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Conventional methods to analyze genomic data do not make use of the interplay between multiple
factors, such as between microRNAs (miRNAs) and the mRNA transcripts they regulate, and
thereby often fail to identify the cellular processes that are unique to specific tissues. We developed
PUMA (PANDA Using MicroRNA Associations), a computational tool that uses message passing to
integrate a prior network of miRNA target predictions with protein-protein interaction and target
gene co-expression information to model genome-wide gene regulation by miRNAs. We applied
PUMA to 38 tissues from the Genotype-Tissue Expression (GTEx) project, integrating RNA-Seq
data with two different miRNA target predictions priors, built on predictions from TargetScan and
miRanda, respectively. We found that while target predictions obtained from these two different
resources are considerably different, PUMA captures similar tissue-specific miRNA-target gene
regulatory interactions in the different network models. Furthermore, tissue-specific functions of
miRNAs, which we identified by analyzing their regulatory profiles and which we made available
through a Shiny app (https://kuijjer.shinyapps.io/puma_gtex/)), are highly similar between
networks modeled on the two target prediction resources. This indicates that PUMA consistently
captures important tissue-specific regulatory processes of miRNAs. In addition, using PUMA we
identified miRNAs regulating important tissue-specific processes that, when mutated, may result in
disease development in the same tissue. PUMA is available in C++, MATLAB, and Python code on

GitHub (https://github.com/kuijjerlab/PUMA and https://github.com/kuijjerlab/PyPuma).

INTRODUCTION 57

58

The regulation of gene expression involves a compli- %
cated network of interacting elements. The biological %
process of transcription begins with the binding of &
transcription factors to specific sequence motifs upstream ©2
of a gene’s transcription initiation site. This induces
conformational changes in the DNA and initiates the
process of assembly of the RNA polymerase complex, %
which in turn carries out transcription of the gene to %
a messenger RNA (mRNA). At a post-transcriptional &
level, small non-coding RNA molecules such as miRNAs ¢
can repress mRNA translation and cause degradation
of the mRNA transcript [I]. What emerges is not a™
single set of interactions, or even a single pathway, but a ™
complex network of interacting genes and gene products. ™
Capturing these interactions is critical as we seek to ™
understand how gene expression is regulated in different ™
tissue environments, and how this regulation is disrupted
in disease. 7

MicroRNAs are small non-coding RNAs of about 22 7

base-pairs in length that can bind to the 3’ untranslated
region (UTR) of their mRNA targets. The miRNA-
mRNA duplex then associates with Argonaute fam-
ily proteins, which recruit factors that induce mRNA
degradation and translational repression [2, [B]. Most
human protein coding genes are thought to be regulated
by miRNAs, with over 60% having conserved miRNA
binding sites in their 3’UTR [4]. miRNAs are generally
thought to moderately downregulate their target genes,
as individual sites usually reduce protein output by less
than 50% [5]. However, most mRNAs have multiple mi-
RNA regulatory sites in their UTR and miRNAs bound
to these sites can act additively [6]. In addition, miRNAs
may bind to many more non-canonical regulatory sites
and act together, thereby increasing their regulatory
potential [7].

Given the large number of miRNAs in the human
genome (currently thought to be approximately 2,300 []])
and because of their broad regulatory potential, their
regulatory profiles are often modeled in gene regulatory
networks. Such networks have generally been estimated
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using inverse correlation measures between expression so
levels of miRNAs and mRNAs. However, this ap- e
proach has its limitations, as many different mechanisms e
modulate miRNA activity [9], and RNA transcripts e
may compete for binding to miRNAs, creating a more 3
complex regulatory network than can be captured with es
co-expression patterns alone [10]. o

Other methods start with a prior network based on tar- es
get predictions and then “color,” or assign weights to, the e
network’s nodes based on miRNA and mRNA expression es
levels [IT]. However, target predictions are often different oo
from actual interactions, with many studies reporting 7
positive correlation between a miRNA and about half of
its predicted targets [12]. Furthermore, target prediction
remains challenging, and different algorithms may result ~
in rather different networks of potential interactions [13].
Moreover, some genes may be regulated by a miRNA »
even though they are not predicted as a target of that
miRNA by current prediction algorithms. Such “new”
edges can not be learned if a model only considers known
predicted targets.

Here, we present PUMA, or PANDA Using MicroRNA
Associations, an algorithm that can directly model ro-
bust regulatory edges (including new edges) between
miRNAs and their target genes, making use of prior
knowledge on target predictions, fine-tuning these using
information on co-regulation of the miRNA’s target
genes. PUMA leverages the message passing framework
described in our group’s previously developed algo-
rithm PANDA [I4], which models interactions between
transcription factors and their target genes using mes-
sage passing, thereby integrating multiple independent
sources of data. This method starts with an initial
estimate of the paths of information exchange between
regulatory proteins (i.e.  transcription factors) and
their target genes. It then iteratively refines this prior
network by incorporating gene expression and protein-
protein interaction data, which provide information on
the regulation of genes and on cooperative regulation
by transcription factors, respectively. Since develop- ,,
ing PANDA, we have used it to identify differences
in transcriptional regulation between multiple human
tissues [I5], in transcriptonal regulation between tissues ,,
and their cells-of-origin [I6], between ovarian cancer
subtypes [I7], and to identify sexual dimorphic gene
regulation in colon cancer [18], among others [19-22].

While PUMA leverages the message passing framework,
used in PANDA, we introduced several critical modi-,
fications to incorporate the effects of miRNAs as an
additional class of regulators into the gene regulatory
network model, integrating miRNA target predictions
alongside transcription factor regulatory predictions and
gene expression levels using a modified message passing
algorithm. We used PUMA to model miRNA regula-
tory networks for 38 tissues from the Genotype-Tissue
Expression project (GTEx), integrating miRNA target
predictions with gene expression data for each of the 38

tissues. We built two different collections of networks,®
105

79

81

90

103

2

each based on a prior obtained from a popular resource
of miRNA target predictions, either TargetScan [23]
or miRanda [24]. We extracted tissue-specific gene
regulation by miRNAs, as well as miRNA functions from
these two collections of networks. We found that PUMA
consistently captures tissue-specific gene regulation by
miRNAs, even when using different input sources of
target predictions. Finally, we provide a new resource
of tissue-specific functions of miRNAs identified with
PUMA, and validate predicted tissue-specific functions in
a database of disease-associated SNPs in miRNA target
sites.

MATERIALS AND METHODS
The PUMA algorithm

We developed PUMA, a regulatory network recon-
struction method to model miRNA-target gene interac-
tions. PUMA models these interactions by integrating
a regulatory prior with protein-protein interaction data
and gene expression data. It uses an iterative message
passing approach to model information flow between the
different data types, finding “agreement” between data
represented by multiple networks.

The method starts with a regulatory prior (W) of
initial regulator-target gene interactions. These regu-
lators can be either miRNAs or transcription factors
(TFs). Initial regulatory interactions can be combined
from multiple sources, such as miRNA-target predictions
(for putative interactions of mRNAs by miRNAs), a
TF motif scan (for estimated mRNA regulation by a
TF), or ChIP-Seq data (for in vivo estimates of mRNA
regulation by a TF). PUMA also uses a co-regulatory
prior (C) of target gene co-expression levels measured
using Pearson correlation on gene expression data, and
has an optional input of initial TF-TF interactions, which
can be based on known or predicted protein-protein
interactions (PPIs). These PPIs are overlayed on an
identity matrix that includes all regulators (i.e. all TFs
and all miRNAs), resulting in co-operativity prior P.

PUMA performs a double z-score normalization on
these three prior networks, and then quantifies the
“agreement” between the different data types using
a modified Tanimoto similarity score (T') [25], which
evaluates the similarity between sets of interactions in
two networks:

sz :T(?,ﬁ)
_ Ty
VIZIP+IYIR =17 - Y]
_ kakyk
\/Zk RO DO Teyi|

This score is used to calculate the “responsibility”
(R) of an edge between a regulator ¢ and a gene j at
iteration step t. The responsibility estimate represents

(1)
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information flowing from a regulator to a target gene, s3
and returns a confidence score for how strongly the target

gene is regulated by this regulator, taking into account ,,
other potential regulators of the gene. PUMA uses,
protein-protein interaction information to estimate the ,,
cooperation between pairs of transcriptional regulators ,,
(TFs), and self-interactions to measure the responsibility |,
by miRNAs, using the following equation:

49

2)

In a similar manner, the “availability” (A) estimate Z
represents information flow from a target gene to a “
regulator and is based on the level of agreement between .
the targets of a regulator and the set of genes with which o
the target gene is co-regulated:

® _ (t=1) 137(=1)
R,/ = TP W5 ).

57

58

© _ ppt=1_ oD
Ay =TW; 7,05 7). (3)

The initial regulatory network (W) is then updated *
using an update parameter o (with 0 < a < 1): o

59

62

(4) 63

64

This is followed by updating the P and C networks. %
For each regulator (i), PUMA checks whether it matches
with an entry in the input list of miRNAs (¢). Since the ¢
only interactions a miRNA makes are through regulation ¢
of their targets (they do not act in complexes with other ®
miRNAs or TF proteins), P will not be updated between 7
any miRNA-TF interactions or between miRNA-miRNA 7

-1
Wi = (=)W + /24 + RY).

interactions (except for self-interactions): &
73

Pi(f,:l) foriegvmegq ™

(t) 75

‘Pim = (1 — a)PA(t_l) (5) 76

m

+aT(W, [Wid))

otherwise

77

(6)

78

C) = (1 - )0 +arTw, ).

We note that self-interactions in P (including those 7
among miRNAs) and C are then separately updated e
in order for the algorithm to converge, as in Glass et®
al. 14, 26]. These message passing steps are repeated @2
until the regulatory network converges. 83

The message passing framework presented here and &
used by PUMA is highly similar to the one from the
PANDA algorithm [I4] 26]. However, it includes several ¢
critical adjustments to account for the mechanisms of &
miRNA regulation. In particular, we have modified both s
the initial co-operativity network and its update (as we
show in Equation ) to account for the different types %
of regulatory behaviors of TFs and miRNAs. For more %
details on the message passing algorithm we implemented
in PUMA, please refer to Glass et al. [14] [26]. 9

PUMA is available in C++ and MATLAB code at %
https://github.com/kuijjerlab/PUMA, and as Python
code at https://github.com/kuijjerlab/PyPuma. %

3
GTEx RNA-Seq data

We downloaded the Genotype-Tissue Expression
(GTEx) version 6.0 RNA-Seq data (phs000424.v6.pl,
2015-10-05 released) from dbGaP (approved protocol
#9112). GTEx release version 6.0 sampled 551 donors
with phenotypic information and included 9,590 RNA-
Seq assays (Consortium, 2015). We used our previously
described method YARN [27] to perform quality control,
which removed samples with sex-misidentification and
merged related sub-tissues, resulting in a dataset of 9,435
gene expression profiles in 38 tissues from 549 individuals.

We used default settings in YARN to perform
gene filtering and tissue-aware normalization using
gsmooth [28]. However, only 85 pre-miRNA transcripts
were retained after the filtering step in YARN. Be-
cause we were particularly interested in using miRNA
expression levels to assess the properties of tissue-specific
regulator miRNAs that we identified using our networks,
we repeated the YARN pipeline without filtering out
miRNAs. This resulted in normalized expression levels
for 31,384 transcripts, which included 1,136 miRNAs.

To ensure that this procedure did not significantly
alter the expression levels obtained with the standard
YARN pipeline, we compared expression levels of the
30,248 mRNA and the 85 pre-miRNA transcripts that
were not filtered by the standard YARN pipeline with
their values in the dataset in which we included all pre-
miRNAs. mRNA transcripts correlated with median
Pearson R = 0.9982, range [0.9677,1] and the 85 pre-
miRNAs correlated with median Pearson R = 0.9999,
range [0.9897,1], indicating that adding counts of pre-
miRNAs to the count data before the normalization
step did not significantly alter the normalized expression
levels of other genes.

Pre-processing miRNA target prediction data

We  downloaded miRNA  target predictions
from  TargetScan v7.1  (all  predictions, file
“Summary_Counts.all_predictions.txt.zip,” http:

//www.targetscan.org/cgi-bin/targetscan/

data_download.vert71.cgi, accessed: July
8, 2016) and miRanda  (predictions  with
“Good mirSVR score, Conserved miRNA,” file
“human_predictions_S_C_aug2010.txt,” http:

//34.236.212.39/microrna/getDownloads.do,
accessed: December 5, 2017). We filtered TargetScan
interactions by selecting Homo sapiens interactions and
by removing interactions with context+ scores larger
than -0.1, resulting in 1,524 miRNAs and 18,234 target
genes. The miRanda prior contained 1,100 miRNAs and
19,796 target genes.

We selected miRNAs that were present as regulators in
both the TargetScan and miRanda priors, and for which
expression levels were available. To do this, we first
needed to match miRNA identifiers between the different
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types. We converted miRNA regulator identifiers from
TargetScan and miRanda to gene names by changing the
character vector to uppercase, removing the “hsa-” prefix,

53

54

removing the dash character after “LET” and “MIR,”
and pasting “MIR” in front of miRNAs that start with

“LET.” We removed all extensions to obtain a list of

57

“base” miRNAs, of which 578 were present as regulators o

in both prior target prediction resources, and were also
available in the expression data.

59

The numbered suffix in the miRNA identifiers indicate ©

diverse loci that produce identical mature miRNAs. We
therefore collapsed these miRNAs in the prior by taking
the union of all edges. For duplicates, we selected
the most significant edges (lowest context+ score for
TargetScan, all edges for miRanda). 643 “regulator”
miRNAs corresponded to the set of 578 “base” miRNAs.

An asterisk (*) extension indicates an alternative tran-
script with lower expression levels. However, information
on expression levels of mature miRNAs could have been
derived from experiments in specific cell lines or under
specific experimental settings, and their expression levels
may vary in different tissues. miRNAs with asterisk
extensions were only present in miRanda, not in Target-
Scan. To be able to match these miRNAs between the
two different priors, we merged those in the miRanda
prior by taking the union of edges.

The -3p/-5p extension in miRNA identifiers indicates
whether the mature miRNA product comes from the 3’
or 5 end of the hairpin structure formed by the pre-
miRNA [3]. This indicates a different mature product

with a different seed sequence (that may target different '
These miRNAs are supposed to have similar’

genes).
expression levels [29], although recent reports identified
imbalance in -3p/-5p expression ratios [30]. When
evaluating the expression levels of such miRNAs, we

61

65

66

67

68

69

used the expression level associated with the miRNA’s .

. 5
gene name, so that the same expression level values were

assigned to miRNAs from the same genomic location.
This preprocessing resulted in a set of 621 “target”

miRNAs for which we had expression data available, ’

76

7

which corresponded to the set of 578 “base” miRNAs. ™
Finally, we took the intersection of the lists of target "
genes in the TargetScan and miRanda regulatory priors *
with genes for which we had expression data available,

resulting in 16,161 target genes.

Regulatory network reconstruction

82

83

84

85

86

We used the MATLAB version of PUMA to mtegrate 7

target predictions from TargetScan and miRanda with *

gene expression data from each of the 38 GTEx tissues z
to estimate gene regulatory networks for each of these tis- N

sues. In total, we modeled 76 gene regulatory networks
two for each tissue.

93

94

95

96

4

Comparison of tissue-specific edges

PUMA returns complete, bipartite networks with edge
weights similar to z-scores. To compare the tissue-
specificity of network edges, we calculated a tissue-
specific edge score Which was defined as the deviation of
an edge weight ( ) between a miRNA (i) and a target
gene (j) in a partlcular tissue (¢) from the median of
its weight across all tissues, using the interquartile range
(IQR) (as in Sonawane et al. [19]):

(t) ()

ij

— med(w(™))/IQRwWS™).  (7)
(t)

We defined an edge with a specificity score s;;" > 2 as
specific to tissue ¢ and the multiplicity of an edge as the
number of tissues it is specific to:

m;; = Z[Sx) > 2].

t

= (w;

(8)

To determine tissue-specific expression levels of miR-
NAs, we compared the median expression level (ez(f)) of
a miRNA (p) in a particular tissue (¢) to the median and
IQR of its expression levels across all tissues (similar to
what we described in Sonawane et al. [15]):

31(7t) = (med(eg)) — med(ez(,a”)))/IQR(ez()a”))~ (9)

We assessed the overlap of the initial TargetScan and
miRanda gene regulatory priors with the Jaccard index
and with Pearson correlation. We compared tissue-
specific edge scores from networks reconstructed on the
two different priors using Pearson correlation.

Gene set enrichment analysis on miRNA targeting
profiles

For each miRNA in a given tissue, we selected
its tissue-specific targeting profile, meaning all tissue-
specific scores connected to that miRNA. We ran a pre-
ranked Gene Set Enrichment Analyses (GSEA) [31] on
these profiles to test whether miRNAs specifically target
Gene Ontology (GO) terms in the different tissues. We
ran GSEA for networks reconstructed on the TargetScan

prior, as well as for networks reconstructed on the
miRanda prior. Thus, in total, we ran 48,868 GSEA
analyses.

For each miRNA /tissue pair, we calculated tissue-
specific GO term enrichment scores, which we defined
as the —log1oF DR (False Discovery Rate) from GSEA,
multiplied by the sign of the GSEA Enrichment Score
(ES)—those with ES < 0 were multiplied by -1, those
with ES > 0 were multiplied by 1. We then used
Pearson correlation across all 733 tissue-specific GO term
enrichment scores for each miRNA /tissue pair to assess
the similarity of tissue-specific regulation of biological
processes by miRNAs.


https://doi.org/10.1101/2019.12.18.874065
http://creativecommons.org/licenses/by-nd/4.0/

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.18.874065; this version posted December 19, 2019. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

Community structure analysis to identify sets of s
related tissue/miRNA GO terms 52

53

We selected highly significant (FDR < 0.001) and pos- s
itively enriched (Enrichment Score > 0.65) associations s
from these analyses and converted these scores into a s
binary matrix. We then used fast-greedy community 5
detection [32] on this matrix to cluster the data and ss
to identify communities or network modules that share 5
tissue-specific regulatory patterns. 60

We then used the Jaccard index to compare nodes &
(miRNA /tissues and GO terms) that belonged to com- e
munities that included at least 5 GO terms in either s3
the TargetScan or the miRanda networks. We used s
word clouds to visualize the tissue-specific functions of e
miRNAs in these communities. To do this, we split the s
strings for each of the significant GO term into separate &
words and removed words that occurred less than 3 times s
to obtain a background list of word frequencies associated 69
with all significant GO terms. We then counted the 7
number of times a word was present in the community of 7
interest, and divided this by the total number of words
associated with significant GO terms in that community 7
(the “observed” rate), as well as the number of times the 7
word occurred in the background list, divided by the total 75
number of words in that background list (the “expected” 7
rate). We then calculated the observed/expected ratio, 77
multiplied this by 10, and rounded this number to an 7
integer to obtain a word occurrence score. Finally, we 7
added the word, repeating it by its word occurrence score, &
to a list. We used this list of normalized word occurrences st
as input in https://www.wordclouds.com/|to generate &
a word cloud for that community. We repeated this &
for each of the communities that included tissue-specific &
targeting by miRNAs of at least 5 GO terms. 8

86
87
Data availability 88
89

The reconstructed networks are available on Zenodo
(doi: 10.5281/zenodo.1313768; https://tinyurl.com/|*
puma-gtex). An R Shiny app [33] that can be used to *
assess tissue-specific functions of miRNAs using different
thresholds is hosted on https://kuijjer.shinyapps.|®

io/puma_gtex/. %
96

97

RESULTS %

929
100

Tissue-specific gene regulation by miRNAs
101

We started by reconstructing miRNA-target gene102
genome-wide regulatory networks for a large collection
of human tissues. We downloaded RNA-Seq data for'™"
54 different tissues (including three different cell types)105
using Bioconductor package YARN [27]. Within YARN,iZj
we performed quality control and normalization of the
data, merging tissues with similar expression profiles

5

(see Methods), which retained gene expression data for
9,435 samples across 38 tissues. We limited network
reconstruction to only those genes and miRNAs that were
expressed and which appeared in the TargetScan and
miRanda prior, leaving 16,161 genes and 621 miRNAs;
these 621 target miRNAs corresponded to 643 regulators
in the prior networks (see Methods). We then used
PUMA to integrate target gene co-expression information
for each tissue with an initial regulatory network, which
we based on either TargetScan or miRanda miRNA tar-
get predictions. Consequently, our analysis provides two
alternative miRNA mediated gene regulatory networks
for each of the 38 tissues (tissue-networks), one based on
the TargetScan prior and the other alternative based on
the miRanda prior.

We tested for tissue-specific edges in these networks.
We defined an edge to be tissue-specific if its weight was
larger than twice the interquartile range of its weight
across all 38 networks (see Methods). We identified
highly similar numbers of tissue-specific miRNA-target
gene regulatory edges in the networks modeled on the two
different priors—3.093 million and 3.098 million edges for
networks modeled on the TargetScan and miRanda prior,
respectively (see Figure. In addition, the proportion of
tissue-specific edges identified in the different tissues was
comparable between the networks modeled on the two
different priors (Pearson R = 0.92). The proportion of
multiplicities, or the number of tissues in which an edge
is identified as specific, was also similar between the two
different models.

Even though we identified approximately the same
total number of tissue-specific edges across all tissues,
on average we identified a larger number of tissue-specific
edges per tissue in the networks modeled on the miRanda
prior (t-statistic= 7.1, p-value= 6.5 - 1071%). However,
we found the opposite to be true for testis, the tissue
with the greatest number of tissue-specific edges in both
priors. In testis, we identified a substantially larger
number (1.65x) of tissue-specific edges in the networks
modeled on the TargetScan prior than in the networks
modeled on the miRanda prior.

We next assessed how similar the edge tissue-specificity
scores were between the networks modeled on the differ-
ent priors. For each of the 38 tissues, we calculated the
Pearson correlation coefficient on edge tissue-specificity
scores between the tissue-network modeled on the two
different priors. We found that, in general, PUMA
networks modeled using different target predictions result
in similar tissue-specificity scores (median Pearson R =
0.63, Figure and Supplemental Figure . For
all tissues, except testis, the resulting PUMA tissue-
networks modeled on the two different priors were more
similar than the two prior networks (R = 0.34). This
means that, even though there may be differences be-
tween various target prediction resources, PUMA helps
fine-tuning these predictions into tissue-specific regula-
tory interactions. We believe that the anomalous gene
expression patterns observed in testis, which has been
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described previously [I5], may, at least in part, be caused *
by differential targeting by miRNAs. *

We then examined the similarity between tissue- *
specificity scores for miRNA-target gene interactions *
that were predicted by both TargetScan and miRanda o
(“canonical” interactions), interactions that were nei- o
ther predicted in TargetScan nor in miRanda (“non- 63
canonical” interactions), and edges that were predicted o
interactions in one of the priors but not in the other ”
(“different,” or inconsistent interactions). We used ”
Pearson correlation to evaluate the similarity of these o
different types of edges. We found that, in general, tissue- o
specificity levels of edges that were canonical in both ®
priors were most reproducible, followed by edges that °
were non-canonical in both priors. As expected, miRNA- "
target gene interactions that were canonical in only one -
of the two priors were less similar than edges that were "
canonical or non-canonical in both priors. However, for ~
those edges the median similarity was still R = 0.58 "
(Figure [2B). This indicates that PUMA can capture
consistencies in miRNA-target gene regulation, even *
when there are inconsistencies between different target *
prediction resources, and highlights the strengths of :

6

modeling miRNA target gene interactions with PUMA.

Tissue-specific miRNA targeting patterns

To better understand tissue-specific functions of miR-
NAs, we ran pre-ranked gene set enrichment analysis on
the tissue-specific targeting profile of each miRNA in each
of the 38 tissues. We did this both for the collection
of tissue-networks modeled using the TargetScan and
for networks modeled using the miRanda priors (see
Methods). We calculated the tissue-specific targeting
scores of all 733 available GO terms, and investigated
whether tissue-specific regulation of biological processes
by miRNAs was similar in the two different collections of
networks. Most (89.6%) of the miRNA /tissue pairs had
a positive Pearson correlation coefficient, with a median
Pearson R of 0.66 (see Figure [3| for the correlations
between all GSEA scores, and Supplemental Figure [S2]
for the correlations separated by tissue).

As a negative control, we computed the correlation of
miRNA-GO term GSEA scores between different tissues,
for the miRanda and TargetScan-generated networks
separately. The resulting correlation coefficients were
centered around zero, with median Pearson R = —0.002
for the miRanda networks and R = —0.001 for the
TargetScan networks, respectively (Supplemental Fig-
ure [S3). GSEA scores for miRNA /tissue pairs obtained
from the two different collections of networks were sig-
nificantly more correlated than the negative control (2-
group Wilcoxon signed-rank test p-value < 2.2 - 10716).
These results confirm that, even though we used different
target predictions as input for PUMA, the actual tissue-
specific regulatory functions we obtain from analyzing
these networks are highly similar.

We tested whether similar miRNA /tissue pairs, as
identified in both models, control similar biological
functions. To do this, we selected highly significant
miRNA /tissue-GO term associations (FDR < 0.001,
ES > 0.65), and performed community structure anal-
yses on these sets of associations to identify shared
tissue-specific targeting patterns of miRNAs across the
tissues. We identified 67 communities (e.g. sets of GO
terms grouped together with miRNA /tissue pairs) in
the regulatory associations identified in PUMA networks
modeled on the TargetScan prior, and 64 communities
in those identified in PUMA networks modeled on the
miRanda prior. The overall modularity of these com-
munity structures was 0.76 and 0.77, respectively (see
Figure [4A-B).

In both collections of PUMA tissue-networks, nine
communities were associated with at least five GO terms.
For each of these communities, we calculated the Jaccard
index between the two different sets of miRNA /tissue-
GO term associations to evaluate the overlap in mi-
RNA /tissue pairs and GO terms associated with the com-
munity (Figure [f[C). As can be seen from this figure, the
communities have relatively high node overlap, indicating
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that similar processes are identified as regulated in a
tissue-specific manner by similar sets of miRNAs in both
analyses. We used word clouds to visualize the biological
processes that were associated with these communities,
which allowed us to further explore these similarities.
Figure @D shows that similar biological processes are
identified as regulated by miRNAs in a tissue-specific
manner in these communities. These include processes
involved in the immune system, mitochondrial respi-
ration, translation initiation, chromosome segregation,
intracellular signaling, protein transport, and muscle
contraction.

Importantly, we can identify these communities of sim-
ilarly regulated biological processes in networks modeled
using different prior target predictions. This indicates
that PUMA’s message passing allows us to discover
patterns of tissue-specific regulation by miRNAs, even
though there may be inconsistencies in the initial target
predictions that we used as prior input in PUMA.

A resource of tissue-specific miRNA functions

We compiled a resource of miRNAs that regulate
biological processes in a tissue-specific manner. To do
this, we took the union of miRNA /tissues significantly
regulating GO terms in the TargetScan and the miRanda
networks (8,992 miRNA /tissue-GO terms in total). We
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Gene Ontology terms

Figure 4. A-B) Heatmaps depicting communities of significantly targeted GO terms (FDR < 0.001, ES > 0.65) based on
GSEA analyses on all possible miRNA /tissue pairs for the networks modeled on the TargetScan (A) and the miRanda (B) prior.
C) Similarity (measured with Jaccard index) of miRNA /tissue-GO term associations in communities targeting at least five GO
terms identified in networks modeled using the TargetScan or miRanda prior. D) Word clouds depicting communities targeting
at least five GO terms. Community pairs with the highest Jaccard index are shown. We omitted TargetScan community 11 and
miRanda community 10 as they each mapped to communities that corresponded to another community (6 and 4, respectively)
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then subsetted this list to only those miRNA /tissues for so
which the tissue-specific targeting profiles correlated with e
R > 0.8 (2085 miRNA /tissue-GO terms). This list of
significant tissue-specific functions of miRNAs contained
423 regulator miRNAs, 37 tissues (no consistent tissue- 4,
specific regulation was identified for tibial nerve), and g
174 GO terms. This resource can be accessed at https:|q,
//kuijjer.shinyapps.io/puma_gtex/. o
We assessed over-representation of miRNAs, GO
terms, and tissues in this resource of significant inter-
actions (Figure [JJA-C). Twenty-one miRNAs were over- 4
represented (> median + 2 - IQR) in regulating multi-
ple tissue-specific processes (Figure ) MIR517C and ,,
MIR1468 were the two miRNAs with the highest number ,,
of associations of tissue-specific regulation of biological ,,
processes (Figure [fJA). MIR517C was associated with .,
immune system processes in artery tibial and thyroid, ,,
with “regulation of neurogenesis” and “regulated secre- .
tory pathway” in “brain other” (a compound of multiple ,
brain regions), with synapse-associated processes and .,
“extracellular structure organization and biogenesis” in 5
skeletal muscle, with sperm-associated pathways in testis,
and with “ovulation cycle” and ectoderm-associated g,
pathways in vagina (Figure fE). This miRNA has been 4,
detected in maternal plasma. It was also recently de-
scribed to be overexpressed in parathyroid carcinoma [34] 4
and to inhibit autophagy and epithelial-to-mesenchymal 4,
transition in glioblastoma, a malignant brain cancer [35], g
indicating that deregulation of the expression of this 4
miRNA in tissues in which it regulates tissue-specific 4
processes may lead to cancer. o
MIR1468 was associated with “sperm motility” in 4
testis, with many immune system processes in thyroid,
and with “double strand break repair” and chromatin-
associated processes in whole blood. This miRNA has ,
been implicated in different cancer types [36, B7] and the o,
latter pathway may indicate a potential mechanism for ,
this. In fact, MIR1468 was recently shown to promote o
tumor progression by activating PPAR-y-mediated Akt o
signaling in hepatocellular carcinoma [3§]. or
Twenty-two processes were more often targeted in a o
tissue-specific manner by miRNAs in more tissues than
expected by chance. Most of these processes play a role,
in respiration and metabolism, immune response, and,y
protein translation (Figure ), indicating that miRNAs,,,
play an important role in regulating these pathways in a,,
tissue-specific manner in multiple tissues. 108
Seven tissues received significantly more tissue-specific,o
gene regulation by miRNAs compared to all tissues,g
(Figure ) Tissues receiving most tissue-specific gene,q,
regulation by miRNAs include heart left ventricle, adi-,
pose visceral, and heart atrial appendage. We do not,,
know why these tissues have a higher amount of tissue-
specific gene regulation by miRNAs. It may be that these
tissues are more highly differentiated than others because
of the specialized functions they carry out, and so the
elevated miRNA activity represses extraneous functions.
This could be a potential new area for research.

9

miRNAs regulating tissue-specific processes are not
differentially expressed

We wanted to evaluate whether tissue-specific regula-
tion by miRNAs was caused by tissue-specific expression
of those miRNAs. We identified 423 (66%) miRNAs that
regulate biological processes in a tissue-specific manner.
These regulator miRNAs were associated with 309 dif-
ferent miRNA genes. We compared the expression levels
of these 309 miRNAs with those of the remaining 312
miRNAs, and found that miRNAs regulating biological
processes in a tissue-specific manner have overall higher
expression levels across all samples (two-sided Wilcoxon
rank sum test statistic = 4.35-10'2, p-value=2.2-10716).

However, when comparing the tissue-specificity scores
of these miRNAs in the tissue in which they regulate
biological processes, we did not identify any association.
The mean tissue-specificity score (difference in median
expression in tissue-of-interest compared to overall me-
dian expression, divided by IQR) of these miRNAs
was 0.022 (range [—0.820,6.811]), indicating that these
miRNAs were not specifically expressed in the tissue
they regulate. While none of the miRNAs met our
threshold of tissue-specific underexpression, six miRNAs
had tissue-specificity scores larger than 2, suggesting
tissue-specific overexpression of these miRNAs. These
included MIR142-3P regulating the “insulin receptor
signaling pathway” in spleen, MIR1909 regulating “coen-
zyme biosynthetic process” in testis, MIR200B regu-
lating “aerobic respiration” and “cellular respiration”
in pancreas and “regulation of muscle contraction” in
prostate, MIR203 regulating “translational initiation” in
esophagus mucosa, MIR208A regulating “activation of
immune response”, “adaptive immune response”, “hu-
moral immune response”, and “synaptogenesis” in heart
atrial appendage, and MIR632 regulating “spermatid
differentiation” in testis.

These findings are in line with our previous results
in transcriptional regulatory networks, in which we
identified no clear association between a transcription
factor’s expression level and its tissue-specific regulation
of biological processes [I5]. They are also consistent with
our previous finding that modeling of transcriptional
gene regulatory networks is able to identify biologi-
cally relevant differences in regulatory processes even
in situations where there is little or no differential
expression [I8]. Importantly, our results indicate that
analysis of miRNA-mRNA co-expression networks, while
potentially informative in identifying co-regulation of
miRNA and mRNA expression levels, may miss miRNAs
that are not differentially expressed, but that do regulate
their targets in a tissue- or disease-specific manner.
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Figure 5. Over-represented miRNAs (A), GO terms (B), and tissues (C) in the database of significant tissue-specific functions
of miRNAs. D) Visual representation of the significant tissue-specific regulatory functions of miRNAs present in the Shiny
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miRNA functions correspond to disease-associated ss
SNPs 56

57

To further validate our findings, we integrated the ss
tissue-specificity scores with miRASNP, a database of s
Single Nucleotide Polymorphisms (SNPs) in the 3’'UTR e
of human genes [39]. To do this, we downloaded the e
miRASNP database, converted and matched miRNA e
names, and intersected miRNAs and target genes present 63
in miRASNP with those present in our regulatory net- e
works. We then matched diseases listed in miRASNP to s
GTEx tissues (manual curation). This left us with 24 e
GTEx tissues for which miRNA-target gene associations &
with disease were available. For each of these 24 tissues, e
we took the edge with the highest tissue-specificity score 69
based on the TargetScan networks (range [—0.76,2.68],
mean= 1.11) and obtained the miRNA’s tissue-specific
functions from our Shiny app (settings —logio(FDR) < 7
0.8). This resulted in tissue-specific pathway associations 73
for 18/24 miRNAs. We then compared the pathways 7
with the highest enrichment (based on ES) with the
target gene’s description in GeneCards (www.genecards.|7
org). 7

We found that the tissue-specific function of miRNAs 7
obtained from the PUMA networks often matched that 7
of the gene that had disease-associated SNPs in their s
miRNAs binding sites. For example, the pathway with s
the highest level of tissue-specific regulation by MIR429 s
in coronary artery was “endothelial cell migration.” The 3
gene associated with the disease edge from miRASNP s
was VEGFA, which encodes for a receptor important ss
in angiogenesis. MIR140-5p specifically regulates “acute o
inflammatory response” in sigmoid colon. This miRNA &
was associated with disease SNPs in TLR4, an recep-
tor involved in innate immunity. In ovary, MIR429 s
specifically targets “G1 phase of mitotic cell cycle” %
and was associated to SNPs in CDK2, a cell division o
gene. MIR1197 specifically targets “icosanoid metabolic 92
process” in pancreas, and had disease-associated SNPs 93
in ADIPOR2, a gene involved in glucose and lipid o
metabolism. All disease-associated edges are listed in %
Supplemental Table [ST} %

These results indicate that the tissue-specific func- o
tions of miRNAs predicted using PUMA are important %
for maintaining tissue homeostasis, and that disrupting 9%
miRNA-target gene edges in the regulatory network1o
can perturb these processes, thereby influencing disease.1
This highlights the importance of modeling genome-02
wide miRNA-target gene regulatory networks in humanzos

tissues. 104
105

106
DISCUSSION 107

108

In this manuscript, we describe PUMA, a new method!*
to model gene regulation by miRNAs. PUMA inte-1°
grates target gene co-expression information with ini-"
tial target predictions, which can be obtained from!?

11

resources such as Targetcan or miRanda. We applied
PUMA to a large-scale RNA-Seq dataset from GTEx to
identify tissue-specific regulatory patterns of miRNAs.
We modeled two different collections of tissue-networks
by integrating gene expression data from GTEx with
two prior datasets—target predictions from TargetScan
and miRanda, two of the most widely used miRNA
target prediction resources. We found that tissue-specific
gene regulation by miRNAs was reproducible for most
tissues, except for testis. Potentially, the aberrant
gene expression pattern in testis is, at least in part,
caused by differential regulation by miRNAs. While
tissue-specificity of gene regulation was reproducible for
different types of edges, it was highest for edges that were
predicted in both priors, indicating that compendium-
like approaches using the intersection of different miRNA
target prediction resources as prior data for network
modeling could result in more accurate results.

We performed high-throughput gene set enrichment
analyses on the tissue-specific targeting profiles of each
of the miRNAs to characterize tissue-specific regulation
of biological processes. We found that tissue-specific
regulation of biological processes by miRNAs was highly
similar in the networks modeled on different priors. We
highlighted biological processes that were regulated in a
tissue-specific manner (by different sets of miRNAs) in
multiple tissues (Figure [4)). The processes we identified
play a role in the immune system, mitochondrial respi-
ration, translation initiation, chromosome segregation,
intracellular signaling, protein transport, and muscle
contraction. In addition, we identified miRNAs and
tissues for which we found an over-representation of
tissue-specific regulation. The most enriched tissue-
specific pathways contained genes that were associated
with tissue-specific disease-risk SNPs in their 3’UTR.
This highlights the strength of using PUMA networks
to identify disease-related genes.

Another strength of PUMA is that it does not use
correlations between miRNA expression levels and their
target genes to model gene regulation. One of the reasons
for not implementing correlation between regulators and
their targets as an input in PUMA is that we have
previously observed that a regulator’s expression level
is often not associated with its regulatory potential [I5],
possibly due to combinatorial regulation of the target
genes by multiple factors. The analysis presented in the
current study again strengthens this. We believe that,
while a miRNA needs to be expressed in order to regulate
a target gene, the regulatory patterns of a miRNA
are complex, and depend not only on the miRNA’s
expression level itself, but on the entire collection of
miRNAs that are available in a cell [40], as well as on
the complete set of target mRNA transcripts that are
expressed.

A good strategy to integrate PUMA networks with
miRNA expression data is to overlay the network nodes
with miRNA and target gene mRNA expression levels
after the edges have been estimated with PUMA. This
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way, one would first identify tissue- or disease-specific 33
edges, and then assess whether these are connected
to highly or differentially expressed miRNAs. In fact,
we recently used a similar approach to identify tumor
suppressor genes downregulated by a cluster of non-
coding elements, which had been associated with patient
outcome in osteosarcoma [41].

Gene regulation is a complex process involving mul-
tiple factors, including both transcription factors and 7
miRNAs. Understanding these regulatory processes, and ™
how they change between phenotypes, helps elucidating *
the network changes that occur between health and *
disease. Identifying genes that are differentially regu-
lated, but not necessarily differentially expressed, can
help us to understand the likely potential that a given *
biological state has to respond to changes, including
drug treatment or disease progression. Although there
have been many attempts to model gene regulation by *
transcription factors, few methods have tackled miRNA *
regulation or both regulators together. N

PUMA models gene regulation by miRNAs and tran-
scription factors in a principled way by incorporating our
understanding of the regulatory processes that control *
gene transcript levels. In applying PUMA to a wide
variety of tissues, we find patterns of miRNA regulation so
associated with a variety of tissue-specific processes in s
ways that add explanatory power to the analysis of s
the same tissues using transcription factor regulation ss
alone [I5]. As such, PUMA provides the first robust s
computational method for modeling complex patterns ss
of regulation involving miRNAs. Its implementation in ss
freely-available, open-source code means that it can be s

12

broadly applied to the analysis of other phenotypes and
disease states.
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Supplemental Figure S1. Smooth scatterplot depicting, for each tissue, the correlation of all tissue-specificity scores of networks
modeled on the TargetScan and the miRanda prior.
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Supplemental Figure S2. Histogram of Pearson correlation coefficients obtained from comparing the GSEA scores of the tissue-
specific miRNA targeting profiles computed on the TargetScan and the miRanda prior, visualized for each tissue individually.
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Supplemental Figure S3. Negative control for the similarity analysis of miRNA /tissue GSEA scores predicted on networks
obtained from the two different priors (shown in Figure. Here, we compared tissue-specific GSEA scores for one miRNA in
one specific tissue with those from the same miRNA in all other tissues, using networks modeled on the same prior—either
from TargetScan (A) or miRanda (B).
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