0.005, 0.01], 
( 0.01, 0.02], 
(0.02, 0.05], 
(0.05, 0.1], 
(0.1, 0.2] 
(0.2, 0.5] 
With each 
sub-divided 
by LD 
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Supplementary Materials 

Inclusion of Covariates 

As GCTA has not implemented the inclusion of covariates in their HE Regression 

method, these were included as “pseudo GRMs.” Letting  be the value of the th 

individual for the covariate , the mean-centered, unit-variance-adjusted covariate, , is: 

. 

The entry of the covariate matrix for the pair of individuals  and ,  , would be  

. These covariate matrices were computed in Python and exported in a format 

matching that of GCTAs GRMs. Individuals missing values for covariates were replaced 

with median of the remaining values.  
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Figure S1. Distribution of Simulated Heritability Varying Fraction of Rare Causal Alleles 

across Different Total Heritabilities. 
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Figure S2. Simulations comparing GREML and HE. In all plots, each point represents 

500 simulations of a single genetic architecture when the true total h2=0.8. Each row of 

figures represents a different MAF bin (rare variants at the top, common variants on the 

bottom), where each point is colored by the true h2 that derives from that MAF bin and is 

one of: green (h2=0), orange (h2=0.05), blue (h2=0.1), pink (h2=0.2), or brown (h2=0.4). 

Plots in the first column (left) compare the mean estimated h2 (across 500 simulations, 

or the number that converged, see main text Figure 2A) for GREML (y-axis) versus HE 

(x-axis). Note that the density functions in main text Figure 2B-C represent the marginal 

distributions of these points. The 2nd column of plots compare the standard deviation of 

the estimates for each genetic architecture. The third column of plots compare the 

reported standard errors from GREML vs HE. The fourth (right) column of plots 

compare the fraction of approximate 95% confidence intervals (CI) that overlap the true 

h2 for a given bin. In all plots, the dashed lines connect the average across all sets of 

simulations with the same true h2 in a bin to their axis, and the black line represents the 

y=x line. 
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Figure S3: Impact of MAF Partitioning on Heritability Inference for High MAF.  (A) The 

partitioning scheme of the MAF spectrum used for inference to investigate the impact of 

pooling variants of high MAF. (B) Bias of the total inferred heritability for different 

partitioning schemes. (C) Mean squared error of different partitioning schemes. 
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Figure S4: Impact of MAF Partitioning on Heritability Inference for Intermediate MAF 
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Figure S5. Inferred Total Heritability of Different Quantitative Measurements in UK 

Biobank. The total inferred heritabilities of the 72 biomedical traits examined.  
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Figure S6. The genetic architecture of biomedical traits inferred with different 

covariates. The left panels show the cumulative heritability below a given MAF, and the 

right panels show the reverse cumulative heritability above a given MAF. Top panels 

show the average total heritability, while the middle and bottom panels examine the low 

LD and high LD bins (respectively). 
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