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ABSTRACT 23 

Establishing the pattern of abundance of molecules of interest during cell division has been a 24 

long-standing goal of cell cycle studies. In several systems, including the budding yeast 25 

Saccharomyces cerevisiae, cell cycle-dependent changes in the transcriptome are well studied. 26 

In contrast, few studies queried the proteome during cell division, and they are often plagued by 27 

low agreement with each other and with previous transcriptomic datasets. There is also little 28 

information about dynamic changes in the levels of metabolites and lipids in the cell cycle. Here, 29 

for the first time in any system, we present experiment-matched datasets of the levels of RNAs, 30 

proteins, metabolites, and lipids from un-arrested, growing, and synchronously dividing yeast 31 

cells. Overall, transcript and protein levels were correlated, but specific processes that appeared 32 

to change at the RNA level (e.g., ribosome biogenesis), did not do so at the protein level, and 33 

vice versa. We also found no significant changes in codon usage or the ribosome content during 34 

the cell cycle. We describe an unexpected mitotic peak in the abundance of ergosterol and 35 

thiamine biosynthesis enzymes. Although the levels of several metabolites changed in the cell 36 

cycle, by far the most significant changes were in the lipid repertoire, with phospholipids and 37 

triglycerides peaking strongly late in the cell cycle. Our findings provide an integrated view of the 38 

abundance of biomolecules in the eukaryotic cell cycle and point to a coordinate mitotic control 39 

of lipid metabolism.  40 
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INTRODUCTION 41 

Exemplified by the discovery of cyclin proteins (Evans et al., 1983), identifying biomolecules 42 

whose abundance changes in the cell cycle has been a critical objective of cell cycle studies for 43 

decades. Recognizing such molecular landmarks in the cell cycle is a valuable, and often 44 

necessary, step for deciphering how and why cell cycle pathways are integrated. 45 

Over the last twenty years, cell cycle-dependent changes in mRNA levels during the cell 46 

cycle of S. cerevisiae have been comprehensively defined not only from several arrest-and-47 

release synchronization approaches (Cho et al., 1998; Spellman et al., 1998; de Lichtenberg et 48 

al., 2005; Pramila et al., 2006; Granovskaia et al., 2010), but also elutriation (Spellman et al., 49 

1998; Blank et al., 2017). Unlike transcript profiling, cell cycle-dependent proteomic and 50 

metabolomic changes have been more limited and challenging to interpret due to different or 51 

poor synchronization, lack of matched transcriptomic datasets, and divergent results among the 52 

various studies. For example, there has only been one mass spectrometry-based proteomic 53 

analysis of the budding yeast cell cycle, sampling cultures at four time-points after they were 54 

released from arrest (Flory et al., 2006). Remarkably few proteins had altered levels during the 55 

time course of that experiment, and there was no correlation with the available transcriptomic 56 

datasets (Flory et al., 2006). Hence, at least in S. cerevisiae, it is not clear to what extent protein 57 

abundances are dynamic in the cell cycle, and how tightly they are linked to transcriptional 58 

changes, if at all. 59 

The picture is not much clearer in other experimental systems. In fission yeast, two 60 

recent studies used highly similar arrest-and-release synchronization and protein labeling 61 

(stable isotope labeling by amino acids in the cell culture (Mann, 2006)) methods, followed by 62 

mass spectrometry, to probe cell cycle-dependent changes in the proteome. In one study only a 63 

single protein changed in abundance more than 2-fold (Carpy et al., 2014), while in the other 64 

report ~150 proteins did (Swaffer et al., 2016). Neither study had experiment-matched 65 
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transcriptomic datasets. Previously, hundreds of transcripts were reported to be periodic in the 66 

cell cycle of fission yeast (Rustici et al., 2004; Oliva et al., 2005).  67 

In human cells, several reports sampled the proteome in the cell cycle with mass 68 

spectrometry, but there is little consensus among them (Dephoure et al., 2008; Olsen et al., 69 

2010; Lane et al., 2013; Ly et al., 2014; Becher et al., 2018; Dai et al., 2018; Schillinger et al., 70 

2018). The fraction of proteins identified as periodic ranged from ~5% (Ly et al., 2014), to >65% 71 

(Schillinger et al., 2018). Synchronization was mostly achieved by release from chemical arrest, 72 

but two studies also used elutriation (Ly et al., 2014; Dai et al., 2018). In the only report where 73 

an experiment-matched transcriptomic dataset was generated (Ly et al., 2014), the correlation 74 

with transcript abundance was positive (ρ=0.63, based on the Spearman rank correlation 75 

coefficient). Some of the differences among the above studies may arise from the use of 76 

different cell lines, such as: HeLa (Dephoure et al., 2008; Olsen et al., 2010; Lane et al., 2013; 77 

Becher et al., 2018); K562 (Dai et al., 2018); SW480 (Schillinger et al., 2018); or NB4 (Ly et al., 78 

2014). However, even for the same cell line (HeLa), synchronization (release from thymidine 79 

block and nocodazole arrest), and point in the cell cycle (0.5 h after nocodazole arrest), the 80 

relative change in abundance of the 3,298 proteins identified in common between  the two 81 

studies (Olsen et al., 2010; Becher et al., 2018) was uncorrelated (ρ=0.097, based on 82 

Spearman’s rank correlation coefficient; see Materials and Methods). 83 

In S. cerevisiae, metabolites have been measured in the cell cycle after arrest-and-84 

release synchronization in minimal medium with ethanol as a carbon source, focusing on 85 

exogenous control of cell cycle progression and downstream effects on metabolism (Ewald et 86 

al., 2016). At the G1/S transition, it is generally thought that cyclin-dependent kinase activity 87 

triggers lipolysis (Kurat et al., 2009) and mobilizes storage carbohydrates (Ewald et al., 2016; 88 

Zhao et al., 2016), to provide resources for cell division. In other systems, there is evidence of 89 

cell cycle-dependent changes on metabolite levels for the green alga Chlamydomonas 90 
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reinhardtii (Juppner et al., 2017), fly (Sanchez-Alvarez et al., 2015), and human HeLa cells 91 

(Atilla-Gokcumen et al., 2014; Scaglia et al., 2014; Ahn et al., 2017). Despite these advances, 92 

there has been no experiment-matched sampling of the transcriptome or proteome in any of 93 

these studies, making it difficult to integrate these datasets with gene expression, at the mRNA 94 

or protein levels. 95 

Here, for the first time in any system, we generated comprehensive datasets for RNAs, 96 

proteins, metabolites, and lipids, from the same samples of S. cerevisiae cells progressing 97 

synchronously in the cell cycle. Importantly, these samples were from elutriated, un-arrested 98 

cells, maintaining as much as possible the normal coupling between cell growth and division. 99 

We found that while there is a broad correlation between the relative abundances of mRNAs 100 

and their corresponding proteins, cell cycle-dependent changes in transcriptional patterns are 101 

significantly dampened at the proteome level. The cellular lipid profile is highly cell cycle-102 

regulated, with triglycerides and phospholipids peaking late in the cell cycle, together with 103 

protein levels of ergosterol biosynthetic enzymes, highlighting the importance of integrating 104 

multiple ‘omic’ datasets to identify cell cycle-dependent cellular processes.  105 
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RESULTS 106 

Samples for the multi-omic cell cycle analysis 107 

To apply genome-wide methods for the identification of cell cycle-dependent changes in the 108 

abundance of molecules of interest, one must first obtain highly synchronous cell cultures. 109 

Preferably, synchronization must be achieved in a way that minimally perturbs cellular 110 

physiology and the coordination between cell growth and division (Mitchison, 1971; Aramayo 111 

and Polymenis, 2017). When cells are chemically or genetically arrested in the cell cycle to 112 

induce synchrony, known arrest-related artifacts can bias the results (Mitchison, 1971; Ly et al., 113 

2015; Aramayo and Polymenis, 2017). An alternative synchronization method is elutriation, a 114 

physical process that fractionates an asynchronous cell population by cell size and 115 

sedimentation density properties of the cells, with minimal perturbation of cellular functions 116 

(Lindahl, 1948; Creanor and Mitchison, 1979; Banfalvi, 2008). Hence, we used centrifugal 117 

elutriation to obtain our synchronous cell cultures (see Materials and Methods, and Figure 1A). 118 

Elutriation separates cells primarily based on size, and size is used as a normalizing reference 119 

across different elutriation experiments. We isolated 101 different elutriated cultures, which were 120 

combined into 24 pools, based on the size at which they were harvested. Hence, we generated 121 

a cell size-series, spanning a range from 40 to 75 fL, sampled approximately every 5 fL 122 

intervals. These 24 pools were processed as independent samples in all analytical downstream 123 

pipelines. For statistical analysis (e.g., with the bootstrap ANOVA), the 24 cell size pools were 124 

grouped in 8 groups, for each of the approximately 5 fL increments in the cell size series (see 125 

Figure 1A). The same 24 distinct pools were aliquoted as needed (see Materials and Methods) 126 

to generate the input samples for measurements of RNA (with RNAseq), proteins (with LC-127 

MS/MS), and metabolites (GC-TOF MS for primary metabolites; HILIC-QTOF MS/MS for 128 

biogenic amines; and CSH-QTOF MS/MS for lipids).  129 
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To gauge the synchrony of our samples by microscopy, we used budding as a 130 

morphological landmark, which roughly coincides with the initiation of DNA replication in S. 131 

cerevisiae (Pringle, 1981). The percentage of budded cells across the cell size series (Figure 132 

1B) rose steadily from ~0% in the smallest cells (at 40 fL), to >80% at the largest cell size (75 133 

fL). The cell size at which half the cells were budded (a.k.a. ‘critical size’, a proxy for the 134 

commitment step START) in our cell size series was ~62 fL (Figure 1B). This value is the same 135 

as the critical size these cells display in typical time-series experiments (Hoose et al., 2012). We 136 

also measured the DNA content of the cells with flow cytometry, confirming the synchrony of the 137 

samples (Figure S1). From the RNAseq data that we will describe later (Figure 2), mRNAs that 138 

are known to increase in abundance at the G1/S transition (G1 cyclins; CLN1,2), or later in G2 139 

phase (cyclin CLB2), peaked as expected in the cell size series (Figure 1C). Hence, based on 140 

cytological (Figures 1B and S1) and molecular (cyclin mRNAs, Figure 1C) markers of cell cycle 141 

progression, the synchrony of our samples was of high quality. 142 

 143 

Overview of the datasets 144 

One type of extract was analyzed for each class of the following biomolecules: RNA, primary 145 

metabolites, biogenic amines, and lipids (see Materials and Methods and Table S1). For 146 

proteomic analysis, we used soluble protein extracts (designated as ‘sol’ in the datasets, see 147 

Table S1) and material from the same extract that was recovered in an insoluble pellet 148 

(designated as ‘pel’ in the datasets, see Table S1). The pellet was subsequently solubilized with 149 

detergents (see Materials and Methods) and analyzed in parallel to the soluble sample by liquid 150 

chromatography tandem mass spectrometry (LC-MS/MS). For label-free relative quantification 151 

of proteins, we used both spectral counts (designated as ‘psm’ in the datasets, see Table S1) 152 

and peak areas (designated as ‘pa’ in the datasets, see Table S1). For RNAs, the signal we 153 

used for quantification was read counts, either raw or after normalization as Transcripts Per 154 
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kilobase Million (TPM) (see Materials and Methods and Table S1). For the metabolites, the 155 

signal was the peak heights from mass spectrometry (designated as ‘ph’ in the datasets, see 156 

Table S1). The raw values for all datasets are in File1.  157 

For the quantification of proteins and metabolites, each dataset was first normalized for 158 

input. Hence, for proteins or metabolites, comparisons across the 24 samples were scaled 159 

based on the sum of the signals detected in each of the 24 samples. For RNA, we used TPM-160 

normalized values and raw reads (see Table S1). All input datasets that entered the 161 

downstream computational analyses are in File2. For each dataset, we used a bootstrap-based 162 

ANOVA (see Materials and Methods; the output files named as ‘anova’ in the datasets, see 163 

Table S1). Also, for RNA, we used the DESeq2 pipeline ((Love et al., 2014); see Materials and 164 

Methods; the output file designated as ‘deseq2’, see Table S1). All output datasets are in File3. 165 

Only biomolecules that changed ≥2-fold in our cell size series, and had an adjusted p-value or 166 

FDR<0.05, were considered as significantly changing in the cell cycle. 167 

For display purposes, in all the heatmaps and most plots, we show Log2-transformed 168 

expressed ratio values. These are the ratios of the levels that we measured for each 169 

biomolecule in each cell cycle point, reflecting the magnitude of the ratio of abundance relative 170 

to the average of that biomolecule across all the cell cycle points we sampled. This approach 171 

was originally used to describe microarray cell cycle experiments in yeast (Spellman et al., 172 

1998), and has been the standard in displaying and analyzing differential expression in the cell 173 

cycle.  174 

 175 

RNAs in the cell cycle 176 

The RNAseq data were analyzed (see Materials and Methods, Figure 2, and Table S1), to 177 

identify RNAs that change in abundance in the cell cycle. The names of all the RNAs in each set 178 
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are shown in File4/ Sheet: ‘rna_sets’. The number of identified RNAs varied, depending on the 179 

computational method. Based on the DESeq2 approach, ~40% of the transcripts (n=2,456) 180 

were significantly different between any two points in the cell cycle. The ANOVA-based 181 

approach identified 652 RNAs, whose levels changed significantly in the cell size series (Figure 182 

2). In addition to the expected clusters of RNAs associated with DNA replication (cluster 2) and 183 

mitotic cell cycle progression (cluster 4), there was a large cluster of transcripts enriched for 184 

processes related to ribosome biogenesis (cluster 1, Figure 2; see also File4), peaking in the G1 185 

phase. These transcripts also appeared periodic in past studies that relied on elutriation as a 186 

synchronization method to identify cell cycle-regulated RNAs (Spellman et al., 1998; Blank et 187 

al., 2017), but not in studies that used arrest-and-release methods (Spellman et al., 1998). An 188 

increase in the levels of transcripts involved in ribosome biogenesis before commitment to 189 

division has also been described in transcriptomic profiles of S. pombe (Oliva et al., 2005). 190 

Despite these changes at the transcript level, whether the ribosome content of the cell changes 191 

during the cell cycle is not known. We will describe results that do not support any cell cycle-192 

dependent changes in assembled ribosomes (Figure 4). 193 

 Early in the cell cycle (cluster 1 & 3, Figure 2), we noticed that there were some tRNAs 194 

whose levels were higher. Note that tRNAs were not examined in the two prior studies that 195 

queried the transcriptome of elutriated S. cerevisiae cells, because those studies focused on 196 

polyA-tailed selected transcripts (Spellman et al., 1998; Blank et al., 2017). It has been argued 197 

that polyA selection biases the transcriptome quantification (Weinberg et al., 2016). Hence, in 198 

this study, we relied only on rRNA subtraction to prepare the RNAseq libraries (see Materials 199 

and Methods), which does not remove tRNAs and other non-coding RNAs. We also note that 200 

tRNAs are notoriously difficult to measure by RNAseq due to factors such as their high level of 201 

modification, sequence similarity between different tRNAs, and the difficulty to discriminate 202 

between cleaved and mature tRNAs. The tRNAs whose levels appeared to change in the cell 203 
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cycle are shown in Figure S2. These results are difficult to reconcile with the extreme stability of 204 

mature tRNAs (from 9 h to several days -exceeding the duration of multiple cell cycles, see 205 

(Hopper, 2013)), unless these tRNAs are targets of quality control mechanisms (Hopper, 2013). 206 

In any case, as we show later (Figure S6) we found very little evidence to support a significant 207 

role for altered codon usage in the cell cycle. 208 

 209 

Cell cycle-dependent changes in the proteome 210 

From the soluble and insoluble extracts (see Materials and Methods), we identified 3,571 S. 211 

cerevisiae proteins, at one or more cell cycle points. Although this represents a reasonably 212 

thorough sampling of the yeast proteome, we did not find some low abundance proteins (e.g., 213 

cyclins). This was not unexpected, since a recent, aggregate analysis of all available datasets of 214 

protein abundances in yeast (measured with tandem affinity purification (TAP), followed by 215 

immunoblot analysis-, mass spectrometry-, and GFP tag-based methods), placed proteins of 216 

the gene ontology process ‘mitotic cell cycle regulation’ as the least abundant group (Ho et al., 217 

2018). The extent to which mRNA levels can explain protein levels is debated (Lu et al., 2007; 218 

Vogel and Marcotte, 2012; Csardi et al., 2015; Lahtvee et al., 2017). For most species, RNA 219 

levels explain between one to two-thirds of the variation in protein abundances (Vogel and 220 

Marcotte, 2012). To examine the broad correlation between transcript and protein levels, we 221 

looked at the association of count data from our transcriptomic (reads) and proteomic (spectral 222 

counts) datasets (Figure S3). Across all the points in our cell size series, the Spearman rank 223 

coefficients (ρ) for the transcriptome-proteome correlations ranged from 0.52 to 0.63 (Figure 224 

S3). 225 

 To identify proteins that changed in abundance in the cell cycle, we examined separately 226 

each of the four proteomic datasets: soluble and insoluble extracts, each quantified by spectral 227 
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counts and by peak areas (see Table S1 and Materials and Methods). The overlap between the 228 

proteins in each dataset that appeared to change in abundance in the cell cycle was minimal 229 

(see Figure S4). Based on ANOVA analysis, we identified 333 proteins whose levels changed 230 

significantly in the cell size series, in at least one of the four proteomic datasets (shown in the 231 

heatmap, in Figure 3B). We will describe additional proteins whose levels change significantly in 232 

the cell cycle, but due to irregular patterns and missing values were not identified as such by the 233 

ANOVA-based method we used (see Figure 5). 234 

Our analysis provided numerous examples of physiologically relevant, cell cycle-235 

dependent changes in protein abundance. Among these, were several whose levels are well 236 

known to be periodic at both the protein and RNA levels. These include proteins involved in 237 

DNA replication-related processes, such as both isoforms (Rnr1p and Rnr3p) of the large 238 

subunit of ribonucleotide-diphosphate reductase, peaking as cells enter S phase (Figure 3A, 239 

bottom). However, other groups of proteins that we found to change in abundance in the cell 240 

cycle, were not so at the RNA level. For example, several enzymes of ergosterol biosynthesis 241 

(Erg1,11,3,5,7p) peaked late in the cell cycle (Figure 3A, top). Of those, only the levels of the 242 

mRNA for Erg3p (C-5 sterol desaturase) changed in the cell cycle (see File4/Sheet: 243 

‘rnas_anova_heatmap’). The coordinate upregulation in the levels of enzymes involved in 244 

ergosterol biosynthesis is consistent with the mitotic increase in lipid levels that we will describe 245 

later (Figure 6).  246 

 Despite the transcriptional upregulation in G1 of transcripts involved in ribosome 247 

biogenesis (see Figure 2), we did not observe such broad changes at the proteomic level. In 248 

earlier reports, the synthesis of ribosomal components was not cell cycle-dependent (Shulman 249 

et al., 1973; Elliott et al., 1979; Warner, 1999). To our knowledge, however, it is not known if the 250 

ribosome content in the cell, or the composition of ribosomal proteins in assembled ribosomes, 251 

changes in the cell cycle. Hence, we asked if the total amount of ribosomal proteins or their 252 
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proportion in assembled ribosomes varies significantly in the cell cycle. To this end, we isolated 253 

assembled ribosomes through sucrose ultra-centrifugation from wild type cells (Figure 4A; see 254 

Materials and Methods). Ribosomal protein abundance was measured with SWATH-mass 255 

spectrometry (see Materials and Methods). Note that for this experiment, extracts were not 256 

made from pools of different elutriated cultures, but from the same early G1 elutriated cells at 257 

different points as they progressed in the cell cycle (see Materials and Methods). Neither the 258 

sum of all ribosomal protein abundances (Figure 4B) nor the relative abundance of the 259 

individual ribosomal proteins were significantly different in the cell cycle (Figures 4C and S5). 260 

These results do not support, but also do not unambiguously exclude, the possibility that 261 

individual, specialized ribosomes may be formed during the cell cycle. However, at least based 262 

on these population-averaged measurements, ribosome levels and the composition of 263 

assembled ribosomes seem unaffected in the cell cycle.  264 

 Lastly, we interrogated our proteomic data for evidence of differences in codon usage 265 

during the cell cycle. It has been proposed that optimal codon usage is more prevalent in 266 

mRNAs expressed in the G1 phase of the cell cycle, contributing to the abundance of proteins 267 

that peak in G1 (Frenkel-Morgenstern et al., 2012). Altered tRNA abundances during stress 268 

conditions in S. cerevisiae may also regulate protein synthesis (Torrent et al., 2018). To avoid 269 

confounding effects from differential transcription of RNAs encoding the proteins that we 270 

identified to change in abundance in the cell cycle (Figure 3B), we focused on the proteins 271 

whose corresponding mRNAs were not changing in the cell cycle (Figure 2). Moreover, to 272 

minimize effects from regulated proteolysis, we excluded from the analysis proteins for which 273 

there is evidence for ubiquitylation and regulated proteolysis (Swaney et al., 2013). For the vast 274 

majority of codons in the remaining proteins, there were no significant changes between their 275 

actual and expected frequencies in the cell cycle, based on gene-specific codon usage (Tumu 276 

et al., 2012). Only four codons (AGC, UAU, AGG, AAC) were used with statistically significant 277 
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differences in the cell cycle, but the magnitude of those differences was minimal nonetheless 278 

(Figure S6). Overall, despite hints at the transcriptional level (Figure 2) for upregulation of 279 

processes associated with protein synthesis in the G1 phase, at least from these population-280 

based experiments, our data argue against any significant cell cycle-dependent changes in the 281 

ribosome content (Figure 4B), composition (Figure 4C), or codon usage (Figure S6), suggesting 282 

that at the proteome level those changes in RNA levels have been dampened extensively. 283 

 284 

Thiamine biosynthesis and TDP-dependent enzymes in the cell cycle 285 

To identify other proteins whose levels could change in the cell cycle but were not identified as 286 

such by the computational methods we used, we looked at proteins with the largest change in 287 

their levels, regardless of missing values or statistical cutoffs. Remarkably, a group of enzymes 288 

involved in thiamine biosynthesis peaked coordinately in abundance late in the cell cycle when 289 

the cells reached a cell size of ~65 fL (Figure 5A). These enzymes participate in thiamine 290 

diphosphate (TDP) synthesis in the cytoplasm. To validate these results, we queried in the cell 291 

cycle the levels of a TAP-tagged version of Thi7p from a commercially available strain collection 292 

(Ghaemmaghami et al., 2003), expressed from its endogenous chromosomal location. Thi7p 293 

showed the smallest difference (slightly over 2-fold) in abundance during the cell cycle from our 294 

mass spectrometry experiments and could provide a good measure to validate our results. Early 295 

G1 cells carrying the THI7-TAP allele (the only available THI gene in the TAP-tagged strain 296 

collection encoding any of the proteins shown in Figure 5A) were obtained by elutriation and the 297 

levels of the corresponding proteins were evaluated by immunoblotting at regular intervals, as 298 

the cultures progressed in the cell cycle (Figure 5B). We confirmed by immunoblotting that the 299 

abundance of Thi7p was elevated late in the cell cycle (see Figure 5B; compared to the levels of 300 

the control protein Pgk1p). These results are consistent with the notion that there might be a 301 

coordinate, mitotic upregulation of thiamine biosynthesis enzymes. 302 
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Next, we asked if any TDP-dependent enzymes also change in abundance in the cell 303 

cycle and if strains lacking these proteins have cell cycle-related phenotypes. TDP is a cofactor 304 

for several enzymes, including transketolase (Tkl1,2p), α-ketoglutarate dehydrogenase (Kgd1p), 305 

E1 subunit of pyruvate dehydrogenase (Pda1p), pyruvate decarboxylase (Pdc1,5,6p), and 306 

phenylpyruvate decarboxylase (Aro10p). Only the levels of Tkl2p, Pdc5p, and Aro10p appeared 307 

to be elevated late in the cell cycle (Figure 5C), at the same time as the levels of thiamine 308 

biosynthesis enzymes were also raised (Figure 5A).  309 

Cell size phenotypes are often used as a proxy for disrupted cell cycle progression with 310 

an increased cell size phenotype typically accompanying mitotic defects. Of all deletion strains 311 

lacking a protein that requires TDP as a cofactor, only the loss of Tkl2p increased cell size 312 

significantly (Figure 5D). We found that both birth size and the mean size of tkl2Δ cells were 313 

larger (Figure 5D). Note that the tkl2Δ deletion strain was not in the panels that were examined 314 

in genome-wide screens of cell size mutants (Jorgensen et al., 2002; Zhang et al., 2002). The 315 

mitotic upregulation in the levels of thiamine biosynthesis enzymes (Figure 5A) and Tkl2p itself 316 

(Figure 5C) are suggestive of possible mitotic roles for Tkl2p, which might depend on the 317 

available TDP pools in the cell. In the Discussion, we speculate on such putative roles, based 318 

on the published reports. 319 

 320 

Cell cycle-dependent changes in metabolites and lipids 321 

From the same elutriated pools we used to measure RNAs and proteins (see Figure 1), we also 322 

measured metabolites and lipids. The assays were performed at the West Coast Metabolomics 323 

Center at UC Davis, an NIH RCMRC (Regional Comprehensive Metabolomics Resource Core). 324 

Each class of metabolites was measured with distinct mass spectrometry-based assays (see 325 

Materials and Methods). From these assays, thousands of compounds were detected, but most 326 
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could not be assigned confidently to known metabolites, and they were not considered further. 327 

Instead, we focused on the 406 primary metabolites, biogenic amines, and complex lipids that 328 

were identified across the cell size series. As with our analysis of RNAs and proteins, we used 329 

ANOVA (see Table S1 and Figure 6) to identify compounds whose levels change in the cell 330 

cycle. Previous reports showed that storage carbohydrates are mobilized at the G1/S transition 331 

(Ewald et al., 2016; Zhao et al., 2016). Consistent with these studies, we also found that 332 

trehalose levels rise in G1 to their highest levels when cell size reaches 50 fL, but drop 333 

significantly at the G1/S transition (Figure 6). By far, however, the class of metabolites that 334 

changed the most in abundance in the cell cycle was complex lipids, which peaked late in the 335 

cell cycle (Figure 6). These included phospholipids (phosphatidyl-inositol (PI), -ethanolamine 336 

(PE), -serine (PS)) and triglycerides (Figure 6). The higher triglyceride levels are also consistent 337 

with the elevated levels of neutral lipid droplets late in the G2/M phase, as reported previously 338 

(Blank et al., 2017). Overall, the coordinate increase in the levels of ergosterol biosynthesis 339 

enzymes we identified from the proteomic analysis (Figure 3A) and the increase in lipids (Figure 340 

6), strongly suggest that lipid metabolism is significantly upregulated late in the cell cycle. In the 341 

Discussion, we will expand on the significance of these results.  342 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 18, 2019. ; https://doi.org/10.1101/2019.12.17.880252doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.17.880252
http://creativecommons.org/licenses/by-nc-nd/4.0/


DISCUSSION 343 

The sample-matched datasets for RNAs, proteins, metabolites, and lipids we generated from 344 

budding yeast cells progressing synchronously in the cell cycle provide a comprehensive view 345 

of these biomolecules in dividing cells. We discuss our findings in the context of the relation 346 

between the transcriptome and the proteome and the integration of metabolite and lipid 347 

measurements with other ‘omic’ datasets. 348 

In yeast, the latest meta-analyses from all available studies estimated that between 37% 349 

and 56% of the variance in protein abundance is explained by mRNA abundance (Ho et al., 350 

2018). These estimates are within the range of previous ones from multiple species (Vogel and 351 

Marcotte, 2012). Based on the absolute quantification of protein and mRNA abundances 352 

(Lahtvee et al., 2017), the overall correlation between mRNA and protein abundances was also 353 

in that range (R2=0.45, based on Pearson’s correlation coefficient). The level of correlation 354 

between the transcriptome and the proteome we observed appears to be somewhat higher 355 

(ρ=0.52-0.63, based on Spearman’s coefficient), probably because our experiments were done 356 

from synchronous cells, and because cell cycle transitions are associated with transcriptional 357 

waves (Spellman et al., 1998). A critical role for transcription in shaping the proteome takes 358 

place as cells transition in different environments, and during such transitions changes in protein 359 

levels were much more highly correlated with the changes in mRNA levels (R2>0.9) (Lahtvee et 360 

al., 2017). Hence, the relatively high correlation we observed between the transcriptome and the 361 

proteome in the cell cycle is not surprising, and it is probably an underestimate, since some 362 

extremely unstable cell cycle regulators whose levels rise as a result of transcription (e.g., 363 

cyclins, see Figure 1C), were absent from our proteomic datasets because of their low 364 

abundance. 365 

 Despite the correlation between the transcriptome and the proteome we discussed 366 

above, there were clear groups of transcripts and proteins whose abundance was incongruent. 367 
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Ribosomal biosynthesis, reflected on the levels of individual ribosomal proteins or assembled 368 

ribosomes, was not periodic at the proteomic level (Figures 4 and S5), despite a large G1 369 

transcriptional wave of RNAs involved in this process (Figure 2). We noted that a similar 370 

phenomenon was recently reported for the integrated stress response, a well-characterized 371 

transcriptional response in yeast involving ~900 transcripts (Gasch et al., 2000), which was not 372 

seen at all at the protein level (Ho et al., 2018). The observation that the ribosome content of the 373 

cell is constant in the cell cycle (Figure 4) suggests that changes in translational efficiency of 374 

some mRNAs described previously (Blank et al., 2017) are likely due to transcript-specific 375 

mechanisms, rather than global changes in the steady-state ribosome content (Lodish, 1974).  376 

The mitotic peak in the levels of TDP biosynthesis enzymes was surprising (Figure 5). 377 

The physiological significance of such a change in the levels of these enzymes is unclear. 378 

Through some uncharacterized roles, the TDP-dependent transketolase activity is necessary for 379 

meiotic progression in mouse oocytes (Kim et al., 2012). In bacteria, transketolase participates 380 

in chromosomal topology, and E.coli cells lacking transketolase are UV-sensitive (Hardy and 381 

Cozzarelli, 2005). However, we found that yeast tkl2Δ cells are not sensitive to UV or other 382 

DNA-damaging agents (not shown). Overall, despite the intriguing observations that late in the 383 

cell cycle, levels of the TDP-dependent Tkl2p transketolase were higher (Figure 5C) and loss of 384 

Tkl2p increased cell size (Figure 5D), the molecular mechanism connecting these observations 385 

remains to be determined. 386 

The coordinate upregulation of ergosterol biosynthetic enzymes late in the yeast cell 387 

cycle (Figure 3), not evident at the RNA level (Figure 2), was unexpected. To our knowledge, 388 

there is no prior report of such a response. It should be noted that the lack of cell cycle-389 

dependent changes at the levels of mRNAs encoding the enzymes of ergosterol biosynthetis 390 

was seen not only in our dataset, but also in the other datasets aggregated in the Cyclebase 3.0 391 

database for yeast and other organisms (Santos et al., 2015). Of the enzymes we show in 392 
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Figure 3A, only ERG3 had a rank score of 624, while all others were not periodic (scores >800) 393 

(Santos et al., 2015). Note that we also found ERG3 mRNA levels to significantly change in the 394 

cell cycle (see File4/Sheet: ‘rnas_anova_heatmap’).  395 

The mitotic rise in the levels of sterol biosynthetic enzymes is significant in the context of 396 

our metabolite measurements, showing that lipid levels (especially phospholipids and 397 

triglycerides) increased at the same time (Figure 6). Our observations are consistent with 398 

several other reports linking lipid metabolism with cell cycle progression and mitotic entry in 399 

yeast (Anastasia et al., 2012; McCusker and Kellogg, 2012). Levels of triglycerides increase in 400 

wild‐type cells synchronized in mitosis (Blank et al., 2017), storage of triglycerides in lipid 401 

droplets is thought to fuel mitotic exit (Yang et al., 2016), and lipid-exchange proteins integrate 402 

lipid signaling with cell-cycle progression (Huang et al., 2018). Note that there have not been 403 

analytical measurements of distinct lipids in the cell cycle in yeast. The data we show here are 404 

not only consistent with, but also significantly expand the prior studies mentioned above. It is 405 

also important to stress that an increase in lipids late in the cell cycle cannot simply be due to a 406 

need for cell surface material. We had shown previously that increased lipogenesis does not 407 

increase cell size (Blank et al., 2017). Hence, the increase in the abundance of lipids likely 408 

reflects changes in the composition of membranes or other more specialized, cell cycle-409 

dependent process, not necessarily a simplistic need for more cell surface building blocks. 410 

One also needs to consider the dramatic changes in cellular morphology. Especially 411 

during mitosis, when the cell adopts the characteristic hourglass structure. The lipid content 412 

must accommodate dynamic changes in membrane curvature. For example, during cytokinesis, 413 

it is thought that lipids that confer negative curvature must be deposited on the outer leaflet of 414 

the bilayer (Furse and Shearman, 2018). In yeast and human cells, inhibition of de novo fatty 415 

acid biosynthesis arrests cells in mitosis (Hasslacher et al., 1993; Schneiter et al., 1996; Al-Feel 416 

et al., 2003; Scaglia et al., 2014). In human cells, cholesterol synthesis may affect multiple 417 
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points in the cell cycle. In an earlier report, inhibition of cholesterol synthesis arrested human 418 

cells in mitosis (Suarez et al., 2002), while in a later report the cells arrested in G1 (Singh et al., 419 

2013). Cholesterol’s role in mitosis appears to be complex, not only affecting the distribution of 420 

phospholipids in the plasma membrane but also governing the formation of a vesicular network 421 

at the midbody during cytokinesis (Kettle et al., 2015). Interestingly, ergosterol may have a cell 422 

cycle regulatory role in yeast, distinct from its bulk, structural role in membrane integrity (Dahl et 423 

al., 1987), but that role remains unclear (Gaber et al., 1989). Lastly, our results argue for post-424 

transcriptional mechanisms leading to mitotic upregulation of sterol biosynthesis. As to how the 425 

differential abundance of the ergosterol biosynthetic enzymes might come about, we note that 426 

all the enzymes we show in Figure 3A, including Erg3p, have been shown to be 427 

ubiquitinylated (Peng et al., 2003; Swaney et al., 2013), raising the possibility of regulated 428 

proteolysis. 429 

Overall, our data underscore the value of having metabolite measurements along with 430 

other ‘omic’ datasets, to strengthen the efforts of identifying physiologically relevant cellular 431 

responses. In future work, employing targeted metabolic profiling and flux analysis in the cell 432 

cycle will increase our understanding of how the transcriptome and proteome shape dynamic 433 

changes in metabolism and how resources are allocated during cell division.  434 
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STRUCTURED METHODS 459 

REAGENTS AND TOOLS TABLE 460 

Where known, the Research Resource Identifiers (RRIDs) are shown. 461 

Designation Source Identifier/
Catalog# 

Additional information 

S. cerevisiae 
strain 

(Giaever et al., 
2002); 
http://www.eur
oscarf.de/index
.php?name=N
ews 

RRID:SCR
_003093 

BY4743 MATa/α his3Δ1/his3Δ1 
leu2Δ0/leu2Δ0 LYS2/lys2Δ0 
met15Δ0/MET15 ura3Δ0/ura3Δ0 

S. cerevisiae 
strain 

(Giaever et al., 
2002); 
http://www.eur
oscarf.de/index
.php?name=N
ews 

RRID:SCR
_003093 

BY4742 MATα his3Δ1 leu2Δ0 lys2Δ0 
ura3Δ0 

S. cerevisiae 
strain 

(Giaever et al., 
2002); 
http://www.eur
oscarf.de/index
.php?name=N
ews 

RRID:SCR
_003093 

BY4741 MATa his3Δ1 leu2Δ0 met15Δ0 
ura3Δ0 

S. cerevisiae 
strain 

Dharmacon YSC1178-
202232418 

 THI7-TAP::HIS3MX6, BY4741 
otherwise 

S. cerevisiae 
strain 

Dharmacon YSC6272-
201919629 

13256 tkl2Δ::KanMX, BY4742 
otherwise 

Chemical, 
reagent 

Sigma-Aldrich Y1625 Yeast extract 

Chemical, 
reagent 

Sigma-Aldrich P5905 Peptone 

Chemical, 
reagent 

Sigma-Aldrich D9434 Dextrose 

Chemical, 
reagent 

Calbiochem 239763-M Cycloheximide 

Chemical, 
reagent 

Sigma-Aldrich S2002 Sodium azide 

Chemical, 
reagent 

Sigma-Aldrich 252859 Tris(hydroxymethyl)aminomethane 

Chemical, 
reagent 

Roche TRIS-RO Tris base 

Chemical, 
reagent 

Sigma-Aldrich S7653 Sodium chloride 

Chemical, 
reagent 

Sigma-Aldrich 792780 Ethanol 
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Chemical, 
reagent 

Sigma-Aldrich S2889 Sodium acetate 

Chemical, 
reagent 

Sigma-Aldrich D5758 Diethyl pyrocarbonate, (DEPC) 

Chemical, 
reagent 

Ambion AM9720 Acid-Phenol:Chloroform, pH 4.5 (with IAA, 
125:24:1) 

Chemical, 
reagent 

USP 1374248 Magnesium chloride hexahydrate 

Chemical, 
reagent 

Sigma-Aldrich D0632 Dithiothreitol, (DTT) 

Chemical, 
reagent 

Sigma-Aldrich T8787 Triton™ X-100 

Chemical, 
reagent 

ThermoFisher AM2238 Turbo DNase I 

Chemical, 
reagent 

Scientific 
Industries 

SI-BG05 Glass beads 

Consumable Beckman 
Coulter 

349622 13x51 mm polycarbonate centrifuge tubes 

Chemical, 
reagent 

Sigma-Aldrich S0389 Sucrose 

Chemical, 
reagent 

Sigma-Aldrich P4417 Phosphate buffered saline (PBS) 

Chemical, 
reagent 

ThermoFisher 
Scientific 

84850 C18 Spin Tips 

Chemical, 
reagent 

Millipore Z720003 C18 Ziptips 

Chemical, 
reagent 

Sigma-Aldrich 436143 Sodium dodecyl sulfate (SDS) 

Chemical, 
reagent 

Sigma-Aldrich 207861 Ammonium carbonate 

Chemical, 
reagent 

Sigma-Aldrich 650501 Acetone 

Chemical, 
reagent 

Sigma-Aldrich D6750 Sodium deoxycholate 

Chemical, 
reagent 

ThermoFisher 
Scientific 

77720 Tris(2-carboxyethyl)phosphine (TCEP), Bond-
Breaker™ TCEP Solution 

Chemical, 
reagent 

Sigma-Aldrich I6125 Iodoacetamide 

Chemical, 
reagent 

Pierce 90058 Trypsin Protease, MS-Grade 

Chemical, 
reagent 

Sigma-Aldrich F0507 Formic acid 

Chemical, 
reagent 

Sigma-Aldrich C7715 Amicon® Ultra-15 Centrifugal Filter Units 

Chemical, 
reagent 

Sigma-Aldrich 499609 Calcium chloride 

Chemical, 
reagent 

Sigma-Aldrich T63002 Trifluoroethanol 

Chemical, 
reagent 

Sigma-Aldrich H3375 4-(2-Hydroxyethyl)piperazine-1-
ethanesulfonic acid, N-(2-
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Hydroxyethyl)piperazine-N′-(2-ethanesulfonic 
acid), (HEPES) 

Chemical, 
reagent 

Sigma-Aldrich 78830 Phenylmethanesulfonyl fluoride (PMSF) 

Chemical, 
reagent 

Sigma-Aldrich 431788 Ethylenediaminetetraacetic acid (EDTA) 

Chemical, 
reagent 

ThermoFisher D1306 DAPI (4',6-Diamidino-2-Phenylindole, 
Dihydrochloride) 

Chemical, 
reagent 

Epicentre MRZY1324 Ribo-Zero™ Magnetic Gold Kit (Yeast), for 
rRNA subtraction 

Chemical, 
reagent 

Epicentre SSV21124 SciptSeq™ v2 RNA-Seq Library Preparation 
Kit 

Antibody Sigma-Aldrich P1291 Peroxidase Anti-Peroxidase (PAP) Soluble 
Complex 

Antibody abcam ab38007 Anti-Pgk1p antibody, rabbit polyclonal 
Chemical, 
reagent 

ThermoFisher XP04125 NovexTM WedgeWellTM 4-12% Tris-Glycine 
gels 

Software, 
algorithm 

https://www.m
etaboanalyst.c
a/ 

RRID:SCR
_015539 

MetaboAnalyst, web server for statistical, 
functional and integrative analysis of 
metabolomics data 

Software, 
algorithm 

Beckman 
Coulter 

383550 AccuComp Z2, software to monitor number 
and size of cells with Z2 cell counter 

Software, 
algorithm 

https://www.nik
oninstruments.
com/Products/
Software 

RRID:SCR
_014329 

NIS-Elements, microscope imaging software 
suite used with Nikon products 

Software, 
algorithm 

https://imagej.n
et/ 

RRID:SCR
_003070 

ImageJ, image processing software 

Software, 
algorithm 

http://www.rstu
dio.com/ 

RRID:SCR
_000432 

RStudio, software for the R statistical 
computing environment 

Software, 
algorithm 

http://www.yea
stgenome.org/ 

RRID:SCR
_004694 

SGD, Saccharomyces Genome Database 

Software, 
algorithm 

https://www.r-
project.org 

v3.5.2 
RRID:SCR
_001905 

R, Statistical Computing Environment 

Software, 
algorithm 

http://www.gen
eontology.org/ 

RRID:SCR
_002811 

Gene ontology, enrichment analysis 

Software, 
algorithm 

https://biognos
ys.com/shop/s
pectronaut 

 Spectronaut™, Biognosys software for the 
targeted analysis of DIA measurements from 
various MS platforms 

 462 

 463 

METHODS AND PROTOCOLS 464 

Strains and media 465 
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All the strains used in this study are shown in the Key Resources Table, above. Unless noted 466 

otherwise, the cells were cultivated in the standard, rich, undefined medium YPD (1% w/v yeast 467 

extract, 2% w/v peptone, 2% w/v dextrose), at 30 °C (Kaiser et al., 1994).  468 

 469 

Elutriation 470 

To collect enough cells for the downstream measurements of RNA, proteins, and metabolites, 471 

we followed the same strategy we described previously (Blank et al., 2017). Briefly, elutriated 472 

wild type, G1 cells (diploid BY4743 background) were allowed to progress in the cell cycle until 473 

they reached the desired cell size. At that point, they were quenched (with 100 µg/ml 474 

cycloheximide and 0.1% sodium azide) and frozen away, and later pooled with cells of similar 475 

size (Figure 1A). Overall, we had to collect 101 individual samples, to generate the 24 pools 476 

shown in Figure 1A. 477 

 For other elutriation experiments (e.g., see Figures 4,5), only an early G1 elutriated 478 

fraction was collected, from which samples were taken at regular intervals as the cells 479 

progressed in the cell cycle. 480 

 481 

Cell size and DNA content measurements 482 

The methods to measure DNA content and the cell size (birth or mean size) of asynchronous 483 

cultures and estimate the critical size of asynchronous cultures, have been described in detail 484 

previously (Guo et al., 2004; Truong et al., 2013; Soma et al., 2014; Maitra et al., 2019).  485 

 486 

Proteomic samples 487 
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We used ~1E+09 cells from each of the 24 pools of the cell size series (see Figure 1) to prepare 488 

extracts for LC-MS/MS. For each sample, the cells were resuspended in 0.75 ml of lysis solution 489 

(10 mM Tris pH 7.8, 10 mM NaCl). Glass beads were added to the top of liquid level, the 490 

samples were placed in a Mini Beadbeater (Biospec), and the cells broken by ‘bead-beating’ 491 

twice at the maximum speed for 90 s each time, placed on ice for 60 s between. The extract 492 

from each sample was collected by punching a hole with a 21-gauge syringe needle at the 493 

bottom of the tube. Lastly, the soluble material from the lysates were clarified by centrifugation 494 

at 14,000 g at 4 °C, for 10 m. Insoluble pellets were resuspended in 500 μl of lysis buffer and 495 

both clarified supernatants and pellets were stored at -80 °C until processing for mass 496 

spectrometry. 497 

For mass spectral analysis, clarified extracts were thawed and protease inhibitors 498 

immediately added. 50 μl of each supernatant sample was mixed with 50 µl trifluoroethanol 499 

(TFE) and reduced with 5mM tris(2-carboxyethyl)phosphine (TCEP) at 56 °C for 45 m, cooled 500 

for 5 m at room temperature, and alkylated with 25 mM iodoacetamide in the dark, at room 501 

temperature for 30 m. Samples were diluted 10-fold with digestion buffer (50 mM Tris pH 8.0, 2 502 

mM calcium chloride), digested with trypsin (added at 1:50 ratio) at 37 °C for 5 h. Digestion was 503 

stopped with 100 µl of 10% formic acid and sample volumes were reduced to 100-250 μl in a 504 

SpeedVac. Following filtration with an Amicon® Ultra-15 Centrifugal Filter Unit the peptides 505 

were desalted using C18 Spin Tips, according to the manufacturer’s instructions. The volume of 506 

the samples was then reduced to 5-10 μl in a SpeedVac. Lastly, the samples were resuspended 507 

in 100 μl of a 95% water, 5% acetonitrile, 0.1% formic acid solution, and subjected to LC-508 

MS/MS analysis. 509 

The insoluble pellets from the same extracts described above were processed based on 510 

a method reported previously (Lin et al., 2013). The pellets were resuspended in 50 μl of 2% w/v 511 

sodium dodecyl sulfate (SDS), 50 mM ammonium carbonate and heated at 95 °C for 10 m. 512 
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Following clarification each supernatant was transferred to a fresh tube, mixed with six volumes 513 

of cold acetone (-20 °C), and incubated at 4 °C for 4 h to form a precipitate. Precipitate was 514 

recovered by centrifugation at 13,000 g for 15 m, the supernatant carefully removed by 515 

aspiration, and the pellets washed twice with 0.4 ml of cold acetone. After each wash the 516 

samples were centrifuged at 14,000 g for 1 m and the supernatant carefully aspirated. Pellets 517 

were solubilized in 500 μl of 1% w/v sodium deoxycholate, 50 mM ammonium carbonate with 518 

two rounds of sonication (10 m each) in a water bath sonicator with 5 m on ice in between. 50 µl 519 

of each sample was reduced and alkylated with TCEP and iodocateamide as described above. 520 

Unreacted iodoacetamide was quenched with 12 mM dithiothreitol (DTT). The samples were 521 

brought to 80 µl with digestion buffer and digested with trypsin (added at 1:50 ratio) at 37 °C for 522 

5 h. Digestion was stopped with 1% formic acid and samples were centrifuged at 14,000 g for 523 

10 m to pellet the precipitated sodium deoxycholate. Peptides were desalted with C18 Spin 524 

Tips, and resuspended for LC-MS/MS as described above. 525 

 526 

LC-MS/MS 527 

Mass spectra were acquired on a Thermo Orbitrap Fusion. 5 µl (supernatant samples) or 2 µl 528 

(pellet samples) of peptides were separated using reverse phase chromatography on a Dionex 529 

Ultimate 3000 RSLCnano UHPLC system (Thermo Scientific) with a C18 trap to Acclaim C18 530 

PepMap RSLC column (Dionex; Thermo Scientific) configuration. Peptides were eluted using a 531 

3-45% acetonitrile gradient over 70 min and directly injected into the mass spectrometer using 532 

nano-electrospray. Data-dependent tandem mass spectrometry was performed using a top 533 

speed HCD method with full precursor ion scans (MS1) collected at 120,000 m/z resolution and 534 

a cycle time of 3 sec. Monoisotopic precursor selection and charge-state screening were 535 

enabled, with ions of charge >�+�1 selected with dynamic exclusion of 30�s for ions selected 536 

once within a 30�s window. Selected precursor ions underwent high-energy collision-induced 537 
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dissociation (HCD) at 31% energy stepped +/-4%. All MS2 scans were centroid and done in 538 

rapid mode. Raw files were processed using Proteome Discoverer 2.2 and the label-free 539 

quantification workflow. 540 

 541 

RNA samples and libraries 542 

We used the same approach we had described previously (Blank et al., 2017), to collect cells 543 

from elutriated cultures of wild type (BY4743 strain background). For each of the 24 samples, 544 

from ~3E+07 cells total RNA was prepared with the hot phenol method. Briefly, the frozen 545 

pellets were re-suspended in 0.4 ml TES buffer (10 mM Tris pH = 7.5, 10mM EDTA, 0.5% 546 

SDS), in DEPC-treated water, and ~0.05 ml glass beads were added. Then, 0.4 ml of acid 547 

phenol:chloroform was added to each pellet, and the samples were incubated at 65 °C for 30 m, 548 

and vortexed briefly every 5 m during that time. The samples were centrifuged at 14,000 g for 5 549 

m, and 0.3 ml of the top, aqueous layer were placed in a 2-ml screw-cap tube containing 1 ml 550 

cold ethanol with 40 μl of a 3M sodium acetate solution. The samples were incubated at 4 °C 551 

overnight and then centrifuged at 14,000 g for 20 m. The pellets were washed with 80% ethanol 552 

and centrifuged at 14,000 g for 5 m. The pellets were air-dried and resuspended in 25 μl of 553 

DEPC-treated water. For the RNAseq libraries, we also used the same approach we had 554 

described (Blank et al., 2017), except that we did not select for polyA-tailed RNAs. Instead, from 555 

total RNA, we depleted rRNA, using the ‘Ribo-Zero™ Magnetic Gold Kit (Yeast)’, according to 556 

the manufacturer’s instructions. All libraries were sequenced on an Illumina HiSeq4000, with 557 

multiplexing, at the Texas A&M AgriLife Genomics and Bioinformatics Facility. Raw sequencing 558 

data (fastq files) have been deposited (GEO: GSE135476). 559 

 The reads were aligned to the S. cerevisiae reference genome (version R64-1-1) using 560 

the Rsubread R language package (Liao et al., 2019). First, an index was built using the 561 
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command: buildindex(basename = “R64”, reference = “Saccharomyces_cerevisiae.R64-1-562 

1.dna.toplevel.fa”, gappedIndex=TRUE). Then, for each of the 24 libraries, the paired end reads 563 

were aligned with the command: align(index = ‘R64’, readfile1 = ‘….fastq.gz’, readfile2 = 564 

‘….fastq.gz’, type = “rna”). For each library, we obtained >10 million uniquely mapped reads, 565 

and the output BAM files were then used in the featureCounts function of the Rsubread 566 

package, with the following command: featureCounts(files = “…subread.BAM”, ispairedEnd = 567 

TRUE, requireBothEndsMapped = TRUE, annotext = “Saccharomyces_cerevisiae.R64-1-568 

1.95.gtf”, countChimericFragments = FALSE, isGTFAnnotationFile = TRUE). All the read counts 569 

are in File1/sheet ‘rna_reads’. 570 

 For differential RNA levels between any two points in the cell cycle using the DESeq2 R 571 

language package (Love et al., 2014), the raw read data (File2/sheet ‘rna_deseq2_i’) were used 572 

as input. For this statistical analysis, the 24 cell size pools were grouped in 8 groups, for each of 573 

the approximately 5 fL increments in the cell size series (see Figure 1A). Additional analyses 574 

with ANOVA-based methods were performed as for the other biomolecules, and they are 575 

described below. 576 

 577 

Metabolite samples and analysis 578 

The untargeted, primary metabolite, biogenic amine, and complex lipid analyses were done at 579 

the NIH-funded West Coast Metabolomics Center at the University of California at Davis, 580 

according to their mass spectrometry protocols. Gas Chromatography–Time-of-Flight Mass 581 

Spectrometry (GC-TOF MS) was used for Primary metabolites. For biogenic amines, separation 582 

and detections was achieved by Hydrophilic Interaction Chromatography (HILIC), followed by 583 

Quadrupole time-of-flight (QTOF) MS/MS. Lastly, for complex lipids, Charged Surface Hybrid 584 

(CSH™) C18 separation was followed with QTOF MS/MS for lipids. Extract preparation was 585 
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also done at the same facility, from 1E+07 cells in each sample, from the same ones used for 586 

proteomic and RNA profiling (Figure 1). The cells were provided to the Metabolomics facility as 587 

frozen (at -80 °C) pellets. Detected species that could not be assigned to any compound were 588 

excluded from the analysis. 589 

 590 

ANOVA-based computational approaches to identify differentially expressed 591 

biomolecules 592 

For RNA samples, we used the TPM normalized values. For all other biomolecules, the input 593 

values we used were scaled-normalized for input values per sample. All the input and output 594 

datasets are shown in Table S1. To identify significant differences in the levels of biomolecules 595 

between any two points in the cell cycle we used the robust bootstrap ANOVA, via the t1waybt 596 

function, and the posthoc tests via the mcppb20 function, of the WRS2 R language package 597 

(Wilcox, 2011). The function is shown in File6, using as an example the ‘File2/sol_pa_anova 598 

spreadsheet. For this statistical analysis, the 24 cell size pools were grouped in 8 groups, for 599 

each of the approximately 5 fL increments in the cell size series (see Figure 1A). 600 

 601 

SWATH-Mass spectrometry 602 

The samples used to measure ribosomal protein abundances were from elutriated, diploid wild 603 

type BY4743 cells (see Key Resources Table). Once the cells reached the desired cell size, 604 

they were quenched with 100 µg/ml cycloheximide and 0.1% sodium azide. Cells were 605 

harvested from three independently elutriated cultures (5E+07 cells in each sample). The cells 606 

were re-suspended in a buffer containing 20 mM Tris·Cl (pH 7.4), 150 mM NaCl, 5 mM MgCl2, 1 607 

mM DTT, 100 μg/ml cycloheximide, 1% v/v Triton X-100, and 25 U/ml Turbo DNase I, to a 608 

volume of 0.35 ml. Then, 0.2 ml of 0.5mm glass beads were added to each sample, and 609 
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vortexed at maximum speed for 15 s, eight times, placing on ice for 15 s in between. The 610 

lysates were clarified by centrifuging at 5,000 rpm for 5 m, at 4 °C, and again for 5 m at 13,000 611 

rpm at 4 °C. The supernatant was transferred to a 13×51 mm polycarbonate ultracentrifuge 612 

tube, underlaid with 0.90 ml of 1 M sucrose, and the ribosomes were pelleted by centrifugation 613 

in a TLA100.3 rotor (Beckman) at 100,000 rpm at 4 °C for 1 h. The protein pellets from three 614 

biological replicates for various time points during the cell cycle (40, 45, 50, 55, 60, 65, 70 and 615 

75 fL) were then re-suspended in PBS, subjected to a Filter-Aided Sample Preparation (FASP) 616 

protocol tryptic digestion (Wisniewski et al., 2009), desalted using C-18 Ziptips, and analyzed by 617 

data-independent acquisition (DIA)/SWATH-mass spectrometry, as described previously 618 

(Schilling et al., 2017). 619 

 Briefly, samples were analyzed by reverse-phase HPLC-ESI-MS/MS using an Eksigent 620 

Ultra Plus nano-LC 2D HPLC system (Dublin, CA) with a cHiPLC system (Eksigent) which was 621 

directly connected to a quadrupole time-of-flight (QqTOF) TripleTOF 6600 mass spectrometer 622 

(SCIEX, Concord, CAN) (Christensen et al., 2018). After injection, peptide mixtures were loaded 623 

onto a C18 pre-column chip (200 µm x 0.4 mm ChromXP C18-CL chip, 3 µm, 120 Å, SCIEX) 624 

and washed at 2 µl/min for 10 min with the loading solvent (H2O/0.1% formic acid) for desalting. 625 

Subsequently, peptides were transferred to the 75 µm x 15 cm ChromXP C18-CL chip, 3 µm, 626 

120 Å, (SCIEX), and eluted at a flow rate of 300 nL/min with a 3 h gradient using aqueous and 627 

acetonitrile solvent buffers.  628 

For quantification, all peptide samples were analyzed by data-independent acquisition 629 

(Gillet et al., 2012), using 64 variable-width isolation windows (Collins et al., 2017; Schilling et 630 

al., 2017). The variable window width is adjusted according to the complexity of the typical MS1 631 

ion current observed within a certain m/z range using a DIA ‘variable window method’ algorithm 632 

(more narrow windows were chosen in ‘busy’ m/z ranges, wide windows in m/z ranges with few 633 

eluting precursor ions). DIA acquisitions produce complex MS/MS spectra, which are a 634 

composite of all the analytes within each selected Q1 m/z window. The DIA cycle time of 3.2 s 635 
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included a 250 ms precursor ion scan followed by 45 ms accumulation time for each of the 64 636 

variable SWATH segments. 637 

The DIA/SWATH data was processed with the Spectronaut™ software platform 638 

(Biognosys) for relative quantification comparing peptide peak areas among different time points 639 

during the cell cycle. For the DIA/SWATH MS2 data sets quantification was based on XICs of 6-640 

10 MS/MS fragment ions, typically y- and b-ions, matching to specific peptides present in the 641 

spectral libraries. Significantly changed proteins were accepted at a 5% FDR (q-value < 0.05). 642 

 643 

Immunoblot analysis 644 

For protein surveillance, protein extracts were made as described previously (Amberg et al., 645 

2006), and run on 4-12% Tris-Glycine SDS-PAGE gels. To detect TAP-tagged proteins with the 646 

PAP reagent, we used immunoblots from extracts of the indicated strains as we described 647 

previously (Blank et al., 2017). Loading was evaluated with an anti-Pgk1p antibody. 648 

 649 

Comparison of the relative protein abundances in (Becher et al., 2018) and (Olsen et al., 650 

2010) 651 

For the datasets generated in human, HeLa cells, 0.5 h after nocodazole arrest, the data were 652 

from Table S1 in (Becher et al., 2018) and Supplementary Table_S1 in (Olsen et al., 2010). In 653 

the former study the authors reported the Log2-transformed ratios of the measured abundance 654 

over the median abundance of asynchronous cultures. For the (Olsen et al., 2010) proteins, the 655 

data were the isotopic ratios reported. In both cases, these values represented the 656 

corresponding protein abundances in that sample, among all the proteins identified in each 657 

sample in each study (see File7). To compare the rank order of the 3,298 proteins identified in 658 
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common in the two studies, Spearman’s rank correlation rho (ρ) was estimated (ρ=0.09687857) 659 

with the spearman.test function of the pspearman R language package.  660 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 18, 2019. ; https://doi.org/10.1101/2019.12.17.880252doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.17.880252
http://creativecommons.org/licenses/by-nc-nd/4.0/


REFERENCES 661 

Ahn, E., Kumar, P., Mukha, D., Tzur, A., and Shlomi, T. (2017). Temporal fluxomics reveals 662 

oscillations in TCA cycle flux throughout the mammalian cell cycle. Molecular systems 663 

biology 13, 953. 664 

Al-Feel, W., DeMar, J.C., and Wakil, S.J. (2003). A Saccharomyces cerevisiae mutant strain 665 

defective in acetyl-CoA carboxylase arrests at the G2/M phase of the cell cycle. Proceedings 666 

of the National Academy of Sciences of the United States of America 100, 3095-3100. 667 

Amberg, D.C., Burke, D.J., and Strathern, J.N. (2006). Yeast protein extracts. CSH Protoc 2006, 668 

pdb. prot4152. 669 

Anastasia, S.D., Nguyen, D.L., Thai, V., Meloy, M., MacDonough, T., and Kellogg, D.R. (2012). 670 

A link between mitotic entry and membrane growth suggests a novel model for cell size 671 

control. The Journal of cell biology 197, 89-104. 672 

Aramayo, R., and Polymenis, M. (2017). Ribosome profiling the cell cycle: lessons and 673 

challenges. Current genetics 63, 959-964. 674 

Atilla-Gokcumen, G.E., Muro, E., Relat-Goberna, J., Sasse, S., Bedigian, A., Coughlin, M.L., 675 

Garcia-Manyes, S., and Eggert, U.S. (2014). Dividing cells regulate their lipid composition 676 

and localization. Cell 156, 428-439. 677 

Banfalvi, G. (2008). Cell cycle synchronization of animal cells and nuclei by centrifugal 678 

elutriation. Nature protocols 3, 663-673. 679 

Becher, I., Andres-Pons, A., Romanov, N., Stein, F., Schramm, M., Baudin, F., Helm, D., 680 

Kurzawa, N., Mateus, A., Mackmull, M.T., Typas, A., Muller, C.W., Bork, P., Beck, M., and 681 

Savitski, M.M. (2018). Pervasive Protein Thermal Stability Variation during the Cell Cycle. 682 

Cell 173, 1495-1507.e1418. 683 

Blank, H.M., Perez, R., He, C., Maitra, N., Metz, R., Hill, J., Lin, Y., Johnson, C.D., Bankaitis, 684 

V.A., Kennedy, B.K., Aramayo, R., and Polymenis, M. (2017). Translational control of 685 

lipogenic enzymes in the cell cycle of synchronous, growing yeast cells. The EMBO journal 686 

36, 487-502. 687 

Carpy, A., Krug, K., Graf, S., Koch, A., Popic, S., Hauf, S., and Macek, B. (2014). Absolute 688 

proteome and phosphoproteome dynamics during the cell cycle of Schizosaccharomyces 689 

pombe (Fission Yeast). Molecular & cellular proteomics : MCP 13, 1925-1936. 690 

Cho, R.J., Campbell, M.J., Winzeler, E.A., Steinmetz, L., Conway, A., Wodicka, L., Wolfsberg, 691 

T.G., Gabrielian, A.E., Landsman, D., Lockhart, D.J., and Davis, R.W. (1998). A genome-692 

wide transcriptional analysis of the mitotic cell cycle. Molecular cell 2, 65-73. 693 

Christensen, D.G., Meyer, J.G., Baumgartner, J.T., D'Souza, A.K., Nelson, W.C., Payne, S.H., 694 

Kuhn, M.L., Schilling, B., and Wolfe, A.J. (2018). Identification of Novel Protein Lysine 695 

Acetyltransferases in Escherichia coli. mBio 9. 696 

Collins, B.C., Hunter, C.L., Liu, Y., Schilling, B., Rosenberger, G., Bader, S.L., Chan, D.W., 697 

Gibson, B.W., Gingras, A.C., Held, J.M., Hirayama-Kurogi, M., Hou, G., Krisp, C., Larsen, 698 

B., Lin, L., Liu, S., Molloy, M.P., Moritz, R.L., Ohtsuki, S., Schlapbach, R., Selevsek, N., 699 

Thomas, S.N., Tzeng, S.C., Zhang, H., and Aebersold, R. (2017). Multi-laboratory 700 

assessment of reproducibility, qualitative and quantitative performance of SWATH-mass 701 

spectrometry. Nature communications 8, 291. 702 

Creanor, J., and Mitchison, J. (1979). Reduction of perturbations in leucine incorporation in 703 

synchronous cultures of Schizosaccharomyces pombe made by elutriation. Journal of 704 

General Microbiology 112, 385-388. 705 

Csardi, G., Franks, A., Choi, D.S., Airoldi, E.M., and Drummond, D.A. (2015). Accounting for 706 

experimental noise reveals that mRNA levels, amplified by post-transcriptional processes, 707 

largely determine steady-state protein levels in yeast. PLoS genetics 11, e1005206. 708 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 18, 2019. ; https://doi.org/10.1101/2019.12.17.880252doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.17.880252
http://creativecommons.org/licenses/by-nc-nd/4.0/


Dahl, C., Biemann, H.P., and Dahl, J. (1987). A protein kinase antigenically related to pp60v-src 709 

possibly involved in yeast cell cycle control: positive in vivo regulation by sterol. Proceedings 710 

of the National Academy of Sciences of the United States of America 84, 4012-4016. 711 

Dai, L., Zhao, T., Bisteau, X., Sun, W., Prabhu, N., Lim, Y.T., Sobota, R.M., Kaldis, P., and 712 

Nordlund, P. (2018). Modulation of Protein-Interaction States through the Cell Cycle. Cell 713 

173, 1481-1494.e1413. 714 

de Lichtenberg, U., Wernersson, R., Jensen, T.S., Nielsen, H.B., Fausboll, A., Schmidt, P., 715 

Hansen, F.B., Knudsen, S., and Brunak, S. (2005). New weakly expressed cell cycle-716 

regulated genes in yeast. Yeast 22, 1191-1201. 717 

Dephoure, N., Zhou, C., Villen, J., Beausoleil, S.A., Bakalarski, C.E., Elledge, S.J., and Gygi, 718 

S.P. (2008). A quantitative atlas of mitotic phosphorylation. Proceedings of the National 719 

Academy of Sciences of the United States of America 105, 10762-10767. 720 

Elliott, S.G., Warner, J.R., and McLaughlin, C.S. (1979). Synthesis of ribosomal proteins during 721 

the cell cycle of the yeast Saccharomyces cerevisiae. Journal of bacteriology 137, 1048-722 

1050. 723 

Evans, T., Rosenthal, E.T., Youngblom, J., Distel, D., and Hunt, T. (1983). Cyclin: a protein 724 

specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. 725 

Cell 33, 389-396. 726 

Ewald, J.C., Kuehne, A., Zamboni, N., and Skotheim, J.M. (2016). The Yeast Cyclin-Dependent 727 

Kinase Routes Carbon Fluxes to Fuel Cell Cycle Progression. Molecular cell 62, 532-545. 728 

Flory, M.R., Lee, H., Bonneau, R., Mallick, P., Serikawa, K., Morris, D.R., and Aebersold, R. 729 

(2006). Quantitative proteomic analysis of the budding yeast cell cycle using acid-cleavable 730 

isotope-coded affinity tag reagents. Proteomics 6, 6146-6157. 731 

Frenkel-Morgenstern, M., Danon, T., Christian, T., Igarashi, T., Cohen, L., Hou, Y.M., and 732 

Jensen, L.J. (2012). Genes adopt non-optimal codon usage to generate cell cycle-733 

dependent oscillations in protein levels. Molecular systems biology 8, 572. 734 

Furse, S., and Shearman, G.C. (2018). Do lipids shape the eukaryotic cell cycle? Biochimica et 735 

biophysica acta. Molecular and cell biology of lipids 1863, 9-19. 736 

Gaber, R.F., Copple, D.M., Kennedy, B.K., Vidal, M., and Bard, M. (1989). The yeast gene 737 

ERG6 is required for normal membrane function but is not essential for biosynthesis of the 738 

cell-cycle-sparking sterol. Molecular and cellular biology 9, 3447-3456. 739 

Gasch, A.P., Spellman, P.T., Kao, C.M., Carmel-Harel, O., Eisen, M.B., Storz, G., Botstein, D., 740 

and Brown, P.O. (2000). Genomic expression programs in the response of yeast cells to 741 

environmental changes. Molecular biology of the cell 11, 4241-4257. 742 

Ghaemmaghami, S., Huh, W.K., Bower, K., Howson, R.W., Belle, A., Dephoure, N., O'Shea, 743 

E.K., and Weissman, J.S. (2003). Global analysis of protein expression in yeast. Nature 744 

425, 737-741. 745 

Giaever, G., Chu, A.M., Ni, L., Connelly, C., Riles, L., Veronneau, S., Dow, S., Lucau-Danila, A., 746 

Anderson, K., Andre, B., Arkin, A.P., Astromoff, A., El-Bakkoury, M., Bangham, R., Benito, 747 

R., Brachat, S., Campanaro, S., Curtiss, M., Davis, K., Deutschbauer, A., Entian, K.D., 748 

Flaherty, P., Foury, F., Garfinkel, D.J., Gerstein, M., Gotte, D., Guldener, U., Hegemann, 749 

J.H., Hempel, S., Herman, Z., Jaramillo, D.F., Kelly, D.E., Kelly, S.L., Kotter, P., LaBonte, 750 

D., Lamb, D.C., Lan, N., Liang, H., Liao, H., Liu, L., Luo, C., Lussier, M., Mao, R., Menard, 751 

P., Ooi, S.L., Revuelta, J.L., Roberts, C.J., Rose, M., Ross-Macdonald, P., Scherens, B., 752 

Schimmack, G., Shafer, B., Shoemaker, D.D., Sookhai-Mahadeo, S., Storms, R.K., 753 

Strathern, J.N., Valle, G., Voet, M., Volckaert, G., Wang, C.Y., Ward, T.R., Wilhelmy, J., 754 

Winzeler, E.A., Yang, Y., Yen, G., Youngman, E., Yu, K., Bussey, H., Boeke, J.D., Snyder, 755 

M., Philippsen, P., Davis, R.W., and Johnston, M. (2002). Functional profiling of the 756 

Saccharomyces cerevisiae genome. Nature 418, 387-391. 757 

Gillet, L.C., Navarro, P., Tate, S., Rost, H., Selevsek, N., Reiter, L., Bonner, R., and Aebersold, 758 

R. (2012). Targeted data extraction of the MS/MS spectra generated by data-independent 759 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 18, 2019. ; https://doi.org/10.1101/2019.12.17.880252doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.17.880252
http://creativecommons.org/licenses/by-nc-nd/4.0/


acquisition: a new concept for consistent and accurate proteome analysis. Molecular & 760 

cellular proteomics : MCP 11, O111.016717. 761 

Granovskaia, M.V., Jensen, L.J., Ritchie, M.E., Toedling, J., Ning, Y., Bork, P., Huber, W., and 762 

Steinmetz, L.M. (2010). High-resolution transcription atlas of the mitotic cell cycle in budding 763 

yeast. Genome biology 11, R24. 764 

Guo, J., Bryan, B.A., and Polymenis, M. (2004). Nutrient-specific effects in the coordination of 765 

cell growth with cell division in continuous cultures of Saccharomyces cerevisiae. Archives 766 

of microbiology 182, 326-330. 767 

Hardy, C.D., and Cozzarelli, N.R. (2005). A genetic selection for supercoiling mutants of 768 

Escherichia coli reveals proteins implicated in chromosome structure. Molecular 769 

microbiology 57, 1636-1652. 770 

Hasslacher, M., Ivessa, A.S., Paltauf, F., and Kohlwein, S.D. (1993). Acetyl-CoA carboxylase 771 

from yeast is an essential enzyme and is regulated by factors that control phospholipid 772 

metabolism. The Journal of biological chemistry 268, 10946-10952. 773 

Ho, B., Baryshnikova, A., and Brown, G.W. (2018). Unification of Protein Abundance Datasets 774 

Yields a Quantitative Saccharomyces cerevisiae Proteome. Cell systems 6, 192-205.e193. 775 

Hoose, S.A., Rawlings, J.A., Kelly, M.M., Leitch, M.C., Ababneh, Q.O., Robles, J.P., Taylor, D., 776 

Hoover, E.M., Hailu, B., McEnery, K.A., Downing, S.S., Kaushal, D., Chen, Y., Rife, A., 777 

Brahmbhatt, K.A., Smith, R., 3rd, and Polymenis, M. (2012). A systematic analysis of cell 778 

cycle regulators in yeast reveals that most factors act independently of cell size to control 779 

initiation of division. PLoS genetics 8, e1002590. 780 

Hopper, A.K. (2013). Transfer RNA post-transcriptional processing, turnover, and subcellular 781 

dynamics in the yeast Saccharomyces cerevisiae. Genetics 194, 43-67. 782 

Huang, J., Mousley, C.J., Dacquay, L., Maitra, N., Drin, G., He, C., Ridgway, N.D., Tripathi, A., 783 

Kennedy, M., Kennedy, B.K., Liu, W., Baetz, K., Polymenis, M., and Bankaitis, V.A. (2018). 784 

A Lipid Transfer Protein Signaling Axis Exerts Dual Control of Cell-Cycle and Membrane 785 

Trafficking Systems. Dev Cell 44, 378-391.e375. 786 

Jorgensen, P., Nishikawa, J.L., Breitkreutz, B.J., and Tyers, M. (2002). Systematic identification 787 

of pathways that couple cell growth and division in yeast. Science 297, 395-400. 788 

Juppner, J., Mubeen, U., Leisse, A., Caldana, C., Brust, H., Steup, M., Herrmann, M., 789 

Steinhauser, D., and Giavalisco, P. (2017). Dynamics of lipids and metabolites during the 790 

cell cycle of Chlamydomonas reinhardtii. The Plant journal : for cell and molecular biology 791 

92, 331-343. 792 

Kaiser, C., Michaelis, S., Mitchell, A., and Cold Spring Harbor Laboratory. (1994). Methods in 793 

yeast genetics : a Cold Spring Harbor Laboratory course manual. Cold Spring Harbor 794 

Laboratory Press: Cold Spring Harbor, NY. 795 

Kettle, E., Page, S.L., Morgan, G.P., Malladi, C.S., Wong, C.L., Boadle, R.A., Marsh, B.J., 796 

Robinson, P.J., and Chircop, M. (2015). A Cholesterol-Dependent Endocytic Mechanism 797 

Generates Midbody Tubules During Cytokinesis. Traffic (Copenhagen, Denmark) 16, 1174-798 

1192. 799 

Kim, Y., Kim, E.Y., Seo, Y.M., Yoon, T.K., Lee, W.S., and Lee, K.A. (2012). Function of the 800 

pentose phosphate pathway and its key enzyme, transketolase, in the regulation of the 801 

meiotic cell cycle in oocytes. Clinical and experimental reproductive medicine 39, 58-67. 802 

Kurat, C.F., Wolinski, H., Petschnigg, J., Kaluarachchi, S., Andrews, B., Natter, K., and 803 

Kohlwein, S.D. (2009). Cdk1/Cdc28-dependent activation of the major triacylglycerol lipase 804 

Tgl4 in yeast links lipolysis to cell-cycle progression. Molecular cell 33, 53-63. 805 

Lahtvee, P.-J., Sánchez, B.J., Smialowska, A., Kasvandik, S., Elsemman, I.E., Gatto, F., and 806 

Nielsen, J. (2017). Absolute quantification of protein and mRNA abundances demonstrate 807 

variability in gene-specific translation efficiency in yeast. Cell systems 4, 495-504. e495. 808 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 18, 2019. ; https://doi.org/10.1101/2019.12.17.880252doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.17.880252
http://creativecommons.org/licenses/by-nc-nd/4.0/


Lane, K.R., Yu, Y., Lackey, P.E., Chen, X., Marzluff, W.F., and Cook, J.G. (2013). Cell cycle-809 

regulated protein abundance changes in synchronously proliferating HeLa cells include 810 

regulation of pre-mRNA splicing proteins. PloS one 8, e58456. 811 

Liao, Y., Smyth, G.K., and Shi, W. (2019). The R package Rsubread is easier, faster, cheaper 812 

and better for alignment and quantification of RNA sequencing reads. Nucleic acids 813 

research 47, e47. 814 

Lin, Y., Liu, H., Liu, Z., Liu, Y., He, Q., Chen, P., Wang, X., and Liang, S. (2013). Development 815 

and evaluation of an entirely solution-based combinative sample preparation method for 816 

membrane proteomics. Analytical biochemistry 432, 41-48. 817 

Lindahl, P.E. (1948). Principle of a counter-streaming centrifuge for the separation of particles of 818 

different sizes. Nature 161, 648. 819 

Lodish, H.F. (1974). Model for the regulation of mRNA translation applied to haemoglobin 820 

synthesis. Nature 251, 385-388. 821 

Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and 822 

dispersion for RNA-seq data with DESeq2. Genome biology 15, 550. 823 

Lu, P., Vogel, C., Wang, R., Yao, X., and Marcotte, E.M. (2007). Absolute protein expression 824 

profiling estimates the relative contributions of transcriptional and translational regulation. 825 

Nature biotechnology 25, 117-124. 826 

Ly, T., Ahmad, Y., Shlien, A., Soroka, D., Mills, A., Emanuele, M.J., Stratton, M.R., and Lamond, 827 

A.I. (2014). A proteomic chronology of gene expression through the cell cycle in human 828 

myeloid leukemia cells. Elife 3, e01630. 829 

Ly, T., Endo, A., and Lamond, A.I. (2015). Proteomic analysis of the response to cell cycle 830 

arrests in human myeloid leukemia cells. eLife 4, e04534. 831 

Maitra, N., Anandhakumar, J., Blank, H.M., Kaplan, C.D., and Polymenis, M. (2019). 832 

Perturbations of Transcription and Gene Expression-Associated Processes Alter Distribution 833 

of Cell Size Values in Saccharomyces cerevisiae. G3 9, 239-250. 834 

Mann, M. (2006). Functional and quantitative proteomics using SILAC. Nature reviews. 835 

Molecular cell biology 7, 952-958. 836 

McCusker, D., and Kellogg, D.R. (2012). Plasma membrane growth during the cell cycle: 837 

unsolved mysteries and recent progress. Current opinion in cell biology 24, 845-851. 838 

Mitchison, J.M. (1971). Synchronous Cultures. In: The Biology of the Cell Cycle: Cambridge 839 

University Press, 25-57. 840 

Oliva, A., Rosebrock, A., Ferrezuelo, F., Pyne, S., Chen, H., Skiena, S., Futcher, B., and 841 

Leatherwood, J. (2005). The cell cycle-regulated genes of Schizosaccharomyces pombe. 842 

PLoS biology 3, e225. 843 

Olsen, J.V., Vermeulen, M., Santamaria, A., Kumar, C., Miller, M.L., Jensen, L.J., Gnad, F., 844 

Cox, J., Jensen, T.S., Nigg, E.A., Brunak, S., and Mann, M. (2010). Quantitative 845 

phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. 846 

Science signaling 3, ra3. 847 

Peng, J., Schwartz, D., Elias, J.E., Thoreen, C.C., Cheng, D., Marsischky, G., Roelofs, J., 848 

Finley, D., and Gygi, S.P. (2003). A proteomics approach to understanding protein 849 

ubiquitination. Nature biotechnology 21, 921-926. 850 

Pramila, T., Wu, W., Miles, S., Noble, W.S., and Breeden, L.L. (2006). The Forkhead 851 

transcription factor Hcm1 regulates chromosome segregation genes and fills the S-phase 852 

gap in the transcriptional circuitry of the cell cycle. Genes & development 20, 2266-2278. 853 

Pringle, J.R., Hartwell, L.H. (1981). The Saccharomyces cerevisiae Cell Cycle. In: The 854 

Molecular and Cellular Biology of the Yeast Saccharomyces, vol. 1: Cold Spring Harbor 855 

Laboratory Press, 97-142. 856 

Rustici, G., Mata, J., Kivinen, K., Lio, P., Penkett, C.J., Burns, G., Hayles, J., Brazma, A., Nurse, 857 

P., and Bahler, J. (2004). Periodic gene expression program of the fission yeast cell cycle. 858 

Nature genetics 36, 809-817. 859 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 18, 2019. ; https://doi.org/10.1101/2019.12.17.880252doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.17.880252
http://creativecommons.org/licenses/by-nc-nd/4.0/


Sanchez-Alvarez, M., Zhang, Q., Finger, F., Wakelam, M.J., and Bakal, C. (2015). Cell cycle 860 

progression is an essential regulatory component of phospholipid metabolism and 861 

membrane homeostasis. Open biology 5, 150093. 862 

Santos, A., Wernersson, R., and Jensen, L.J. (2015). Cyclebase 3.0: a multi-organism database 863 

on cell-cycle regulation and phenotypes. Nucleic acids research 43, D1140-1144. 864 

Scaglia, N., Tyekucheva, S., Zadra, G., Photopoulos, C., and Loda, M. (2014). De novo fatty 865 

acid synthesis at the mitotic exit is required to complete cellular division. Cell cycle 866 

(Georgetown, Tex.) 13, 859-868. 867 

Schilling, B., Gibson, B.W., and Hunter, C.L. (2017). Generation of High-Quality SWATH((R)) 868 

Acquisition Data for Label-free Quantitative Proteomics Studies Using TripleTOF((R)) Mass 869 

Spectrometers. Methods in molecular biology (Clifton, N.J.) 1550, 223-233. 870 

Schillinger, J., Severin, K., Kaschani, F., Kaiser, M., and Ehrmann, M. (2018). HTRA1-871 

Dependent Cell Cycle Proteomics. Journal of proteome research 17, 2679-2694. 872 

Schneiter, R., Hitomi, M., Ivessa, A.S., Fasch, E.V., Kohlwein, S.D., and Tartakoff, A.M. (1996). 873 

A yeast acetyl coenzyme A carboxylase mutant links very-long-chain fatty acid synthesis to 874 

the structure and function of the nuclear membrane-pore complex. Molecular and cellular 875 

biology 16, 7161-7172. 876 

Shulman, R.W., Hartwell, L.H., and Warner, J.R. (1973). Synthesis of ribosomal proteins during 877 

the yeast cell cycle. Journal of molecular biology 73, 513-525. 878 

Singh, P., Saxena, R., Srinivas, G., Pande, G., and Chattopadhyay, A. (2013). Cholesterol 879 

biosynthesis and homeostasis in regulation of the cell cycle. PloS one 8, e58833. 880 

Soma, S., Yang, K., Morales, M.I., and Polymenis, M. (2014). Multiple metabolic requirements 881 

for size homeostasis and initiation of division in Saccharomyces cerevisiae. Microb Cell 1, 882 

256-266. 883 

Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B., Brown, P.O., 884 

Botstein, D., and Futcher, B. (1998). Comprehensive identification of cell cycle-regulated 885 

genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Molecular biology 886 

of the cell 9, 3273-3297. 887 

Suarez, Y., Fernandez, C., Ledo, B., Ferruelo, A.J., Martin, M., Vega, M.A., Gomez-Coronado, 888 

D., and Lasuncion, M.A. (2002). Differential effects of ergosterol and cholesterol on Cdk1 889 

activation and SRE-driven transcription. European journal of biochemistry / FEBS 269, 890 

1761-1771. 891 

Swaffer, M.P., Jones, A.W., Flynn, H.R., Snijders, A.P., and Nurse, P. (2016). CDK Substrate 892 

Phosphorylation and Ordering the Cell Cycle. Cell 167, 1750-1761.e1716. 893 

Swaney, D.L., Beltrao, P., Starita, L., Guo, A., Rush, J., Fields, S., Krogan, N.J., and Villen, J. 894 

(2013). Global analysis of phosphorylation and ubiquitylation cross-talk in protein 895 

degradation. Nat Methods 10, 676-682. 896 

Torrent, M., Chalancon, G., de Groot, N.S., Wuster, A., and Madan Babu, M. (2018). Cells alter 897 

their tRNA abundance to selectively regulate protein synthesis during stress conditions. 898 

Science signaling 11. 899 

Truong, S.K., McCormick, R.F., and Polymenis, M. (2013). Genetic Determinants of Cell Size at 900 

Birth and Their Impact on Cell Cycle Progression in Saccharomyces cerevisiae. G3 3, 1525-901 

1530. 902 

Tumu, S., Patil, A., Towns, W., Dyavaiah, M., and Begley, T.J. (2012). The gene-specific codon 903 

counting database: a genome-based catalog of one-, two-, three-, four- and five-codon 904 

combinations present in Saccharomyces cerevisiae genes. Database : the journal of 905 

biological databases and curation 2012, bas002. 906 

Vogel, C., and Marcotte, E.M. (2012). Insights into the regulation of protein abundance from 907 

proteomic and transcriptomic analyses. Nature reviews. Genetics 13, 227-232. 908 

Warner, J.R. (1999). The economics of ribosome biosynthesis in yeast. Trends in biochemical 909 

sciences 24, 437-440. 910 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 18, 2019. ; https://doi.org/10.1101/2019.12.17.880252doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.17.880252
http://creativecommons.org/licenses/by-nc-nd/4.0/


Weinberg, D.E., Shah, P., Eichhorn, S.W., Hussmann, J.A., Plotkin, J.B., and Bartel, D.P. 911 

(2016). Improved Ribosome-Footprint and mRNA Measurements Provide Insights into 912 

Dynamics and Regulation of Yeast Translation. Cell reports 14, 1787-1799. 913 

Wilcox, R.R. (2011). Introduction to robust estimation and hypothesis testing. Academic press. 914 

Wisniewski, J.R., Zougman, A., Nagaraj, N., and Mann, M. (2009). Universal sample 915 

preparation method for proteome analysis. Nature methods 6, 359-362. 916 

Yang, P.L., Hsu, T.H., Wang, C.W., and Chen, R.H. (2016). Lipid droplets maintain lipid 917 

homeostasis during anaphase for efficient cell separation in budding yeast. Molecular 918 

biology of the cell 27, 2368-2380. 919 

Zhang, J., Schneider, C., Ottmers, L., Rodriguez, R., Day, A., Markwardt, J., and Schneider, 920 

B.L. (2002). Genomic scale mutant hunt identifies cell size homeostasis genes in S. 921 

cerevisiae. Current biology : CB 12, 1992-2001. 922 

Zhao, G., Chen, Y., Carey, L., and Futcher, B. (2016). Cyclin-Dependent Kinase Co-Ordinates 923 

Carbohydrate Metabolism and Cell Cycle in S. cerevisiae. Molecular cell 62, 546-557. 924 

  925 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 18, 2019. ; https://doi.org/10.1101/2019.12.17.880252doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.17.880252
http://creativecommons.org/licenses/by-nc-nd/4.0/


FIGURES 926 

 927 

FIGURE 1. Overview of the experimental design to query cell cycle-dependent changes in 928 

the levels of RNAs, proteins, and metabolites. A, Generation of sample-matched, multiomic 929 

datasets from synchronous cultures of cells of different size, during the cell cycle. B, Serving as 930 

a morphological marker of cell cycle progression, the percentage of budded cells (y-axis) as a 931 

function of cell size (x-axis) is shown for each cell size pool. Cell size corresponds to the mean 932 

cell size of the population, and in this case it is the weighted average of all the mean cell sizes 933 

of all the elutriated samples that constituted each of the 24 pools. C, The levels of mitotic 934 

(CLB2) or G1 (CLN1,2) cyclin mRNAs, which are known to be periodic in the cell cycle, are 935 

shown along with those of a non-periodic transcript (ACT1; encoding actin). Cell size is shown 936 

on the x-axis (in fL), while the Log2-transformed ‘Transcripts Per Kilobase Million’ (TPM) values 937 

for each transcript are shown on the y-axis. All 24 values, one for each pool, were plotted in 938 

these graphs. Loess curves and confidence bands indicating the standard errors on the curve at 939 

a 0.95 level were drawn using the default settings of the panel.smoother function of the 940 

latticeExtra R language package.  941 
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 942 

 943 

FIGURE 2. Transcripts changing in abundance in the cell cycle. Heatmap of the levels of 944 

652 differentially expressed RNAs with significantly different levels (p<0.05; Log2(FC)≥1) 945 

between any two points in the cell cycle, based on bootstrap ANOVA. The levels of each RNA 946 

were the average of each triplicate for the cell size indicated, which was then divided by the 947 

average value of the entire cell size series for that RNA. These ‘expressed ratios’ were then 948 

Log2-transformed. The Log2(expressed ratios) values were hierarchically clustered and 949 

displayed with the pheatmap R language package, using the default unsupervised algorithms of 950 

the package. The different rows of the heatmap correspond to the different cell sizes (40-75 fL, 951 

top to bottom, in 5fL intervals). The cell cycle phases approximately corresponding to these 952 

sizes are shown to the right of the heatmap. The names of all RNAs, values, and clustering 953 

classifications are in File4/Sheet: ‘rnas_anova_heatmap’. The gene ontology enrichment 954 

analysis for each cluster was done on the PANTHER platform, and the detailed output is in 955 

File4/Sheet: ‘rnas_clusters’. 956 
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 958 

FIGURE 3. Proteins with cell cycle-dependent abundance. A, Levels of selected proteins 959 

whose levels changed significantly (p<0.05; Log2(FC)≥1) between any two points in the cell 960 

cycle, based on bootstrap ANOVA, in the cell cycle: Top, enzymes involved in ergosterol 961 

biosynthesis. Bottom, enzymes involved in DNA metabolism (Pol32p: DNA polymerase δ; 962 

Prs1,2p: PRPP synthase; Rnr1,3p: ribonucleotide-diphosphate reductase). The corresponding 963 

Log2(expressed ratios) values from all 24 data points are on the y-axis, and cell size values are 964 

on the x-axis. Loess curves and confidence bands indicating the standard errors on the curve at 965 

a 0.95 level were drawn using the default settings of the panel.smoother function of the 966 

latticeExtra R language package. B, Heatmap displaying the relative abundance of the 333 967 

proteins in one or more of the four ‘anova’ sets shown in Figure S4. In cases where the same 968 

protein was in the intersection of more than one datasets, we chose for display the values from 969 

the dataset from which the changes in the protein abundance in the cell cycle was the most 970 

significant (i.e., lowest p-value) and greater in magnitude (i.e., highest Log2(FC)). The heatmap 971 

was generated as in Figure 2. All the relevant data are in File4/Sheet: 972 

‘proteins_anova_heatmap’.  973 
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 975 

FIGURE 4. Ribosomal protein abundance in ribosomes does not change in the cell cycle. 976 

A, Elutriated, early G1 cells were cultured, and sampled at regular intervals in the cell cycle, in 977 

three biological replicates at each 5fL range, from 40 to 75 fL. Protein extracts from the same 978 

number of cells were then fractionated by sucrose ultra-centrifugation, to isolated ribosomes on 979 

mRNAs, which were then analyzed by SWATH-mass spectrometry (see materials and 980 

Methods). B, The peak areas corresponding to each ribosomal protein (RP) detected were 981 

summed and averaged across the triplicate for each cell size interval. The Log2(expressed 982 

ratios) values for the ‘Sum of RP levels’ are shown on the y-axis, while cell size is on the x-axis. 983 

C, Correlation matrix of the relative abundance of individual ribosomal proteins in assembled 984 

ribosomes on mRNAs. The Spearman correlation coefficients (ρ) shown in each case were 985 

calculated with the rcorr function of the Hmisc R language package. The cell cycle profiles for 986 

each ribosomal protein are shown in Figure S4. 987 
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 989 

FIGURE 5. Thiamine biosynthesis and TDP-dependent enzymes in the cell cycle. A, 990 

Abundances of the indicated proteins of thiamine biosynthesis from LC-MS/MS, across the cell 991 

size series (x-axis, in fL). The corresponding Log2(expressed ratios) values from all 24 data 992 

points are on the y-axis. Loess curves and confidence bands indicating the standard errors on 993 

the curve at a 0.95 level were drawn using the default settings of the panel.smoother function of 994 

the latticeExtra R language package. B, The abundance of Thi7-TAP by immunoblotting from 995 

synchronous, elutriated cells, progressing in the cell cycle and sampled at regular intervals, as 996 

indicated (%B is the percentage of budded cells; fL is the cell size). Pgk1p levels are also 997 

shown from the same samples, to indicate loading. For the two samples indicated with asterisk 998 

(*) in the Thi7-TAP series, there were no size data due to instrument malfunction. At the bottom, 999 

the band intensities were quantified with ImageJ software, and the Log2-transformed expressed 1000 

ratios of Thi7-TAP are shown, after they were normalized against Pgk1p. C, Abundances of the 1001 

indicated TDP-dependent proteins, determined and displayed as in A. D, The birth and mean 1002 

size of tkl2 cells and experiment-matched wild type (TKL2) cultures from exponentially dividing 1003 

cells in rich, undefined media (YPD). At least twelve independent cultures were measured in 1004 

each case. Significant differences and the associated p values were indicated by the non-1005 

parametric Wilcoxon rank sum test, performed with the wilcox.test function of the R stats 1006 

package.  1007 
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 1010 

FIGURE 6. Lipid levels change significantly in the cell cycle. A, From 406 known 1011 

metabolites identified from all classes (primary, biogenic amines, complex lipids), the levels of 1012 

64 with significantly different levels (p<0.05; Log2(FC)≥1) between any two points in the cell 1013 

cycle, based on bootstrap ANOVA, are shown in the heatmap. The levels of each metabolite 1014 

were the average of each triplicate for the cell size indicated, which was then divided by the 1015 

average value of the entire cell size series for that metabolite. These ‘expressed ratios’ were 1016 

then Log2-transformed. The Log2(expressed ratios) values were hierarchically clustered and 1017 

displayed with the pheatmap R language package. The different columns of the heatmap 1018 

correspond to the different cell sizes (40-75 fL, left to right, in 5fL intervals). 1019 
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 1021 

SUPPLEMENTARY FIGURES 1022 

 1023 

 1024 

FIGURE S1. DNA content of samples spanning the cell size series from the elutriated 1025 

samples. The DNA was measured with flow cytometry, as described in the Materials and 1026 

Methods. On the y-axis of each histogram is number of cells and on the x-axis the fluorescence 1027 

per cell.   1028 
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 1031 

 1032 

FIGURE S2. Levels of tRNAs, peaking early in the cell cycle. The tRNAs were from clusters 1033 

1 and 3 in Figure 2, with significantly different levels (p<0.05; Log2(FC)≥1) between any two 1034 

points in the cell cycle, based on bootstrap ANOVA. Sequences corresponding to the tRNAs 1035 

shown peaked in abundance at cell sizes from 40 to 50 fL. Cell size is shown on the x-axis (in 1036 

fL), while the Log2-transformed ‘Transcripts Per Kilobase Million’ (TPM) values for each tRNA 1037 

from all 24 data points are shown on the y-axis. Loess curves and confidence bands indicating 1038 

the standard errors on the curve at a 0.95 level were drawn using the default settings of the 1039 

panel.smoother function of the latticeExtra R language package.  1040 
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 1041 

FIGURE S3. Transcriptome-proteome correlations. A, The spectral counts corresponding to 1042 

the proteins identified in this study were averaged from the three biological replicates for each 1043 

cell size pool we analyzed from the soluble fractions (from the ‘sol_psm’ dataset, see Table S1), 1044 

and shown on the y-axis. On the x-axis are the RNA read counts from the corresponding loci 1045 

(from the ‘rna_reads’ dataset, see Table 1). All values were Log2-transformed for display 1046 

purposes. The Spearman correlation coefficients (ρ) shown in each case were calculated with 1047 

the rcorr function of the Hmisc R language package. B, Similar analysis as in A, except that the 1048 

input dataset for the spectral counts (y-axis) was from the insoluble proteome fractions (from the 1049 

‘pel_psm’ dataset, see Table S1). 1050 
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 1052 

FIGURE S4. Overlap of protein datasets whose levels change in the cell cycle. Matrix 1053 

layout for all intersections of the four ANOVA-identified sets containing proteins with significantly 1054 

different levels (p<0.05; Log2(FC)≥1) between any two points in the cell cycle. The names of all 1055 

proteins in each set are shown in File4/ Sheet: ‘proteins_sets’. The graph was drawn with the 1056 

UpSet R language package. 1057 
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 1059 

FIGURE S5. Ribosomal protein abundance in ribosomes is not periodic in the cell cycle. 1060 

The levels of each ribosomal protein (see Figure 4) detected were normalized against the sum 1061 

of all ribosomal proteins detected in that sample, and displayed as Log2-transformed expressed 1062 

ratios (y-axis), while cell size (in fL) is on the x-axis. In none of the few cases (e.g., 1063 

Rps8,9,26,27,28p; Rpl14,17Ap) where the abundance of the ribosomal protein in question 1064 

appeared to fluctuate somewhat in the cell cycle the changes were periodic (FDR>0.05), and 1065 

these changes likely reflect experimental error in the quantification.  1066 
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 1068 

FIGURE S6. Little, if any, evidence for cell cycle-dependent changes in codon usage. 1069 

From the 333 cell cycle-regulated proteins shown in Figure 3, we selected the ones who were 1070 

not identified as ubiquitylated by (Swaney et al., 2013), and whose corresponding mRNA levels 1071 

were not changing (from Figure 2). These proteins were further grouped according to their cell 1072 

cycle expression pattern (peaking in G1: in clusters 1&2 (n=29); peaking in S: in clusters 3&4 1073 

(n=24): peaking in G1/M: in cluster 5 (n=29); peaking in G2/M: in clusters 6&7 (n=90)). For each 1074 

codon in each mRNA encoding each of these proteins, we obtained the ratio of the actual to 1075 

expected usage, based on (Tumu et al., 2012). These values are displayed as violin plots, for 1076 

the four codons shown that there were statistically significant differences between the groups for1077 

each codon (based on bootstrapped ANOVA: p<0.05). For differences between groups in each 1078 

codon, the p-values shown were obtained from posthoc statistical tests, using the mcppb20 1079 

function of the WRS2 R language package. The red horizontal lines indicate equal 1080 

actual:expected codon usage in each case. 1081 
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