

1 **MSL3 coordinates a transcriptional and translational meiotic program in female**
2 ***Drosophila***

3
4 Alicia McCarthy¹, Kahini Sarkar¹, Elliot T Martin¹, Maitreyi Upadhyay^{1,2#}, Joshua R
5 James¹, Jennifer M Lin¹, Seoyeon Jang³, Nathan D Williams^{3,4#}, Paolo E Forni¹, Michael
6 Buszczak³, Prashanth Rangan^{1*}

7
8 ¹Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany,
9 NY 12202

10
11 ^{2#}Current address: Department of Stem Cell and Regenerative Biology, Harvard
12 University, Cambridge, MA 02138

13
14 ³Department of Molecular Biology, University of Texas Southwestern Medical Center,
15 Dallas, TX 75390

16
17 ^{4#}Current address: Department of Cell Biology, Yale University School of Medicine, New
18 Haven, CT 06520

19
20 *Corresponding Author and Lead Contact

21
22
23
24
25
26
27
28
29
30
31
32 Prashanth Rangan
33 Department of Biological Sciences/RNA Institute
34 University at Albany, SUNY
35 1400 Washington Avenue
36 Albany, NY 12222
37 Tel: 518 442 3485
38 Email: prangan@albany.edu

39 **Summary**

40 Gamete formation from germline stem cells (GSCs) is essential for sexual reproduction.
41 However, the regulation of GSC differentiation and meiotic entry are incompletely
42 understood. Set2, which deposits H3K36me3 modifications, is required for differentiation
43 of GSCs during *Drosophila* oogenesis. We discovered that the H3K36me3 reader Male-
44 specific lethal 3 (MSL3) and the histone acetyltransferase complex Ada2a-containing
45 (ATAC) cooperate with Set2 to regulate entry into meiosis in female *Drosophila*. MSL3
46 expression is restricted to the mitotic and early meiotic stages of the female germline,
47 where it promotes transcription of genes encoding synaptonemal complex components
48 and a germline enriched *ribosomal protein S19* paralog, *RpS19b*. *RpS19b* upregulation
49 is required for translation of Rbfox1, a known meiotic cell cycle entry factor. Thus, MSL3
50 is a master regulator of meiosis, coordinating the expression of factors required for
51 recombination and GSC differentiation. We find that MSL3 is expressed during mouse
52 spermatogenesis, suggesting a conserved function during meiosis.

53

54 **Introduction**

55 Germ cells give rise to gametes, a fundamental requirement for sexual reproduction. The
56 production of gametes is tightly controlled to ensure a constant supply throughout the
57 reproductive life of an organism (Cinalli et al., 2008; Kimble, 2011; Lehmann, 2012;
58 Spradling et al., 1997). Germ cells can directly differentiate to enter meiosis or become
59 germline stem cells (GSCs) (Edson et al., 2009; Fuller and Spradling, 2007; Nikolic et al.,
60 2016; Saitou and Yamaji, 2010; Sharma et al., 2019). GSCs divide mitotically to both self-
61 renew and generate differentiating daughters that can enter meiosis (Fayomi and Orwig,
62 2018; Fuller and Spradling, 2007; Kimble, 2011; Lehmann, 2012; De Rooij, 2017;
63 Spradling et al., 2011). Loss of meiotic entry results in infertility (Cohen et al., 2006;
64 Handel and Schimenti, 2010; Hughes et al., 2018; Lesch and Page, 2012; Marston and
65 Amon, 2004; Soh et al., 2015), so propagation of sexually reproducing organisms hinges
66 upon the ability of the germ cells to enter meiosis.

67

68 In mammals, the entry into meiosis is promoted by steroid signaling during oogenesis and
69 spermatogenesis (Bowles and Koopman, 2007; Griswold et al., 2012). Retinoic acid (RA)
70 from somatic cells activates the transcription factor *Stimulated by retinoic acid 8* (*Stra8*)
71 in the germline (Bowles et al., 2006; Endo et al., 2015, 2017; Koubova et al., 2006; Oulad-
72 Abdelghani et al., 1996; Zhou et al., 2008). During spermatogenesis, *STRA8* fosters
73 meiotic entry by promoting transcription of a broad gene expression program (Abby et al.,
74 2016; Bailey et al., 2017; Jain et al., 2018; Kojima et al., 2019; Soh et al., 2017). However,
75 *Stra8* is not sufficient to induce meiosis, suggesting a cell type-specific chromatin
76 landscape and/or factors that cooperate with *STRA8* (Endo et al., 2015; Kojima et al.,
77 2019; Miyauchi et al., 2017; Zhou et al., 2008). In addition, *Stra8* is not conserved outside

78 of vertebrates (Fujiwara and Kawamura, 2003; Hickford et al., 2017). The transcriptional
79 machinery that promotes meiotic entry in other organisms has remained elusive.

80
81 Meiotic differentiation is well characterized in *Drosophila* (Hales et al., 2015). In both male
82 and female *Drosophila*, germ cells acquire a GSC fate prior to differentiating into gametes
83 (Dansereau and Lasko, 2008; Lehmann, 2012; Marlow, 2015). *Drosophila* ovaries are
84 composed of individual egg producing units called ovarioles. A structure called the
85 germarium lies at the tip of each ovariole and houses 2-3 GSCs, which are marked by
86 round organelles called spectrosomes (Eliazer and Buszczak, 2011; Kahney et al., 2019;
87 Kirilly et al., 2011; Morris and Spradling, 2011; Morrison and Spradling, 2008; Spradling
88 et al., 2001, 2011, 2008; Xie, 2000; Xie and Spradling, 2000) (**Figure 1A**). GSCs both
89 self-renew and differentiate into cystoblasts (CBs) that divide without cytokinesis to give
90 rise to 2-, 4-, 8-, and 16-cell cysts, which are marked by branched structures called
91 fusomes (Chen and McKearin, 2003a, 2003b; Xie, 2013).

92
93 The somatic niche of the germarium provides Decapentaplegic (DPP) signaling that leads
94 to phosphorylation of Mothers against DPP (pMad) in GSCs, and transcriptional
95 repression of the differentiation factor *bag of marbles* (*bam*) (Chen and McKearin, 2003a,
96 2003b; Kai and Spradling, 2003). After GSC division, the CB is displaced from the niche,
97 allowing for *Bam* expression (Chen and McKearin, 2003a, 2003b). *Bam* is sufficient to
98 promote the transition from CB to a differentiated 8-cell cyst (McKearin and Ohlstein,
99 1995; McKearin and Spradling, 1990).

100
101 In the 8-cell cyst, expression of the cytoplasmic isoforms of RNA-binding Fox protein 1
102 (Rbfox1) leads to translational downregulation of self-renewal factors to promote
103 expression of Bruno (Bru) (Carreira-Rosario et al., 2016; Tastan et al., 2010). Bru, in turn,
104 translationally represses mitotic factors, which promote cyst divisions, and regulates entry
105 into a meiotic cell cycle (Parisi et al., 2001; Sugimura and Lilly, 2006; Wang and Lin,
106 2007). Multiple cells in the cysts initiate meiosis, but only the oocyte will commit to
107 meiosis; the other 15 cells acquire a nurse cell fate in the 16-cell cyst stage (Carpenter,
108 1975, 1994; Carpenter and Sandler, 1974; Huynh and St Johnston, 2004; Mach and
109 Lehmann, 1997; Navarro et al., 2001; Theurkauf et al., 1993). The oocyte and the 15
110 nurse cells are encapsulated by somatic cells to form a developing egg chamber and
111 eventually an egg (**Figure 1A1**). Although Rbfox1 expression in the germline is essential
112 for entry into a meiotic cell cycle and oocyte specification, how it is induced is unclear
113 (Carreira-Rosario et al., 2016).

114
115 Another hallmark of meiosis, apart from a specialized cell cycle, is homologous
116 chromosome recombination. This process is regulated by the formation of the
117 synaptonemal complex (SC) (Ables, 2015; Carpenter, 1975; Hughes et al., 2018). The

118 SC starts to assemble on homologs in up to four nuclei (Takeo et al., 2011), but is
119 maintained only in the specified oocyte (Page and Hawley, 2001; Von Stetina and Orr-
120 Weaver, 2011) (**Figure 1A**). How transcription of SC components is activated during
121 meiotic commitment is not well understood.

122
123 GSC differentiation during *Drosophila* oogenesis requires the histone methyltransferase
124 SET domain containing 2 (Set2), which confers histone H3 lysine 36 trimethylation
125 (H3K36me3) (Larschan et al., 2007; Mukai et al., 2015). H3K36me3 typically marks
126 transcriptionally active genes (Bannister and Kouzarides, 2011; Dong and Weng, 2013;
127 Keogh et al., 2005). How H3K36me3 regulates GSC differentiation is not clear.
128 Interestingly, in male *Drosophila*, H3K36me3 facilitates recognition of the X chromosome
129 by the Male-Specific Lethal (MSL) complex, which leads to hyper-transcription of the male
130 X and gene dosage compensation with females, which have two X chromosomes (Bell et
131 al., 2008; Conrad et al., 2012a; Larschan et al., 2007; Samata and Akhtar, 2018; Sural et
132 al., 2008). Within the MSL complex, the chromodomain (CD) of MSL3 reads the
133 H3K36me3 marks and the histone acetyl transferase (HAT) Males absent on the first
134 (MOF) drives acetylation of histone H4 lysine 16 (H4K16ac) (Bone et al., 1994; Conrad
135 et al., 2012b; Gu et al., 2000; Hilfiker et al., 1997; Kadlec et al., 2011; Larschan et al.,
136 2007; Sural et al., 2008; Turner et al., 1992). Female flies do not assemble the MSL
137 complex because some key components are not expressed (Bachiller and Sánchez,
138 1989; Bashaw and Baker, 1997; Belote, 1983; Belote and Lucchesi, 1980; Kelley et al.,
139 1997; Uchida et al., 1981). MSL proteins are conserved in mammals and regulate
140 embryonic stem cell differentiation (Basilicata et al., 2018; Chelmicki et al., 2014; Heard
141 and Disteche, 2006; Keller and Akhtar, 2015; Laverty et al., 2010; Ravens et al., 2014).
142 However, if MSL proteins in *Drosophila* regulate gene expression beyond their role in
143 dosage compensation is not known.

144
145 Here, we identified a transcriptional axis that regulates the transition to the meiotic
146 program in *Drosophila*. We find that Set2, MSL3, and a HAT complex, Ada2a containing
147 (ATAC), mediate progression into meiosis. We discovered that MSL3 is expressed in the
148 pre-meiotic and early meiotic stages during oogenesis, where it promotes the HAT-
149 mediated transcription of several members of the SC as well as a germline-specific
150 paralog of eukaryotic *Ribosomal protein S19* (*eRpS19/RpS19*). In humans, mutations of
151 *RpS19* disrupt hematopoiesis due to translational dysregulation of distinct mRNAs
152 (Draptchinskaia et al., 1999; Ludwig et al., 2014; Willig et al., 2000). We discovered that
153 expression of *RpS19b* helps increase overall levels of *RpS19*, which is then required for
154 translation of *Rbfox1* and thus entry into meiosis in female flies. We show that MSL3 is
155 also expressed in differentiating mouse spermatogonia, downstream of the critical
156 meiosis promoting factor STRA8, suggesting an evolutionarily conserved role for MSL3
157 in promoting meiosis. Thus, the Set2-MSL3-ATAC axis directly regulates transcription

158 and indirectly regulates translation of key meiotic factors to promote proper GSC
159 differentiation.

160

161 **Results**

162 **Set2 is required in the germline for meiotic progression during oogenesis**

163 To determine how Set2 promotes oogenesis in *Drosophila*, we stained control and *Set2*
164 depleted fly gonads with antibodies against Vasa, a germline marker, and 1B1, a marker
165 of somatic cell membranes, spectrosomes, and fusomes. Compared to controls, *Set2*
166 depleted gonads displayed a loss of GSCs, an accumulation of cysts, and a loss of proper
167 egg chamber formation (**Figure 1B-D; Figure 1-Supplement 1A-B'**). The egg chambers
168 that do form contain undifferentiated and differentiating cells marked by spectrosomes
169 and fusomes that fail to develop further (100% in *Set2* RNAi compared to 0% in *nosGAL4*;
170 $p < 2.2E-16$, $n=50$), resulting in females that are infertile. Additionally, *Set2* depleted germ
171 cells had significantly reduced H3K36me3 levels compared to the control, consistent with
172 previous reports (Mukai et al., 2015) (**Figure 1-Supplement 1C-E**).

173

174 The accumulation of cyst-like structures upon germline depletion of *Set2* could be due to
175 GSCs that divide but fail to undergo cytokinesis, resulting in GSC cysts, or differentiating
176 cysts that cannot progress further in development (Carreira-Rosario et al., 2016; Mathieu
177 and Huynh, 2017; Sanchez et al., 2016). To discern between these two types of cysts,
178 we stained for pMad, a marker of GSCs. In addition, we crossed a *bam* transcriptional
179 reporter, *bam-GFP*, into *Set2* RNAi background and independently assayed for Bam
180 protein (Chen and McKearin, 2003b; Eikenes et al., 2015; Matias et al., 2015). We found
181 that *Set2* RNAi germaria accumulated differentiating cysts, which transcribed and then
182 translated Bam and were pMad negative (**Figure 1E-F'; Figure 1-Supplement 1F-I'**).
183 Thus, *Set2* is required in the germline downstream of *bam* to promote the differentiation
184 of Bam expressing cysts into egg chambers.

185

186 Although germline depletion of *Set2* leads to both loss of GSCs and accumulation of
187 cysts, here we focus on the cyst accumulation phenotype. Loss of *Set2* results in cysts
188 that do not properly express the oocyte specific protein Orb (Mukai et al., 2015), but loss
189 of Orb does not phenocopy loss of *Set2*, suggesting that Orb downregulation is a
190 consequence of the differentiation defect (Barr et al., 2019; Christerson and McKearin,
191 1994; Huynh and St Johnston, 2000). Similar to loss of *Set2*, loss of Rbfox1 results in the
192 accumulation of Bam expressing cysts that do not differentiate into proper egg chambers
193 (Carreira-Rosario et al., 2016; Tastan et al., 2010). To test if *Set2* regulates Rbfox1 and
194 Bru expression, we stained separately for Rbfox1 and Bru along with Vasa and 1B1 in
195 control and germline *Set2* depleted ovaries. While control germaria express Rbfox1
196 robustly in 8-cell cysts, *Set2* depleted germ cells exhibited a significantly lower level of
197 Rbfox1, while somatic levels were unchanged (**Figure 1G-I'**). Furthermore, Bru levels

198 were reduced and enrichment to the oocyte was ablated in *Set2* RNAi germaria compared
199 to controls (**Figure 1-Supplement 1J-L**). Thus, *Set2* is required after *Bam* expression to
200 promote proper differentiation via *Rbfox1* expression.

201
202 As germline depletion of *Set2* results in reduced levels of *Rbfox1* and *Bru*, we
203 hypothesized that *Set2* depleted cysts do not properly enter meiosis nor specify an
204 oocyte. To determine if *Set2* is required for meiotic progression, we stained control and
205 *Set2* depleted germaria with antibodies against a SC member, Crossover suppressor
206 on 3 of Gowen (C(3)G), and Vasa (Anderson et al., 2005; Page and Hawley, 2001). The
207 control had several C(3)G positive germ cells in 16-cell cysts but only the most posterior
208 germ cell in the egg chamber was marked with C(3)G. In *Set2* germline depleted
209 germaria, the majority of cells displayed perturbed C(3)G expression where an irregular
210 number of cells were C(3)G positive and C(3)G improperly coated DNA and appeared
211 fragmented (**Figure 1J-K1'**). To determine if the oocyte is properly specified, we stained
212 for the oocyte determinant Egalitarian (Egl), as well as Vasa and 1B1 (Carpenter, 1994;
213 Huynh and St Johnston, 2000; Mach and Lehmann, 1997). While control 16-cell cysts
214 had a single Egl positive cell, *Set2* germline depleted germaria showed diffuse staining
215 of Egl without enrichment in a single cell (**Figure 1-Supplement 1M-N'**). Thus, *Set2* is
216 required for proper meiotic progression and oocyte specification.

217
218 **MSL3 acts downstream of Set2 to promote entry into meiosis independent of the**
219 **MSL complex**

220 To identify readers of H3K36me3 that activate transcription downstream of *Set2*, we
221 screened known Chromodomain (CD) containing proteins, which recognize lysine
222 methylation marks, for loss of function phenotypes that phenocopied *Set2* (Allis and
223 Jenuwein, 2016; Bannister et al., 2001; McCarthy et al., 2018a; Nakayama et al., 2001;
224 Navarro-Costa et al.; Yap and Zhou, 2011). Unexpectedly, we identified the H3K36me3
225 reader MSL3. MSL3 is required in the MSL complex in male flies (Lucchesi and Kuroda,
226 2015; Samata and Akhtar, 2018), but its role in the female *Drosophila* germline was
227 unknown.

228
229 To investigate MSL3 expression in ovaries, we analyzed *msl3* transcript levels at different
230 stages of oogenesis, using RNA-seq libraries that we enriched for GSCs, CBs, cysts, and
231 whole adult ovaries as previously described (McKearin and Ohlstein, 1995; Xie and
232 Spradling, 1998; Zhang et al., 2014). We found that *msl3* mRNA is expressed during
233 oogenesis (**Figure 2-Supplement 1A**). We also examined a fly line expressing GFP
234 tagged MSL3 under endogenous control (Strukov et al., 2011). We stained ovaries from
235 MSL3-GFP flies for GFP and 1B1, and found that MSL3-GFP in the germline was
236 expressed in single cells marked by spectrosomes and early cysts marked by fusomes

237 (Figure 2A, A'; Figure 2-Supplement 1B). Thus, MSL3 is expressed in germ cells prior
238 to and during meiotic commitment.

239
240 To verify that MSL3 is required during oogenesis, we examined validated *msl3* mutants
241 (Bachiller and Sánchez, 1989; Sural et al., 2008; Uchida et al., 1981). Indeed, loss of
242 *msl3* lead to cyst accumulation, germline loss, and failure to make egg proper chambers
243 (Figure 2B-D; Figure 2-Supplement 1C-D'). Depletion of *msl3* in the germline alone
244 resulted in the accumulation of cysts, phenocopying *msl3* mutants (Figure 2D; Figure 2-
245 Supplement 2A-B'). The cysts that accumulate upon *msl3* germline depletion expressed
246 *bam* but were pMad negative and failed to properly express Rbfox1 or Bru, phenocopying
247 *Set2* germline depletion (Figure 2E-I; Figure 2-Supplement 2C-I). In addition, the
248 accumulated cysts failed to specify an oocyte, as monitored by Egl, and do not properly
249 express the synaptonemal protein C(3)G (Figure 2J-K1'; Figure 2-Supplement 2J-K').
250 Expression of *msl3* in the germline of *msl3* mutant females was sufficient to rescue the
251 differentiation defect (Figure 2D; L-M). Thus, the H3K36me3 writer, *Set2*, and the
252 H3K36me3 reader, MSL3, are required in the germline to commit to meiosis.

253
254 To determine if MSL3 and *Set2* act together to promote oogenesis, we generated flies
255 heterozygous for *Set2* and *msl3*. The germaria of these trans-heterozygous flies
256 displayed severe germline loss compared to single heterozygous controls (Figure 2-
257 Supplement 1E-G). Although loss of MSL3 did not affect H3K36me3 levels, loss of *Set2*
258 abolished MSL3 expression (Figure 2-Supplement 1H-L). Together, these data suggest
259 that *Set2* and MSL3 impinge upon the same developmental pathway(s), with MSL3 acting
260 downstream of *Set2* to promote proper meiosis.

261
262 In the MSL complex, MSL3 binds to H3K36me3 and helps to recruit MOF, which
263 acetylates H4K16 to promote transcription of the X chromosome (Keller and Akhtar, 2015;
264 Laverty et al., 2010; Lucchesi and Kuroda, 2015). To test if MSL3 functions through the
265 MSL complex in the ovaries, we examined transcript levels of the other MSL complex
266 members (*msl1*, *msl2*, *mof*, *mle*, *roX1*, and *roX2*) (Lucchesi and Kuroda, 2015). We found
267 that *msl1*, *mle*, and *mof* are expressed in ovaries, but *msl2*, *roX1*, and *roX2* are lowly
268 expressed (<1 TPM), consistent with previous reports (Bashaw and Baker, 1997; Meller
269 et al., 1997; Parisi et al., 2004). Additionally, we examined validated *msl1*, *msl2*, and *mle*
270 mutants (Bachiller and Sánchez, 1989b; Belote, 1983; Uchida et al., 1981) and did not
271 observe early oogenesis defects (Figure 2-Supplement 2L). Moreover, loss of germline
272 MOF did not result in accumulation of cysts (Sun et al., 2015). Thus, MSL3 functions
273 independently of the MSL complex downstream of *Set2* to promote differentiation.

274
275 **ATAC complex acts with *Set2* and MSL3 to promote meiotic entry**

276 As MSL complex members are either not expressed or not required in the female gonad,
277 we asked if MSL3 cooperates with another HAT-containing complex to regulate cyst
278 differentiation. To identify what HAT works downstream of MSL3, we performed an RNAi
279 screen. We found that members of the Ada2a-containing (ATAC) complex phenocopy
280 loss of Set2 and MSL3 in the germline (Spedale et al., 2012; Suganuma et al., 2008)
(Figure 3A-C; Figure 3-Supplement 1A-H). The ATAC complex contains thirteen
281 members, some shared with other complexes, including the HAT Gcn5 (Spedale et al.,
282 2012). Depletion of six members, four of which are specific to the ATAC complex, resulted
283 in accumulation of cysts and germline loss (**Figure 3-Supplement 1A-H**). Of those ATAC
284 complex members, we chose to focus on Negative Cofactor 2 β (NC2 β), as its defect was
285 highly penetrant but maintained sufficient germline for transcriptomic analysis (see
286 below).

287
288 Loss of NC2 β in the germline led to GSC loss and accumulation of cysts-like structures
289 that were marked by fusomes (**Figure 3A-C; Figure 3-Supplement 1A-B'**). These cysts
290 expressed Bam, did not contain pMad positive cells or properly express Rbfox1 or Bru
291 (**Figure 3D-H; Figure 3-Supplement 2A-G**). In addition, loss of NC2 β leads to loss of
292 meiotic progression and oocyte specification as monitored by C(3)G localization and Egl
293 respectively (**Figure 3I-J1'; Figure 3-Supplement 2H-I'**). These data suggest that the
294 ATAC complex, like Set2 and MSL3, is required for commitment to a meiotic program as
295 well as oocyte specification.

296
297 As components of ATAC complex phenocopy loss of Set2 and *msl3*, we asked whether
298 the ATAC complex may acts together with MSL3 to promote meiotic entry. To test this,
299 we stained for H3K36me3 in *NC2 β* RNAi flies and found that H3K36me3 levels were
300 unaltered (**Figure 3-Supplement 2J-L**). In addition, we made use of a mutant of the
301 active HAT in the ATAC complex, Atac2, as there were no available *NC2 β* mutants
302 available. We generated flies heterozygous for both *Atac2* and *msl3*, and found that their
303 germaria had severe oogenesis defects compared to the single heterozygous controls
304 (**Figure 3-Supplement 2M-O**). Thus, the ATAC complex works downstream of Set2, and
305 *Atac2* genetically interacts with *msl3*. Taken together, our data suggest that Set2, MSL3,
306 and ATAC complex impinge upon the same developmental pathway(s) to regulate meiotic
307 progression in the *Drosophila* female germline.

308
309
310 **Set2, MSL3, and NC2 β promote transcription of the ribosomal protein paralog**
311 ***RpS19b***

312 To determine how Set2, MSL3, and ATAC promote meiotic commitment, we compared
313 the transcriptomes of *Set2*, *msl3*, and *NC2 β* germline depleted ovaries with to a
314 developmental control that accumulates cysts. To enrich for cysts we induced *bam*
315 expression under control of a *heat-shock* (*hs*) promoter in the background of germaria

316 depleted for *bam* (*bam* RNAi; *hs-bam*) (Ohlstein and McKearin, 1997; Zhang et al., 2014).
317 We found 662 significantly downregulated RNAs, whereas 65 RNAs were upregulated in
318 *Set2* depleted germaria compared to *bam* RNAi; *hs-bam* ovaries (Fold Change (FC)=4;
319 False discovery rate (FDR)=0.05) (**Figure 4A**). There were 283 significantly
320 downregulated RNAs and 302 significantly upregulated RNAs in *msl3* RNAi compared to
321 *bam* RNAi; *hs-bam* (**Figure 4A'**). Lastly, there were 466 RNAs significantly downregulated
322 and 277 upregulated, in *NC2β* RNAi compared to the developmental control (**Figure**
323 **4A''**). Of those transcripts that were differentially expressed in *Set2*, *msl3*, and *NC2β*
324 depleted germ cells compared to *bam* RNAi; *hs-bam* control there were 29 shared RNAs
325 that were downregulated (**Figure 4B**) and 11 shared RNAs that were upregulated. As
326 these transcriptional regulators are known to promote transcription, we focused on the
327 downregulated RNAs.

328
329 Interestingly, although *Rbfox1* protein is not properly expressed upon loss of *Set2*, *MSL3*,
330 and *NC2β*, *Rbfox1* mRNA was not among the shared downregulated RNAs (**Figure 4C**).
331 We verified that *Rbfox1* mRNA was present in germline of *msl3* depleted ovaries by *in*
332 *situ* hybridization (**Figure 4-Supplement 1A-B'**). Thus, *Set2*, *MSL3*, and *ATAC* do not
333 regulate transcription of *Rbfox1* mRNA to promote meiotic commitment. In contrast, we
334 found that several SC member genes were among the shared downregulated genes,
335 including *orientation disruptor* (*ord*), *sisters unbound* (*sunn*), and *corona* (*cona*) (Hughes
336 et al., 2018) (**Figure 4D-E; Figure 4-Supplement 1C-D**). To validate the loss of SC
337 components, we crossed an *Ord-GFP* line (Balicky et al., 2002) into *msl3* mutants and
338 found that *msl3* mutant ovaries had both lower GFP levels as well as mislocalized *Ord*
339 compared to controls (**Figure 4-Supplement 1E-F'**). The shared downregulated targets
340 also included 11 candidate genes (CGs) of unknown function, and the ribosomal protein
341 paralog, *RpS19b*, but not *RpS19a* (**Figure 4B, F; Figure 4-Supplement 1G-J'**).
342

343 We hypothesized that *MSL3* and its directly regulated downstream targets would be
344 expressed at the same stages, from GSCs until the cyst stages. To test this hypothesis,
345 we analyzed mRNA levels of the 29 targets in RNA-seq libraries enriched for either GSCs,
346 CBs, cysts, or unenriched wild type ovaries. Indeed, transcript levels overlap with *MSL3*
347 expression and then dropped off (**Figure 4G**). Taken together, these data suggest that
348 the *Set2*, *MSL3*, and *ATAC* axis regulates transcription of SC components and *RpS19b*,
349 but not *Rbfox1*, during GSC differentiation.
350

351 **RpS19b is a germline enriched ribosomal protein required for *Rbfox1* translation**
352 *RpS19b* is a ribosomal protein and is one of two *RpS19* paralogs, *RpS19a* and *RpS19b*
353 in *Drosophila* (Marygold et al., 2007; Shigenobu et al., 2006). These two paralogs are
354 ~80% similar (Sayers et al., 2012, FlyBase DIOPT v7.1). Humans only have one version
355 of *RpS19* (h*RpS19*/h*S19*). In humans, reduced expression of *RpS19* leads to

356 ribosomopathies due to decreased translation of specific mRNAs, such as the
357 transcription factor GATA1 in the case of Diamond-Blackfan anemia (DBA)
358 (Draptchinskaia et al., 1999; Gazda et al., 2004; Khajuria et al., 2018; Ludwig et al., 2014;
359 Willig et al., 2000).

360
361 Given that loss of Set2, MSL3, and NC2 β decreased Rbfox1 protein levels without
362 affecting *Rbfox1* mRNA levels, we hypothesized that reduced RpS19b expression
363 resulted in decreased translation of *Rbfox1* mRNA. If RpS19b is required for translation
364 of Rbfox1, then RpS19b and Rbfox1 protein expression should overlap. We examined
365 lines expressing RpS19b-GFP and RpS19a-HA from their endogenous promoters.
366 RpS19b-GFP was germline enriched while RpS19a-HA was expressed in both the
367 germline and soma of gonad (**Figure 5A-A1; Figure 5-Supplement 1A-B**). In the
368 germline, RpS19b-GFP was expressed at high levels in single cells and gradually
369 decreased in cyst stages, which overlapped with the protein expression of MSL3 and
370 Rbfox1 (**Figure 5B**).

371
372 If RpS19b acts downstream of MSL3 to promote translation of *Rbfox1* mRNA, then loss
373 of RpS19b should phenocopy *msl3* mutants, with reduced Rbfox1 protein levels. We used
374 RNAi to specifically deplete *RpS19b* but not *RpS19a* in the germline (**Figure 5-Supplement 1C-F'**) and found that *RpS19b* depleted germaria accumulated *bam*-
375 positive cysts that lack Rbfox1 protein (**Figure 5-Supplement 1G-H'**; **Figure 5C-H**). We
376 next asked whether addition of *RpS19b* could rescue the differentiation defect upon loss
377 of *msl3*. We found that addition of one copy of *RpS19b-GFP* in *msl3* mutant flies rescued
378 the early cyst defect, including Rbfox1 expression, and lead to egg chamber formation
379 (**Figure 5I-M**). In addition, overexpression of *RpS19b* via an *EP* line could also rescue
380 the differentiation defect upon germline depletion of *msl3*, leading to egg chamber
381 formation (**Figure 5N-O**). Thus, our data suggest that MSL3 promotes the expression of
382 *RpS19b* and thus *Rbfox1* translation and proper entry into meiosis.

383
384 Our model predicts that the MSL3-mediated regulation of SC members is independent of
385 *Rbfox1* protein expression. To test this model, we examined the localization of the SC
386 component C(3)G in *msl3* mutants that express *RpS19b* (Anderson et al., 2005; Page
387 and Hawley, 2001). We found that while *msl3* mutants with restored *RpS19b* expression
388 make egg chambers, C(3)G does not properly localize to the oocyte nucleus in egg
389 chambers and the females were infertile (**Figure 5P-Q'**). Thus, *RpS19b* is not involved in
390 MSL3-mediated regulation of SC members to promote recombination during meiosis.

391
392
393 **RpS19 levels, not paralog specificity, are critical for meiotic progression**
394 We generated a CRISPR null mutant of *RpS19b* (*RpS19b*^{CRISPR}) that are viable and
395 unexpectedly did not display any oogenesis defects (**Figure 5-Supplement 1I-K**), unlike

396 homozygous *RpS19a* mutants, which are lethal (Shigenobu et al., 2006). Studies in
397 organisms including zebrafish have reported transcriptional compensation in mutants, but
398 not in gene depletion using RNA interference methods (El-Brolosy et al., 2019). To
399 determine if there are transcriptional changes in *RpS19b*^{CRISPR} mutants, we performed
400 RNA-seq of CB enriched ovaries utilizing *bam* RNAi and compared it to *RpS19b*^{CRISPR} in
401 *bam* depleted background. We enriched for undifferentiated stages as *RpS19b* is
402 primarily expressed only up to the cyst stages. We found that loss of *RpS19b* resulted in
403 672 downregulated genes and 2,030 upregulated genes with 6-fold downregulation of
404 *RpS19b* but no increase in *RpS19a* levels (1592 TPM in *bam* RNAi; *RpS19b*^{CRISPR}
405 compared to 1688 TPM in *bam* RNAi) (**Figure 5-Supplement 1L**). Intriguingly, a
406 translation initiation factor, *eukaryotic translation initiation factor 4B* (eIF4B), was
407 upregulated more than 8-fold in *RpS19b* mutants (5.7 TPM in *bam* RNAi; *RpS19b*^{CRISPR}
408 compared to 0.67 TPM in *bam* RNAi) suggesting modulation of translation machinery.
409 We then asked if *RpS19b* mutants have proper development because they translate
410 increased levels of *RpS19a* protein. Using an *RpS19* antibody that detects both paralogs,
411 we found that levels of *RpS19* were not downregulated in mutant compared to control
412 gonads (**Figure 5-Supplement 1M-P**). Furthermore, germline depletion of *RpS19a* in
413 *RpS19b*^{CRISPR} mutants results in complete loss of the germline, compared to no defect in
414 homozygous *RpS19b*^{CRISPR} mutants or accumulation of cysts in *RpS19a* depletion alone
415 (**Figure 5-Supplement 1Q-R**). In contrast, *RpS19b* depletion in *RpS19b*^{CRISPR} mutants
416 did not have a defect (**Figure 5-Supplement S-T**). Thus, loss of *RpS19b* can be
417 compensated by increased levels of *RpS19a*, via yet unknown mechanisms.
418

419 Our data suggests that *RpS19b* expression acts to increase the levels of *RpS19*, which
420 then promotes expression of *Rbfox1*. To test this, we depleted *RpS19a* from the germline
421 and found that the germaria accumulate *bam*-positive cysts that have significantly
422 reduced levels of *Rbfox1* (**Figure 5-Supplement 2A-L'**). In addition, ectopic expression
423 of *RpS19a-HA* in *msl3* depleted ovaries restored *Rbfox1* protein expression and egg
424 chamber formation but females were infertile and had perturbed C(3)G localization
425 (**Figure 5-Supplement 2M-R**). Furthermore, expression of human *RpS19* in the germline
426 of *msl3* depleted germaria also rescued the cyst accumulation phenotype giving rise to
427 egg chambers (**Figure 5-Supplement 2S-T1**). Thus, our data taken together suggests
428 that proper dosage of *RpS19* is essential for translation of *Rbfox1* protein, that then
429 promotes transition to a meiotic cell fate, and egg chamber formation in *Drosophila*.
430

431 **RpS19 promotes *Rbfox1* translation in the germline**

432 As proper *RpS19* levels are required for *Rbfox1* protein expression, we hypothesized that
433 *RpS19* regulates translation of *Rbfox1*. To test this, we performed polysome profiling
434 followed by western blot analysis using ovaries enriched for undifferentiated germ cells
435 (*bam* RNAi), as well as whole ovaries. While *RpS19a-HA* is present in polysome fractions

436 in whole ovaries, RpS19b-GFP appeared to be preferentially enriched in actively
437 translating ribosomes early in oogenesis, consistent with its expression pattern (**Figure**
438 **6A-B'**). To test if RpS19 paralogs affect translation in cysts, we pulsed gonads with a
439 puromycin analog, O-propargyl-puromycin (OPP), that is incorporated into translated
440 peptides and can be detected using Click-chemistry (Sanchez et al., 2016). We found
441 that cysts that accumulate upon the loss of RpS19a and RpS19b have decreased
442 translation compared to cysts of control ovaries (**Figure 6C-F**).
443

444 To directly test whether RpS19b is required for *Rbfox1* translation we then performed
445 polysome-seq on germaria depleted of *RpS19b* compared to control germaria enriched
446 for cysts using *bam* *RNAi*; *hs-bam* (**Figure 6G-H**). Depletion of germline *RpS19b* did not
447 significantly affect the translation efficiency of germline specific mRNA, *nanos*, but there
448 was a reduction of *Rbfox1* mRNA translation efficiency, compared to control (**Figure 6I-**
449 **J**). Additionally, depletion of *RpS19b* using *RNAi*, did not reduce the levels or translation
450 efficiency of *RpS19a* (**Figure 6K**). Taken together, our data suggest that there is an
451 increased expression of RpS19 during early development that is required for translation
452 of *Rbfox1* mRNA.
453

454 **MSL3 is expressed during meiotic stages of mouse spermatogenesis**

455 As Set2, MSL3, and ATAC complex are conserved in mammals, we hypothesized that
456 this transcriptional axis could also regulate meiotic entry in mammals. Set2 and ATAC
457 are general transcriptional regulators and present in most tissues, therefore we asked if
458 MSL3 is differentially expressed in the male gonad, which is easily accessible and
459 because of germline stem cells, has ongoing meiosis (Guelman et al., 2009; Li et al.,
460 2016). In male mice, undifferentiated Type A spermatogonial stem cells (SSCs) reside
461 proximal to the basement membrane of the seminiferous tubules where they self-renew
462 and divide (Boyle et al., 2007; Hess and de Franca, 2008; Oatley and Brinster, 2008;
463 Ohta et al., 2003; Ryu et al., 2006). These spermatogonia are maintained by support cells
464 called Sertoli cells (Hess and R. França, 2005). Upon retinoic acid (RA) signaling, Type
465 B spermatogonia express markers such as KIT receptor (cKIT) and STRA8, differentiate
466 and undergo meiosis to give rise to spermatocytes (SPCs), spermatids, and spermatozoa
467 (Busada et al., 2015; Endo et al., 2015; Schrans-Stassen et al., 1999; Zhou et al., 2008).
468 To examine spermatogenesis, we stained post-pubertal gonads for the differentiation
469 markers cKIT and STRA8. We observed STRA8 positive germ cells co-localized with cKIT
470 positive SSCs and primary spermatocytes that have reached the pre-leptotene phase of
471 meiosis I, as previously reported (Busada et al., 2015; van Pelt et al., 1995) (**Figure 7A-**
472 **B**). To examine the spatiotemporal regulation of MSL3 during spermatogenesis, we
473 stained for cKIT and MSL3. We found that MSL3 forms nuclear speckles in cKIT positive
474 spermatogonia and is nuclear in spermatocytes that are undergoing meiosis (**Figure 7C-**
475 **E**). To interrogate where in the nucleus this MSL3 nuclear foci forms in SSCs we co-

476 stained with Synaptonemal complex protein 3 (SYCP3) and DAPI. We found that while
477 chromosomes were coated with SYCP3, MSL3 foci were restricted to the non-
478 recombining chromosomes (**Figure 7F-F''**). Taken together, we find that MSL3 is nuclear
479 in cells undergoing meiosis during mouse spermatogenesis. Thus, MSL3 is expressed
480 downstream of STRA8 in meiotic cells during spermatogenesis.

481

482 Discussion

483 Model organisms such as *Drosophila* have given us tremendous insight into how meiosis
484 is regulated, having identified both intrinsic regulators such as translational control
485 factors, as well as extrinsic regulators such as ecdysone signaling that govern this
486 process (Carreira-Rosario et al., 2016; Hongay and Orr-Weaver, 2011; Hughes et al.,
487 2018; Morris and Spradling, 2012; Tastan et al., 2010). However, the transcriptional
488 regulators of the meiotic program in *Drosophila* had yet to be identified. In addition, while
489 meiosis is itself an extremely conserved process, no conserved transcriptional regulator
490 had been identified across organisms (Kimble, 2011). Thus, the overarching questions
491 that needed to be addressed were: 1) What are the transcriptional regulators of meiosis
492 in *Drosophila*? And, 2) Is there a conserved gene regulatory network that controls entry
493 into meiosis?

494

495 **The Set2, MSL3, and ATAC transcriptional axis licenses entry into meiosis and its 496 function may be conserved in vertebrates**

497 We have identified Set2, MSL3, and ATAC complex as transcriptional regulators of
498 meiotic entry in *Drosophila*. We demonstrate that loss of either Set2, MSL3, or ATAC
499 complex members in the female germline leads to an accumulation of germ cells that
500 initiate differentiation but stall at the crucial transition step prior to meiotic commitment.
501 We find that the Set2-MSL3-ATAC axis regulates oogenesis downstream of the
502 differentiation factor, Bam, but upstream of the meiotic regulator Rbfox1. The Set2-MSL3-
503 ATAC axis regulates meiosis in two ways: 1) it transcriptionally upregulates members of
504 the synaptonemal complex that is critical to recombination and, 2) it promotes
505 transcription of the germline enriched RpS19 paralog, RpS19b. The expression of
506 RpS19b then controls the translation of *Rbfox1*, which is required for exit from the mitotic
507 cell cycle and entry into meiotic cell cycle (**Figure 7G**). While several components of the
508 synaptonemal complex are regulated at the transcriptional level, components such as
509 C(3)G and Crossover suppressor on 2 of Manheim (C(2)M) are not. The mRNAs of C(3)G
510 and C(2)M are present in measurable amounts in later stages of oogenesis (24 TPM and
511 85 TPM, respectively, in whole ovaries) whereas mRNAs of Cona, Ord, and Sunn are
512 restricted to early meiotic stages (8 TPM, <1 TPM, and <1 TPM, respectively, in whole
513 ovaries). This suggests that some synaptonemal complex members such as C(2)M and
514 C(3)G may be regulated at the post-transcriptional level. Taken together, the Set2-MSL3-
515 ATAC complex coordinates transcription of several critical factors of recombination

516 machinery and translation of a meiotic cell cycle regulator to promote entry into meiosis
517 (**Figure 7G**).

518
519 How is expression of critical meiotic genes licensed for expression only during meiosis?
520 We observe that, in the germline, MSL3 expression is restricted to the mitotic and early
521 meiotic stages of oogenesis. We hypothesize that when MSL3 is expressed it functions
522 by binding to Set2 mediated H3K36me3 mark and then recruits a basal transcriptional
523 machinery, ATAC, to enhance transcription of a subset of meiotic genes. Thus, our data
524 suggest that restricted expression of a reader, MSL3, licenses the expression of critical
525 meiotic genes. We do not know what controls expression of MSL3 itself during the mitotic
526 and early meiotic stages. *msl3* mRNA is present as part of the maternal contribution in
527 the egg (Eichhorn et al., 2016; Hua et al., 2014). This suggests that *msl3* mRNA is
528 transcribed in the later stages of oogenesis and is likely post-transcriptionally regulated.
529 While our data demonstrates that MSL3 expression is required for meiotic progression in
530 female *Drosophila*, we do not think MSL3 expression is sufficient for entry into meiosis as
531 overexpression of *msl3* does not lead to precocious meiotic commitment (**Figure 2L-M**).
532 In addition, H3K36me3 marks are present on gene bodies of transcribed genes, MSL3 is
533 expressed in somatic cells, and ATAC complex is also a basal transcriptional machinery,
534 yet meiotic genes are not expressed in somatic cells (C Santos and Lehmann, 2004;
535 Cinalli et al., 2008; Keogh et al., 2005; Larschan et al., 2007; Marlow, 2015; Morris et al.,
536 2005; Nikolic et al., 2016; Spedale et al., 2012). We predict that a yet unknown factor that
537 is present in the early stages of oogenesis acts in concert with MSL3 to promote
538 expression of meiotic genes. It has been shown that somatic steroid signaling mediated
539 by ecdysone is required for meiotic entry in *Drosophila* (Morris and Spradling, 2012).
540 Indeed, several ecdysone-responsive nuclear receptors are expressed in the germline
541 and are required for its proper development (Belles and Piulachs, 2014, 2015; Carney
542 and Bender, 2000; Schwedes et al., 2011). We speculate that Set2, MSL3, and ATAC
543 could act in concert with ecdysone responsive factor(s) in the germline, that have yet to
544 be identified, to promote entry into meiosis.
545

546 MSL3 function in meiotic entry is likely conserved. In mammalian spermatogenesis,
547 STRA8 acts downstream of steroid signaling mediated by RA to promote entry into
548 meiosis (Anderson et al., 2008; Endo et al., 2015; Griswold et al., 2012; Koubova et al.,
549 2006; Zhou et al., 2008). While STRA8 is required in pre-meiotic mammalian
550 spermatogonia to trigger meiosis, its expression outside of its required developmental
551 stage fails to trigger meiosis suggesting it is not sufficient (Kojima et al., 2019). In addition,
552 STRA8 is expressed in Type A spermatogonia to initiate meiosis but it is not clear how
553 the expression of these meiotic genes is sustained. Kojima et al have suggested that
554 STRA8 could work in concert with chromatin modifiers such as HATs to promote meiotic
555 gene expression, but such chromatin modifiers have not been identified (Kojima et al.,

556 2019). We find that STRA8 positive spermatocytes express MSL3 (Anderson et al., 2008;
557 Endo et al., 2015; Oulad-Abdelghani et al., 1996; Zhou et al., 2008). This nuclear
558 expression is then maintained for the rest of meiosis (**Figure 7A-F'**). In addition, MSL3 in
559 mammals is a member of the MSL complex that contains a HAT analogous to the HAT in
560 ATAC complex (Hilfiker et al., 1997; Ravens et al., 2014). Based on MSL3 expression
561 during mouse spermatogenesis, and its function in *Drosophila* oogenesis, we propose
562 that MSL3 could work downstream of steroid signaling from the soma to promote meiotic
563 entry from *Drosophila* to mammals.

564

565 **Post-transcriptional control of meiotic commitment**

566 We find MSL3 not only promotes transcription of components of the SC but also promotes
567 entry into meiosis by regulating levels of RpS19 which in turn regulates translation of
568 *Rbfox1*. *Rbfox1* then promotes entry into meiosis by repressing mitotic cell cycle and
569 promoting meiotic cell cycle. In mouse, STRA8 also regulates proteins required for
570 meiosis such as synaptonemal complex components as well as post-transcriptional
571 mRNA regulators Meiosis Specific With Coiled-Coil Domain (MEIOC) and YTH Domain-
572 Containing 2 (YTHDC2) (Kojima et al., 2019). MEIOC and YTHDC2 in turn promote entry
573 into meiotic cell cycle (Bailey et al., 2017; Jain et al., 2018; Soh et al., 2017). Thus,
574 coordinated regulation of transcription and translation promotes entry into meiosis in both
575 *Drosophila* and mice, which we propose could be a shared mechanism to modulate entry
576 into meiosis in other organisms.

577

578 The germline expresses several unique ribosomal protein paralogs including RpS19b
579 (Gerst, 2018; Marygold et al., 2007). While in other developmental contexts it has been
580 shown that paralogs can play a unique role in translation of specific mRNAs (Desai et al.,
581 2017; Genuth and Barna, 2018a; Herrmann et al., 2013; Segev and Gerst, 2018; Xue and
582 Barna, 2012), our data show that addition of either RpS19b, RpS19a, or hRpS19 can
583 rescue loss of MSL3 phenotype. This suggests that *Rbfox1* translation, which promotes
584 meiotic entry, is particularly sensitive to levels of RpS19 but not specific paralogs
585 (Carreira-Rosario et al., 2016; Tastan et al., 2010). While we find that RpS19 a and b are
586 incorporated into the ribosome and regulates translation of *Rbfox1*, we cannot exclude
587 the possibility that RpS19 regulates translation of *Rbfox1* via an extra-ribosomal function.
588 Thus, expression of MSL3 causes an upregulation of ribosomal protein S19 to promote
589 entry into meiosis.

590

591 Levels of ribosomal proteins, including RpS19, affecting translation of specific transcripts
592 has precedence in mammals and *Drosophila* (Genuth and Barna, 2018b; Khajuria et al.,
593 2018; Kondrashov et al., 2011; Kong et al., 2019; Palumbo et al., 2017; Segev and Gerst,
594 2018; Shi et al., 2017; Signer et al., 2014; Simsek et al., 2017; Xue et al., 2015; Xue and
595 Barna, 2012). Mutations in RpS19 result in ribosomopathies including Diamond-Blackfan

596 anemia (DBA). It has been shown that in DBA, due to loss of RpS19, results in loss of
597 translation of GATA1 transcription factor which causes a failure of hematopoietic stem
598 cell differentiation (Draptchinskaia et al., 1999; Gazda et al., 2004; Khajuria et al., 2018;
599 Ludwig et al., 2014; Willig et al., 2000). In addition, during mouse development,
600 *Ribosomal protein L38 (RpL38)* is expressed at higher levels in specific tissues such as
601 developing vertebrae. Reduction in levels of *RpL38* in mice results in decrease of *hox*
602 mRNA translation leading to homeotic transformations of the vertebrae (Kondrashov et
603 al., 2011). Intriguingly, *RpL38* and *RpS19* are among the many ribosomal proteins that
604 are differentially expressed in various tissues (Marygold et al., 2007; Xue and Barna,
605 2012). Thus, not only can ribosomal protein paralogs affect translation of specific mRNAs,
606 but levels of particular ribosomal proteins can also alter translation of specific
607 transcripts which in turn dictates developmental outcomes by regulating cell fate (Khajuria
608 et al., 2018; Kondrashov et al., 2011). Our work outlines a mechanism by which levels of
609 specific ribosomal proteins can be developmentally regulated to control gene expression
610 programs.

611

612 **Acknowledgments**

613 We are grateful to all members of the Rangan laboratory for discussion and comments
614 on the manuscript. Additionally, we would like to thank Dr. Mitzi Kuroda, Dr. Erika Bach,
615 Dr. Ruth Lehmann, Dr. Scott Hawley, Dr. Sharon Bickel, Dr. Gaby Fuchs, Dr. Melinda
616 Larsen, Bloomington Drosophila Stock Center, Vienna Drosophila Resource Center,
617 Transgenic RNAi Project (NIH/NIGMS R01-GM084947), The BDGP Gene Disruption
618 Project, and FlyBase for fly stocks and reagents. Furthermore, we would like to thank
619 CFG Facility at the University at Albany (UAlbany) for performing RNA-seq and polysome-
620 seq analyses. Lastly, we are thankful for both Dr. Marlene Belfort and Dr. Gaby Fuchs for
621 their generosity in allowing us to use instruments. P.R. acknowledges funding from
622 NIH/NIGMS 2R01GM111770-06 and M.B. acknowledges funding from R01 GM125812.
623 P.F. is supported by NICHD and NIH under the award numbers 1R15HD09641101 and
624 1R01HD097331-01 (PF) and by the NIDCD of NIH under award number 1R01DC017149-
625 01A1.

626

627 **Contributions**

628 A.M., K.S., and P.R. designed experiments, analyzed, and interpreted data. E.T.M.
629 provided bioinformatic support. A.M., K.S., and M.U. performed *Drosophila* experiments;
630 J.J., J.M.L., and P.F. designed and performed mouse experiments. N.D.M., S.J., and M.B.
631 made RpS19a and RpS19b fly lines. A.M. and P.R. wrote the manuscript, which all
632 authors edited and approved.

633

634 **Declaration of Interests**

635 The authors declare no competing interests.

636

637 Materials and Methods

638 Fly lines

639 Flies were grown at 25-31°C and dissected between 1-5 days post-eclosion.

640

641 The following RNAi stocks were used in this study; if more than one line is listed, then
642 both were quantitated and the first was shown in the main figure: *Set2* RNAi (Bloomington
643 #33706 and #42511), *msl3* RNAi (Bloomington #35272), *NC2 β* RNAi (Bloomington
644 #57421 and VDRC #v3161), *Ada2a* RNAi (Bloomington #50905), *Atac1* RNAi (VDRC
645 #v36092), *Atac2* RNAi (VDRC #v16047), *D12* RNAi (VDRC #v29954), *wds* RNAi
646 (Bloomington #60399), *NC2 α* RNAi (Bloomington #67277), *bam* RNAi (Bloomington
647 #58178), *hs-bam*/TM3 (Bloomington #24637) *RpS19b* RNAi (VDRC #v22073 and
648 #v102171), and *RpS19a* RNAi (Bloomington #42774 and VDRC #v107188).

649

650 The following mutant and overexpression stocks were used in this study: *Set2¹*/FM7
651 (Bloomington #77916), *msl3¹*/TM3 (Bloomington #5872), *msl3^{KG}*/TM3 (Bloomington
652 #13165), *msl3^{MB}*/TM3 (Bloomington #29244), *msl1^{y216}*/CyO (Bloomington #5870),
653 *msl1^{kmB}*/CyO (Bloomington #25157), *msl2²²⁷*/CyO (Bloomington #5871), *msl2^{kmA}*/CyO
654 (Bloomington #25158), *mle¹*/SM1 (Bloomington #4235), *mle⁹*/CyO (Bloomington #5873),
655 *Hei89B⁰⁸⁷²⁴*/TM3 (Bloomington #11732), *Hei89B* *Df*/TM6 (Bloomington #7982),
656 *Atac2^{e03046}*/CyO (Bloomington #18111), *RpS19b^{EY00801}* (Bloomington #15043),
657 *RpS19b^{CRISPR}* (this study), *UAS-hRpS19-HA* (Bloomington #66014), and *UAS-msl3-GFP*
658 (this study).

659

660 The following tagged lines were used in this study: *msl3-GFP* (Kuroda Lab), *RpS19a-*
661 *3xHA* (this study), *RpS19b-GFP* (this study), and *ord-GFP* (Bickel Lab).

662

663 The following tissue-specific drivers were used in this study: *UAS-*
664 *Dcr2;nosGAL4* (Bloomington #25751), *UAS-Dcr2;nosGAL4;bam-GFP* (Lehmann
665 Lab), *nosGAL4;MKRS*/TM6 (Bloomington #4442), and *If/CyO;nosGAL4* (Lehmann Lab).

666

667 Dissection and Immunostaining

668 Ovaries were dissected and stained as previously described (McCarthy et al., 2018b).

669 The following primary antibodies were used: mouse anti-1B1 (1:20; DSHB), Rabbit anti-
670 Vasa (1:1,000; Rangan Lab), Chicken anti-Vasa (1:1,000 (Upadhyay et al., 2016)), Rabbit
671 anti-GFP (1:2,000; abcam, ab6556), Guinea pig anti-Rbfox1 (1:1,000 (Tastan et al.,
672 2010)), Mouse anti-C(3)G (1:1000; Hawley Lab), Rabbit anti-H3K36me3 (1:500; abcam,
673 ab9050), Rabbit anti-pMAD (1:150; abcam, ab52903), Mouse anti-BamC (1:200; DSHB,
674 Supernatant), Rabbit anti-Bru (1:500; Lehmann Lab), Rabbit anti-Egl (1:1,000; Lehmann
675 Lab), Rat anti-HA (1:500; Roche, 11 867 423 001), and Rabbit anti-RpS19 (1:20;

676 Proteintech, 15085-1-AP). Anti-RpS19 was pre-cleared at 1:20, the supernatant was then
677 diluted at 1:2.5 for staining. The following secondary antibodies were used: Alexa 488
678 (Molecular Probes), Cy3 and Cy5 (Jackson Labs) were used at a dilution of 1:500.
679

680 **Fluorescence Imaging**

681 The tissues were visualized, and images were acquired using a Zeiss LSM-710 confocal
682 microscope under 20X, 40X and 63X oil objective.
683

684 **AU quantification of protein or *in situ***

685 To quantify antibody staining intensities for Rbfox1, H3K36me3, Bruno, GFP, HA, and
686 RpS19 or *in situ* probe fluorescence in germ cells, images for both control and
687 experimental germaria were taken using the same confocal settings. Z stacks were
688 obtained for all images. Similar planes in control and experimental germaria were chosen,
689 the area of germ cells positive for the proteins or *in situ*s of interest was outlined and
690 analyzed using the ‘analyze’ tool in Fiji (ImageJ). The mean intensity and area of the
691 specified region was obtained. An average of all the ratios (Mean/Area), for the proteins
692 or *in situ*s of interest, per image was calculated for both, control and experimental.
693 Germline intensities were normalized to somatic intensities or if the protein or *in situ* of
694 interest is germline enriched and not expressed in the soma they were normalized to
695 Vasa or background. The highest mean intensity between control and experimental(s)
696 was used to normalize to a value of 1 A.U. on the graph. A minimum of 5 germaria was
697 used for quantitation.
698

699 **Egg laying assays**

700 Assays were conducted in cages with females under testing and wild type control males.
701 Cages were maintained at 25°C. All flies were 1 day post-eclosion upon setting up the
702 experiment and analyses were performed on four consecutive days. The number of eggs
703 laid were normalized to the total number of females.
704

705 **RNA-seq library preparation and analysis**

706 Ovaries from flies were dissected in 1x PBS. RNA was isolated using TRIzol (Invitrogen,
707 15596026), treated with DNase (TURBO DNA-free Kit, Life Technologies, AM1907), and
708 then run on a 1% agarose gel to check integrity of the RNA. To generate mRNA enriched
709 libraries, total RNA was treated with poly(A)tail selection beads (Bioo Scientific Corp.,
710 NOVA-512991) and then following the manufacturer’s instructions of the NEXTflex Rapid
711 Directional RNA-seq Kit (Bioo Scientific Corp., NOVA-5138-08), except that RNA was
712 fragmented for 13 min. Single-end mRNA sequencing (75 base pair) was performed on
713 biological duplicates from each genotype on an Illumina NextSeq500 by the Center for
714 Functional Genomics (CFG).
715

716 After quality assessment, the sequenced reads were aligned to the *Drosophila*
717 *melanogaster* genome (UCSCdm6) using HISAT2 (version 2.1.0) with the RefSeq-
718 annotated transcripts as a guide (Kim et al., 2015). Raw counts were generated using
719 featureCounts (version 1.6.0.4) (Liao et al., 2014). Differential gene expression was
720 assayed by edgeR (version 3.16.5), using a false discovery rate (FDR) of 0.05, and genes
721 with fourfold or higher were considered significant. The raw and unprocessed data for
722 RNA-seq generated during this study are available at Gene Expression Omnibus (GEO)
723 databank under accession number: XXXXX.

724

725 ***In situ* hybridization**

726 Adult ovaries (5 ovary pairs per sample per experiment) were dissected and fixed as
727 previously described. The ovaries were washed with PT (1x phosphate-buffered saline
728 (PBS), 0.1% Triton-X 100) 3 times for 5 minutes each. Ovaries were permeabilized by
729 washing once with increasing concentrations of methanol for 5 minutes each (30%
730 methanol in PT, 50% methanol in PT, and 70% methanol in PT) then incubating in
731 methanol for 10 minutes. Ovaries were then post-fixed by washing once with decreasing
732 concentrations of methanol for 5 minutes each (70% methanol in PT, 50% methanol in
733 PT, and 30% methanol in PT). Ovaries were then washed with PT 3 times for 5 minutes
734 and then pre-hybridized in wash buffer for 10 minutes (10% deionized formamide and
735 10% 20x SSC in RNase-free water). Ovaries were incubated overnight in hybridization
736 solution (10% dextran sulfate, 1 mg/ml yeast tRNA, 2 mM RNaseOUT, 0.02 mg/ml BSA,
737 5x SSC, 10% deionized formamide, and RNase-free water) at 30°C. The hybridization
738 solution was removed, and ovaries washed with Wash Buffer 2 times for 30 minutes at
739 30°C. Wash Buffer was removed, and ovaries were mounted using Vectashield with 4',6'-
740 diamidino-2-phenylindole (DAPI).

741

742 ***In situ* probe design and generation**

743 Templates were amplified with gene specific primers (listed below) and then followed
744 manufacturer's instructions of Thermo Fisher's FISH tag RNA kit (F32954) for generating
745 fluorescently labeled probes.

746 Rbfox1

747 F- 5'-CGTAGCGCCTTTCCGGG-3'

748 R- 5'-TAATACGACTCACTATAGGCCACAGCCCACTTGAATA-3'

749

750 RpS19b

751 F- 5'-TGCCTGGAGTCACAGTAAAGG-3'

752 R- 5'-TAATACGACTCACTATAGGTGGCTATGCGATCCAAGT-3'

753

754 RpS19a

755 F- 5'-ATGCCAGGCGTCACAGTGAA-3'

756 R- 5'-TAATACGACTCACTATAGGGTTACTTGGAAATAACAATGGGCC-3'

757

758 **Measurement of global protein synthesis**

759 Protein synthesis was detected using short-term ovary incorporation assay, Click-iT Plus
760 OPP (Invitrogen, C10456). Ovaries were dissected in Schneider's *Drosophila* media
761 (Thermo Fisher, 21720024) and then incubated in 50 μ M OPP reagent for 30 minutes.
762 Tissue was washed in 1x PBS and then fixed for 15 min in 1x PBS plus 5% methanol-
763 free formaldehyde. Tissue was then permeabilized with 1% Triton X-100 in 1x PBST (1x
764 PBS with 0.2% Tween 20) for 30 minutes, samples were then washed in 1x PBS and
765 were incubated in Click-iT reaction cocktail following the manufacturer's instructions.
766 Samples were washed with Click-iT reaction rise buffer and then immunostained following
767 previously described procedures.

768

769 **Generating fly lines**

770 **CRISPR mutant**

771 To generate the *RpS19b* mutants, guide RNAs were designed
772 using <http://tools.flycrispr.molbio.wisc.edu/targetFinder> and synthesized as 5-
773 unphosphorylated oligonucleotides, annealed, phosphorylated, and ligated into the BbsI
774 sites of the pU6-BbsI-chiRNA vector using the primers listed below (Gratz et al., 2013).
775 Homology arms were synthesized as a gene block (IDTDNA) and cloned into pHD-
776 dsRed-attP ((Gratz et al., 2015); Addgene) using Gibson Assembly (gene blocks listed in
777 Supplementary Methods). Guide RNAs and the donor vector were co-injected into *nos-*
778 *Cas9* embryos (Rainbow Transgenics).

779

780 *RpS19b* gRNA1

781 F- 5'-CTTCGCATGCCTGGAGTCACAGTAA-3'

782 R- 5'-AAACTTACTGTGACTCCAGGCATGC-3'

783

784 *RpS19b* gRNA2

785 F- 5'-CTTCGTAGTGATAATCATGGAAAC-3'

786 R- 5'-AACGTTCCATGATTATCACTAC-3'

787

788 ***RpS19a-3xHA* and *RpS19b-GFP* tagged lines**

789 *RpS19a3x-HA* (referred to as *RpS19a-HA* throughout text) and *RpS19b-GFP* tagged
790 lines were made using a combination of *in vivo* bacterial recombineering and
791 GatewayTM Technology as previously described (Shalaby et al., 2017).

792

793 ***UAS-msl3-GFP* overexpression line**

794 RNA was extracted from *w¹¹¹⁸* ovaries and made into cDNA using a SuperScript II-Strand
795 Kit (Thermo Fisher, 18064014). *msl3* CDS was amplified, *attB* sites and tagged sequence

796 was amplified into the PCR product using the primers listed below. PCR products were
797 cloned into pDONR (Thermo Fisher, 11789-020) and swapped into pENTR (Thermo
798 Fisher, 11791-020) using BP and LR reactions, respectively. The plasmid was sent for
799 injection into *w¹¹¹⁸* flies (Genetic Services).

800

801 *msl3* CDS

802 F- 5'- ATGACGGAGCTAAGGGACGAGAC-3'

803 R- 5'- CTAAGCAGCAATCCCATCCAGGG-3'

804

805 *attB*

806 F-5'-GGGGACAAGTTGTACAAAAAAGCAGGCTTCATGACGGAGCT

807 AAGGGACGAGAC-3'

808 R-5'-GGGGACCACTTGTACAAGAAAGCTGGGTCTAACGCGTAATC

809 TGGCACATCGTATGGTAAGCAGCAATCCCATCCAGGG -3'

810

811 **Polysome profiling and polysome-seq**

812 Polysome profiling of ovaries from *bam* RNAi; *hs-bam* and *UAS-Dcr2;nosGAL4 >RpS19b*
813 RNAi flies was adapted from (Flora et al., 2018; Fuchs et al., 2011). 200 ovary pairs were
814 dissected in Schneider's media and immediately flash frozen with liquid nitrogen. Ovaries
815 were homogenized in Lysis Buffer, 20% of lysate was used as input for mRNA isolation
816 and library preparation (as described above). Samples were loaded onto 10-50% CHX-
817 supplemented sucrose gradients in 9/16 x 3.5 PA tubes (Beckman Coulter, #331372) and
818 spun at 35,000 x g in SW41 for 2.45-3 hours at 4°C. Gradients were fractionated with a
819 Density Gradient Fractionation System (#621140007). RNA was extracted using acid
820 phenol-chloroform and precipitated overnight. Pelleted RNA was resuspended in 20 µL
821 water and libraries were prepared as described above.

822

823 **Western blot**

824 50-200 CB enriched *RpS19a-HA* and *RpS19b-GFP* ovaries and 30 adult *RpS19b-*
825 *GFP;RpS19a-HA* ovaries were dissected and prepared as described above except
826 sucrose solutions were supplemented with either 100 µg/µL CHX or 2 mM puromycin with
827 1 mg heparin prior to making gradients. Following fractionation, protein was extracted by
828 ethanol precipitation and run on a TGX pre-cast gradient gel (BioRad, #456-1094). Blots
829 were blocked with 5% milk in 1x PBST and incubated in primary antibody in 5% BSA in
830 1x PBST. Following 1x PBST washing, blots were incubated in secondary antibody in 5%
831 milk in 1x PBST. Blots were washed with 1x PBST and then imaged with chemi-
832 luminescence kit (BioRad, #170-5060). The following primary antibodies were used:
833 Rabbit anti-GFP (1:4,000; abcam, ab6556), Rat anti-HA (1:3,000; Roche, 11 867 423
834 001), Rabbit anti-RpS25 (1:1,000; abcam, ab40820), and Rabbit anti-RpS19 (1:1,000;
835 Proteintech, 15085-1-AP). The following secondary antibodies were used: anti-Rat HRP

836 (1:10,000; Jackson Labs, 112-035-003) and anti-Rabbit HRP (1:10,000; Jackson Labs,
837 111-035-144).

838

839 **Statistical Analysis**

840 Relative fluorescence signals were compared between control and experimental groups
841 using parametric tests (Student t-test or one-way ANOVA). Horizontal lines on scatter dot
842 plots represent mean with 95% confidence interval and stars on stacked bar graphs
843 represent statistical significance of corresponding color data set. Reported p-values
844 correspond to two-tailed tests. Analysis of percentage defect were compared between
845 control and experimental groups using Fisher's exact test. All analyses were performed
846 using Prism 8 software (GraphPad) and reported in figure legends.

847

848 **Materials and reagents for fly husbandry**

849 Fly food was made by using previously described procedures (Upadhyay et al., 2018).

850

851 **Mice**

852 **Ethics statement**

853 Collection and use of mouse specimens for this study were approved by the Institutional
854 Animal Care and Use Committee (IACUC) at The University at Albany.

855

856 The mice used in this study were adult males on a CD-1 background. All data were
857 collected from mice kept under similar housing conditions, in transparent cages on a
858 normal 12 hr. light/dark cycle.

859

860 **Dissection and tissue preparation of mouse testes**

861 Tissue was collected from adult male mice on a CD-1 background (Forni, 2006). The mice
862 were perfused first with 1x PBS then with 3.7% formaldehyde in 1x PBS. Testes were
863 isolated at the time of perfusion and immersion-fixed for 2-3 hours at 4°C. The samples
864 were then cryoprotected in 30% sucrose in 1x PBS overnight at 4°C then embedded in
865 Tissue-Tek O.C.T. Compound (Sakura Finetek, 4583) using dry ice, and stored at -80°C.

866

867 Tissue was cryosectioned (Leica Cryostat, CM3050S) at 20 µm and collected on
868 microscope slides (VWR, 48311-703) for immunostainings. All slides were stored at -
869 80°C until ready for staining.

870

871 **Immunostaining of mouse testes**

872 Citrate buffer (pH 6.0) antigen retrieval was performed before immunostaining. Tissue
873 was incubated in blocking solution (10% horse serum, 1% BSA, 0.5% Triton X-100, and
874 0.1% Sodium Azide) for 40 minutes up until 1 hour at room temperature. The following
875 primary antibodies were used: Rabbit anti-MSL3 (1:500; Invitrogen, PA5-56967), Goat

876 anti-cKIT (1:250; R&D Systems, AF1356), Rabbit anti-Stra8 (1:250; abcam, ab49602),
877 and Mouse anti-SYCP3 (1:500; abcam, ab97672).

878

879 The following secondary antibodies were used: Alexa Fluor 488, Alexa Fluor 594, Alexa
880 Fluor 680 were at a dilution of 1:1000 (Molecular Probes and Jackson ImmunoResearch
881 Laboratories). Sections were counterstained with DAPI (1:3000; Sigma-Aldrich, 28718-
882 90-3) and coverslips were mounted with FluoroGel (Electron Microscopy Services,
883 17985-10). Confocal microscopy pictures were taken on a Zeiss LSM 710 microscope
884 using a 40x oil objective.

885

886 All unique/stable reagents generated in this study are available from the Lead Contact
887 without restriction.

888

889

890 **References**

891 Abby, E., Tourpin, S., Ribeiro, J., Daniel, K., Messiaen, S., Moison, D., Guerquin, J.,
892 Gaillard, J.-C., Armengaud, J., Langa, F., et al. (2016). Implementation of meiosis
893 prophase I programme requires a conserved retinoid-independent stabilizer of meiotic
894 transcripts. *Nat. Commun.* *7*, 10324.

895 Ables, E.T. (2015). Drosophila Oocytes as a Model for Understanding Meiosis: An
896 Educational Primer to Accompany “Corolla Is a Novel Protein That Contributes to the
897 Architecture of the Synaptonemal Complex of Drosophila.” *Genetics* *199*, 17 LP – 23.

898 Allis, C.D., and Jenuwein, T. (2016). The molecular hallmarks of epigenetic control. *Nat.*
899 *Rev. Genet.* *17*, 487.

900 Anderson, E.L., Baltus, A.E., Roepers-Gajadien, H.L., Hassold, T.J., de Rooij, D.G., van
901 Pelt, A.M.M., and Page, D.C. (2008). Stra8 and its inducer, retinoic acid, regulate meiotic
902 initiation in both spermatogenesis and oogenesis in mice. *Proc. Natl. Acad. Sci. U. S. A.*
903 *105*, 14976–14980.

904 Anderson, L.K., Royer, S.M., Page, S.L., McKim, K.S., Lai, A., Lilly, M.A., and Hawley,
905 R.S. (2005). Juxtaposition of C(2)M and the transverse filament protein C(3)G within the
906 central region of Drosophila synaptonemal complex. *Proc. Natl. Acad. Sci. U. S. A.* *102*,
907 4482–4487.

908 Bachiller, D., and Sánchez, L. (1989). Further analysis on the male-specific lethal
909 mutations that affect dosage compensation in *Drosophila melanogaster*. *Roux's Arch.*
910 *Dev. Biol.* *198*, 34–38.

911 Bailey, A.S., Batista, P.J., Gold, R.S., Chen, Y.G., de Rooij, D.G., Chang, H.Y., and Fuller,
912 M.T. (2017). The conserved RNA helicase YTHDC2 regulates the transition from
913 proliferation to differentiation in the germline. *Elife* *6*, 10324.

914 Balicky, E.M., Endres, M.W., Lai, C., and Bickel, S.E. (2002). Meiotic cohesion requires
915 accumulation of ORD on chromosomes before condensation. *Mol. Biol. Cell* *13*, 3890–
916 3900.

917 Bannister, A.J., and Kouzarides, T. (2011). Regulation of chromatin by histone
918 modifications. *Cell Res.*

919 Bannister, A.J., Zegerman, P., Partridge, J.F., Miska, E.A., Thomas, J.O., Allshire, R.C.,
920 and Kouzarides, T. (2001). Selective recognition of methylated lysine 9 on histone H3 by
921 the HP1 chromo domain. *Nature* *410*, 120–124.

922 Barr, J., Charania, S., Gilmutdinov, R., Yakovlev, K., Shidlovskii, Y., and Schedl, P.
923 (2019). The CPEB translational regulator, Orb, functions together with Par proteins to
924 polarize the Drosophila oocyte. *PLOS Genet.* *15*, e1008012.

925 Bashaw, G.J., and Baker, B.S. (1997). The regulation of the *Drosophila msl-2* gene
926 reveals a function for Sex-lethal in translational control. *Cell* *89*, 789–798.

927 Basilicata, M.F., Bruel, A.L., Semplicio, G., Valsecchi, C.I.K., Aktaş, T., Duffourd, Y.,
928 Rumpf, T., Morton, J., Bache, I., Szymanski, W.G., et al. (2018). De novo mutations in
929 MSL3 cause an X-linked syndrome marked by impaired histone H4 lysine 16 acetylation.
930 *Nat. Genet.*

931 Bell, O., Conrad, T., Kind, J., Wirbelauer, C., Akhtar, A., and Schübeler, D. (2008).
932 Transcription-coupled methylation of histone H3 at lysine 36 regulates dosage
933 compensation by enhancing recruitment of the MSL complex in *Drosophila melanogaster*.

934 Mol. Cell. Biol. 28, 3401–3409.

935 Belles, X., and Piulachs, M.-D. (2014). Ecdysone signalling and ovarian development in
936 insects: From stem cells to ovarian follicle formation. Biochim. Biophys. Acta 1849.

937 Belles, X., and Piulachs, M.-D. (2015). Ecdysone signalling and ovarian development in
938 insects: from stem cells to ovarian follicle formation. Biochim. Biophys. Acta 1849, 181–
939 186.

940 Belote, J.M. (1983). Male-Specific Lethal Mutations of DROSOPHILA MELANOGLASTER
941 . II. Parameters of Gene Action during Male Development. Genetics 105, 881–896.

942 Belote, J.M., and Lucchesi, J.C. (1980). Male-specific lethal mutations of Drosophila
943 melanogaster. Genetics 96, 165–186.

944 Bone, J.R., Lavender, J., Richman, R., Palmer, M.J., Turner, B.M., and Kuroda, M.I.
945 (1994). Acetylated histone H4 on the male X chromosome is associated with dosage
946 compensation in Drosophila. Genes Dev. 8, 96–104.

947 Bowles, J., and Koopman, P. (2007). Retinoic acid, meiosis and germ cell fate in
948 mammals. Development.

949 Bowles, J., Knight, D., Smith, C., Wilhelm, D., Richman, J., Mamiya, S., Yashiro, K.,
950 Chawengsaksophak, K., Wilson, M.J., Rossant, J., et al. (2006). Retinoid signaling
951 determines germ cell fate in mice. Science 312, 596–600.

952 Boyle, M., Wong, C., Rocha, M., and Jones, D.L. (2007). Decline in self-renewal factors
953 contributes to aging of the stem cell niche in the Drosophila testis. Cell Stem Cell 1, 470–
954 478.

955 Busada, J.T., Chappell, V.A., Niedenberger, B.A., Kaye, E.P., Keiper, B.D., Hogarth, C.A.,
956 and Geyer, C.B. (2015). Retinoic acid regulates Kit translation during spermatogonial
957 differentiation in the mouse. Dev. Biol. 397, 140–149.

958 C Santos, A., and Lehmann, R. (2004). Germ Cell Specification and Migration in
959 Drosophila and beyond. Curr. Biol. 14, R578-89.

960 Carney, G.E., and Bender, M. (2000). The Drosophila ecdysone
961 receptor (EcR) Gene Is Required Maternally for Normal
962 Oogenesis. Genetics 154, 1203 LP – 1211.

963 Carpenter, A.T. (1975). Electron microscopy of meiosis in Drosophila melanogaster
964 females. I. Structure, arrangement, and temporal change of the synaptonemal complex
965 in wild-type. Chromosoma 51, 157–182.

966 Carpenter, A.T. (1994). Egalitarian and the choice of cell fates in Drosophila
967 melanogaster oogenesis. Ciba Found. Symp. 182, 223–46– discussion 246–54.

968 Carpenter, A.T., and Sandler, L. (1974). On recombination-defective meiotic mutants in
969 Drosophila melanogaster. Genetics 76, 453–475.

970 Carreira-Rosario, A., Bhargava, V., Hillebrand, J., Kollipara, R.K., Ramaswami, M., and
971 Buszczak, M. (2016). Repression of Pumilio Protein Expression by Rbfox1 Promotes
972 Germ Cell Differentiation. Dev. Cell 36, 562–571.

973 Chelmicki, T., Dündar, F., Turley, M.J., Khanam, T., Aktas, T., Ramirez, F., Gendrel, A.V.,
974 Wright, P.R., Videm, P., Backofen, R., et al. (2014). MOF-associated complexes ensure
975 stem cell identity and Xist repression. Elife.

976 Chen, D., and McKearin, D. (2003a). Dpp signaling silences bam transcription directly to
977 establish asymmetric divisions of germline stem cells. Curr. Biol. 13, 1786–1791.

978 Chen, D., and McKearin, D.M. (2003b). A discrete transcriptional silencer in the bam gene
979 determines asymmetric division of the Drosophila germline stem cell. *Development* **130**,
980 1159–1170.

981 Christerson, L.B., and McKearin, D.M. (1994). orb Is required for anteroposterior and
982 dorsoventral patterning during Drosophila oogenesis. *Genes Dev.*

983 Cinalli, R.M., Rangan, P., and Lehmann, R. (2008). Germ cells are forever. *Cell* **132**, 559–
984 562.

985 Cohen, P.E., Pollack, S.E., and Pollard, J.W. (2006). Genetic analysis of chromosome
986 pairing, recombination, and cell cycle control during first meiotic prophase in mammals.
987 *Endocr. Rev.*

988 Conrad, T., Cavalli, F.M.G., Vaquerizas, J.M., Luscombe, N.M., and Akhtar, A. (2012a).
989 Drosophila dosage compensation involves enhanced pol II recruitment to male X-linked
990 promoters. *Science* (80-).

991 Conrad, T., Cavalli, F.M.G., Holz, H., Hallacli, E., Kind, J., Ilik, I., Vaquerizas, J.M.,
992 Luscombe, N.M., and Akhtar, A. (2012b). The MOF Chromobarrel Domain Controls
993 Genome-wide H4K16 Acetylation and Spreading of the MSL Complex. *Dev. Cell*.

994 Dansereau, D.A., and Lasko, P. (2008). The development of germline stem cells in
995 Drosophila. *Methods Mol. Biol.* **450**, 3–26.

996 Desai, N., Brown, A., Amunts, A., and Ramakrishnan, V. (2017). The structure of the
997 yeast mitochondrial ribosome. *Science* (80-).

998 Dong, X., and Weng, Z. (2013). The correlation between histone modifications and gene
999 expression. *Epigenomics*.

1000 Draptchinskaia, N., Gustavsson, P., Andersson, B., Pettersson, M., Willig, T.-N.,
1001 Dianzani, I., Ball, S., Tchernia, G., Klar, J., Matsson, H., et al. (1999). The gene encoding
1002 ribosomal protein S19 is mutated in Diamond-Blackfan anaemia. *Nat. Genet.* **21**, 169–
1003 175.

1004 Edson, M.A., Nagaraja, A.K., and Matzuk, M.M. (2009). The mammalian ovary from
1005 genesis to revelation. *Endocr. Rev.*

1006 Eichhorn, S.W., Subtelny, A.O., Kronja, I., Kwasnieski, J.C., Orr-Weaver, T.L., and Bartel,
1007 D.P. (2016). mRNA poly(A)-tail changes specified by deadenylation broadly reshape
1008 translation in Drosophila oocytes and early embryos. *Elife* **5**, e16955.

1009 Eikenes, Å.H., Malerød, L., Christensen, A.L., Steen, C.B., Mathieu, J., Nezis, I.P.,
1010 Liestøl, K., Huynh, J.R., Stenmark, H., and Haglund, K. (2015). ALIX and ESCRT-III
1011 Coordinately Control Cytokinetic Abscission during Germline Stem Cell Division In Vivo.
1012 *PLoS Genet.*

1013 El-Brolosy, M.A., Kontarakis, Z., Rossi, A., Kuenne, C., Günther, S., Fukuda, N., Kikhi,
1014 K., Boezio, G.L.M., Takacs, C.M., Lai, S.-L., et al. (2019). Genetic compensation triggered
1015 by mutant mRNA degradation. *Nature* **568**, 193–197.

1016 Eliazer, S., and Buszczak, M. (2011). Finding a niche: studies from the Drosophila ovary.
1017 *Stem Cell Res. Ther.* **2**, 45.

1018 Endo, T., Romer, K.A., Anderson, E.L., Baltus, A.E., de Rooij, D.G., and Page, D.C.
1019 (2015). Periodic retinoic acid-STR8 signaling intersects with periodic germ-cell
1020 competencies to regulate spermatogenesis. *Proc. Natl. Acad. Sci. U. S. A.* **112**, E2347–
1021 56.

1022 Endo, T., Freinkman, E., de Rooij, D.G., and Page, D.C. (2017). Periodic production of
1023 retinoic acid by meiotic and somatic cells coordinates four transitions in mouse
1024 spermatogenesis. *Proc. Natl. Acad. Sci. U. S. A.* **114**, E10132–E10141.

1025 Fayomi, A.P., and Orwig, K.E. (2018). Spermatogonial stem cells and spermatogenesis
1026 in mice, monkeys and men. *Stem Cell Res.*

1027 Flora, P., Wong-Deyrup, S.W., Martin, E., Palumbo, R., Nasrallah, M., Oligney, A., Blatt,
1028 P., Patel, D., Fuchs, G., and Rangan, P. (2018). Sequential regulation of maternal mRNAs
1029 through a conserved cis-acting element in their 3 UTRs.

1030 Forni, P.E. (2006). High Levels of Cre Expression in Neuronal Progenitors Cause Defects
1031 in Brain Development Leading to Microencephaly and Hydrocephaly. *J. Neurosci.*

1032 Fuchs, G., Diges, C., Kohlstaedt, L.A., Wehner, K.A., and Sarnow, P. (2011). Proteomic
1033 analysis of ribosomes: translational control of mRNA populations by glycogen synthase
1034 GYS1. *J. Mol. Biol.* **410**, 118–130.

1035 Fujiwara, S., and Kawamura, K. (2003). Acquisition of retinoic acid signaling pathway and
1036 innovation of the chordate body plan. *Zoolog. Sci.* **20**, 809–818.

1037 Fuller, M.T., and Spradling, A.C. (2007). Male and female *Drosophila* germline stem cells:
1038 Two versions of immortality. *Science* (80-.).

1039 Gazda, H.T., Zhong, R., Long, L., Niewiadomska, E., Lipton, J.M., Ploszynska, A.,
1040 Zaucha, J.M., Vlachos, A., Atsidaftos, E., Viskochil, D.H., et al. (2004). RNA and protein
1041 evidence for haplo-insufficiency in Diamond–Blackfan anaemia patients with RPS19
1042 mutations. *Br. J. Haematol.* **127**, 105–113.

1043 Genuth, N.R., and Barna, M. (2018a). The Discovery of Ribosome Heterogeneity and Its
1044 Implications for Gene Regulation and Organismal Life. *Mol. Cell.*

1045 Genuth, N.R., and Barna, M. (2018b). The Discovery of Ribosome Heterogeneity and Its
1046 Implications for Gene Regulation and Organismal Life. *Mol. Cell* **71**, 364–374.

1047 Gerst, J.E. (2018). Pimp My Ribosome: Ribosomal Protein Paralogs Specify Translational
1048 Control. *Trends Genet.* **34**, 832–845.

1049 Gratz, S.J., Cummings, A.M., Nguyen, J.N., Hamm, D.C., Donohue, L.K., Harrison, M.M.,
1050 Wildonger, J., and O'Connor-Giles, K.M. (2013). Genome Engineering of
1051 *Drosophila* with the CRISPR RNA-Guided Cas9 Nuclease. *Genetics* **194**, 1029–1035.

1052 Gratz, S.J., Rubinstein, C.D., Harrison, M.M., Wildonger, J., and O'Connor-Giles, K.M.
1053 (2015). CRISPR-Cas9 Genome Editing in *Drosophila*. *Curr. Protoc. Mol. Biol.* **111**, 31.2.1–
1054 31.2.20.

1055 Griswold, M.D., Hogarth, C.A., Bowles, J., and Koopman, P. (2012). Initiating meiosis:
1056 the case for retinoic acid. *Biol. Reprod.* **86**, 35.

1057 Gu, W., Wei, X., Pannuti, A., and Lucchesi, J.C. (2000). Targeting the chromatin-
1058 remodeling MSL complex of *Drosophila* to its sites of action on the X chromosome
1059 requires both acetyl transferase and ATPase activities. *EMBO J.* **19**, 5202–5211.

1060 Guelman, S., Kozuka, K., Mao, Y., Pham, V., Solloway, M.J., Wang, J., Wu, J., Lill, J.R.,
1061 and Zha, J. (2009). The double-histone-acetyltransferase complex ATAC is essential for
1062 mammalian development. *Mol. Cell. Biol.* **29**, 1176–1188.

1063 Hales, K.G., Korey, C.A., Larracuente, A.M., and Roberts, D.M. (2015). Genetics on the
1064 Fly: A Primer on the *Drosophila* Model System. *Genetics* **201**, 815
1065 LP – 842.

1066 Handel, M.A., and Schimenti, J.C. (2010). Genetics of mammalian meiosis: Regulation,
1067 dynamics and impact on fertility. *Nat. Rev. Genet.*

1068 Heard, E., and Disteche, C.M. (2006). Dosage compensation in mammals: fine-tuning the
1069 expression of the X chromosome. *Genes Dev.* *20*, 1848–1867.

1070 Herrmann, J.M., Woellhaf, M.W., and Bonnefoy, N. (2013). Control of protein synthesis
1071 in yeast mitochondria: The concept of translational activators. *Biochim. Biophys. Acta -*
1072 *Mol. Cell Res.*

1073 Hess, R., and R. França, L. (2005). History of the Sertoli Cell Discovery. In *Sertoli Cell*
1074 *Biology*, pp. 3–13.

1075 Hess, R.A., and de Franca, L.R. (2008). Spermatogenesis and Cycle of the Seminiferous
1076 Epithelium BT - Molecular Mechanisms in Spermatogenesis. C.Y. Cheng, ed. (New York,
1077 NY: Springer New York), pp. 1–15.

1078 Hickford, D.E., Wong, S.F.L., Frankenberg, S.R., Shaw, G., Yu, H., Chew, K.Y., and
1079 Renfree, M.B. (2017). Expression of STRA8 is conserved in therian mammals but
1080 expression of CYP26B1 differs between marsupials and mice. *Biol. Reprod.* *97*, 217–229.

1081 Hilfiker, A., Hilfiker-Kleiner, D., Pannuti, A., and Lucchesi, J.C. (1997). mof, a putative
1082 acetyl transferase gene related to the Tip60 and MOZ human genes and to the SAS
1083 genes of yeast, is required for dosage compensation in *Drosophila*. *EMBO J.* *16*, 2054–
1084 2060.

1085 Hongay, C.F., and Orr-Weaver, T.L. (2011). Drosophila Inducer of MEiosis 4 (IME4) is
1086 required for Notch signaling during oogenesis. *Proc. Natl. Acad. Sci. U. S. A.* *108*, 14855–
1087 14860.

1088 Hua, B.L., Li, S., and Orr-Weaver, T.L. (2014). The role of transcription in the activation
1089 of a Drosophila amplification origin. *G3 (Bethesda)*. *4*, 2403–2408.

1090 Hughes, S.E., Miller, D.E., Miller, A.L., and Hawley, R.S. (2018). Female Meiosis:
1091 Synapsis, Recombination, and Segregation in *Drosophila melanogaster*. *Genetics* *208*,
1092 875–908.

1093 Huynh, J.-R., and St Johnston, D. (2004). The origin of asymmetry: early polarisation of
1094 the *Drosophila* germline cyst and oocyte. *Curr. Biol.* *14*, R438–49.

1095 Huynh, J.R., and St Johnston, D. (2000). The role of BicD, Egl, Orb and the microtubules
1096 in the restriction of meiosis to the *Drosophila* oocyte. *Development* *127*, 2785–2794.

1097 Jain, D., Puno, M.R., Meydan, C., Lailler, N., Mason, C.E., Lima, C.D., Anderson, K. V,
1098 and Keeney, S. (2018). ketu mutant mice uncover an essential meiotic function for the
1099 ancient RNA helicase YTHDC2. *Elife* *7*, 10324.

1100 Kadlec, J., Hallacli, E., Lipp, M., Holz, H., Sanchez-Weatherby, J., Cusack, S., and
1101 Akhtar, A. (2011). Structural basis for MOF and MSL3 recruitment into the dosage
1102 compensation complex by MSL1. *Nat. Struct. Mol. Biol.* *18*, 142–149.

1103 Kahney, E.W., Snedeker, J.C., and Chen, X. (2019). Regulation of *Drosophila* germline
1104 stem cells. *Curr. Opin. Cell Biol.* *60*, 27–35.

1105 Kai, T., and Spradling, A. (2003). An empty *Drosophila* stem cell niche reactivates the
1106 proliferation of ectopic cells. *Proc. Natl. Acad. Sci. U. S. A.* *100*, 4633–4638.

1107 Keller, C.I., and Akhtar, A. (2015). The MSL complex: Juggling RNA-protein interactions
1108 for dosage compensation and beyond. *Curr. Opin. Genet. Dev.*

1109 Kelley, R.L., Wang, J., Bell, L., and Kuroda, M.I. (1997). Sex lethal controls dosage

1110 compensation in *Drosophila* by a non-splicing mechanism. *Nature* **387**, 195–199.

1111 Keogh, M.-C., Kurdustani, S.K., Morris, S.A., Ahn, S.H., Podolny, V., Collins, S.R.,
1112 Schuldiner, M., Chin, K., Punna, T., Thompson, N.J., et al. (2005). Cotranscriptional set2
1113 methylation of histone H3 lysine 36 recruits a repressive Rpd3 complex. *Cell* **123**, 593–
1114 605.

1115 Khajuria, R.K., Munschauer, M., Ulirsch, J.C., Fiorini, C., Ludwig, L.S., McFarland, S.K.,
1116 Abdulhay, N.J., Specht, H., Keshishian, H., Mani, D.R., et al. (2018). Ribosome Levels
1117 Selectively Regulate Translation and Lineage Commitment in Human Hematopoiesis.
1118 *Cell* **173**, 90–103.e19.

1119 Kim, D., Langmead, B., and Salzberg, S.L. (2015). HISAT: a fast spliced aligner with low
1120 memory requirements. *Nat. Methods* **12**, 357–360.

1121 Kimble, J. (2011). Molecular regulation of the mitosis/meiosis decision in multicellular
1122 organisms. *Cold Spring Harb. Perspect. Biol.* **3**, a002683–a002683.

1123 Kirilly, D., Wang, S., and Xie, T. (2011). Self-maintained escort cells form a germline stem
1124 cell differentiation niche. *Development* **138**, 5087–5097.

1125 Kojima, M.L., de Rooij, D.G., and Page, D.C. (2019). Amplification of a broad
1126 transcriptional program by a common factor triggers the meiotic cell cycle in mice. *Elife*
1127 **8**, 720.

1128 Kondrashov, N., Pusic, A., Stumpf, C.R., Shimizu, K., Hsieh, A.C., Ishiijima, J., Shiroishi,
1129 T., and Barna, M. (2011). Ribosome-mediated specificity in Hox mRNA translation and
1130 vertebrate tissue patterning. *Cell* **145**, 383–397.

1131 Kong, J., Han, H., Bergalet, J., Bouvrette, L.P.B., Hernández, G., Moon, N.S., Vali, H.,
1132 Lécuyer, É., and Lasko, P. (2019). A ribosomal protein S5 isoform is essential for
1133 oogenesis and interacts with distinct RNAs in *Drosophila melanogaster*. *Sci. Rep.*

1134 Koubova, J., Menke, D.B., Zhou, Q., Capel, B., Griswold, M.D., and Page, D.C. (2006).
1135 Retinoic acid regulates sex-specific timing of meiotic initiation in mice. *Proc. Natl. Acad.*
1136 *Sci. U. S. A.* **103**, 2474–2479.

1137 Larschan, E., Alekseyenko, A.A., Gortchakov, A.A., Peng, S., Li, B., Yang, P., Workman,
1138 J.L., Park, P.J., and Kuroda, M.I. (2007). MSL complex is attracted to genes marked by
1139 H3K36 trimethylation using a sequence-independent mechanism. *Mol. Cell* **28**, 121–133.

1140 Laverty, C., Lucci, J., and Akhtar, A. (2010). The MSL complex: X chromosome and
1141 beyond. *Curr. Opin. Genet. Dev.*

1142 Lehmann, R. (2012). Germline stem cells: origin and destiny. *Cell Stem Cell* **10**, 729–739.

1143 Lesch, B.J., and Page, D.C. (2012). Genetics of germ cell development. *Nat. Rev. Genet.*

1144 Li, J., Duns, G., Westers, H., Sijmons, R., van den Berg, A., and Kok, K. (2016). SETD2:
1145 an epigenetic modifier with tumor suppressor functionality. *Oncotarget* **7**, 50719–50734.

1146 Liao, Y., Smyth, G.K., and Shi, W. (2014). featureCounts: an efficient general purpose
1147 program for assigning sequence reads to genomic features. *Bioinformatics* **30**, 923–930.

1148 Lucchesi, J.C., and Kuroda, M.I. (2015). Dosage compensation in *Drosophila*. *Cold*
1149 *Spring Harb. Perspect. Biol.* **7**, a019398.

1150 Ludwig, L.S., Gazda, H.T., Eng, J.C., Eichhorn, S.W., Thiru, P., Ghazvinian, R., George,
1151 T.I., Gotlib, J.R., Beggs, A.H., Sieff, C.A., et al. (2014). Altered translation of GATA1 in
1152 Diamond-Blackfan anemia. *Nat. Med.* **20**, 748.

1153 Mach, J.M., and Lehmann, R. (1997). An Egalitarian-BicaudalD complex is essential for

1154 oocyte specification and axis determination in *Drosophila*. *Genes Dev.* **11**, 423–435.

1155 Marlow, F. (2015). Primordial Germ Cell Specification and Migration. *F1000Research* **4**,
1156 F1000 Faculty Rev-1462.

1157 Marston, A.L., and Amon, A. (2004). Meiosis: Cell-cycle controls shuffle and deal. *Nat.*
1158 *Rev. Mol. Cell Biol.*

1159 Marygold, S.J., Roote, J., Reuter, G., Lambertsson, A., Ashburner, M., Millburn, G.H.,
1160 Harrison, P.M., Yu, Z., Kenmochi, N., Kaufman, T.C., et al. (2007). The ribosomal protein
1161 genes and Minute loci of *Drosophila melanogaster*. *Genome Biol.* **8**, R216.

1162 Mathieu, J., and Huynh, J.R. (2017). Monitoring complete and incomplete abscission in
1163 the germ line stem cell lineage of *Drosophila* ovaries. *Methods Cell Biol.*

1164 Matias, N.R., Mathieu, J., and Huynh, J.R. (2015). Abscission Is Regulated by the
1165 ESCRT-III Protein Shrub in *Drosophila* Germline Stem Cells. *PLoS Genet.*

1166 McCarthy, A., Deiulio, A., Martin, E.T., Upadhyay, M., and Rangan, P. (2018a). Tip60
1167 complex promotes expression of a differentiation factor to regulate germline differentiation
1168 in female *Drosophila*. *Mol. Biol. Cell.*

1169 McCarthy, A., Deiulio, A., Martin, E.T., Upadhyay, M., and Rangan, P. (2018b). Tip60
1170 complex promotes expression of a differentiation factor to regulate germline differentiation
1171 in female *Drosophila*. *Mol. Biol. Cell* mbc.E18–06–0385.

1172 McKearin, D., and Ohlstein, B. (1995). A role for the *Drosophila* bag-of-marbles protein in
1173 the differentiation of cystoblasts from germline stem cells. *Development* **121**, 2937–2947.

1174 McKearin, D.M., and Spradling, A.C. (1990). bag-of-marbles: a *Drosophila* gene required
1175 to initiate both male and female gametogenesis. *Genes Dev.* **4**, 2242–2251.

1176 Meller, V.H., Wu, K.H., Roman, G., Kuroda, M.I., and Davis, R.L. (1997). roX1 RNA paints
1177 the X chromosome of male *Drosophila* and is regulated by the dosage compensation
1178 system. *Cell* **88**, 445–457.

1179 Miyauchi, H., Ohta, H., Nagaoka, S., Nakaki, F., Sasaki, K., Hayashi, K., Yabuta, Y.,
1180 Nakamura, T., Yamamoto, T., and Saitou, M. (2017). Bone morphogenetic protein and
1181 retinoic acid synergistically specify female germ-cell fate in mice. *EMBO J.* **36**, 3100–
1182 3119.

1183 Morris, L.X., and Spradling, A.C. (2011). Long-term live imaging provides new insight into
1184 stem cell regulation and germline-soma coordination in the *Drosophila* ovary.
1185 *Development* **138**, 2207–2215.

1186 Morris, L.X., and Spradling, A.C. (2012). Steroid signaling within *Drosophila* ovarian
1187 epithelial cells sex-specifically modulates early germ cell development and meiotic entry.
1188 *PLoS One* **7**, e46109.

1189 Morris, S.A., Shibata, Y., Noma, K., Tsukamoto, Y., Warren, E., Temple, B., Grewal,
1190 S.I.S., and Strahl, B.D. (2005). Histone H3 K36 methylation is associated with
1191 transcription elongation in *Schizosaccharomyces pombe*. *Eukaryot. Cell* **4**, 1446–1454.

1192 Morrison, S.J., and Spradling, A.C. (2008). Stem cells and niches: mechanisms that
1193 promote stem cell maintenance throughout life. *Cell* **132**, 598–611.

1194 Mukai, M., Hira, S., Nakamura, K., Nakamura, S., Kimura, H., Sato, M., and Kobayashi,
1195 S. (2015). H3K36 Trimethylation-Mediated Epigenetic Regulation is Activated by Bam
1196 and Promotes Germ Cell Differentiation During Early Oogenesis in *Drosophila*. *Biol. Open*
1197 **4**, 119–124.

1198 Nakayama, J., Rice, J.C., Strahl, B.D., Allis, C.D., and Grewal, S.I.S. (2001). Role of
1199 Histone H3 Lysine 9 Methylation in Epigenetic Control of Heterochromatin Assembly.
1200 Science (80-). 292, 110 LP – 113.

1201 Navarro-Costa, P., McCarthy, A., Prudêncio, P., Greer, C., Guilgur, L.G., Becker, J.D.,
1202 Secombe, J., Rangan, P., and Martinho, R.G. Early programming of the oocyte
1203 epigenome temporally controls late prophase I transcription and chromatin remodelling.
1204 Nat. Commun. 7, 12331 EP –.

1205 Navarro, C., Lehmann, R., and Morris, J. (2001). Oogenesis: Setting one sister above the
1206 rest. Curr. Biol. 11, R162-5.

1207 Nikolic, A., Volarevic, V., Armstrong, L., Lako, M., and Stojkovic, M. (2016). Primordial
1208 Germ Cells: Current Knowledge and Perspectives. Stem Cells Int. 2016, 1741072.

1209 Oatley, J.M., and Brinster, R.L. (2008). Regulation of spermatogonial stem cell self-
1210 renewal in mammals. Annu. Rev. Cell Dev. Biol. 24, 263–286.

1211 Ohlstein, B., and McKearin, D. (1997). Ectopic expression of the Drosophila Bam protein
1212 eliminates oogenic germline stem cells. Development 124, 3651–3662.

1213 Ohta, H., Tohda, A., and Nishimune, Y. (2003). Proliferation and Differentiation of
1214 Spermatogonial Stem Cells in the W/Wv Mutant Mouse Testis1. Biol. Reprod. 69, 1815–
1215 1821.

1216 Oulad-Abdelghani, M., Bouillet, P., Décimo, D., Gansmuller, A., Heyberger, S., Dollé, P.,
1217 Bronner, S., Lutz, Y., and Chambon, P. (1996). Characterization of a premeiotic germ
1218 cell-specific cytoplasmic protein encoded by Stra8, a novel retinoic acid-responsive gene.
1219 J. Cell Biol. 135, 469–477.

1220 Page, S.L., and Hawley, R.S. (2001). c(3)G encodes a Drosophila synaptonemal complex
1221 protein. Genes Dev. 15, 3130–3143.

1222 Palumbo, R.J., Fuchs, G., Lutz, S., and Curcio, M.J. (2017). Paralog-specific functions of
1223 RPL7A and RPL7B mediated by ribosomal protein or snoRNA dosage in *Saccharomyces*
1224 *cerevisiae*. G3 Genes, Genomes, Genet.

1225 Parisi, M., Nuttall, R., Edwards, P., Minor, J., Naiman, D., Lü, J., Doctolero, M., Vainer,
1226 M., Chan, C., Malley, J., et al. (2004). A survey of ovary-, testis-, and soma-biased gene
1227 expression in *Drosophila melanogaster* adults. Genome Biol. 5, R40–R40.

1228 Parisi, M.J., Deng, W., Wang, Z., and Lin, H. (2001). The arrest gene is required for
1229 germline cyst formation during *Drosophila* oogenesis. Genesis 29, 196–209.

1230 van Pelt, A., van Dissel-Emiliani, F., Gaemers, I., J van der Burg, M., Tanke, H., and G
1231 de Rooij, D. (1995). Characteristics of A spermatogonia and preleptotene spermatocytes
1232 in the vitamin A-deficient rat testis.

1233 Ravens, S., Fournier, M., Ye, T., Stierle, M., Dembele, D., Chavant, V., and Tora, L.
1234 (2014). Mof-associated complexes have overlapping and unique roles in regulating
1235 pluripotency in embryonic stem cells and during differentiation. Elife 3, 1680.

1236 De Rooij, D.G. (2017). The nature and dynamics of spermatogonial stem cells. Dev.

1237 Ryu, B.-Y., Orwig, K.E., Oatley, J.M., Avarbock, M.R., and Brinster, R.L. (2006). Effects
1238 of Aging and Niche Microenvironment on Spermatogonial Stem Cell Self-Renewal. Stem
1239 Cells 24, 1505–1511.

1240 Saitou, M., and Yamaji, M. (2010). Germ cell specification in mice: Signaling, transcription
1241 regulation, and epigenetic consequences. Reproduction.

1242 Samata, M., and Akhtar, A. (2018). Dosage Compensation of the X Chromosome: A
1243 Complex Epigenetic Assignment Involving Chromatin Regulators and Long Noncoding
1244 RNAs. *Annu. Rev. Biochem.*

1245 Sanchez, C.G., Teixeira, F.K., Czech, B., Preall, J.B., Zamparini, A.L., Seifert, J.R.K.,
1246 Malone, C.D., Hannon, G.J., and Lehmann, R. (2016). Regulation of Ribosome
1247 Biogenesis and Protein Synthesis Controls Germline Stem Cell Differentiation. *Cell Stem
1248 Cell* **18**, 276–290.

1249 Sayers, E.W., Barrett, T., Benson, D.A., Bolton, E., Bryant, S.H., Canese, K., Chetvernin,
1250 V., Church, D.M., DiCuccio, M., Federhen, S., et al. (2012). Database resources of the
1251 National Center for Biotechnology Information. *Nucleic Acids Res.*

1252 Schrans-Stassen, B.H.G.J., van de Kant, H.J.G., de Rooij, D.G., and van Pelt, A.M.M.
1253 (1999). Differential Expression of c-kit in Mouse Undifferentiated and Differentiating Type
1254 A Spermatogonia. *Endocrinology* **140**, 5894–5900.

1255 Schwedes, C., Tulsiani, S., and Carney, G.E. (2011). Ecdysone receptor expression and
1256 activity in adult *Drosophila melanogaster*. *J. Insect Physiol.* **57**, 899–907.

1257 Segev, N., and Gerst, J.E. (2018). Specialized ribosomes and specific ribosomal protein
1258 paralogs control translation of mitochondrial proteins. *J. Cell Biol.* **217**, 117 LP – 126.

1259 Shalaby, N.A., Sayed, R., Zhang, Q., Scoggin, S., Eliazer, S., Rothenfluh, A., and
1260 Buszczak, M. (2017). Systematic discovery of genetic modulation by Jumonji histone
1261 demethylases in *Drosophila*. *Sci. Rep.*

1262 Sharma, S., Wistuba, J., Pock, T., Schlatt, S., and Neuhaus, N. (2019). Spermatogonial
1263 stem cells: Updates from specification to clinical relevance. *Hum. Reprod. Update*.

1264 Shi, Z., Fujii, K., Kovary, K.M., Genuth, N.R., Röst, H.L., Teruel, M.N., and Barna, M.
1265 (2017). Heterogeneous Ribosomes Preferentially Translate Distinct Subpools of mRNAs
1266 Genome-wide. *Mol. Cell*.

1267 Shigenobu, S., Kitadate, Y., Noda, C., and Kobayashi, S. (2006). Molecular
1268 characterization of embryonic gonads by gene expression profiling in *Drosophila
1269 melanogaster*. *Proc. Natl. Acad. Sci. U. S. A.* **103**, 13728–13733.

1270 Signer, R.A.J., Magee, J.A., Salic, A., and Morrison, S.J. (2014). Haematopoietic stem
1271 cells require a highly regulated protein synthesis rate. *Nature*.

1272 Simsek, D., Tiu, G.C., Flynn, R.A., Byeon, G.W., Leppek, K., Xu, A.F., Chang, H.Y., and
1273 Barna, M. (2017). The Mammalian Ribo-interactome Reveals Ribosome Functional
1274 Diversity and Heterogeneity. *Cell*.

1275 Soh, Y.Q.S., Junker, J.P., Gill, M.E., Mueller, J.L., van Oudenaarden, A., and Page, D.C.
1276 (2015). A Gene Regulatory Program for Meiotic Prophase in the Fetal Ovary. *PLoS
1277 Genet.*

1278 Soh, Y.Q.S., Mikedis, M.M., Kojima, M., Godfrey, A.K., de Rooij, D.G., and Page, D.C.
1279 (2017). Meioc maintains an extended meiotic prophase I in mice. *PLoS Genet.* **13**,
1280 e1006704.

1281 Spedale, G., Timmers, H.T.M., and Pijnappel, W.W.M.P. (2012). ATAC-king the
1282 complexity of SAGA during evolution. *Genes Dev.* **26**, 527–541.

1283 Spradling, A., Drummond-Barbosa, D., and Kai, T. (2001). Stem cells find their niche.
1284 *Nature* **414**, 98–104.

1285 Spradling, A., Fuller, M.T., Braun, R.E., and Yoshida, S. (2011). Germline stem cells. *Cold*

1286 Spring Harb. Perspect. Biol. 3, a002642–a002642.

1287 Spradling, A.C., de Cuevas, M., Drummond-Barbosa, D., Keyes, L., Lilly, M., Pepling, M.,
1288 and Xie, T. (1997). The *Drosophila* germarium: stem cells, germ line cysts, and oocytes.
1289 *Cold Spring Harb. Symp. Quant. Biol.* 62, 25–34.

1290 Spradling, A.C., Nystul, T., Lighthouse, D., Morris, L., Fox, D., Cox, R., Tootle, T.,
1291 Frederick, R., and Skora, A. (2008). Stem cells and their niches: integrated units that
1292 maintain *Drosophila* tissues. *Cold Spring Harb. Symp. Quant. Biol.* 73, 49–57.

1293 Stabell, M., Larsson, J., Aalen, R.B., and Lambertsson, A. (2007). *Drosophila* dSet2
1294 functions in H3-K36 methylation and is required for development. *Biochem. Biophys. Res.*
1295 *Commun.* 359, 784–789.

1296 Von Stetina, J.R., and Orr-Weaver, T.L. (2011). Developmental control of oocyte
1297 maturation and egg activation in metazoan models. *Cold Spring Harb. Perspect. Biol.* 3,
1298 a005553.

1299 Strukov, Y.G., Sural, T.H., Kuroda, M.I., and Sedat, J.W. (2011). Evidence of activity-
1300 specific, radial organization of mitotic chromosomes in *Drosophila*. *PLoS Biol.* 9,
1301 e1000574.

1302 Suganuma, T., Gutiérrez, J.L., Li, B., Florens, L., Swanson, S.K., Washburn, M.P.,
1303 Abmayr, S.M., and Workman, J.L. (2008). ATAC is a double histone acetyltransferase
1304 complex that stimulates nucleosome sliding. *Nat. Struct. Mol. Biol.* 15, 364–372.

1305 Sugimura, I., and Lilly, M.A. (2006). Bruno inhibits the expression of mitotic cyclins during
1306 the prophase I meiotic arrest of *Drosophila* oocytes. *Dev. Cell* 10, 127–135.

1307 Sun, J., Wei, H.-M., Xu, J., Chang, J.-F., Yang, Z., Ren, X., Lv, W.-W., Liu, L.-P., Pan, L.-
1308 X., Wang, X., et al. (2015). Histone H1-mediated epigenetic regulation controls germline
1309 stem cell self-renewal by modulating H4K16 acetylation. *Nat. Commun.* 6, 8856.

1310 Sural, T.H., Peng, S., Li, B., Workman, J.L., Park, P.J., and Kuroda, M.I. (2008). The
1311 MSL3 chromodomain directs a key targeting step for dosage compensation of the
1312 *Drosophila melanogaster* X chromosome. *Nat. Struct. Mol. Biol.* 15, 1318–1325.

1313 Takeo, S., Lake, C.M., Morais-de-Sá, E., Sunkel, C.E., and Hawley, R.S. (2011).
1314 Synaptonemal complex-dependent centromeric clustering and the initiation of synapsis
1315 in *Drosophila* oocytes. *Curr. Biol.* 21, 1845–1851.

1316 Tastan, O.Y., Maines, J.Z., Li, Y., McKearin, D.M., and Buszczak, M. (2010). *Drosophila*
1317 ataxin 2-binding protein 1 marks an intermediate step in the molecular differentiation of
1318 female germline cysts. *Development* 137, 3167–3176.

1319 Theurkauf, W.E., Alberts, B.M., Jan, Y.N., and Jongens, T.A. (1993). A central role for
1320 microtubules in the differentiation of *Drosophila* oocytes. *Development* 118, 1169–1180.

1321 Turner, B.M., Birley, A.J., and Lavender, J. (1992). Histone H4 isoforms acetylated at
1322 specific lysine residues define individual chromosomes and chromatin domains in
1323 *Drosophila* polytene nuclei. *Cell* 69, 375–384.

1324 UCHIDA, S., UENOYAMA, T., and OISHI, K. (1981). Studies on the sex-specific lethals
1325 of *Drosophila melanogaster*. III. A third chromosome male-specific lethal mutant.
1326 *Japanese J. Genet.* 56, 523–527.

1327 Upadhyay, M., Martino Cortez, Y., Wong-Deyrup, S., Tavares, L., Schowalter, S., Flora,
1328 P., Hill, C., Nasrallah, M.A., Chittur, S., and Rangan, P. (2016). Transposon Dysregulation
1329 Modulates dWnt4 Signaling to Control Germline Stem Cell Differentiation in *Drosophila*.

1330 PLoS Genet. 12, e1005918.

1331 Upadhyay, M., Kuna, M., Tudor, S., Martino Cortez, Y., and Rangan, P. (2018). A switch
1332 in the mode of Wnt signaling orchestrates the formation of germline stem cell
1333 differentiation niche in Drosophila. PLoS Genet. 14, e1007154.

1334 Wang, Z., and Lin, H. (2007). Sex-lethal is a target of Bruno-mediated translational
1335 repression in promoting the differentiation of stem cell progeny during Drosophila
1336 oogenesis. Dev. Biol. 302, 160–168.

1337 Willig, T.-N., Draptchinskaia, N., Dianzani, I., Ball, S., Marie Niemeyer, C., Ramenghi, U.,
1338 Orfali, K., Gustavsson, P., Garelli, E., Brusco, A., et al. (2000). Mutations in Ribosomal
1339 Protein S19 gene and Diamond Blackfan anemia: wide variations in phenotypic
1340 expression.

1341 Xie, T. (2000). A Niche Maintaining Germ Line Stem Cells in the Drosophila Ovary. Science 290, 328–330.

1342 Xie, T. (2013). Control of germline stem cell self-renewal and differentiation in the
1343 Drosophila ovary: concerted actions of niche signals and intrinsic factors. Wiley
1344 Interdiscip. Rev. Dev. Biol. 2, 261–273.

1345 Xie, T., and Spradling, A.C. (1998). decapentaplegic is essential for the maintenance and
1346 division of germline stem cells in the Drosophila ovary. Cell 94, 251–260.

1347 Xie, T., and Spradling, A.C. (2000). A niche maintaining germ line stem cells in the
1348 Drosophila ovary. Science 290, 328–330.

1349 Xue, S., and Barna, M. (2012). Specialized ribosomes: a new frontier in gene regulation
1350 and organismal biology. Nat. Rev. Mol. Cell Biol. 13, 355–369.

1351 Xue, S., Tian, S., Fujii, K., Kladwang, W., Das, R., and Barna, M. (2015). RNA regulons
1352 in Hox 59 UTRs confer ribosome specificity to gene regulation. Nature.

1353 Yap, K.L., and Zhou, M.-M. (2011). Structure and mechanisms of lysine methylation
1354 recognition by the chromodomain in gene transcription. Biochemistry 50, 1966–1980.

1355 Zhang, Q., Shalaby, N.A., and Buszczak, M. (2014). Changes in rRNA transcription
1356 influence proliferation and cell fate within a stem cell lineage. Science 343, 298–301.

1357 Zhou, Q., Nie, R., Li, Y., Friel, P., Mitchell, D., Hess, R.A., Small, C., and Griswold, M.D.
1358 (2008). Expression of stimulated by retinoic acid gene 8 (Stra8) in spermatogenic cells
1359 induced by retinoic acid: an in vivo study in vitamin A-sufficient postnatal murine testes.
1360 Biol. Reprod. 79, 35–42.

1361

1362

1363

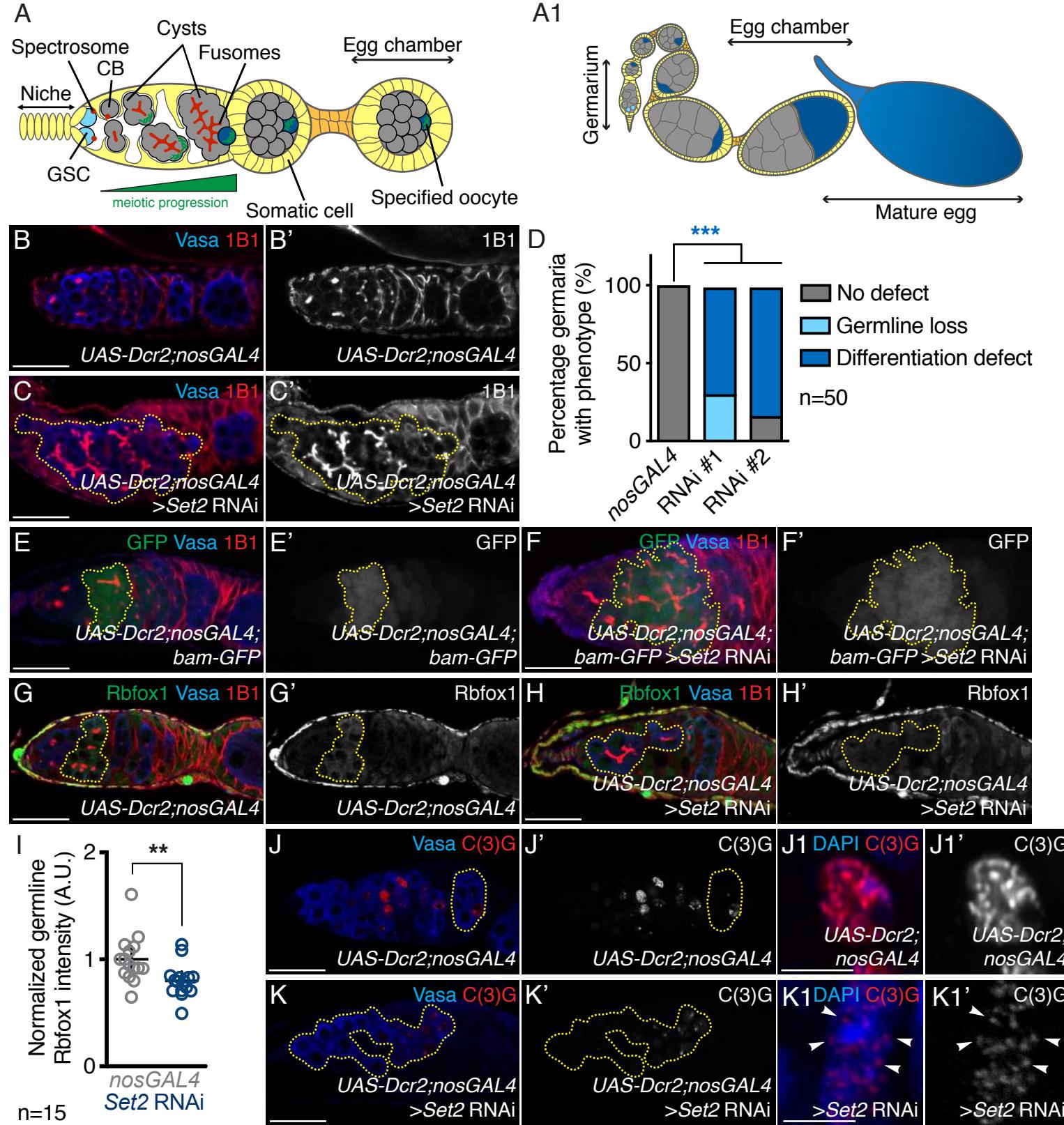
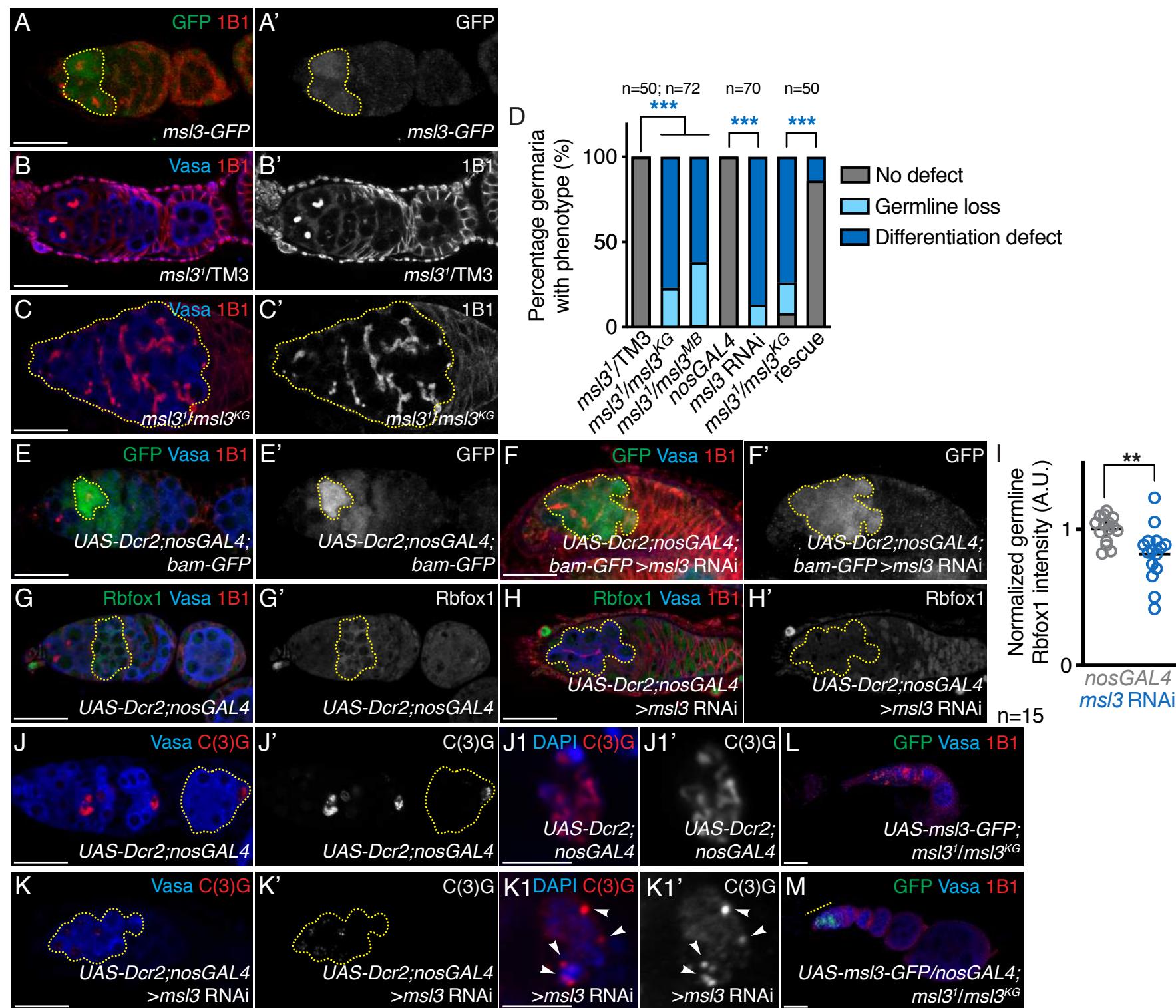
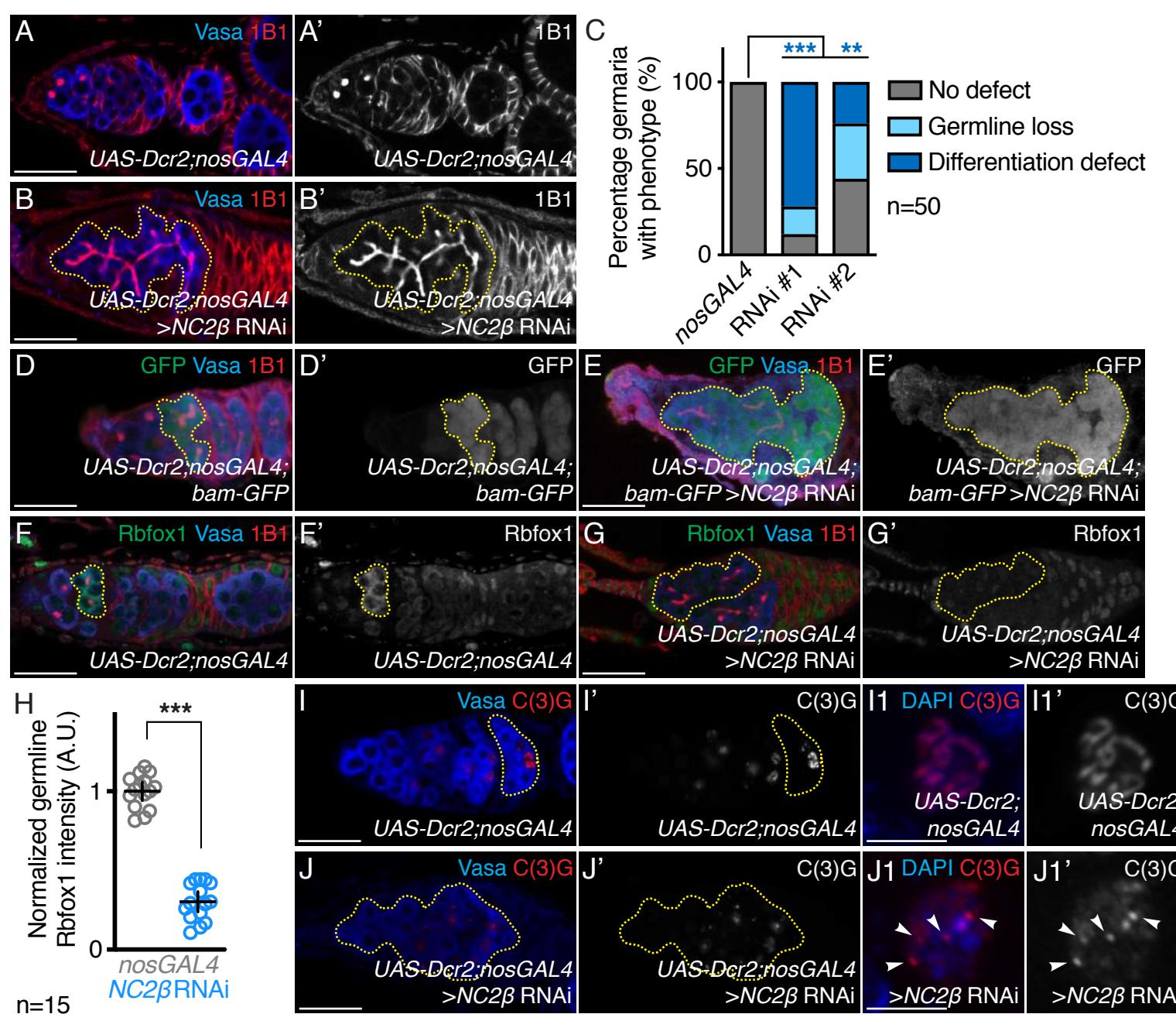
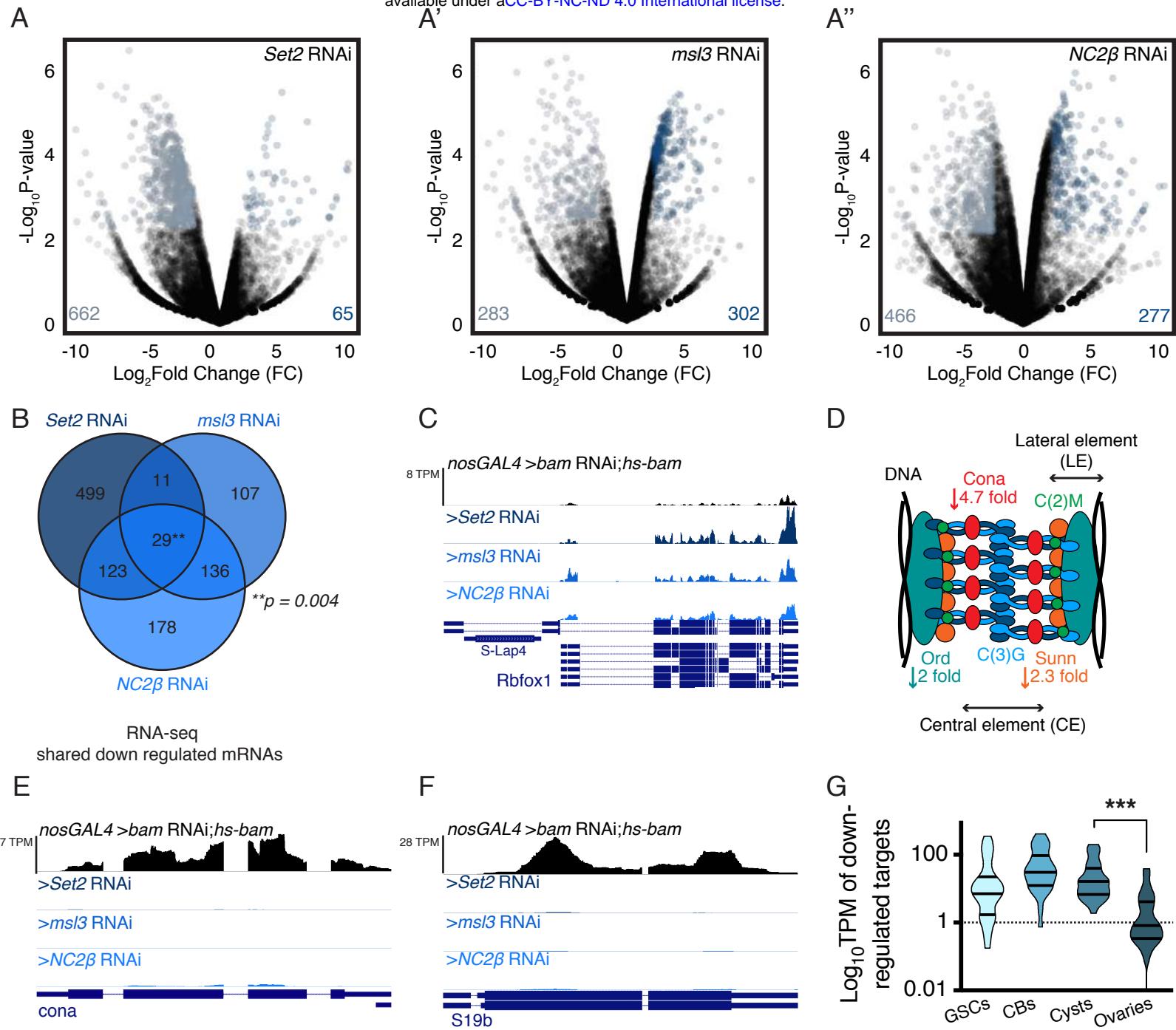
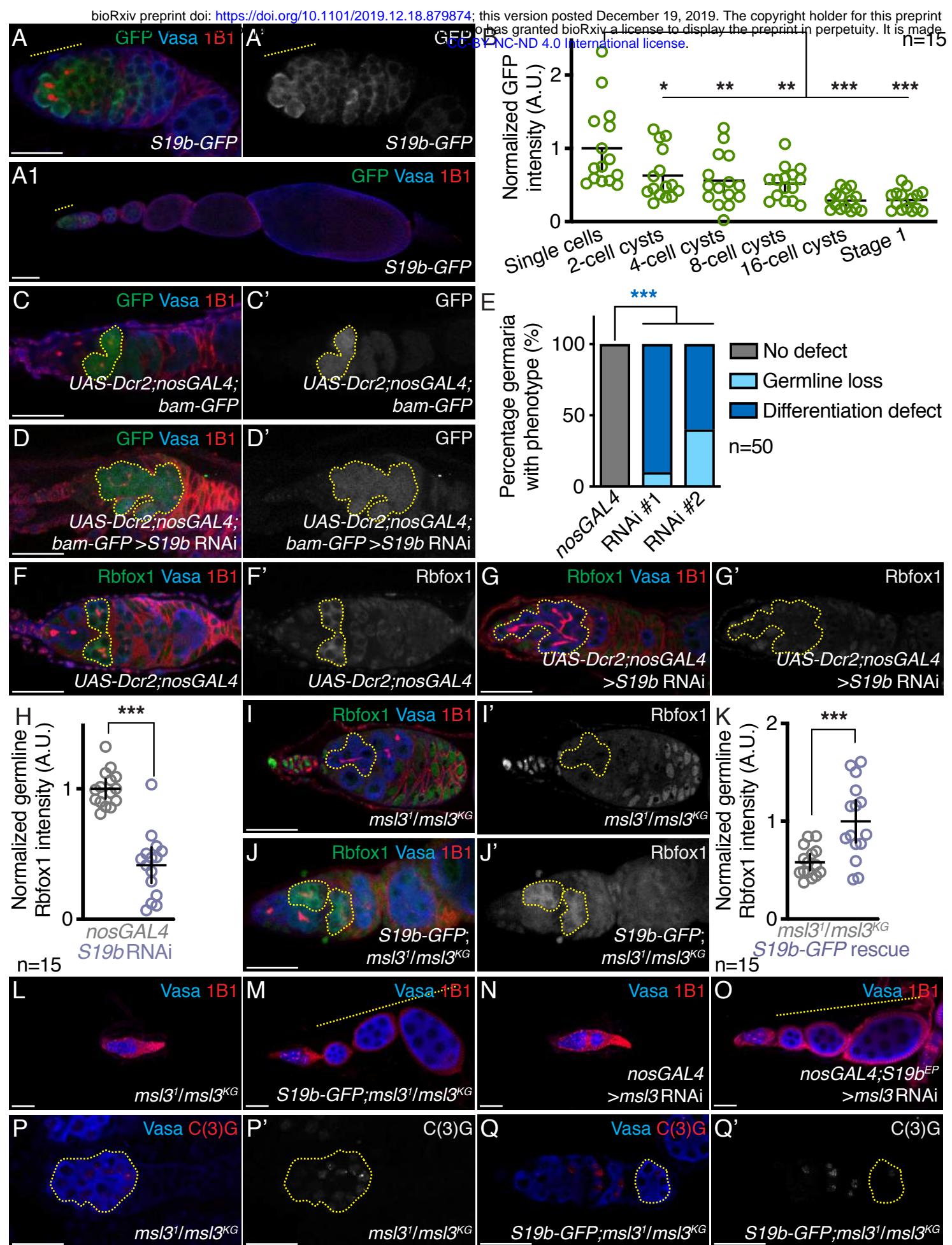
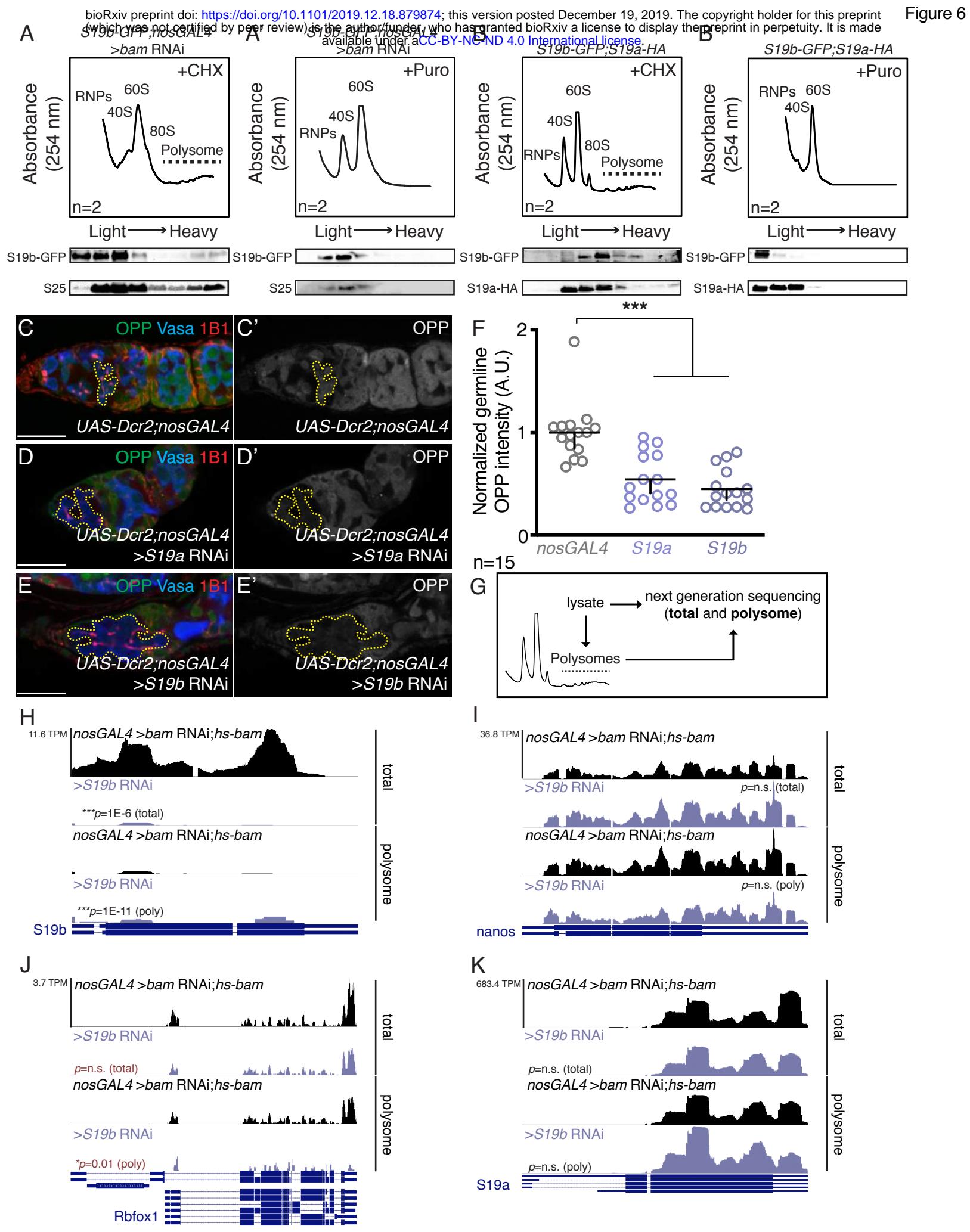
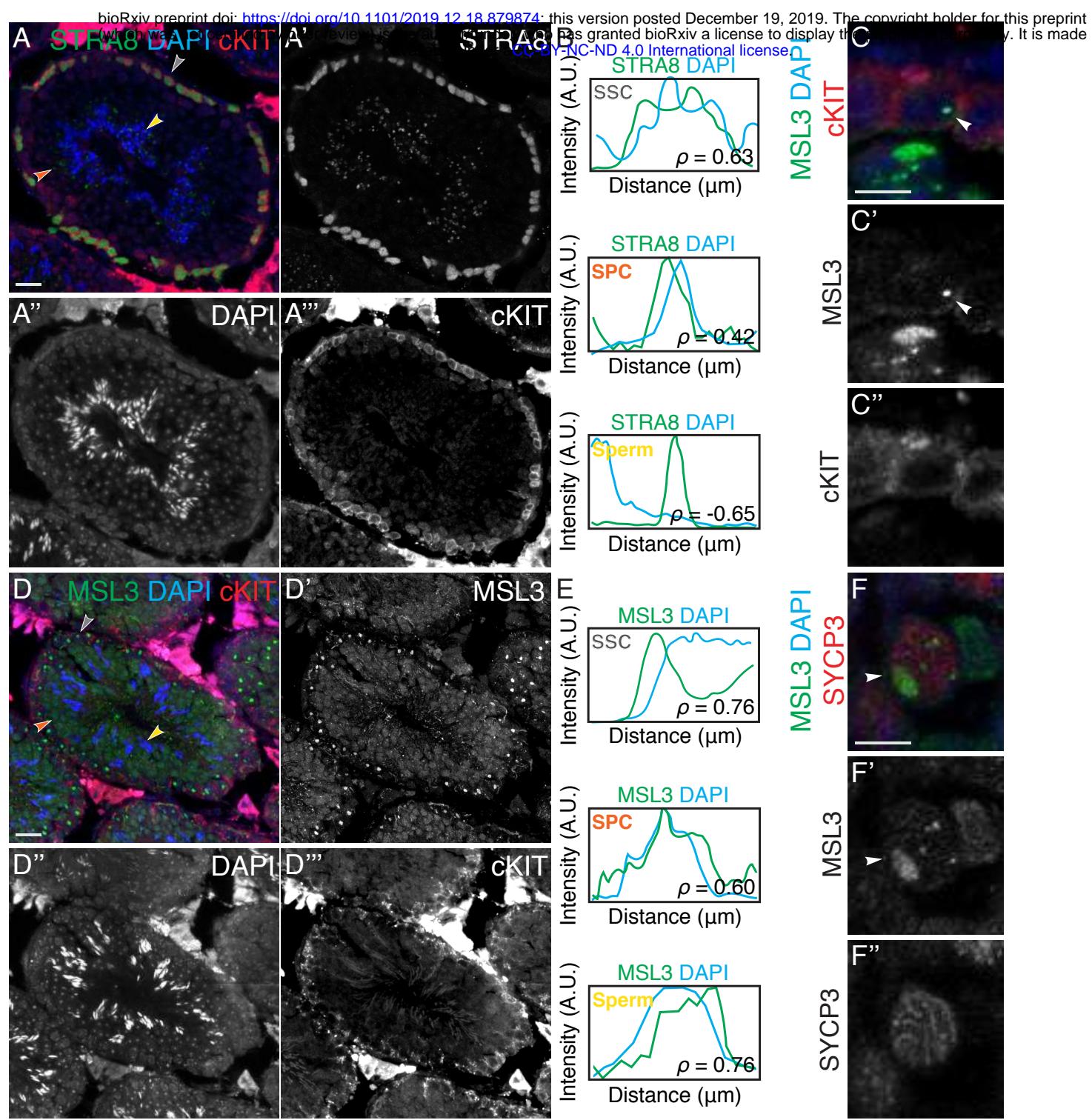
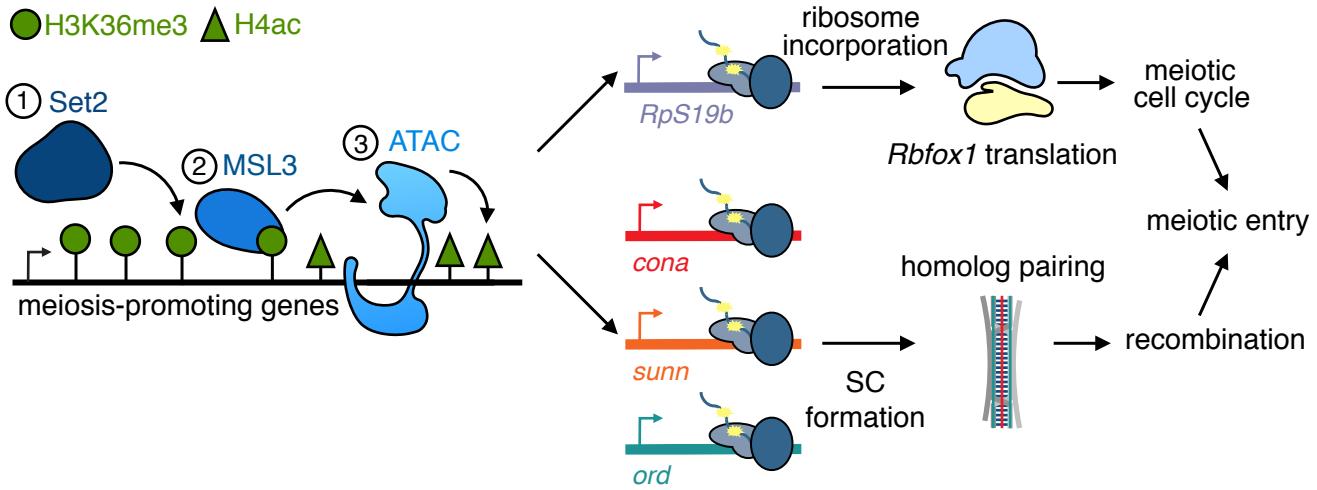


Figure 2



Figure 3

G

1364 **Figure Legends**

1365 **Figure 1. Set2 is required in the germline for meiotic progression during oogenesis**

1366 (A) A schematic of a *Drosophila* germarium where germ cells (gray, light and dark blue)
1367 are surrounded by somatic cells (yellow). The germline stem cells (GSCs; light blue)
1368 reside near a somatic niche (yellow). The GSC divides to give rise to daughter cells called
1369 cystoblasts (CBs; gray). Both GSCs and CBs are marked by round structures called
1370 spectrosomes (red). CBs turn on a differentiation program and will undergo incomplete
1371 mitotic divisions, giving rise to 2, 4, 8, and 16-cell cysts (gray), marked by branched
1372 structures called fusomes (red). During the cyst stages germ cells progress through
1373 meiotic prophase I (green rectangles, green triangle below). Upon 16-cell cyst formation,
1374 a single cell will be specified as the oocyte (dark blue) while the other 15 cells become
1375 support cells called nurse cells (gray). The 16-cell cyst will migrate, bud off from the
1376 germarium, be encapsulated by the soma (yellow), and generate egg chambers.

1377

1378 (A1) A schematic of a *Drosophila* ovariole. The ovariole consists of egg chambers that
1379 are discrete stages of development, connected by somatic cells (orange). As egg
1380 chambers develop, they increase in size and house the maturing oocyte eventually giving
1381 rise to a mature egg (blue).

1382

1383 (B-B') Control and (C-C') germline depleted *Set2* (RNAi line #1) germaria stained for Vasa
1384 (blue) and 1B1 (red) shows that *Set2* germline depletion results in irregular cysts (70% in
1385 *Set2* RNAi line #1 and 84% in *Set2* RNAi line #2 compared to 0% in *nosGAL4*; $p=4.1E-15$ and
1386 $p<2.2E-16$, respectively, $n=50$) (yellow dashed outline) and germline loss (30% in
1387 *Set2* RNAi line #1 and 0% in *Set2* RNAi line #2 compared to 0% in *nosGAL4*; $p=3.2E-12$
1388 and $p=1$, respectively, $n=50$). 1B1 channel is shown in B' and C'. Quantitation in (D),
1389 statistical analysis performed with Fisher's exact test on differentiation defect; ***
1390 indicates $p<0.001$.

1391

1392 (E-E') Control and (F-F') germline depleted *Set2* germaria both carrying a *bam-GFP*
1393 transgene stained for GFP (green), Vasa (blue), and 1B1 (red) shows that *Set2* germline
1394 depletion results in irregular GFP positive cysts compared to control (yellow dashed
1395 outline) (90% in *Set2* RNAi compared to 4% in *nosGAL4*; $p<2.2E-16$, $n=50$). Statistical
1396 analysis performed with Fisher's exact test. GFP channel is shown in E' and F'.

1397

1398 (G-G') Control and (H-H') germline depleted *Set2* germaria stained for Rbfox1 (green),
1399 Vasa (blue), and 1B1 (red) shows that *Set2* germline depletion results in decreased levels
1400 of Rbfox1 in the germline compared to control (yellow dashed outline) (0.7 ± 0.1 in *Set2*
1401 RNAi compared to 1.0 ± 0.1 in *nosGAL4*; $p=0.0076$, $n=15$). Rbfox1 channel is shown in G'
1402 and H'. Quantitation in (I), statistical analysis performed with Student t-test; ** indicates
1403 $p<0.01$.

1404
1405 (J-J' and J1-J1') Control and (K-K' and K1-K1') germline depleted *Set2* germaria stained
1406 for Vasa (blue) and C(3)G (red) shows that *Set2* germline depletion results in aberrant
1407 C(3)G staining compared to control (yellow dashed outline) (100% in *Set2* RNAi
1408 compared to 2% in *nosGAL4*; $p<2.2E-16$, $n=50$) and improper assembly of the
1409 synaptonemal complex (white arrows). Statistical analysis performed with Fisher's exact
1410 test. C(3)G channel is shown in J', J1', K1, and K1'.
1411
1412 Scale bar for J1-J1' and K1-K1' is 2 μ m, scale bar for all other images is 20 μ m.
1413
1414 **Figure 2. MSL3 is required in the germline for meiotic progression**
1415 (A-A') *msl3-GFP* gerarium stained for GFP (green) and 1B1 (red). GFP expression is
1416 enriched in single cells and early cysts, showing that MSL3 is expressed in the mitotic
1417 and early meiotic stages of oogenesis. GFP channel is shown in A'.
1418
1419 (B-B') Heterozygous control and (C-C') trans-allelic *msl3* mutant germaria stained for
1420 Vasa (blue) and 1B1 (red) shows that *msl3* mutants have irregular cysts (yellow dashed
1421 outline) (77% in *msl3¹/msl3^{KG}* compared to 0% in *msl3¹* heterozygotes; $p<2.2E-16$, $n=50$)
1422 and germline loss (23% in *msl3¹/msl3^{KG}* compared to 0% in *msl3¹* heterozygotes;
1423 $p=0.0002$, $n=50$). 1B1 channel is shown in B' and C'. Quantitation in (D), statistical
1424 analysis performed with Fisher's exact test on differentiation defect; *** indicates $p<0.001$.
1425
1426 (E-E') Control and (F-F') germline depleted *msl3* germaria both carrying a *bam-GFP*
1427 transgene stained for GFP (green), Vasa (blue), and 1B1 (red) shows that *msl3* germline
1428 depletion results in irregular GFP-positive cysts compared to control (yellow dashed
1429 outline) (96% in *msl3* RNAi compared to 0% in *nosGAL4*; $p<2.2E-16$, $n=50$). Statistical
1430 analysis performed with Fisher's exact test. GFP channel is shown in E' and F'.
1431
1432 (G-G') Control and (H-H') germline depleted *msl3* germaria stained for Rbfox1 (green),
1433 Vasa (blue), and 1B1 (red) shows that *msl3* germline depletion results in decreased levels
1434 of Rbfox1 in the germline compared to control (yellow dashed outline) (0.8 ± 0.1 in *msl3*
1435 RNAi compared to 1.0 ± 0.1 in *nosGAL4*; $p=0.0037$, $n=15$). Rbfox1 channel is shown in G'
1436 and H'. Quantitation in (I), statistical analysis performed with Student t-test; ** indicates
1437 $p<0.01$.
1438
1439 (J-J') Control and (K-K') germline depleted *msl3* germaria stained for Vasa (blue) and
1440 C(3)G (red) shows that *msl3* germline depletion results in aberrant C(3)G staining
1441 compared to control (yellow dashed outline) (100% in *msl3* RNAi compared to 0% in
1442 *nosGAL4*; $p<2.2E-16$, $n=50$) and improper assembly of the synaptonemal complex (white

1443 arrows). Statistical analysis performed with Fisher's exact test. C(3)G channel is shown
1444 in J', J1', K1, and K1'.

1445
1446 (L) Control and (M) germline overexpression of *msl3* in *msl3* mutant germaria stained for
1447 GFP (green), Vasa (blue), and 1B1 (red) shows that *msl3* germline overexpression in
1448 *msl3* mutants results in reduced frequency of irregular cysts (yellow dashed line) (14% in
1449 *msl3* rescue compared to 74% in *msl3* mutant; $p<2.2E-16$, $n=50$) and germline loss (0%
1450 in *msl3* rescue compared to 18% in *msl3* mutant; $p=0.0002$, $n=50$). Quantitation in (D).

1451
1452 Scale bar for J1-J1' and K1-K1' is 2 μ m, scale bar for all other images is 20 μ m.
1453

1454 **Figure 3. ATAC component, NC2 β , is required in the germline for meiotic
1455 progression**

1456 (A-A') Control and (B-B') germline depleted *NC2 β* (RNAi line #1) germaria stained for
1457 Vasa (blue) and 1B1 (red) shows that *NC2 β* germline depletion results in irregular cysts
1458 (yellow dashed outline) (72% in *NC2 β* RNAi line #1 and 24% in *NC2 β* RNAi line #2
1459 compared to 0% *nosGAL4*; $p=9.5E-16$ and $p=2.4E-4$, $n=50$) and germline loss (16% in
1460 *NC2 β* RNAi line #1 and 21% in *NC2 β* RNAi line #2 compared to 0% in *nosGAL4*; $p=0.03$
1461 and $p=2.3E-4$, respectively, $n=50$). 1B1 channel is shown in A' and B'. Quantitation in (C),
1462 statistical analysis performed with Fisher's exact test on differentiation defect; ** indicates
1463 $p<0.01$ and *** indicates $p<0.001$.

1464
1465 (D-D') Control and (E-E') germline depleted *NC2 β* germaria both carrying a *bam-GFP*
1466 transgene stained for GFP (green), Vasa (blue), and 1B1 (red) shows that *NC2 β* germline
1467 depletion results in irregular GFP positive cysts compared to control (yellow dashed
1468 outline) (64% in *NC2 β* RNAi compared to 0% in *nosGAL4*; $p=2.5E-13$, $n=50$). Statistical
1469 analysis performed with Fisher's exact test. GFP channel is shown in D' and E'.

1470
1471 (F-F') Control and (G-G') germline depleted *NC2 β* germaria stained for Rbfox1 (green),
1472 Vasa (blue), and 1B1 (red) shows that *NC2 β* germline depletion results in decreased
1473 levels of Rbfox1 in the germline compared to control (yellow dashed outline) (0.3 ± 0.1 in
1474 *NC2 β* RNAi compared to 1.0 ± 0.1 in *nosGAL4*; $p<0.0001$, $n=50$). Rbfox1 channel is shown
1475 in F' and G'. Quantitation in (H), statistical analysis performed with Student t-test; ***
1476 indicates $p<0.001$.

1477
1478 (I-I' and I1-I1') Control and (J-J' and J1-J1') germline depleted *NC2 β* germaria stained for
1479 Vasa (blue) and C(3)G (red) shows that *NC2 β* germline depletion results in aberrant
1480 C(3)G staining compared to control (yellow dashed outline and white arrows) (75% in
1481 *NC2 β* RNAi compared to 0% in *nosGAL4*; $p<2.2E-16$, $n=50$) and improper assembly of

1482 the synaptonemal complex (white arrows). Statistical analysis performed with Fisher's
1483 exact test. C(3)G channel is shown in I', I1', J', and J1'.

1484

1485 Scale bar for I1-I1' and J1-J1' is 2 μ m, scale bar for all other images is 20 μ m.

1486

1487 **Figure 4. Set2, MSL3, and ATAC complex regulate mRNA levels of recombination**
1488 **machinery components, but not Rbfox1**

1489 (A-A'') Volcano plots of $-\text{Log}_{10}\text{P-value}$ vs. $\text{Log}_2\text{Fold Change (FC)}$ of (A) *Set2*, (A') *msl3*,
1490 and (A'') *NC2 β* germline depleted ovaries compared to *bam* RNAi;hs-*bam*. Light blue dots
1491 represent significantly downregulated transcripts and dark blue dots represent
1492 significantly upregulated transcripts in *Set2*, *msl3*, and *NC2 β* RNAi ovaries compared
1493 with *bam* RNAi;hs-*bam* ovaries (FDR = 0.05). Genes with four-fold or higher change were
1494 considered significant.

1495

1496 (B) Venn diagram of downregulated genes from RNA-seq of *Set2*, *msl3*, and *NC2 β*
1497 germline depleted ovaries compared to *bam* RNAi;hs-*bam*. 29 targets are shared
1498 between *Set2*, *msl3*, and *NC2 β* RNAi, suggesting that while *Set2*, MSL3, and ATAC
1499 function independently they also co-regulate a small population of genes.

1500

1501 (C) RNA-seq track showing that *Rbfox1* is not reduced upon germline depletion of *Set2*,
1502 *msl3*, and *NC2 β* . All tracks are set to scale to 8 TPM.

1503

1504 (D) A structural model of the SC where the lateral element (LE), consisting of proteins
1505 such as Ord (teal), Sunn (orange), and C(2)M (green) assemble along DNA. The central
1506 region (CR) consists of transverse elements such as Cona (red) and C(3)G (light and
1507 dark blue) to stabilize the complex and promote recombination. Down arrows denote fold
1508 downregulation of SC components in depleted ovaries.

1509

1510 (E) RNA-seq track showing that *cona* is reduced upon germline depletion of *Set2*, *msl3*,
1511 and *NC2 β* . All tracks are set to scale to 17 TPM.

1512

1513 (F) RNA-seq track showing that *RpS19b* is reduced upon germline depletion of *Set2*,
1514 *msl3*, and *NC2 β* . All tracks are set to scale to 28 TPM.

1515

1516 (G) Violin plot of mRNA levels of the 29 shared downregulated targets in ovaries enriched
1517 for GSCs, CBs, cysts, and whole ovaries, showing that the shared targets are most highly
1518 enriched in CBs and cyst stages, that then tapers off in whole ovaries (41.2 ± 15.1 in single
1519 cells, 76.2 ± 19.1 in , 35.6 ± 9.5 in cyst, and 4.2 ± 1.6 in whole nosGAL4 ovaries; $p=0.009$ for
1520 whole ovaries compared to cysts). Statistical analysis performed with one-way ANOVA;
1521 *** indicates $p<0.001$.

1522

1523 **Figure 5. RpS19b, a germline enriched paralog, is expressed in the mitotic and early**
1524 **meiotic stages and is required for Rbfox1 expression**

1525 (A-A') *RpS19b-GFP* gerarium and (A1) ovariole stained for GFP (green), Vasa (blue),
1526 and 1B1 (red). GFP is expressed higher in single cells in the gerarium, decreases in the
1527 cyst stages, and then tapers off upon stage 1 formation (1.0 ± 0.1 in single cells, 0.6 ± 0.1
1528 in 2-cell cyst, 0.6 ± 0.1 in 4-cell cyst, 0.5 ± 0.1 in 8-cell cyst, 0.3 ± 0.1 in 16-cell cyst, and
1529 0.3 ± 0.1 in stage 1 egg chamber; $p=0.0284$ for 2-cell cyst, $p=0.0047$ for 4-cell cyst,
1530 $p=0.0017$ for 8-cell cyst, $p<0.0001$ for 16-cell cyst and stage 1 egg chamber, compared
1531 to single cells, $n=15$). GFP channel is shown in A'. Quantitation in (B), statistical analysis
1532 performed with one-way ANOVA; * indicates $p<0.05$, ** indicates $p<0.01$, and *** indicates
1533 $p<0.001$.

1534

1535 (C-C') Control and (D-D') germline depleted *RpS19b* germaria both carrying a *bam-GFP*
1536 transgene stained for GFP (green), Vasa (blue), and 1B1 (red) shows that *RpS19b*
1537 germline depletion results in irregular GFP positive germ cells compared to control (yellow
1538 dashed outline) (64% in *RpS19b* RNAi compared to 0% in *nosGAL4*; $p=2.5E-13$, $n=50$).
1539 Statistical analysis performed with Fisher's exact test. GFP channel is shown in C' and
1540 D'. Quantitation in (E), statistical analysis performed with Fisher's exact test on
1541 differentiation defect; *** indicates $p<0.001$.

1542

1543 (F-F') Control and (G-G') germline depleted *RpS19b* germaria stained for Rbfox1 (green),
1544 Vasa (blue), and 1B1 (red) shows that *RpS19b* germline depletion results in decreased
1545 levels of Rbfox1 in the germline compared to control (yellow dashed outline) (0.4 ± 0.2 in
1546 *RpS19b* RNAi compared to 1.0 ± 0.1 in *nosGAL4*; $p<0.0001$, $n=15$). Rbfox1 channel is
1547 shown in F' and G'. Quantitation in (H), statistical analysis performed with Student t-test;
1548 *** indicates $p<0.001$.

1549

1550 (I-I') Control and (J-J') *RpS19b-GFP* rescue germaria stained for Rbfox1 (green), Vasa
1551 (blue), and 1B1 (red) shows that addition of *RpS19b-GFP* to *msl3* mutants results in
1552 increased levels of Rbfox1 expression compared to control (1.0 ± 0.4 in rescue compared
1553 to 0.6 ± 0.2 in *msl3¹/msl3^{KG}*; $p<0.0006$, $n=15$). Rbfox1 channel is shown in I' and J'.
1554 Quantitation in (K), statistical analysis performed with Student t-test; *** indicates
1555 $p<0.001$.

1556

1557 (L) Control and (M) *RpS19b-GFP* rescue ovarioles stained for Vasa (blue) and 1B1 (red)
1558 shows that addition of *RpS19b-GFP* to *msl3* mutants results in an increased frequency of
1559 spectrosomes and cysts (92% in *RpS19b-GFP* rescue compared to 4% in *msl3¹/msl3^{KG}*;
1560 $p<2.2E-16$, $n=50$) and subsequent egg chambers compared to control (yellow dashed

1561 outline) (98% in *RpS19b-GFP* rescue compared to 16% in *msl3¹/msl3^{KG}*; $p<2.2E-16$,
1562 n=50). Statistical analysis performed with Fisher's exact test.

1563
1564 (N) Control and (O) *RpS19b^{EP}* rescue ovarioles stained for Vasa (blue) and 1B1 (red)
1565 shows that expression of *RpS19b^{EP}* in *msl3* germline depletion ovaries results in an
1566 increased frequency of spectrosomes and cysts (90% in *RpS19b^{EP}* rescue compared to
1567 0% in *msl3* RNAi; $p<2.2E-16$, n=50) and subsequent egg chambers compared to control
1568 (yellow dashed outline) (100% in *RpS19b^{EP}* rescue compared to 4% in *msl3* RNAi;
1569 $p<2.2E-16$, n=50). Statistical analysis performed with Fisher's exact test.

1570
1571 (P-P') Control and (Q-Q') *RpS19b-GFP* rescue germaria stained for Vasa (blue) and
1572 C(3)G (red) shows that rescue and control germaria have aberrant C(3)G expression
1573 (yellow dashed outline) (100% in *RpS19b-GFP* rescue compared to 100% in
1574 *msl3¹/msl3^{KG}*; $p=1$, n=50). Addition of *RpS19b-GFP* does not rescue egg laying defects
1575 (38 eggs/female in *RpS19b-GFP*, 32 eggs/female in *msl3¹* heterozygote, 101
1576 eggs/female in *msl3^{KG}* heterozygote compared to 0 eggs/female in *msl3^{KG}/msl3¹* and
1577 rescue; $p<0.0001$ for all, n=4). Statistical analysis performed with Fisher's exact test.
1578 C(3)G channel is shown in P' and Q'.

1579
1580 Scale bar for all images is 20 μ m.
1581

1582 **Figure 6. RpS19 paralogs are incorporated into the ribosome and RpS19 levels
1583 affect translation, including translation of Rbfox1**

1584 (A) Top: Polysome profiles of *RpS19b-GFP;nosGAL4 >bam* ovaries treated with
1585 cycloheximide (CHX) or (A') puromycin and fractionated. Polysome profiles show that
1586 peaks are present in the polysome (heavy) fractions and are ablated upon puromycin
1587 mediated dissociation. Bottom: Western blot analysis of polysome fractionated *RpS19b-*
1588 *GFP* CB enriched ovaries treated with (A) cycloheximide (CHX) or (A') puromycin and
1589 fractionated. Blots were stained for GFP (top) and RpS25 (bottom), showing RpS19b and
1590 RpS25 bands in heavy fractions in CHX-treated samples that are absent in puromycin
1591 treated samples.

1592
1593 (B) Top: Polysome profiles of *RpS19b-GFP;RpS19a-HA* whole ovaries treated with
1594 cycloheximide (CHX) or (B') puromycin and fractionated. Polysome profiles show that
1595 peaks are present in the polysome (heavy) fractions and are ablated upon puromycin
1596 mediated dissociation. Bottom: Western blot analysis of polysome fractionated *RpS19b-*
1597 *GFP;RpS19a-HA* whole ovaries treated with (B) cycloheximide (CHX) or (B') puromycin
1598 and fractionated. Blots were stained for HA (top) and GFP (bottom), showing RpS19a
1599 and RpS19b bands in heavy fractions in CHX-treated samples that are absent in
1600 puromycin treated samples.

1601
1602 (C-C') Control, (D-D') germline depleted *RpS19a* and (E-E') *RpS19b* germaria pulsed with
1603 OPP (green) and stained for Vasa (blue) and 1B1 (red) shows that *RpS19a* and *RpS19b*
1604 germline depletion results in decreased OPP compared to control (0.5 ± 0.2 in *RpS19a*
1605 RNAi and 0.4 ± 0.2 in *RpS19b* RNAi compared to 1.0 ± 0.3 in *nosGAL4*; $p < 0.0001$ for both,
1606 $n = 15$). OPP channel is shown in C', D', and E'. Quantitation in (F), statistical analysis
1607 performed with one-way ANOVA; *** indicates $p < 0.001$.
1608
1609 (G) A schematic of the experimental approach to polysome-seq where RNA is extracted
1610 (total) with polysome fractionation (polysome) followed by next generation sequencing.
1611
1612 (H) RNA-seq track of total (top) and polysome (bottom) showing that *RpS19b* is reduced
1613 upon germline depletion of *RpS19b* (purple) compared to control (black) (total: $\text{Log}_2\text{FC} = -4.1$,
1614 $p = 1E-6$, $n = 2$ and polysome: $\text{Log}_2\text{FC} = -4.5$; $p = 1E-11$, $n = 2$). All tracks are set to scale
1615 to 11.6 TPM. Statistical analysis performed with Student t-test; *** indicates $p < 0.001$.
1616
1617 (I) RNA-seq track of total (top) and polysome (bottom) showing that *nanos* and amount
1618 of germline is not reduced upon germline depletion of *RpS19b* (purple) compared to
1619 control (black) (total: $\text{Log}_2\text{FC} = 0.4$; $p = 0.4$, $n = 2$ and polysome: $\text{Log}_2\text{FC} = 0.3$; $p = 0.7$, $n = 2$).
1620 All tracks are set to scale to 36.8 TPM. Statistical analysis performed with Student t-test;
1621 "n.s." indicates $p > 0.5$.
1622
1623 (J) RNA-seq track of total (top) and polysome (bottom) showing that cytoplasmic
1624 *Rbfox1* is reduced in polysome fractions upon germline depletion of *RpS19b* (purple)
1625 compared to control (black) (total: $p = 0.2$, $n = 2$ and polysome: $p = 0.01$, $n = 2$). All tracks are
1626 set to scale to 3.7 TPM. Statistical analysis performed with Student t-test; "n.s." indicates
1627 $p > 0.5$ and * indicates $p < 0.05$.
1628
1629 (K) RNA-seq track of total (top) and polysome (bottom) showing that *RpS19a* is not
1630 reduced upon germline depletion of *RpS19b* (purple) compared to control (black) (total:
1631 $\text{Log}_2\text{FC} = -0.4$; $p = 0.4$, $n = 2$ and polysome: $\text{Log}_2\text{FC} = -0.1$; $p = 0.9$, $n = 2$). All tracks are set to
1632 scale to 683.4 TPM. Statistical analysis performed with Student t-test; "n.s." indicates
1633 $p > 0.5$.
1634
1635 Scale bar for all images is 20 μm .
1636
1637 **Figure 7. MSL3 is expressed during meiosis in the mouse male gonad**
1638 (A-A'') Adult gonads stained for STRA8 (green), DAPI (blue), and cKIT (red). cKIT-
1639 positive SSCs and SPCs co-stain for STRA8 (gray and orange arrows), shows that
1640 STRA8 marks differentiating and pre-leptotene germ cells. Statistical analysis performed

1641 with Spearman's correlation test. STRA8 channel is shown in A', DAPI channel is shown
1642 in A'', and cKIT channel is shown in A'''. (B) Correlation plots of STRA8 (green) and DAPI
1643 (blue) showing positive correlation between STRA8 and DNA in SSCs (top, gray arrow,
1644 $p=0.63$) and SPCs (middle, orange arrow, $p=0.47$), but a negative correlation with
1645 spermatozoa (bottom, yellow arrow, $p=-0.65$).
1646
1647 (C-C'') SSC stained for MSL3 (green), DAPI (blue), and cKIT (red) shows that
1648 differentiating SSC have MSL3 foci. MSL3 channel is shown in C' and cKIT channel is
1649 shown in C''.
1650
1651 (D-D'') Adult gonads stained for MSL3 (green), DAPI (blue), and cKIT (red) shows that
1652 MSL3 forms nuclear foci in cKIT positive SSCs and then accumulates as smaller foci,
1653 coating nuclei as spermatogenesis proceeds. Statistical analysis performed with
1654 Spearman's correlation test. MSL3 channel is shown in D', DAPI channel is shown in D'',
1655 and cKIT channel is shown in D'''. (E) Correlation plots of MSL3 (green) and DAPI (blue)
1656 showing positive correlation between MSL3 and DNA in SSCs (top, gray arrow, $p=0.76$),
1657 SPCs (middle, orange arrow, $p=0.60$), and spermatozoa (bottom, yellow arrow, $p=0.76$).
1658
1659 (F-F'') SSC stained for MSL3 (green), DAPI (blue), and SYCP3 (red) shows that meiotic
1660 SSC have disparate SYCP3 and MSL3 staining. MSL3 channel is shown in F' and SYCP3
1661 channel is shown in F''.
1662
1663 (G) A schematic showing that Set2, MSL3, and ATAC complex regulate meiotic
1664 progression by transcriptionally regulating synaptonemal complex (SC) components and
1665 *ribosomal protein S19b* paralog (*RpS19b*). SC components promote recombination
1666 during meiosis and sufficient *RpS19* levels is required for *Rbfox1* translation which
1667 promotes meiotic cell cycle. Together this transcriptional axis promotes the meiotic
1668 progression in female *Drosophila*.
1669
1670 Scale bar for all images is 20 μ m.