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18

Conventional methods to analyze genomic data do not make use of the interplay between multiple19

factors, such as between microRNAs (miRNAs) and the mRNA transcripts they regulate, and20

thereby often fail to identify the cellular processes that are unique to specific tissues. We developed21

PUMA (PANDA Using MicroRNA Associations), a computational tool that uses message passing to22

integrate a prior network of miRNA target predictions with protein-protein interaction and target23

gene co-expression information to model genome-wide gene regulation by miRNAs. We applied24

PUMA to 38 tissues from the Genotype-Tissue Expression (GTEx) project, integrating RNA-Seq25

data with two different miRNA target predictions priors, built on predictions from TargetScan and26

miRanda, respectively. We found that while target predictions obtained from these two different27

resources are considerably different, PUMA captures similar tissue-specific miRNA-target gene28

regulatory interactions in the different network models. Furthermore, tissue-specific functions of29

miRNAs, which we identified by analyzing their regulatory profiles and which we made available30

through a Shiny app (https://kuijjer.shinyapps.io/puma_gtex/), are highly similar between31

networks modeled on the two target prediction resources. This indicates that PUMA consistently32

captures important tissue-specific regulatory processes of miRNAs. In addition, using PUMA we33

identified miRNAs regulating important tissue-specific processes that, when mutated, may result in34

disease development in the same tissue. PUMA is available in C++, MATLAB, and Python code on35

GitHub (https://github.com/kuijjerlab/PUMA and https://github.com/kuijjerlab/PyPuma).36

INTRODUCTION37

The regulation of gene expression involves a compli-38

cated network of interacting elements. The biological39

process of transcription begins with the binding of40

transcription factors to specific sequence motifs upstream41

of a gene’s transcription initiation site. This induces42

conformational changes in the DNA and initiates the43

process of assembly of the RNA polymerase complex,44

which in turn carries out transcription of the gene to45

a messenger RNA (mRNA). At a post-transcriptional46

level, small non-coding RNA molecules such as miRNAs47

can repress mRNA translation and cause degradation48

of the mRNA transcript [1]. What emerges is not a49

single set of interactions, or even a single pathway, but a50

complex network of interacting genes and gene products.51

Capturing these interactions is critical as we seek to52

understand how gene expression is regulated in different53

tissue environments, and how this regulation is disrupted54

in disease.55

MicroRNAs are small non-coding RNAs of about 2256

base-pairs in length that can bind to the 3’ untranslated57

region (UTR) of their mRNA targets. The miRNA-58

mRNA duplex then associates with Argonaute fam-59

ily proteins, which recruit factors that induce mRNA60

degradation and translational repression [2, 3]. Most61

human protein coding genes are thought to be regulated62

by miRNAs, with over 60% having conserved miRNA63

binding sites in their 3’UTR [4]. miRNAs are generally64

thought to moderately downregulate their target genes,65

as individual sites usually reduce protein output by less66

than 50% [5]. However, most mRNAs have multiple mi-67

RNA regulatory sites in their UTR and miRNAs bound68

to these sites can act additively [6]. In addition, miRNAs69

may bind to many more non-canonical regulatory sites70

and act together, thereby increasing their regulatory71

potential [7].72

Given the large number of miRNAs in the human73

genome (currently thought to be approximately 2,300 [8])74

and because of their broad regulatory potential, their75

regulatory profiles are often modeled in gene regulatory76

networks. Such networks have generally been estimated77
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using inverse correlation measures between expression1

levels of miRNAs and mRNAs. However, this ap-2

proach has its limitations, as many different mechanisms3

modulate miRNA activity [9], and RNA transcripts4

may compete for binding to miRNAs, creating a more5

complex regulatory network than can be captured with6

co-expression patterns alone [10].7

Other methods start with a prior network based on tar-8

get predictions and then “color,” or assign weights to, the9

network’s nodes based on miRNA and mRNA expression10

levels [11]. However, target predictions are often different11

from actual interactions, with many studies reporting12

positive correlation between a miRNA and about half of13

its predicted targets [12]. Furthermore, target prediction14

remains challenging, and different algorithms may result15

in rather different networks of potential interactions [13].16

Moreover, some genes may be regulated by a miRNA17

even though they are not predicted as a target of that18

miRNA by current prediction algorithms. Such “new”19

edges can not be learned if a model only considers known20

predicted targets.21

Here, we present PUMA, or PANDA Using MicroRNA22

Associations, an algorithm that can directly model ro-23

bust regulatory edges (including new edges) between24

miRNAs and their target genes, making use of prior25

knowledge on target predictions, fine-tuning these using26

information on co-regulation of the miRNA’s target27

genes. PUMA leverages the message passing framework28

described in our group’s previously developed algo-29

rithm PANDA [14], which models interactions between30

transcription factors and their target genes using mes-31

sage passing, thereby integrating multiple independent32

sources of data. This method starts with an initial33

estimate of the paths of information exchange between34

regulatory proteins (i.e. transcription factors) and35

their target genes. It then iteratively refines this prior36

network by incorporating gene expression and protein-37

protein interaction data, which provide information on38

the regulation of genes and on cooperative regulation39

by transcription factors, respectively. Since develop-40

ing PANDA, we have used it to identify differences41

in transcriptional regulation between multiple human42

tissues [15], in transcriptonal regulation between tissues43

and their cells-of-origin [16], between ovarian cancer44

subtypes [17], and to identify sexual dimorphic gene45

regulation in colon cancer [18], among others [19–22].46

While PUMA leverages the message passing framework47

used in PANDA, we introduced several critical modi-48

fications to incorporate the effects of miRNAs as an49

additional class of regulators into the gene regulatory50

network model, integrating miRNA target predictions51

alongside transcription factor regulatory predictions and52

gene expression levels using a modified message passing53

algorithm. We used PUMA to model miRNA regula-54

tory networks for 38 tissues from the Genotype-Tissue55

Expression project (GTEx), integrating miRNA target56

predictions with gene expression data for each of the 3857

tissues. We built two different collections of networks,58

each based on a prior obtained from a popular resource59

of miRNA target predictions, either TargetScan [23]60

or miRanda [24]. We extracted tissue-specific gene61

regulation by miRNAs, as well as miRNA functions from62

these two collections of networks. We found that PUMA63

consistently captures tissue-specific gene regulation by64

miRNAs, even when using different input sources of65

target predictions. Finally, we provide a new resource66

of tissue-specific functions of miRNAs identified with67

PUMA, and validate predicted tissue-specific functions in68

a database of disease-associated SNPs in miRNA target69

sites.70

MATERIALS AND METHODS71

The PUMA algorithm72

We developed PUMA, a regulatory network recon-73

struction method to model miRNA-target gene interac-74

tions. PUMA models these interactions by integrating75

a regulatory prior with protein-protein interaction data76

and gene expression data. It uses an iterative message77

passing approach to model information flow between the78

different data types, finding “agreement” between data79

represented by multiple networks.80

The method starts with a regulatory prior (W ) of81

initial regulator-target gene interactions. These regu-82

lators can be either miRNAs or transcription factors83

(TFs). Initial regulatory interactions can be combined84

from multiple sources, such as miRNA-target predictions85

(for putative interactions of mRNAs by miRNAs), a86

TF motif scan (for estimated mRNA regulation by a87

TF), or ChIP-Seq data (for in vivo estimates of mRNA88

regulation by a TF). PUMA also uses a co-regulatory89

prior (C) of target gene co-expression levels measured90

using Pearson correlation on gene expression data, and91

has an optional input of initial TF-TF interactions, which92

can be based on known or predicted protein-protein93

interactions (PPIs). These PPIs are overlayed on an94

identity matrix that includes all regulators (i.e. all TFs95

and all miRNAs), resulting in co-operativity prior P .96

PUMA performs a double z-score normalization on97

these three prior networks, and then quantifies the98

“agreement” between the different data types using99

a modified Tanimoto similarity score (T ) [25], which100

evaluates the similarity between sets of interactions in101

two networks:102

Txy = T (−→x ,−→y )

=
−→x · −→y√

||−→x ||2 + ||−→y ||2 − |−→x · −→y |

=

∑
k xkyk√∑

k x
2
k +

∑
k y

2
k − |

∑
k xkyk|

.

(1)

This score is used to calculate the “responsibility”103

(R) of an edge between a regulator i and a gene j at104

iteration step t. The responsibility estimate represents105
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information flowing from a regulator to a target gene,1

and returns a confidence score for how strongly the target2

gene is regulated by this regulator, taking into account3

other potential regulators of the gene. PUMA uses4

protein-protein interaction information to estimate the5

cooperation between pairs of transcriptional regulators6

(TFs), and self-interactions to measure the responsibility7

by miRNAs, using the following equation:8

R
(t)
ij = T (P

(t−1)
i. ,W

(t−1)
.j ). (2)

In a similar manner, the “availability” (A) estimate9

represents information flow from a target gene to a10

regulator and is based on the level of agreement between11

the targets of a regulator and the set of genes with which12

the target gene is co-regulated:13

A
(t)
ij = T (W

(t−1)
i. , C

(t−1)
.j ). (3)

The initial regulatory network (W ) is then updated14

using an update parameter α (with 0 < α < 1):15

W
(t)
ij = (1− α)W

(t−1)
ij + α/2(A

(t)
ij +R

(t)
ij ). (4)

This is followed by updating the P and C networks.16

For each regulator (i), PUMA checks whether it matches17

with an entry in the input list of miRNAs (q). Since the18

only interactions a miRNA makes are through regulation19

of their targets (they do not act in complexes with other20

miRNAs or TF proteins), P will not be updated between21

any miRNA-TF interactions or between miRNA-miRNA22

interactions (except for self-interactions):23

P
(t)
im =


P

(t−1)
im for i ∈ q ∨m ∈ q

(1− α)P
(t−1)
im

+αT (W
(t)
i. , [W

(t)
m. ]′) otherwise

. (5)

24

C
(t)
kj = (1− α)C

(t−1)
kj + αT (W

(t)
.k , [W

(t)
.j ]′). (6)

We note that self-interactions in P (including those25

among miRNAs) and C are then separately updated26

in order for the algorithm to converge, as in Glass et27

al. [14, 26]. These message passing steps are repeated28

until the regulatory network converges.29

The message passing framework presented here and30

used by PUMA, is highly similar to the one from the31

PANDA algorithm [14, 26]. However, it includes several32

critical adjustments to account for the mechanisms of33

miRNA regulation. In particular, we have modified both34

the initial co-operativity network and its update (as we35

show in Equation (5)) to account for the different types36

of regulatory behaviors of TFs and miRNAs. For more37

details on the message passing algorithm we implemented38

in PUMA, please refer to Glass et al. [14, 26].39

PUMA is available in C++ and MATLAB code at40

https://github.com/kuijjerlab/PUMA, and as Python41

code at https://github.com/kuijjerlab/PyPuma.42

GTEx RNA-Seq data43

We downloaded the Genotype-Tissue Expression44

(GTEx) version 6.0 RNA-Seq data (phs000424.v6.p1,45

2015-10-05 released) from dbGaP (approved protocol46

#9112). GTEx release version 6.0 sampled 551 donors47

with phenotypic information and included 9,590 RNA-48

Seq assays (Consortium, 2015). We used our previously49

described method YARN [27] to perform quality control,50

which removed samples with sex-misidentification and51

merged related sub-tissues, resulting in a dataset of 9,43552

gene expression profiles in 38 tissues from 549 individuals.53

We used default settings in YARN to perform54

gene filtering and tissue-aware normalization using55

qsmooth [28]. However, only 85 pre-miRNA transcripts56

were retained after the filtering step in YARN. Be-57

cause we were particularly interested in using miRNA58

expression levels to assess the properties of tissue-specific59

regulator miRNAs that we identified using our networks,60

we repeated the YARN pipeline without filtering out61

miRNAs. This resulted in normalized expression levels62

for 31,384 transcripts, which included 1,136 miRNAs.63

To ensure that this procedure did not significantly64

alter the expression levels obtained with the standard65

YARN pipeline, we compared expression levels of the66

30,248 mRNA and the 85 pre-miRNA transcripts that67

were not filtered by the standard YARN pipeline with68

their values in the dataset in which we included all pre-69

miRNAs. mRNA transcripts correlated with median70

Pearson R = 0.9982, range [0.9677, 1] and the 85 pre-71

miRNAs correlated with median Pearson R = 0.9999,72

range [0.9897, 1], indicating that adding counts of pre-73

miRNAs to the count data before the normalization74

step did not significantly alter the normalized expression75

levels of other genes.76

Pre-processing miRNA target prediction data77

We downloaded miRNA target predictions78

from TargetScan v7.1 (all predictions, file79

“Summary Counts.all predictions.txt.zip,” http:80

//www.targetscan.org/cgi-bin/targetscan/81

data_download.vert71.cgi, accessed: July82

8, 2016) and miRanda (predictions with83

“Good mirSVR score, Conserved miRNA,” file84

“human predictions S C aug2010.txt,” http:85

//34.236.212.39/microrna/getDownloads.do,86

accessed: December 5, 2017). We filtered TargetScan87

interactions by selecting Homo sapiens interactions and88

by removing interactions with context+ scores larger89

than -0.1, resulting in 1,524 miRNAs and 18,234 target90

genes. The miRanda prior contained 1,100 miRNAs and91

19,796 target genes.92

We selected miRNAs that were present as regulators in93

both the TargetScan and miRanda priors, and for which94

expression levels were available. To do this, we first95

needed to match miRNA identifiers between the different96
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types. We converted miRNA regulator identifiers from1

TargetScan and miRanda to gene names by changing the2

character vector to uppercase, removing the “hsa-”prefix,3

removing the dash character after “LET” and “MIR,”4

and pasting “MIR” in front of miRNAs that start with5

“LET.” We removed all extensions to obtain a list of6

“base” miRNAs, of which 578 were present as regulators7

in both prior target prediction resources, and were also8

available in the expression data.9

The numbered suffix in the miRNA identifiers indicate10

diverse loci that produce identical mature miRNAs. We11

therefore collapsed these miRNAs in the prior by taking12

the union of all edges. For duplicates, we selected13

the most significant edges (lowest context+ score for14

TargetScan, all edges for miRanda). 643 “regulator”15

miRNAs corresponded to the set of 578 “base” miRNAs.16

An asterisk (*) extension indicates an alternative tran-17

script with lower expression levels. However, information18

on expression levels of mature miRNAs could have been19

derived from experiments in specific cell lines or under20

specific experimental settings, and their expression levels21

may vary in different tissues. miRNAs with asterisk22

extensions were only present in miRanda, not in Target-23

Scan. To be able to match these miRNAs between the24

two different priors, we merged those in the miRanda25

prior by taking the union of edges.26

The -3p/-5p extension in miRNA identifiers indicates27

whether the mature miRNA product comes from the 3’28

or 5’ end of the hairpin structure formed by the pre-29

miRNA [3]. This indicates a different mature product30

with a different seed sequence (that may target different31

genes). These miRNAs are supposed to have similar32

expression levels [29], although recent reports identified33

imbalance in -3p/-5p expression ratios [30]. When34

evaluating the expression levels of such miRNAs, we35

used the expression level associated with the miRNA’s36

gene name, so that the same expression level values were37

assigned to miRNAs from the same genomic location.38

This preprocessing resulted in a set of 621 “target”39

miRNAs for which we had expression data available,40

which corresponded to the set of 578 “base” miRNAs.41

Finally, we took the intersection of the lists of target42

genes in the TargetScan and miRanda regulatory priors43

with genes for which we had expression data available,44

resulting in 16,161 target genes.45

Regulatory network reconstruction46

We used the MATLAB version of PUMA to integrate47

target predictions from TargetScan and miRanda with48

gene expression data from each of the 38 GTEx tissues49

to estimate gene regulatory networks for each of these tis-50

sues. In total, we modeled 76 gene regulatory networks,51

two for each tissue.52

Comparison of tissue-specific edges53

PUMA returns complete, bipartite networks with edge54

weights similar to z-scores. To compare the tissue-55

specificity of network edges, we calculated a tissue-56

specific edge score, which was defined as the deviation of57

an edge weight (w
(t)
ij ) between a miRNA (i) and a target58

gene (j) in a particular tissue (t) from the median of59

its weight across all tissues, using the interquartile range60

(IQR) (as in Sonawane et al. [15]):61

s
(t)
ij = (w

(t)
ij −med(w

(all)
ij ))/IQR(w

(all)
ij ). (7)

We defined an edge with a specificity score s
(t)
ij > 2 as62

specific to tissue t and the multiplicity of an edge as the63

number of tissues it is specific to:64

mij =
∑
t

[s
(t)
ij > 2]. (8)

To determine tissue-specific expression levels of miR-65

NAs, we compared the median expression level (e
(t)
p ) of66

a miRNA (p) in a particular tissue (t) to the median and67

IQR of its expression levels across all tissues (similar to68

what we described in Sonawane et al. [15]):69

s(t)p = (med(e(t)p )−med(e(all)p ))/IQR(e(all)p ). (9)

We assessed the overlap of the initial TargetScan and70

miRanda gene regulatory priors with the Jaccard index71

and with Pearson correlation. We compared tissue-72

specific edge scores from networks reconstructed on the73

two different priors using Pearson correlation.74

Gene set enrichment analysis on miRNA targeting75

profiles76

For each miRNA in a given tissue, we selected77

its tissue-specific targeting profile, meaning all tissue-78

specific scores connected to that miRNA. We ran a pre-79

ranked Gene Set Enrichment Analyses (GSEA) [31] on80

these profiles to test whether miRNAs specifically target81

Gene Ontology (GO) terms in the different tissues. We82

ran GSEA for networks reconstructed on the TargetScan83

prior, as well as for networks reconstructed on the84

miRanda prior. Thus, in total, we ran 48,868 GSEA85

analyses.86

For each miRNA/tissue pair, we calculated tissue-87

specific GO term enrichment scores, which we defined88

as the −log10FDR (False Discovery Rate) from GSEA,89

multiplied by the sign of the GSEA Enrichment Score90

(ES)—those with ES < 0 were multiplied by -1, those91

with ES > 0 were multiplied by 1. We then used92

Pearson correlation across all 733 tissue-specific GO term93

enrichment scores for each miRNA/tissue pair to assess94

the similarity of tissue-specific regulation of biological95

processes by miRNAs.96
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Community structure analysis to identify sets of1

related tissue/miRNA GO terms2

We selected highly significant (FDR < 0.001) and pos-3

itively enriched (Enrichment Score > 0.65) associations4

from these analyses and converted these scores into a5

binary matrix. We then used fast-greedy community6

detection [32] on this matrix to cluster the data and7

to identify communities or network modules that share8

tissue-specific regulatory patterns.9

We then used the Jaccard index to compare nodes10

(miRNA/tissues and GO terms) that belonged to com-11

munities that included at least 5 GO terms in either12

the TargetScan or the miRanda networks. We used13

word clouds to visualize the tissue-specific functions of14

miRNAs in these communities. To do this, we split the15

strings for each of the significant GO term into separate16

words and removed words that occurred less than 3 times17

to obtain a background list of word frequencies associated18

with all significant GO terms. We then counted the19

number of times a word was present in the community of20

interest, and divided this by the total number of words21

associated with significant GO terms in that community22

(the “observed” rate), as well as the number of times the23

word occurred in the background list, divided by the total24

number of words in that background list (the “expected”25

rate). We then calculated the observed/expected ratio,26

multiplied this by 10, and rounded this number to an27

integer to obtain a word occurrence score. Finally, we28

added the word, repeating it by its word occurrence score,29

to a list. We used this list of normalized word occurrences30

as input in https://www.wordclouds.com/ to generate31

a word cloud for that community. We repeated this32

for each of the communities that included tissue-specific33

targeting by miRNAs of at least 5 GO terms.34

Data availability35

The reconstructed networks are available on Zenodo36

(doi: 10.5281/zenodo.1313768; https://tinyurl.com/37

puma-gtex). An R Shiny app [33] that can be used to38

assess tissue-specific functions of miRNAs using different39

thresholds is hosted on https://kuijjer.shinyapps.40

io/puma_gtex/.41

RESULTS42

Tissue-specific gene regulation by miRNAs43

We started by reconstructing miRNA-target gene44

genome-wide regulatory networks for a large collection45

of human tissues. We downloaded RNA-Seq data for46

54 different tissues (including three different cell types)47

using Bioconductor package YARN [27]. Within YARN,48

we performed quality control and normalization of the49

data, merging tissues with similar expression profiles50

(see Methods), which retained gene expression data for51

9,435 samples across 38 tissues. We limited network52

reconstruction to only those genes and miRNAs that were53

expressed and which appeared in the TargetScan and54

miRanda prior, leaving 16,161 genes and 621 miRNAs;55

these 621 target miRNAs corresponded to 643 regulators56

in the prior networks (see Methods). We then used57

PUMA to integrate target gene co-expression information58

for each tissue with an initial regulatory network, which59

we based on either TargetScan or miRanda miRNA tar-60

get predictions. Consequently, our analysis provides two61

alternative miRNA mediated gene regulatory networks62

for each of the 38 tissues (tissue-networks), one based on63

the TargetScan prior and the other alternative based on64

the miRanda prior.65

We tested for tissue-specific edges in these networks.66

We defined an edge to be tissue-specific if its weight was67

larger than twice the interquartile range of its weight68

across all 38 networks (see Methods). We identified69

highly similar numbers of tissue-specific miRNA-target70

gene regulatory edges in the networks modeled on the two71

different priors—3.093 million and 3.098 million edges for72

networks modeled on the TargetScan and miRanda prior,73

respectively (see Figure 1). In addition, the proportion of74

tissue-specific edges identified in the different tissues was75

comparable between the networks modeled on the two76

different priors (Pearson R = 0.92). The proportion of77

multiplicities, or the number of tissues in which an edge78

is identified as specific, was also similar between the two79

different models.80

Even though we identified approximately the same81

total number of tissue-specific edges across all tissues,82

on average we identified a larger number of tissue-specific83

edges per tissue in the networks modeled on the miRanda84

prior (t-statistic= 7.1, p-value= 6.5 · 10−10). However,85

we found the opposite to be true for testis, the tissue86

with the greatest number of tissue-specific edges in both87

priors. In testis, we identified a substantially larger88

number (1.65×) of tissue-specific edges in the networks89

modeled on the TargetScan prior than in the networks90

modeled on the miRanda prior.91

We next assessed how similar the edge tissue-specificity92

scores were between the networks modeled on the differ-93

ent priors. For each of the 38 tissues, we calculated the94

Pearson correlation coefficient on edge tissue-specificity95

scores between the tissue-network modeled on the two96

different priors. We found that, in general, PUMA97

networks modeled using different target predictions result98

in similar tissue-specificity scores (median Pearson R =99

0.63, Figure 2A and Supplemental Figure S1). For100

all tissues, except testis, the resulting PUMA tissue-101

networks modeled on the two different priors were more102

similar than the two prior networks (R = 0.34). This103

means that, even though there may be differences be-104

tween various target prediction resources, PUMA helps105

fine-tuning these predictions into tissue-specific regula-106

tory interactions. We believe that the anomalous gene107

expression patterns observed in testis, which has been108
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Figure 1. Bar plots illustrating the number of edges modeled
on the TargetScan and miRanda priors. The number of
elements identified as specific in each tissue is shown to the
right of each bar. Tissues are ordered by the average number
of tissue-specific edges. Mult.: the edge multiplicity, or the
total number of tissues an edge is specific to.

described previously [15], may, at least in part, be caused1

by differential targeting by miRNAs.23

We then examined the similarity between tissue-4

specificity scores for miRNA-target gene interactions5

that were predicted by both TargetScan and miRanda6

(“canonical” interactions), interactions that were nei-7

ther predicted in TargetScan nor in miRanda (“non-8

canonical” interactions), and edges that were predicted9

interactions in one of the priors but not in the other10

(“different,” or inconsistent interactions). We used11

Pearson correlation to evaluate the similarity of these12

different types of edges. We found that, in general, tissue-13

specificity levels of edges that were canonical in both14

priors were most reproducible, followed by edges that15

were non-canonical in both priors. As expected, miRNA-16

target gene interactions that were canonical in only one17

of the two priors were less similar than edges that were18

canonical or non-canonical in both priors. However, for19

those edges the median similarity was still R = 0.5820

(Figure 2B). This indicates that PUMA can capture21

consistencies in miRNA-target gene regulation, even22

when there are inconsistencies between different target23

prediction resources, and highlights the strengths of24

modeling miRNA target gene interactions with PUMA.25

Tissue-specific miRNA targeting patterns26

To better understand tissue-specific functions of miR-27

NAs, we ran pre-ranked gene set enrichment analysis on28

the tissue-specific targeting profile of each miRNA in each29

of the 38 tissues. We did this both for the collection30

of tissue-networks modeled using the TargetScan and31

for networks modeled using the miRanda priors (see32

Methods). We calculated the tissue-specific targeting33

scores of all 733 available GO terms, and investigated34

whether tissue-specific regulation of biological processes35

by miRNAs was similar in the two different collections of36

networks. Most (89.6%) of the miRNA/tissue pairs had37

a positive Pearson correlation coefficient, with a median38

Pearson R of 0.66 (see Figure 3 for the correlations39

between all GSEA scores, and Supplemental Figure S240

for the correlations separated by tissue).41

As a negative control, we computed the correlation of42

miRNA–GO term GSEA scores between different tissues,43

for the miRanda and TargetScan-generated networks44

separately. The resulting correlation coefficients were45

centered around zero, with median Pearson R = −0.00246

for the miRanda networks and R = −0.001 for the47

TargetScan networks, respectively (Supplemental Fig-48

ure S3). GSEA scores for miRNA/tissue pairs obtained49

from the two different collections of networks were sig-50

nificantly more correlated than the negative control (2-51

group Wilcoxon signed-rank test p-value < 2.2 · 10−16).52

These results confirm that, even though we used different53

target predictions as input for PUMA, the actual tissue-54

specific regulatory functions we obtain from analyzing55

these networks are highly similar.5657

We tested whether similar miRNA/tissue pairs, as58

identified in both models, control similar biological59

functions. To do this, we selected highly significant60

miRNA/tissue–GO term associations (FDR < 0.001,61

ES > 0.65), and performed community structure anal-62

yses on these sets of associations to identify shared63

tissue-specific targeting patterns of miRNAs across the64

tissues. We identified 67 communities (e.g. sets of GO65

terms grouped together with miRNA/tissue pairs) in66

the regulatory associations identified in PUMA networks67

modeled on the TargetScan prior, and 64 communities68

in those identified in PUMA networks modeled on the69

miRanda prior. The overall modularity of these com-70

munity structures was 0.76 and 0.77, respectively (see71

Figure 4A–B).7273

In both collections of PUMA tissue-networks, nine74

communities were associated with at least five GO terms.75

For each of these communities, we calculated the Jaccard76

index between the two different sets of miRNA/tissue–77

GO term associations to evaluate the overlap in mi-78

RNA/tissue pairs and GO terms associated with the com-79

munity (Figure 4C). As can be seen from this figure, the80

communities have relatively high node overlap, indicating81
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Figure 2. A) Tissue-specificity score similarity—measured using Pearson correlation coefficient (Pearson R)—for each of the
38 miRNA gene regulatory tissue-networks modeled on TargetScan and miRanda priors, compared to the number of samples
available for each tissue. TargetScan and miRanda priors correlate with R = 0.34. B) Boxplots depicting the distribution of
edge similarity for all edges, edges that are canonical in both priors, edges that are non-canonical in both priors, and edges that
are different between the TargetScan and miRanda priors. Boxplots represent the median and IQR, with whiskers extending
out from the box to 1.5× the IQR.
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Figure 3. Pearson correlation between the GSEA scores
obtained from the 24,434 tissue-specific miRNA targeting
profiles computed on TargetScan and the 24,434 profiles
computed on the miRanda prior. The bulk of miRNAs
have correlating GO term scores in networks modeled using
different miRNA priors.

that similar processes are identified as regulated in a1

tissue-specific manner by similar sets of miRNAs in both2

analyses. We used word clouds to visualize the biological3

processes that were associated with these communities,4

which allowed us to further explore these similarities.5

Figure 4D shows that similar biological processes are6

identified as regulated by miRNAs in a tissue-specific7

manner in these communities. These include processes8

involved in the immune system, mitochondrial respi-9

ration, translation initiation, chromosome segregation,10

intracellular signaling, protein transport, and muscle11

contraction.12

Importantly, we can identify these communities of sim-13

ilarly regulated biological processes in networks modeled14

using different prior target predictions. This indicates15

that PUMA’s message passing allows us to discover16

patterns of tissue-specific regulation by miRNAs, even17

though there may be inconsistencies in the initial target18

predictions that we used as prior input in PUMA.19

A resource of tissue-specific miRNA functions20

We compiled a resource of miRNAs that regulate21

biological processes in a tissue-specific manner. To do22

this, we took the union of miRNA/tissues significantly23

regulating GO terms in the TargetScan and the miRanda24

networks (8,992 miRNA/tissue–GO terms in total). We25
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then subsetted this list to only those miRNA/tissues for1

which the tissue-specific targeting profiles correlated with2

R > 0.8 (2085 miRNA/tissue–GO terms). This list of3

significant tissue-specific functions of miRNAs contained4

423 regulator miRNAs, 37 tissues (no consistent tissue-5

specific regulation was identified for tibial nerve), and6

174 GO terms. This resource can be accessed at https:7

//kuijjer.shinyapps.io/puma_gtex/.8

We assessed over-representation of miRNAs, GO9

terms, and tissues in this resource of significant inter-10

actions (Figure 5A–C). Twenty-one miRNAs were over-11

represented (> median + 2 · IQR) in regulating multi-12

ple tissue-specific processes (Figure 5A). MIR517C and13

MIR1468 were the two miRNAs with the highest number14

of associations of tissue-specific regulation of biological15

processes (Figure 5A). MIR517C was associated with16

immune system processes in artery tibial and thyroid,17

with “regulation of neurogenesis” and “regulated secre-18

tory pathway” in “brain other” (a compound of multiple19

brain regions), with synapse-associated processes and20

“extracellular structure organization and biogenesis” in21

skeletal muscle, with sperm-associated pathways in testis,22

and with “ovulation cycle” and ectoderm-associated23

pathways in vagina (Figure 5D–E). This miRNA has been24

detected in maternal plasma. It was also recently de-25

scribed to be overexpressed in parathyroid carcinoma [34]26

and to inhibit autophagy and epithelial-to-mesenchymal27

transition in glioblastoma, a malignant brain cancer [35],28

indicating that deregulation of the expression of this29

miRNA in tissues in which it regulates tissue-specific30

processes may lead to cancer.31

MIR1468 was associated with “sperm motility” in32

testis, with many immune system processes in thyroid,33

and with “double strand break repair” and chromatin-34

associated processes in whole blood. This miRNA has35

been implicated in different cancer types [36, 37] and the36

latter pathway may indicate a potential mechanism for37

this. In fact, MIR1468 was recently shown to promote38

tumor progression by activating PPAR-γ-mediated Akt39

signaling in hepatocellular carcinoma [38].40

Twenty-two processes were more often targeted in a41

tissue-specific manner by miRNAs in more tissues than42

expected by chance. Most of these processes play a role43

in respiration and metabolism, immune response, and44

protein translation (Figure 5B), indicating that miRNAs45

play an important role in regulating these pathways in a46

tissue-specific manner in multiple tissues.47

Seven tissues received significantly more tissue-specific48

gene regulation by miRNAs compared to all tissues49

(Figure 5C). Tissues receiving most tissue-specific gene50

regulation by miRNAs include heart left ventricle, adi-51

pose visceral, and heart atrial appendage. We do not52

know why these tissues have a higher amount of tissue-53

specific gene regulation by miRNAs. It may be that these54

tissues are more highly differentiated than others because55

of the specialized functions they carry out, and so the56

elevated miRNA activity represses extraneous functions.57

This could be a potential new area for research.58

miRNAs regulating tissue-specific processes are not59

differentially expressed60

We wanted to evaluate whether tissue-specific regula-61

tion by miRNAs was caused by tissue-specific expression62

of those miRNAs. We identified 423 (66%) miRNAs that63

regulate biological processes in a tissue-specific manner.64

These regulator miRNAs were associated with 309 dif-65

ferent miRNA genes. We compared the expression levels66

of these 309 miRNAs with those of the remaining 31267

miRNAs, and found that miRNAs regulating biological68

processes in a tissue-specific manner have overall higher69

expression levels across all samples (two-sided Wilcoxon70

rank sum test statistic = 4.35 ·1012, p-value=2.2 ·10−16).71

However, when comparing the tissue-specificity scores72

of these miRNAs in the tissue in which they regulate73

biological processes, we did not identify any association.74

The mean tissue-specificity score (difference in median75

expression in tissue-of-interest compared to overall me-76

dian expression, divided by IQR) of these miRNAs77

was 0.022 (range [−0.820, 6.811]), indicating that these78

miRNAs were not specifically expressed in the tissue79

they regulate. While none of the miRNAs met our80

threshold of tissue-specific underexpression, six miRNAs81

had tissue-specificity scores larger than 2, suggesting82

tissue-specific overexpression of these miRNAs. These83

included MIR142-3P regulating the “insulin receptor84

signaling pathway” in spleen, MIR1909 regulating “coen-85

zyme biosynthetic process” in testis, MIR200B regu-86

lating “aerobic respiration” and “cellular respiration”87

in pancreas and “regulation of muscle contraction” in88

prostate, MIR203 regulating “translational initiation” in89

esophagus mucosa, MIR208A regulating “activation of90

immune response”, “adaptive immune response”, “hu-91

moral immune response”, and “synaptogenesis” in heart92

atrial appendage, and MIR632 regulating “spermatid93

differentiation” in testis.94

These findings are in line with our previous results95

in transcriptional regulatory networks, in which we96

identified no clear association between a transcription97

factor’s expression level and its tissue-specific regulation98

of biological processes [15]. They are also consistent with99

our previous finding that modeling of transcriptional100

gene regulatory networks is able to identify biologi-101

cally relevant differences in regulatory processes even102

in situations where there is little or no differential103

expression [18]. Importantly, our results indicate that104

analysis of miRNA-mRNA co-expression networks, while105

potentially informative in identifying co-regulation of106

miRNA and mRNA expression levels, may miss miRNAs107

that are not differentially expressed, but that do regulate108

their targets in a tissue- or disease-specific manner.109
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miRNA functions correspond to disease-associated1

SNPs2

To further validate our findings, we integrated the3

tissue-specificity scores with miRdSNP, a database of4

Single Nucleotide Polymorphisms (SNPs) in the 3’UTR5

of human genes [39]. To do this, we downloaded the6

miRdSNP database, converted and matched miRNA7

names, and intersected miRNAs and target genes present8

in miRdSNP with those present in our regulatory net-9

works. We then matched diseases listed in miRdSNP to10

GTEx tissues (manual curation). This left us with 2411

GTEx tissues for which miRNA-target gene associations12

with disease were available. For each of these 24 tissues,13

we took the edge with the highest tissue-specificity score14

based on the TargetScan networks (range [−0.76, 2.68],15

mean= 1.11) and obtained the miRNA’s tissue-specific16

functions from our Shiny app (settings −log10(FDR) <17

0.8). This resulted in tissue-specific pathway associations18

for 18/24 miRNAs. We then compared the pathways19

with the highest enrichment (based on ES) with the20

target gene’s description in GeneCards (www.genecards.21

org).22

We found that the tissue-specific function of miRNAs23

obtained from the PUMA networks often matched that24

of the gene that had disease-associated SNPs in their25

miRNAs binding sites. For example, the pathway with26

the highest level of tissue-specific regulation by MIR42927

in coronary artery was “endothelial cell migration.” The28

gene associated with the disease edge from miRdSNP29

was VEGFA, which encodes for a receptor important30

in angiogenesis. MIR140-5p specifically regulates “acute31

inflammatory response” in sigmoid colon. This miRNA32

was associated with disease SNPs in TLR4, an recep-33

tor involved in innate immunity. In ovary, MIR42934

specifically targets “G1 phase of mitotic cell cycle”35

and was associated to SNPs in CDK2, a cell division36

gene. MIR1197 specifically targets “icosanoid metabolic37

process” in pancreas, and had disease-associated SNPs38

in ADIPOR2, a gene involved in glucose and lipid39

metabolism. All disease-associated edges are listed in40

Supplemental Table S1.41

These results indicate that the tissue-specific func-42

tions of miRNAs predicted using PUMA are important43

for maintaining tissue homeostasis, and that disrupting44

miRNA-target gene edges in the regulatory network45

can perturb these processes, thereby influencing disease.46

This highlights the importance of modeling genome-47

wide miRNA-target gene regulatory networks in human48

tissues.49

DISCUSSION50

In this manuscript, we describe PUMA, a new method51

to model gene regulation by miRNAs. PUMA inte-52

grates target gene co-expression information with ini-53

tial target predictions, which can be obtained from54

resources such as Targetcan or miRanda. We applied55

PUMA to a large-scale RNA-Seq dataset from GTEx to56

identify tissue-specific regulatory patterns of miRNAs.57

We modeled two different collections of tissue-networks58

by integrating gene expression data from GTEx with59

two prior datasets—target predictions from TargetScan60

and miRanda, two of the most widely used miRNA61

target prediction resources. We found that tissue-specific62

gene regulation by miRNAs was reproducible for most63

tissues, except for testis. Potentially, the aberrant64

gene expression pattern in testis is, at least in part,65

caused by differential regulation by miRNAs. While66

tissue-specificity of gene regulation was reproducible for67

different types of edges, it was highest for edges that were68

predicted in both priors, indicating that compendium-69

like approaches using the intersection of different miRNA70

target prediction resources as prior data for network71

modeling could result in more accurate results.72

We performed high-throughput gene set enrichment73

analyses on the tissue-specific targeting profiles of each74

of the miRNAs to characterize tissue-specific regulation75

of biological processes. We found that tissue-specific76

regulation of biological processes by miRNAs was highly77

similar in the networks modeled on different priors. We78

highlighted biological processes that were regulated in a79

tissue-specific manner (by different sets of miRNAs) in80

multiple tissues (Figure 4). The processes we identified81

play a role in the immune system, mitochondrial respi-82

ration, translation initiation, chromosome segregation,83

intracellular signaling, protein transport, and muscle84

contraction. In addition, we identified miRNAs and85

tissues for which we found an over-representation of86

tissue-specific regulation. The most enriched tissue-87

specific pathways contained genes that were associated88

with tissue-specific disease-risk SNPs in their 3’UTR.89

This highlights the strength of using PUMA networks90

to identify disease-related genes.91

Another strength of PUMA is that it does not use92

correlations between miRNA expression levels and their93

target genes to model gene regulation. One of the reasons94

for not implementing correlation between regulators and95

their targets as an input in PUMA is that we have96

previously observed that a regulator’s expression level97

is often not associated with its regulatory potential [15],98

possibly due to combinatorial regulation of the target99

genes by multiple factors. The analysis presented in the100

current study again strengthens this. We believe that,101

while a miRNA needs to be expressed in order to regulate102

a target gene, the regulatory patterns of a miRNA103

are complex, and depend not only on the miRNA’s104

expression level itself, but on the entire collection of105

miRNAs that are available in a cell [40], as well as on106

the complete set of target mRNA transcripts that are107

expressed.108

A good strategy to integrate PUMA networks with109

miRNA expression data is to overlay the network nodes110

with miRNA and target gene mRNA expression levels111

after the edges have been estimated with PUMA. This112
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way, one would first identify tissue- or disease-specific1

edges, and then assess whether these are connected2

to highly or differentially expressed miRNAs. In fact,3

we recently used a similar approach to identify tumor4

suppressor genes downregulated by a cluster of non-5

coding elements, which had been associated with patient6

outcome in osteosarcoma [41].7

Gene regulation is a complex process involving mul-8

tiple factors, including both transcription factors and9

miRNAs. Understanding these regulatory processes, and10

how they change between phenotypes, helps elucidating11

the network changes that occur between health and12

disease. Identifying genes that are differentially regu-13

lated, but not necessarily differentially expressed, can14

help us to understand the likely potential that a given15

biological state has to respond to changes, including16

drug treatment or disease progression. Although there17

have been many attempts to model gene regulation by18

transcription factors, few methods have tackled miRNA19

regulation or both regulators together.20

PUMA models gene regulation by miRNAs and tran-21

scription factors in a principled way by incorporating our22

understanding of the regulatory processes that control23

gene transcript levels. In applying PUMA to a wide24

variety of tissues, we find patterns of miRNA regulation25

associated with a variety of tissue-specific processes in26

ways that add explanatory power to the analysis of27

the same tissues using transcription factor regulation28

alone [15]. As such, PUMA provides the first robust29

computational method for modeling complex patterns30

of regulation involving miRNAs. Its implementation in31

freely-available, open-source code means that it can be32

broadly applied to the analysis of other phenotypes and33

disease states.34
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Supplemental Figure S1. Smooth scatterplot depicting, for each tissue, the correlation of all tissue-specificity scores of networks
modeled on the TargetScan and the miRanda prior.
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Supplemental Figure S2. Histogram of Pearson correlation coefficients obtained from comparing the GSEA scores of the tissue-
specific miRNA targeting profiles computed on the TargetScan and the miRanda prior, visualized for each tissue individually.
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Supplemental Figure S3. Negative control for the similarity analysis of miRNA/tissue GSEA scores predicted on networks
obtained from the two different priors (shown in Figure 3). Here, we compared tissue-specific GSEA scores for one miRNA in
one specific tissue with those from the same miRNA in all other tissues, using networks modeled on the same prior—either
from TargetScan (A) or miRanda (B).
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