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ABSTRACT

Establishing the pattern of abundance of molecules of interest during cell division has been a
long-standing goal of cell cycle studies. In several systems, including the budding yeast
Saccharomyces cerevisiae, cell cycle-dependent changes in the transcriptome are well studied.
In contrast, few studies queried the proteome during cell division, and they are often plagued by
low agreement with each other and with previous transcriptomic datasets. There is also little
information about dynamic changes in the levels of metabolites and lipids in the cell cycle. Here,
for the first time in any system, we present experiment-matched datasets of the levels of RNAs,
proteins, metabolites, and lipids from un-arrested, growing, and synchronously dividing yeast
cells. Overall, transcript and protein levels were correlated, but specific processes that appeared
to change at the RNA level (e.g., ribosome biogenesis), did not do so at the protein level, and
vice versa. We also found no significant changes in codon usage or the ribosome content during
the cell cycle. We describe an unexpected mitotic peak in the abundance of ergosterol and
thiamine biosynthesis enzymes. Although the levels of several metabolites changed in the cell
cycle, by far the most significant changes were in the lipid repertoire, with phospholipids and
triglycerides peaking strongly late in the cell cycle. Our findings provide an integrated view of the
abundance of biomolecules in the eukaryotic cell cycle and point to a coordinate mitotic control

of lipid metabolism.
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INTRODUCTION

Exemplified by the discovery of cyclin proteins (Evans et al., 1983), identifying biomolecules
whose abundance changes in the cell cycle has been a critical objective of cell cycle studies for
decades. Recognizing such molecular landmarks in the cell cycle is a valuable, and often

necessary, step for deciphering how and why cell cycle pathways are integrated.

Over the last twenty years, cell cycle-dependent changes in mRNA levels during the cell
cycle of S. cerevisiae have been comprehensively defined not only from several arrest-and-
release synchronization approaches (Cho et al., 1998; Spellman et al., 1998; de Lichtenberg et
al., 2005; Pramila et al., 2006; Granovskaia et al., 2010), but also elutriation (Spellman et al.,
1998; Blank et al., 2017). Unlike transcript profiling, cell cycle-dependent proteomic and
metabolomic changes have been more limited and challenging to interpret due to different or
poor synchronization, lack of matched transcriptomic datasets, and divergent results among the
various studies. For example, there has only been one mass spectrometry-based proteomic
analysis of the budding yeast cell cycle, sampling cultures at four time-points after they were
released from arrest (Flory et al., 2006). Remarkably few proteins had altered levels during the
time course of that experiment, and there was no correlation with the available transcriptomic
datasets (Flory et al., 2006). Hence, at least in S. cerevisiae, it is not clear to what extent protein
abundances are dynamic in the cell cycle, and how tightly they are linked to transcriptional

changes, if at all.

The picture is not much clearer in other experimental systems. In fission yeast, two
recent studies used highly similar arrest-and-release synchronization and protein labeling
(stable isotope labeling by amino acids in the cell culture (Mann, 2006)) methods, followed by
mass spectrometry, to probe cell cycle-dependent changes in the proteome. In one study only a
single protein changed in abundance more than 2-fold (Carpy et al., 2014), while in the other

report ~150 proteins did (Swaffer et al., 2016). Neither study had experiment-matched
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transcriptomic datasets. Previously, hundreds of transcripts were reported to be periodic in the

cell cycle of fission yeast (Rustici et al., 2004; Oliva et al., 2005).

In human cells, several reports sampled the proteome in the cell cycle with mass
spectrometry, but there is little consensus among them (Dephoure et al., 2008; Olsen et al.,
2010; Lane et al., 2013; Ly et al., 2014; Becher et al., 2018; Dai et al., 2018; Schillinger et al.,
2018). The fraction of proteins identified as periodic ranged from ~5% (Ly et al., 2014), to >65%
(Schillinger et al., 2018). Synchronization was mostly achieved by release from chemical arrest,
but two studies also used elutriation (Ly et al., 2014; Dai et al., 2018). In the only report where
an experiment-matched transcriptomic dataset was generated (Ly et al., 2014), the correlation
with transcript abundance was positive (p=0.63, based on the Spearman rank correlation
coefficient). Some of the differences among the above studies may arise from the use of
different cell lines, such as: HeLa (Dephoure et al., 2008; Olsen et al., 2010; Lane et al., 2013;
Becher et al., 2018); K562 (Dai et al., 2018); SW480 (Schillinger et al., 2018); or NB4 (Ly et al.,
2014). However, even for the same cell line (HeLa), synchronization (release from thymidine
block and nocodazole arrest), and point in the cell cycle (0.5 h after nocodazole arrest), the
relative change in abundance of the 3,298 proteins identified in common between the two
studies (Olsen et al., 2010; Becher et al., 2018) was uncorrelated (p=0.097, based on

Spearman’s rank correlation coefficient; see Materials and Methods).

In S. cerevisiae, metabolites have been measured in the cell cycle after arrest-and-
release synchronization in minimal medium with ethanol as a carbon source, focusing on
exogenous control of cell cycle progression and downstream effects on metabolism (Ewald et
al., 2016). At the G1/S transition, it is generally thought that cyclin-dependent kinase activity
triggers lipolysis (Kurat et al., 2009) and mobilizes storage carbohydrates (Ewald et al., 2016;
Zhao et al., 2016), to provide resources for cell division. In other systems, there is evidence of

cell cycle-dependent changes on metabolite levels for the green alga Chlamydomonas
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91 reinhardtii (Juppner et al., 2017), fly (Sanchez-Alvarez et al., 2015), and human Hela cells

92 (Atilla-Gokcumen et al., 2014; Scaglia et al., 2014; Ahn et al., 2017). Despite these advances,
93 there has been no experiment-matched sampling of the transcriptome or proteome in any of
94  these studies, making it difficult to integrate these datasets with gene expression, at the mRNA

95  or protein levels.

96 Here, for the first time in any system, we generated comprehensive datasets for RNAs,
97  proteins, metabolites, and lipids, from the same samples of S. cerevisiae cells progressing
98  synchronously in the cell cycle. Importantly, these samples were from elutriated, un-arrested
99 cells, maintaining as much as possible the normal coupling between cell growth and division.
100 We found that while there is a broad correlation between the relative abundances of mMRNAs
101  and their corresponding proteins, cell cycle-dependent changes in transcriptional patterns are
102  significantly dampened at the proteome level. The cellular lipid profile is highly cell cycle-
103  regulated, with triglycerides and phospholipids peaking late in the cell cycle, together with
104  protein levels of ergosterol biosynthetic enzymes, highlighting the importance of integrating

105  multiple ‘omic’ datasets to identify cell cycle-dependent cellular processes.
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106 RESULTS

107  Samples for the multi-omic cell cycle analysis

108  To apply genome-wide methods for the identification of cell cycle-dependent changes in the
109  abundance of molecules of interest, one must first obtain highly synchronous cell cultures.

110  Preferably, synchronization must be achieved in a way that minimally perturbs cellular

111  physiology and the coordination between cell growth and division (Mitchison, 1971; Aramayo
112  and Polymenis, 2017). When cells are chemically or genetically arrested in the cell cycle to

113 induce synchrony, known arrest-related artifacts can bias the results (Mitchison, 1971; Ly et al.,
114  2015; Aramayo and Polymenis, 2017). An alternative synchronization method is elutriation, a
115  physical process that fractionates an asynchronous cell population by cell size and

116  sedimentation density properties of the cells, with minimal perturbation of cellular functions

117 (Lindahl, 1948; Creanor and Mitchison, 1979; Banfalvi, 2008). Hence, we used centrifugal

118 elutriation to obtain our synchronous cell cultures (see Materials and Methods, and Figure 1A).
119  Elutriation separates cells primarily based on size, and size is used as a normalizing reference
120  across different elutriation experiments. We isolated 101 different elutriated cultures, which were
121 combined into 24 pools, based on the size at which they were harvested. Hence, we generated
122  acell size-series, spanning a range from 40 to 75 fL, sampled approximately every 5 fL

123  intervals. These 24 pools were processed as independent samples in all analytical downstream
124  pipelines. For statistical analysis (e.g., with the bootstrap ANOVA), the 24 cell size pools were
125  grouped in 8 groups, for each of the approximately 5 fL increments in the cell size series (see
126 Figure 1A). The same 24 distinct pools were aliquoted as needed (see Materials and Methods)
127  to generate the input samples for measurements of RNA (with RNAseq), proteins (with LC-

128  MS/MS), and metabolites (GC-TOF MS for primary metabolites; HILIC-QTOF MS/MS for

129  biogenic amines; and CSH-QTOF MS/MS for lipids).
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To gauge the synchrony of our samples by microscopy, we used budding as a
morphological landmark, which roughly coincides with the initiation of DNA replication in S.
cerevisiae (Pringle, 1981). The percentage of budded cells across the cell size series (Figure
1B) rose steadily from ~0% in the smallest cells (at 40 fL), to >80% at the largest cell size (75
fL). The cell size at which half the cells were budded (a.k.a. ‘critical size’, a proxy for the
commitment step START) in our cell size series was ~62 fL (Figure 1B). This value is the same
as the critical size these cells display in typical time-series experiments (Hoose et al., 2012). We
also measured the DNA content of the cells with flow cytometry, confirming the synchrony of the
samples (Figure S1). From the RNAseq data that we will describe later (Figure 2), mMRNAs that
are known to increase in abundance at the G1/S transition (G1 cyclins; CLN1,2), or later in G2
phase (cyclin CLB2), peaked as expected in the cell size series (Figure 1C). Hence, based on
cytological (Figures 1B and S1) and molecular (cyclin mRNAs, Figure 1C) markers of cell cycle

progression, the synchrony of our samples was of high quality.

Overview of the datasets

One type of extract was analyzed for each class of the following biomolecules: RNA, primary
metabolites, biogenic amines, and lipids (see Materials and Methods and Table S1). For
proteomic analysis, we used soluble protein extracts (designated as ‘sol’ in the datasets, see
Table S1) and material from the same extract that was recovered in an insoluble pellet
(designated as ‘pel’ in the datasets, see Table S1). The pellet was subsequently solubilized with
detergents (see Materials and Methods) and analyzed in parallel to the soluble sample by liquid
chromatography tandem mass spectrometry (LC-MS/MS). For label-free relative quantification
of proteins, we used both spectral counts (designated as ‘psm’ in the datasets, see Table S1)
and peak areas (designated as ‘pa’ in the datasets, see Table S1). For RNAs, the signal we

used for quantification was read counts, either raw or after normalization as Transcripts Per
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155  kilobase Million (TPM) (see Materials and Methods and Table S1). For the metabolites, the
156  signal was the peak heights from mass spectrometry (designated as ‘ph’ in the datasets, see

157 Table S1). The raw values for all datasets are in Filel.

158 For the quantification of proteins and metabolites, each dataset was first normalized for
159  input. Hence, for proteins or metabolites, comparisons across the 24 samples were scaled

160  based on the sum of the signals detected in each of the 24 samples. For RNA, we used TPM-
161  normalized values and raw reads (see Table S1). All input datasets that entered the

162  downstream computational analyses are in File2. For each dataset, we used a bootstrap-based
163  ANOVA (see Materials and Methods; the output files named as ‘anova’ in the datasets, see
164  Table S1). Also, for RNA, we used the DESeq2 pipeline ((Love et al., 2014); see Materials and
165 Methods; the output file designated as ‘deseq?2’, see Table S1). All output datasets are in File3.
166  Only biomolecules that changed =2-fold in our cell size series, and had an adjusted p-value or

167 FDR<O0.05, were considered as significantly changing in the cell cycle.

168 For display purposes, in all the heatmaps and most plots, we show Log2-transformed
169  expressed ratio values. These are the ratios of the levels that we measured for each

170  biomolecule in each cell cycle point, reflecting the magnitude of the ratio of abundance relative
171  to the average of that biomolecule across all the cell cycle points we sampled. This approach
172 was originally used to describe microarray cell cycle experiments in yeast (Spellman et al.,

173 1998), and has been the standard in displaying and analyzing differential expression in the cell

174  cycle.

175

176  RNAs in the cell cycle

177  The RNAseq data were analyzed (see Materials and Methods, Figure 2, and Table S1), to

178  identify RNAs that change in abundance in the cell cycle. The names of all the RNAs in each set
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are shown in File4/ Sheet: ‘rna_sets’. The number of identified RNAs varied, depending on the
computational method. Based on the DESeq2 approach, ~40% of the transcripts (n=2,456)
were significantly different between any two points in the cell cycle. The ANOVA-based
approach identified 652 RNAs, whose levels changed significantly in the cell size series (Figure
2). In addition to the expected clusters of RNAs associated with DNA replication (cluster 2) and
mitotic cell cycle progression (cluster 4), there was a large cluster of transcripts enriched for
processes related to ribosome biogenesis (cluster 1, Figure 2; see also File4), peaking in the G1
phase. These transcripts also appeared periodic in past studies that relied on elutriation as a
synchronization method to identify cell cycle-regulated RNAs (Spellman et al., 1998; Blank et
al., 2017), but not in studies that used arrest-and-release methods (Spellman et al., 1998). An
increase in the levels of transcripts involved in ribosome biogenesis before commitment to
division has also been described in transcriptomic profiles of S. pombe (Oliva et al., 2005).
Despite these changes at the transcript level, whether the ribosome content of the cell changes
during the cell cycle is not known. We will describe results that do not support any cell cycle-

dependent changes in assembled ribosomes (Figure 4).

Early in the cell cycle (cluster 1 & 3, Figure 2), we noticed that there were some tRNAs
whose levels were higher. Note that tRNAs were not examined in the two prior studies that
gueried the transcriptome of elutriated S. cerevisiae cells, because those studies focused on
polyA-tailed selected transcripts (Spellman et al., 1998; Blank et al., 2017). It has been argued
that polyA selection biases the transcriptome quantification (Weinberg et al., 2016). Hence, in
this study, we relied only on rRNA subtraction to prepare the RNAseq libraries (see Materials
and Methods), which does not remove tRNAs and other non-coding RNAs. We also note that
tRNAs are notoriously difficult to measure by RNAseq due to factors such as their high level of
moadification, sequence similarity between different tRNAs, and the difficulty to discriminate

between cleaved and mature tRNAs. The tRNAs whose levels appeared to change in the cell


https://doi.org/10.1101/2019.12.17.880252
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.17.880252; this version posted December 18, 2019. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

204  cycle are shown in Figure S2. These results are difficult to reconcile with the extreme stability of
205 mature tRNAs (from 9 h to several days -exceeding the duration of multiple cell cycles, see

206  (Hopper, 2013)), unless these tRNAs are targets of quality control mechanisms (Hopper, 2013).
207 In any case, as we show later (Figure S6) we found very little evidence to support a significant

208  role for altered codon usage in the cell cycle.

209

210  Cell cycle-dependent changes in the proteome

211 From the soluble and insoluble extracts (see Materials and Methods), we identified 3,571 S.
212 cerevisiae proteins, at one or more cell cycle points. Although this represents a reasonably
213 thorough sampling of the yeast proteome, we did not find some low abundance proteins (e.g.,
214  cyclins). This was not unexpected, since a recent, aggregate analysis of all available datasets of
215  protein abundances in yeast (measured with tandem affinity purification (TAP), followed by
216  immunoblot analysis-, mass spectrometry-, and GFP tag-based methods), placed proteins of
217  the gene ontology process ‘mitotic cell cycle regulation’ as the least abundant group (Ho et al.,
218  2018). The extent to which mRNA levels can explain protein levels is debated (Lu et al., 2007,
219  Vogel and Marcotte, 2012; Csardi et al., 2015; Lahtvee et al., 2017). For most species, RNA
220 levels explain between one to two-thirds of the variation in protein abundances (Vogel and

221  Marcotte, 2012). To examine the broad correlation between transcript and protein levels, we
222  looked at the association of count data from our transcriptomic (reads) and proteomic (spectral
223 counts) datasets (Figure S3). Across all the points in our cell size series, the Spearman rank
224  coefficients (p) for the transcriptome-proteome correlations ranged from 0.52 to 0.63 (Figure

225  S3).

226 To identify proteins that changed in abundance in the cell cycle, we examined separately

227  each of the four proteomic datasets: soluble and insoluble extracts, each quantified by spectral
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228  counts and by peak areas (see Table S1 and Materials and Methods). The overlap between the
229  proteins in each dataset that appeared to change in abundance in the cell cycle was minimal
230 (see Figure S4). Based on ANOVA analysis, we identified 333 proteins whose levels changed
231 significantly in the cell size series, in at least one of the four proteomic datasets (shown in the
232 heatmap, in Figure 3B). We will describe additional proteins whose levels change significantly in
233 the cell cycle, but due to irregular patterns and missing values were not identified as such by the

234  ANOVA-based method we used (see Figure 5).

235 Our analysis provided numerous examples of physiologically relevant, cell cycle-

236  dependent changes in protein abundance. Among these, were several whose levels are well
237  known to be periodic at both the protein and RNA levels. These include proteins involved in
238  DNA replication-related processes, such as both isoforms (Rnrlp and Rnr3p) of the large

239  subunit of ribonucleotide-diphosphate reductase, peaking as cells enter S phase (Figure 3A,
240  bottom). However, other groups of proteins that we found to change in abundance in the cell
241  cycle, were not so at the RNA level. For example, several enzymes of ergosterol biosynthesis
242 (Ergl,11,3,5,7p) peaked late in the cell cycle (Figure 3A, top). Of those, only the levels of the
243 mRNA for Erg3p (C-5 sterol desaturase) changed in the cell cycle (see File4/Sheet:

244  ‘rnas_anova_heatmap’). The coordinate upregulation in the levels of enzymes involved in

245  ergosterol biosynthesis is consistent with the mitotic increase in lipid levels that we will describe

246 later (Figure 6).

247 Despite the transcriptional upregulation in G1 of transcripts involved in ribosome

248  biogenesis (see Figure 2), we did not observe such broad changes at the proteomic level. In
249  earlier reports, the synthesis of ribosomal components was not cell cycle-dependent (Shulman
250 etal., 1973; Elliott et al., 1979; Warner, 1999). To our knowledge, however, it is not known if the
251  ribosome content in the cell, or the composition of ribosomal proteins in assembled ribosomes,

252 changes in the cell cycle. Hence, we asked if the total amount of ribosomal proteins or their
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253 proportion in assembled ribosomes varies significantly in the cell cycle. To this end, we isolated
254  assembled ribosomes through sucrose ultra-centrifugation from wild type cells (Figure 4A; see
255  Materials and Methods). Ribosomal protein abundance was measured with SWATH-mass

256  spectrometry (see Materials and Methods). Note that for this experiment, extracts were not
257  made from pools of different elutriated cultures, but from the same early G1 elutriated cells at
258 different points as they progressed in the cell cycle (see Materials and Methods). Neither the
259  sum of all ribosomal protein abundances (Figure 4B) nor the relative abundance of the

260 individual ribosomal proteins were significantly different in the cell cycle (Figures 4C and S5).
261  These results do not support, but also do not unambiguously exclude, the possibility that

262 individual, specialized ribosomes may be formed during the cell cycle. However, at least based
263 on these population-averaged measurements, ribosome levels and the composition of

264  assembled ribosomes seem unaffected in the cell cycle.

265 Lastly, we interrogated our proteomic data for evidence of differences in codon usage
266  during the cell cycle. It has been proposed that optimal codon usage is more prevalent in

267 mRNAs expressed in the G1 phase of the cell cycle, contributing to the abundance of proteins
268  that peak in G1 (Frenkel-Morgenstern et al., 2012). Altered tRNA abundances during stress
269  conditions in S. cerevisiae may also regulate protein synthesis (Torrent et al., 2018). To avoid
270  confounding effects from differential transcription of RNAs encoding the proteins that we

271  identified to change in abundance in the cell cycle (Figure 3B), we focused on the proteins
272 whose corresponding mRNAs were not changing in the cell cycle (Figure 2). Moreover, to

273 minimize effects from regulated proteolysis, we excluded from the analysis proteins for which
274  there is evidence for ubiquitylation and regulated proteolysis (Swaney et al., 2013). For the vast
275  majority of codons in the remaining proteins, there were no significant changes between their
276 actual and expected frequencies in the cell cycle, based on gene-specific codon usage (Tumu

277  etal., 2012). Only four codons (AGC, UAU, AGG, AAC) were used with statistically significant
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278  differences in the cell cycle, but the magnitude of those differences was minimal nonetheless
279  (Figure S6). Overall, despite hints at the transcriptional level (Figure 2) for upregulation of

280  processes associated with protein synthesis in the G1 phase, at least from these population-
281  based experiments, our data argue against any significant cell cycle-dependent changes in the
282  ribosome content (Figure 4B), composition (Figure 4C), or codon usage (Figure S6), suggesting

283  that at the proteome level those changes in RNA levels have been dampened extensively.

284

285  Thiamine biosynthesis and TDP-dependent enzymes in the cell cycle

286  To identify other proteins whose levels could change in the cell cycle but were not identified as
287  such by the computational methods we used, we looked at proteins with the largest change in
288  their levels, regardless of missing values or statistical cutoffs. Remarkably, a group of enzymes
289  involved in thiamine biosynthesis peaked coordinately in abundance late in the cell cycle when
290 the cells reached a cell size of ~65 fL (Figure 5A). These enzymes participate in thiamine

291  diphosphate (TDP) synthesis in the cytoplasm. To validate these results, we queried in the cell
292  cycle the levels of a TAP-tagged version of Thi7p from a commercially available strain collection
293  (Ghaemmaghami et al., 2003), expressed from its endogenous chromosomal location. Thi7p
294  showed the smallest difference (slightly over 2-fold) in abundance during the cell cycle from our
295  mass spectrometry experiments and could provide a good measure to validate our results. Early
296  G1 cells carrying the THI7-TAP allele (the only available THI gene in the TAP-tagged strain

297  collection encoding any of the proteins shown in Figure 5A) were obtained by elutriation and the
298 levels of the corresponding proteins were evaluated by immunoblotting at regular intervals, as
299 the cultures progressed in the cell cycle (Figure 5B). We confirmed by immunoblotting that the
300 abundance of Thi7p was elevated late in the cell cycle (see Figure 5B; compared to the levels of
301 the control protein Pgklp). These results are consistent with the notion that there might be a

302  coordinate, mitotic upregulation of thiamine biosynthesis enzymes.
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303 Next, we asked if any TDP-dependent enzymes also change in abundance in the cell
304 cycle and if strains lacking these proteins have cell cycle-related phenotypes. TDP is a cofactor
305 for several enzymes, including transketolase (Tkl1,2p), a-ketoglutarate dehydrogenase (Kgdlp),
306  E1 subunit of pyruvate dehydrogenase (Pdalp), pyruvate decarboxylase (Pdc1,5,6p), and

307 phenylpyruvate decarboxylase (Aro10p). Only the levels of Tki2p, Pdc5p, and Aro10p appeared
308 to be elevated late in the cell cycle (Figure 5C), at the same time as the levels of thiamine

309  hiosynthesis enzymes were also raised (Figure 5A).

310 Cell size phenotypes are often used as a proxy for disrupted cell cycle progression with
311  anincreased cell size phenotype typically accompanying mitotic defects. Of all deletion strains
312  lacking a protein that requires TDP as a cofactor, only the loss of Tkl2p increased cell size

313  significantly (Figure 5D). We found that both birth size and the mean size of tki2A cells were
314  larger (Figure 5D). Note that the tki2A deletion strain was not in the panels that were examined
315 in genome-wide screens of cell size mutants (Jorgensen et al., 2002; Zhang et al., 2002). The
316  mitotic upregulation in the levels of thiamine biosynthesis enzymes (Figure 5A) and Tkl2p itself
317  (Figure 5C) are suggestive of possible mitotic roles for Tki2p, which might depend on the

318 available TDP pools in the cell. In the Discussion, we speculate on such putative roles, based

319  on the published reports.

320

321  Cell cycle-dependent changes in metabolites and lipids

322 From the same elutriated pools we used to measure RNAs and proteins (see Figure 1), we also
323  measured metabolites and lipids. The assays were performed at the West Coast Metabolomics
324  Center at UC Davis, an NIH RCMRC (Regional Comprehensive Metabolomics Resource Core).
325  Each class of metabolites was measured with distinct mass spectrometry-based assays (see

326  Materials and Methods). From these assays, thousands of compounds were detected, but most
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327  could not be assigned confidently to known metabolites, and they were not considered further.
328 Instead, we focused on the 406 primary metabolites, biogenic amines, and complex lipids that
329  were identified across the cell size series. As with our analysis of RNAs and proteins, we used
330 ANOVA (see Table S1 and Figure 6) to identify compounds whose levels change in the cell

331 cycle. Previous reports showed that storage carbohydrates are mobilized at the G1/S transition
332 (Ewald et al., 2016; Zhao et al., 2016). Consistent with these studies, we also found that

333  trehalose levels rise in G1 to their highest levels when cell size reaches 50 fL, but drop

334  significantly at the G1/S transition (Figure 6). By far, however, the class of metabolites that

335 changed the most in abundance in the cell cycle was complex lipids, which peaked late in the
336 cell cycle (Figure 6). These included phospholipids (phosphatidyl-inositol (PI), -ethanolamine
337 (PE), -serine (PS)) and triglycerides (Figure 6). The higher triglyceride levels are also consistent
338  with the elevated levels of neutral lipid droplets late in the G2/M phase, as reported previously
339  (Blank et al., 2017). Overall, the coordinate increase in the levels of ergosterol biosynthesis

340 enzymes we identified from the proteomic analysis (Figure 3A) and the increase in lipids (Figure
341  6), strongly suggest that lipid metabolism is significantly upregulated late in the cell cycle. In the

342  Discussion, we will expand on the significance of these results.
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343  DISCUSSION

344  The sample-matched datasets for RNAs, proteins, metabolites, and lipids we generated from
345  budding yeast cells progressing synchronously in the cell cycle provide a comprehensive view
346  of these biomolecules in dividing cells. We discuss our findings in the context of the relation
347  between the transcriptome and the proteome and the integration of metabolite and lipid

348 measurements with other ‘omic’ datasets.

349 In yeast, the latest meta-analyses from all available studies estimated that between 37%
350 and 56% of the variance in protein abundance is explained by mRNA abundance (Ho et al.,

351  2018). These estimates are within the range of previous ones from multiple species (Vogel and
352  Marcotte, 2012). Based on the absolute quantification of protein and mRNA abundances

353 (Lahtvee et al., 2017), the overall correlation between mRNA and protein abundances was also
354 in that range (R®=0.45, based on Pearson’s correlation coefficient). The level of correlation

355  between the transcriptome and the proteome we observed appears to be somewhat higher

356  (p=0.52-0.63, based on Spearman’s coefficient), probably because our experiments were done
357  from synchronous cells, and because cell cycle transitions are associated with transcriptional
358 waves (Spellman et al., 1998). A critical role for transcription in shaping the proteome takes

359  place as cells transition in different environments, and during such transitions changes in protein
360 levels were much more highly correlated with the changes in mRNA levels (R*>0.9) (Lahtvee et
361  al., 2017). Hence, the relatively high correlation we observed between the transcriptome and the
362  proteome in the cell cycle is not surprising, and it is probably an underestimate, since some

363  extremely unstable cell cycle regulators whose levels rise as a result of transcription (e.qg.,

364  cyclins, see Figure 1C), were absent from our proteomic datasets because of their low

365 abundance.

366 Despite the correlation between the transcriptome and the proteome we discussed

367 above, there were clear groups of transcripts and proteins whose abundance was incongruent.
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Ribosomal biosynthesis, reflected on the levels of individual ribosomal proteins or assembled
ribosomes, was not periodic at the proteomic level (Figures 4 and S5), despite a large G1
transcriptional wave of RNAs involved in this process (Figure 2). We noted that a similar
phenomenon was recently reported for the integrated stress response, a well-characterized
transcriptional response in yeast involving ~900 transcripts (Gasch et al., 2000), which was not
seen at all at the protein level (Ho et al., 2018). The observation that the ribosome content of the
cell is constant in the cell cycle (Figure 4) suggests that changes in translational efficiency of
some mMRNAs described previously (Blank et al., 2017) are likely due to transcript-specific

mechanisms, rather than global changes in the steady-state ribosome content (Lodish, 1974).

The mitotic peak in the levels of TDP biosynthesis enzymes was surprising (Figure 5).
The physiological significance of such a change in the levels of these enzymes is unclear.
Through some uncharacterized roles, the TDP-dependent transketolase activity is necessary for
meiotic progression in mouse oocytes (Kim et al., 2012). In bacteria, transketolase participates
in chromosomal topology, and E.coli cells lacking transketolase are UV-sensitive (Hardy and
Cozzarelli, 2005). However, we found that yeast tkI2A cells are not sensitive to UV or other
DNA-damaging agents (not shown). Overall, despite the intriguing observations that late in the
cell cycle, levels of the TDP-dependent Tki2p transketolase were higher (Figure 5C) and loss of
TkI2p increased cell size (Figure 5D), the molecular mechanism connecting these observations

remains to be determined.

The coordinate upregulation of ergosterol biosynthetic enzymes late in the yeast cell
cycle (Figure 3), not evident at the RNA level (Figure 2), was unexpected. To our knowledge,
there is no prior report of such a response. It should be noted that the lack of cell cycle-
dependent changes at the levels of MRNAs encoding the enzymes of ergosterol biosynthetis
was seen not only in our dataset, but also in the other datasets aggregated in the Cyclebase 3.0

database for yeast and other organisms (Santos et al., 2015). Of the enzymes we show in
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Figure 3A, only ERG3 had a rank score of 624, while all others were not periodic (scores >800)
(Santos et al., 2015). Note that we also found ERG3 mRNA levels to significantly change in the

cell cycle (see File4/Sheet: ‘rnas_anova_heatmap’).

The mitotic rise in the levels of sterol biosynthetic enzymes is significant in the context of
our metabolite measurements, showing that lipid levels (especially phospholipids and
triglycerides) increased at the same time (Figure 6). Our observations are consistent with
several other reports linking lipid metabolism with cell cycle progression and mitotic entry in
yeast (Anastasia et al., 2012; McCusker and Kellogg, 2012). Levels of triglycerides increase in
wild-type cells synchronized in mitosis (Blank et al., 2017), storage of triglycerides in lipid
droplets is thought to fuel mitotic exit (Yang et al., 2016), and lipid-exchange proteins integrate
lipid signaling with cell-cycle progression (Huang et al., 2018). Note that there have not been
analytical measurements of distinct lipids in the cell cycle in yeast. The data we show here are
not only consistent with, but also significantly expand the prior studies mentioned above. It is
also important to stress that an increase in lipids late in the cell cycle cannot simply be due to a
need for cell surface material. We had shown previously that increased lipogenesis does not
increase cell size (Blank et al., 2017). Hence, the increase in the abundance of lipids likely
reflects changes in the composition of membranes or other more specialized, cell cycle-

dependent process, not necessarily a simplistic need for more cell surface building blocks.

One also needs to consider the dramatic changes in cellular morphology. Especially
during mitosis, when the cell adopts the characteristic hourglass structure. The lipid content
must accommodate dynamic changes in membrane curvature. For example, during cytokinesis,
it is thought that lipids that confer negative curvature must be deposited on the outer leaflet of
the bilayer (Furse and Shearman, 2018). In yeast and human cells, inhibition of de novo fatty
acid biosynthesis arrests cells in mitosis (Hasslacher et al., 1993; Schneiter et al., 1996; Al-Feel

et al., 2003; Scaglia et al., 2014). In human cells, cholesterol synthesis may affect multiple
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points in the cell cycle. In an earlier report, inhibition of cholesterol synthesis arrested human
cells in mitosis (Suarez et al., 2002), while in a later report the cells arrested in G1 (Singh et al.,
2013). Cholesteral’s role in mitosis appears to be complex, not only affecting the distribution of
phospholipids in the plasma membrane but also governing the formation of a vesicular network
at the midbody during cytokinesis (Kettle et al., 2015). Interestingly, ergosterol may have a cell
cycle regulatory role in yeast, distinct from its bulk, structural role in membrane integrity (Dahl et
al., 1987), but that role remains unclear (Gaber et al., 1989). Lastly, our results argue for post-
transcriptional mechanisms leading to mitotic upregulation of sterol biosynthesis. As to how the
differential abundance of the ergosterol biosynthetic enzymes might come about, we note that
all the enzymes we show in Figure 3A, including Erg3p, have been shown to be

ubiquitinylated (Peng et al., 2003; Swaney et al., 2013), raising the possibility of regulated

proteolysis.

Overall, our data underscore the value of having metabolite measurements along with
other ‘omic’ datasets, to strengthen the efforts of identifying physiologically relevant cellular
responses. In future work, employing targeted metabolic profiling and flux analysis in the cell
cycle will increase our understanding of how the transcriptome and proteome shape dynamic

changes in metabolism and how resources are allocated during cell division.
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459  STRUCTURED METHODS

460 REAGENTS AND TOOLS TABLE

461  Where known, the Research Resource Identifiers (RRIDs) are shown.

Designation | Source Identifier/ | Additional information
Catalog#
S. cerevisiae | (Giaever etal., | RRID:SCR | BY4743 MATa/a his3A1/his3A1
strain 2002); 003093 leu2A0/leu2A0 LYS2/lys2A0
http://www.eur met15A0/MET15 ura3A0/ura3A0

oscarf.de/index
.php?name=N

ews
S. cerevisiae | (Giaever etal., | RRID:SCR | BY4742 MATa his3A1 leu240 lys2A0
strain 2002); 003093 ura3A0

http://www.eur
oscarf.de/index
.php?name=N

ews
S. cerevisiae | (Giaever etal.,, | RRID:SCR | BY4741 MATa his3A1 leu2A0 met15A0
strain 2002); 003093 ura3A0

http://lwww.eur
oscarf.de/index
.php?name=N

ews
S. cerevisiae | Dharmacon YSC1178- THI7-TAP::HIS3MX6, BY4741
strain 202232418 otherwise

S. cerevisiae | Dharmacon YSC6272- | 13256 tklI2A::KanMX, BY4742
strain 201919629 otherwise

Chemical, Sigma-Aldrich | Y1625 Yeast extract

reagent

Chemical, Sigma-Aldrich | P5905 Peptone

reagent

Chemical, Sigma-Aldrich | D9434 Dextrose

reagent

Chemical, Calbiochem 239763-M Cycloheximide

reagent

Chemical, Sigma-Aldrich | S2002 Sodium azide

reagent

Chemical, Sigma-Aldrich | 252859 Tris(hydroxymethyl)aminomethane
reagent

Chemical, Roche TRIS-RO Tris base

reagent

Chemical, Sigma-Aldrich | S7653 Sodium chloride

reagent

Chemical, Sigma-Aldrich | 792780 Ethanol

reagent
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Chemical, Sigma-Aldrich | S2889 Sodium acetate

reagent

Chemical, Sigma-Aldrich | D5758 Diethyl pyrocarbonate, (DEPC)

reagent

Chemical, Ambion AM9720 Acid-Phenol:Chloroform, pH 4.5 (with IAA,

reagent 125:24:1)

Chemical, USP 1374248 Magnesium chloride hexahydrate

reagent

Chemical, Sigma-Aldrich | D0632 Dithiothreitol, (DTT)

reagent

Chemical, Sigma-Aldrich | T8787 Triton™ X-100

reagent

Chemical, ThermoFisher | AM2238 Turbo DNase |

reagent

Chemical, Scientific SI-BG05 Glass beads

reagent Industries

Consumable | Beckman 349622 13x51 mm polycarbonate centrifuge tubes
Coulter

Chemical, Sigma-Aldrich | S0389 Sucrose

reagent

Chemical, Sigma-Aldrich | P4417 Phosphate buffered saline (PBS)

reagent

Chemical, ThermoFisher | 84850 C18 Spin Tips

reagent Scientific

Chemical, Millipore Z720003 C18 Ziptips

reagent

Chemical, Sigma-Aldrich | 436143 Sodium dodecyl sulfate (SDS)

reagent

Chemical, Sigma-Aldrich | 207861 Ammonium carbonate

reagent

Chemical, Sigma-Aldrich | 650501 Acetone

reagent

Chemical, Sigma-Aldrich | D6750 Sodium deoxycholate

reagent

Chemical, ThermoFisher | 77720 Tris(2-carboxyethyl)phosphine (TCEP), Bond-

reagent Scientific Breaker™ TCEP Solution

Chemical, Sigma-Aldrich | 16125 lodoacetamide

reagent

Chemical, Pierce 90058 Trypsin Protease, MS-Grade

reagent

Chemical, Sigma-Aldrich | FO507 Formic acid

reagent

Chemical, Sigma-Aldrich | C7715 Amicon® Ultra-15 Centrifugal Filter Units

reagent

Chemical, Sigma-Aldrich | 499609 Calcium chloride

reagent

Chemical, Sigma-Aldrich | T63002 Trifluoroethanol

reagent

Chemical, Sigma-Aldrich | H3375 4-(2-Hydroxyethyl)piperazine-1-

reagent ethanesulfonic acid, N-(2-
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Hydroxyethyl)piperazine-N'-(2-ethanesulfonic
acid), (HEPES)

Chemical, Sigma-Aldrich | 78830 Phenylmethanesulfonyl fluoride (PMSF)
reagent
Chemical, Sigma-Aldrich | 431788 Ethylenediaminetetraacetic acid (EDTA)
reagent
Chemical, ThermoFisher | D1306 DAPI (4',6-Diamidino-2-Phenylindole,
reagent Dihydrochloride)
Chemical, Epicentre MRZY1324 | Ribo-Zero™ Magnetic Gold Kit (Yeast), for
reagent rRNA subtraction
Chemical, Epicentre SSV21124 | SciptSeq™ v2 RNA-Seq Library Preparation
reagent Kit
Antibody Sigma-Aldrich | P1291 Peroxidase Anti-Peroxidase (PAP) Soluble
Complex
Antibody abcam ab38007 Anti-Pgkl1p antibody, rabbit polyclonal
Chemical, ThermoFisher | XP04125 | Novex™ WedgeWell™ 4-12% Tris-Glycine
reagent gels
Software, https://imww.m | RRID:SCR | MetaboAnalyst, web server for statistical,
algorithm etaboanalyst.c | _015539 functional and integrative analysis of
a/ metabolomics data
Software, Beckman 383550 AccuComp Z2, software to monitor number
algorithm Coulter and size of cells with Z2 cell counter
Software, https:/mww.nik | RRID:SCR | NIS-Elements, microscope imaging software
algorithm oninstruments. | _014329 suite used with Nikon products
com/Products/
Software
Software, https://imagej.n | RRID:SCR | ImageJ, image processing software
algorithm et/ 003070
Software, http://www.rstu | RRID:SCR | RStudio, software for the R statistical
algorithm dio.com/ 000432 computing environment
Software, http://iwww.yea | RRID:SCR | SGD, Saccharomyces Genome Database
algorithm stgenome.org/ 004694
Software, https://www.r- | v3.5.2 R, Statistical Computing Environment
algorithm project.org RRID:SCR
001905
Software, http://www.gen | RRID:SCR | Gene ontology, enrichment analysis
algorithm eontology.org/ | 002811
Software, https://biognos Spectronaut™, Biognosys software for the
algorithm ys.com/shop/s targeted analysis of DIA measurements from
pectronaut various MS platforms

METHODS AND PROTOCOLS

Strains and media
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466  All the strains used in this study are shown in the Key Resources Table, above. Unless noted
467  otherwise, the cells were cultivated in the standard, rich, undefined medium YPD (1% "/, yeast

468  extract, 2% "/, peptone, 2% "/, dextrose), at 30 °C (Kaiser et al., 1994).
469
470  Elutriation

471 To collect enough cells for the downstream measurements of RNA, proteins, and metabolites,
472  we followed the same strategy we described previously (Blank et al., 2017). Briefly, elutriated
473  wild type, G1 cells (diploid BY4743 background) were allowed to progress in the cell cycle until
474  they reached the desired cell size. At that point, they were quenched (with 100 pg/ml

475  cycloheximide and 0.1% sodium azide) and frozen away, and later pooled with cells of similar
476  size (Figure 1A). Overall, we had to collect 101 individual samples, to generate the 24 pools

477  shown in Figure 1A.

478 For other elutriation experiments (e.g., see Figures 4,5), only an early G1 elutriated
479  fraction was collected, from which samples were taken at regular intervals as the cells

480  progressed in the cell cycle.
481
482 Cell size and DNA content measurements

483  The methods to measure DNA content and the cell size (birth or mean size) of asynchronous
484  cultures and estimate the critical size of asynchronous cultures, have been described in detail

485 previously (Guo et al., 2004; Truong et al., 2013; Soma et al., 2014; Maitra et al., 2019).
486

487  Proteomic samples
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488  We used ~1E+09 cells from each of the 24 pools of the cell size series (see Figure 1) to prepare
489  extracts for LC-MS/MS. For each sample, the cells were resuspended in 0.75 ml of lysis solution
490 (10 mM Tris pH 7.8, 10 mM NaCl). Glass beads were added to the top of liquid level, the

491  samples were placed in a Mini Beadbeater (Biospec), and the cells broken by ‘bead-beating’
492  twice at the maximum speed for 90 s each time, placed on ice for 60 s between. The extract

493  from each sample was collected by punching a hole with a 21-gauge syringe needle at the

494  bottom of the tube. Lastly, the soluble material from the lysates were clarified by centrifugation
495  at 14,000 g at 4 °C, for 10 m. Insoluble pellets were resuspended in 500 pl of lysis buffer and
496  both clarified supernatants and pellets were stored at -80 °C until processing for mass

497  spectrometry.

498 For mass spectral analysis, clarified extracts were thawed and protease inhibitors

499  immediately added. 50 pl of each supernatant sample was mixed with 50 pl trifluoroethanol

500 (TFE) and reduced with 5mM tris(2-carboxyethyl)phosphine (TCEP) at 56 °C for 45 m, cooled
501 for 5 m at room temperature, and alkylated with 25 mM iodoacetamide in the dark, at room

502  temperature for 30 m. Samples were diluted 10-fold with digestion buffer (50 mM Tris pH 8.0, 2
503 mM calcium chloride), digested with trypsin (added at 1:50 ratio) at 37 °C for 5 h. Digestion was
504  stopped with 100 ul of 10% formic acid and sample volumes were reduced to 100-250 pl in a
505 SpeedVac. Following filtration with an Amicon® Ultra-15 Centrifugal Filter Unit the peptides

506  were desalted using C18 Spin Tips, according to the manufacturer’s instructions. The volume of
507 the samples was then reduced to 5-10 pl in a SpeedVac. Lastly, the samples were resuspended
508 in 100 ul of a 95% water, 5% acetonitrile, 0.1% formic acid solution, and subjected to LC-

509 MS/MS analysis.

510 The insoluble pellets from the same extracts described above were processed based on
511  a method reported previously (Lin et al., 2013). The pellets were resuspended in 50 pl of 2% "/,

512 sodium dodecyl sulfate (SDS), 50 mM ammonium carbonate and heated at 95 °C for 10 m.
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513  Following clarification each supernatant was transferred to a fresh tube, mixed with six volumes
514  of cold acetone (-20 °C), and incubated at 4 °C for 4 h to form a precipitate. Precipitate was

515  recovered by centrifugation at 13,000 g for 15 m, the supernatant carefully removed by

516  aspiration, and the pellets washed twice with 0.4 ml of cold acetone. After each wash the

517  samples were centrifuged at 14,000 g for 1 m and the supernatant carefully aspirated. Pellets
518  were solubilized in 500 pl of 1% w/v sodium deoxycholate, 50 mM ammonium carbonate with
519  two rounds of sonication (10 m each) in a water bath sonicator with 5 m on ice in between. 50 pl
520  of each sample was reduced and alkylated with TCEP and iodocateamide as described above.
521  Unreacted iodoacetamide was quenched with 12 mM dithiothreitol (DTT). The samples were
522 brought to 80 ul with digestion buffer and digested with trypsin (added at 1:50 ratio) at 37 °C for
523 5 h. Digestion was stopped with 1% formic acid and samples were centrifuged at 14,000 g for
524 10 m to pellet the precipitated sodium deoxycholate. Peptides were desalted with C18 Spin

525  Tips, and resuspended for LC-MS/MS as described above.

526

527 LC-MS/MS

528  Mass spectra were acquired on a Thermo Orbitrap Fusion. 5 ul (supernatant samples) or 2 pl
529  (pellet samples) of peptides were separated using reverse phase chromatography on a Dionex
530 Ultimate 3000 RSLCnano UHPLC system (Thermo Scientific) with a C18 trap to Acclaim C18
531 PepMap RSLC column (Dionex; Thermo Scientific) configuration. Peptides were eluted using a
532  3-45% acetonitrile gradient over 70 min and directly injected into the mass spectrometer using
533  nano-electrospray. Data-dependent tandem mass spectrometry was performed using a top

534  speed HCD method with full precursor ion scans (MS1) collected at 120,000 m/z resolution and
535 acycle time of 3 sec. Monoisotopic precursor selection and charge-state screening were

536  enabled, with ions of charge > 1+[11 selected with dynamic exclusion of 30 Is for ions selected

537 once within a 30 's window. Selected precursor ions underwent high-energy collision-induced
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538 dissociation (HCD) at 31% energy stepped +/-4%. All MS2 scans were centroid and done in
539 rapid mode. Raw files were processed using Proteome Discoverer 2.2 and the label-free

540 quantification workflow.

541

542  RNA samples and libraries

543  We used the same approach we had described previously (Blank et al., 2017), to collect cells
544  from elutriated cultures of wild type (BY4743 strain background). For each of the 24 samples,
545  from ~3E+07 cells total RNA was prepared with the hot phenol method. Briefly, the frozen

546  pellets were re-suspended in 0.4 ml TES buffer (10 mM Tris pH = 7.5, 10mM EDTA, 0.5%

547  SDS), in DEPC-treated water, and ~0.05 ml glass beads were added. Then, 0.4 ml of acid

548  phenol:chloroform was added to each pellet, and the samples were incubated at 65 °C for 30 m,
549  and vortexed briefly every 5 m during that time. The samples were centrifuged at 14,000 g for 5
550 m, and 0.3 ml of the top, aqueous layer were placed in a 2-ml screw-cap tube containing 1 ml
551  cold ethanol with 40 ul of a 3M sodium acetate solution. The samples were incubated at 4 °C
552  overnight and then centrifuged at 14,000 g for 20 m. The pellets were washed with 80% ethanol
553  and centrifuged at 14,000 g for 5 m. The pellets were air-dried and resuspended in 25 pl of

554  DEPC-treated water. For the RNAseq libraries, we also used the same approach we had

555  described (Blank et al., 2017), except that we did not select for polyA-tailed RNAs. Instead, from
556  total RNA, we depleted rRNA, using the ‘Ribo-Zero™ Magnetic Gold Kit (Yeast)’, according to
557  the manufacturer’s instructions. All libraries were sequenced on an lllumina HiSeg4000, with
558  multiplexing, at the Texas A&M AgriLife Genomics and Bioinformatics Facility. Raw sequencing

559 data (fastq files) have been deposited (GEO: GSE135476).

560 The reads were aligned to the S. cerevisiae reference genome (version R64-1-1) using

561 the Rsubread R language package (Liao et al., 2019). First, an index was built using the
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562 command: buildindex(basename = “R64”, reference = “Saccharomyces_cerevisiae.R64-1-

563  l.dna.toplevel.fa”, gappedindex=TRUE). Then, for each of the 24 libraries, the paired end reads
564  were aligned with the command: align(index = ‘R64’, readfilel ="....fastq.gz’, readfile2 =

565 ‘....fastq.gz’, type = “rna”). For each library, we obtained >10 million uniquely mapped reads,
566 and the output BAM files were then used in the featureCounts function of the Rsubread

567  package, with the following command: featureCounts(files = “...subread.BAM”, ispairedEnd =
568 TRUE, requireBothEndsMapped = TRUE, annotext = “Saccharomyces_cerevisiae.R64-1-

569  1.95.gtf", countChimericFragments = FALSE, isGTFAnnotationFile = TRUE). All the read counts

570 arein Filel/sheet ‘rna_reads’.

571 For differential RNA levels between any two points in the cell cycle using the DESeq2 R
572  language package (Love et al., 2014), the raw read data (File2/sheet ‘rna_deseq2_i’) were used
573  asinput. For this statistical analysis, the 24 cell size pools were grouped in 8 groups, for each of
574  the approximately 5 fL increments in the cell size series (see Figure 1A). Additional analyses
575  with ANOVA-based methods were performed as for the other biomolecules, and they are

576 described below.

577

578 Metabolite samples and analysis

579  The untargeted, primary metabolite, biogenic amine, and complex lipid analyses were done at
580 the NIH-funded West Coast Metabolomics Center at the University of California at Davis,

581 according to their mass spectrometry protocols. Gas Chromatography-Time-of-Flight Mass

582  Spectrometry (GC-TOF MS) was used for Primary metabolites. For biogenic amines, separation
583  and detections was achieved by Hydrophilic Interaction Chromatography (HILIC), followed by
584  Quadrupole time-of-flight (QTOF) MS/MS. Lastly, for complex lipids, Charged Surface Hybrid

585 (CSH™) C18 separation was followed with QTOF MS/MS for lipids. Extract preparation was
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586 also done at the same facility, from 1E+07 cells in each sample, from the same ones used for
587  proteomic and RNA profiling (Figure 1). The cells were provided to the Metabolomics facility as
588  frozen (at -80 °C) pellets. Detected species that could not be assigned to any compound were

589  excluded from the analysis.
590

591 ANOVA-based computational approaches to identify differentially expressed

592 biomolecules

593  For RNA samples, we used the TPM normalized values. For all other biomolecules, the input
594  values we used were scaled-normalized for input values per sample. All the input and output
595 datasets are shown in Table S1. To identify significant differences in the levels of biomolecules
596  between any two points in the cell cycle we used the robust bootstrap ANOVA, via the tlwaybt
597  function, and the posthoc tests via the mcppb20 function, of the WRS2 R language package
598  (Wilcox, 2011). The function is shown in File6, using as an example the ‘File2/sol_pa_anova
599  spreadsheet. For this statistical analysis, the 24 cell size pools were grouped in 8 groups, for

600 each of the approximately 5 fL increments in the cell size series (see Figure 1A).
601
602 SWATH-Mass spectrometry

603  The samples used to measure ribosomal protein abundances were from elutriated, diploid wild
604  type BY4743 cells (see Key Resources Table). Once the cells reached the desired cell size,

605 they were quenched with 100 pug/ml cycloheximide and 0.1% sodium azide. Cells were

606  harvested from three independently elutriated cultures (5E+07 cells in each sample). The cells
607  were re-suspended in a buffer containing 20 mM Tris-Cl (pH 7.4), 150 mM NacCl, 5 mM MgCl,, 1
608 mM DTT, 100 pg/ml cycloheximide, 1% “/, Triton X-100, and 25 U/ml Turbo DNase |, to a

609  volume of 0.35 ml. Then, 0.2 ml of 0.5mm glass beads were added to each sample, and
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vortexed at maximum speed for 15 s, eight times, placing on ice for 15 s in between. The
lysates were clarified by centrifuging at 5,000 rpm for 5 m, at 4 °C, and again for 5 m at 13,000
rpm at 4 °C. The supernatant was transferred to a 13x51 mm polycarbonate ultracentrifuge
tube, underlaid with 0.90 ml of 1 M sucrose, and the ribosomes were pelleted by centrifugation
in a TLA100.3 rotor (Beckman) at 100,000 rpm at 4 °C for 1 h. The protein pellets from three
biological replicates for various time points during the cell cycle (40, 45, 50, 55, 60, 65, 70 and
75 fL) were then re-suspended in PBS, subjected to a Filter-Aided Sample Preparation (FASP)
protocol tryptic digestion (Wisniewski et al., 2009), desalted using C-18 Ziptips, and analyzed by
data-independent acquisition (DIA)/SWATH-mass spectrometry, as described previously
(Schilling et al., 2017).

Briefly, samples were analyzed by reverse-phase HPLC-ESI-MS/MS using an Eksigent
Ultra Plus nano-LC 2D HPLC system (Dublin, CA) with a cHiPLC system (Eksigent) which was
directly connected to a quadrupole time-of-flight (QqTOF) TripleTOF 6600 mass spectrometer
(SCIEX, Concord, CAN) (Christensen et al., 2018). After injection, peptide mixtures were loaded
onto a C18 pre-column chip (200 pm x 0.4 mm ChromXP C18-CL chip, 3 pm, 120 A, SCIEX)
and washed at 2 pl/min for 10 min with the loading solvent (H,0O/0.1% formic acid) for desalting.
Subsequently, peptides were transferred to the 75 um x 15 cm ChromXP C18-CL chip, 3 um,
120 A, (SCIEX), and eluted at a flow rate of 300 nL/min with a 3 h gradient using aqueous and
acetonitrile solvent buffers.

For quantification, all peptide samples were analyzed by data-independent acquisition
(Gillet et al., 2012), using 64 variable-width isolation windows (Collins et al., 2017; Schilling et
al., 2017). The variable window width is adjusted according to the complexity of the typical MS1
ion current observed within a certain m/z range using a DIA ‘variable window method’ algorithm
(more narrow windows were chosen in ‘busy’ m/z ranges, wide windows in m/z ranges with few
eluting precursor ions). DIA acquisitions produce complex MS/MS spectra, which are a

composite of all the analytes within each selected Q1 m/z window. The DIA cycle time of 3.2 s
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included a 250 ms precursor ion scan followed by 45 ms accumulation time for each of the 64
variable SWATH segments.

The DIA/SWATH data was processed with the Spectronaut™ software platform
(Biognosys) for relative quantification comparing peptide peak areas among different time points
during the cell cycle. For the DIA/SWATH MS2 data sets quantification was based on XICs of 6-
10 MS/MS fragment ions, typically y- and b-ions, matching to specific peptides present in the

spectral libraries. Significantly changed proteins were accepted at a 5% FDR (g-value < 0.05).

Immunoblot analysis

For protein surveillance, protein extracts were made as described previously (Amberg et al.,
2006), and run on 4-12% Tris-Glycine SDS-PAGE gels. To detect TAP-tagged proteins with the
PAP reagent, we used immunoblots from extracts of the indicated strains as we described

previously (Blank et al., 2017). Loading was evaluated with an anti-Pgk1p antibody.

Comparison of the relative protein abundances in (Becher et al., 2018) and (Olsen et al.,

2010)

For the datasets generated in human, HelLa cells, 0.5 h after nocodazole arrest, the data were
from Table S1 in (Becher et al., 2018) and Supplementary Table_S1 in (Olsen et al., 2010). In
the former study the authors reported the Log2-transformed ratios of the measured abundance
over the median abundance of asynchronous cultures. For the (Olsen et al., 2010) proteins, the
data were the isotopic ratios reported. In both cases, these values represented the
corresponding protein abundances in that sample, among all the proteins identified in each

sample in each study (see File7). To compare the rank order of the 3,298 proteins identified in
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659 common in the two studies, Spearman’s rank correlation rho (p) was estimated (p=0.09687857)

660  with the spearman.test function of the pspearman R language package.
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FIGURE 1. Overview of the experimental design to query cell cycle-dependent changes in
the levels of RNAs, proteins, and metabolites. A, Generation of sample-matched, multiomic
datasets from synchronous cultures of cells of different size, during the cell cycle. B, Serving as
a morphological marker of cell cycle progression, the percentage of budded cells (y-axis) as a
function of cell size (x-axis) is shown for each cell size pool. Cell size corresponds to the mean
cell size of the population, and in this case it is the weighted average of all the mean cell sizes
of all the elutriated samples that constituted each of the 24 pools. C, The levels of mitotic
(CLB2) or G1 (CLN1,2) cyclin mRNAs, which are known to be periodic in the cell cycle, are
shown along with those of a non-periodic transcript (ACT1; encoding actin). Cell size is shown
on the x-axis (in fL), while the Log2-transformed ‘Transcripts Per Kilobase Million’ (TPM) values
for each transcript are shown on the y-axis. All 24 values, one for each pool, were plotted in
these graphs. Loess curves and confidence bands indicating the standard errors on the curve at
a 0.95 level were drawn using the default settings of the panel.smoother function of the
latticeExtra R language package.
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1: ncRNA, rRNA, ribosome biogenesis 2: DNA replication 3 4: mitotic
cell cycle

FIGURE 2. Transcripts changing in abundance in the cell cycle. Heatmap of the levels of
652 differentially expressed RNAs with significantly different levels (p<0.05; Log2(FC)=1)
between any two points in the cell cycle, based on bootstrap ANOVA. The levels of each RNA
were the average of each triplicate for the cell size indicated, which was then divided by the
average value of the entire cell size series for that RNA. These ‘expressed ratios’ were then
Log2-transformed. The Log2(expressed ratios) values were hierarchically clustered and
displayed with the pheatmap R language package, using the default unsupervised algorithms of
the package. The different rows of the heatmap correspond to the different cell sizes (40-75 fL,
top to bottom, in 5fL intervals). The cell cycle phases approximately corresponding to these
sizes are shown to the right of the heatmap. The names of all RNAs, values, and clustering
classifications are in File4/Sheet: ‘rnas_anova_heatmap’. The gene ontology enrichment
analysis for each cluster was done on the PANTHER platform, and the detailed output is in
File4/Sheet: ‘rnas_clusters’.
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959 FIGURE 3. Proteins with cell cycle-dependent abundance. A, Levels of selected proteins
960 whose levels changed significantly (p<0.05; Log2(FC)z1) between any two points in the cell
961 cycle, based on bootstrap ANOVA, in the cell cycle: Top, enzymes involved in ergosterol

962  biosynthesis. Bottom, enzymes involved in DNA metabolism (Pol32p: DNA polymerase 0J;

963  Prsl,2p: PRPP synthase; Rnrl,3p: ribonucleotide-diphosphate reductase). The corresponding
964  Log2(expressed ratios) values from all 24 data points are on the y-axis, and cell size values are
965  on the x-axis. Loess curves and confidence bands indicating the standard errors on the curve at
966 a 0.95 level were drawn using the default settings of the panel.smoother function of the

967 latticeExtra R language package. B, Heatmap displaying the relative abundance of the 333

968  proteins in one or more of the four ‘anova’ sets shown in Figure S4. In cases where the same
969  protein was in the intersection of more than one datasets, we chose for display the values from
970  the dataset from which the changes in the protein abundance in the cell cycle was the most
971  significant (i.e., lowest p-value) and greater in magnitude (i.e., highest Log2(FC)). The heatmap
972  was generated as in Figure 2. All the relevant data are in File4/Sheet:

973  ‘proteins_anova_heatmap’.
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976  FIGURE 4. Ribosomal protein abundance in ribosomes does not change in the cell cycle.
977 A, Elutriated, early G1 cells were cultured, and sampled at regular intervals in the cell cycle, in
978 three biological replicates at each 5fL range, from 40 to 75 fL. Protein extracts from the same
979  number of cells were then fractionated by sucrose ultra-centrifugation, to isolated ribosomes on
980 mRNASs, which were then analyzed by SWATH-mass spectrometry (see materials and

981 Methods). B, The peak areas corresponding to each ribosomal protein (RP) detected were

982 summed and averaged across the triplicate for each cell size interval. The Log2(expressed

983  ratios) values for the ‘Sum of RP levels’ are shown on the y-axis, while cell size is on the x-axis.
984 C, Correlation matrix of the relative abundance of individual ribosomal proteins in assembled
985 ribosomes on MRNAs. The Spearman correlation coefficients (p) shown in each case were

986 calculated with the rcorr function of the Hmisc R language package. The cell cycle profiles for
987  each ribosomal protein are shown in Figure S4.
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990 FIGURE 5. Thiamine biosynthesis and TDP-dependent enzymes in the cell cycle. A,
991  Abundances of the indicated proteins of thiamine biosynthesis from LC-MS/MS, across the cell
992  size series (x-axis, in fL). The corresponding Log2(expressed ratios) values from all 24 data
993  points are on the y-axis. Loess curves and confidence bands indicating the standard errors on
994  the curve at a 0.95 level were drawn using the default settings of the panel.smoother function of
995 the latticeExtra R language package. B, The abundance of Thi7-TAP by immunoblotting from
996  synchronous, elutriated cells, progressing in the cell cycle and sampled at regular intervals, as
997 indicated (%B is the percentage of budded cells; fL is the cell size). Pgklp levels are also
998 shown from the same samples, to indicate loading. For the two samples indicated with asterisk
999 (*) in the Thi7-TAP series, there were no size data due to instrument malfunction. At the bottom,
1000 the band intensities were quantified with ImageJ software, and the Log2-transformed expressed
1001  ratios of Thi7-TAP are shown, after they were normalized against Pgklp. C, Abundances of the
1002 indicated TDP-dependent proteins, determined and displayed as in A. D, The birth and mean
1003  size of tkl2 cells and experiment-matched wild type (TKLZ2) cultures from exponentially dividing
1004  cells in rich, undefined media (YPD). At least twelve independent cultures were measured in
1005 each case. Significant differences and the associated p values were indicated by the non-
1006  parametric Wilcoxon rank sum test, performed with the wilcox.test function of the R stats
1007  package.
1008
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1011  FIGURE 6. Lipid levels change significantly in the cell cycle. A, From 406 known

1012  metabolites identified from all classes (primary, biogenic amines, complex lipids), the levels of
1013 64 with significantly different levels (p<0.05; Log2(FC)=1) between any two points in the cell
1014  cycle, based on bootstrap ANOVA, are shown in the heatmap. The levels of each metabolite
1015  were the average of each triplicate for the cell size indicated, which was then divided by the
1016  average value of the entire cell size series for that metabolite. These ‘expressed ratios’ were
1017  then Log2-transformed. The Log2(expressed ratios) values were hierarchically clustered and
1018  displayed with the pheatmap R language package. The different columns of the heatmap
1019  correspond to the different cell sizes (40-75 fL, left to right, in 5fL intervals).
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1025 FIGURE S1. DNA content of samples spanning the cell size series from the elutriated
1026  samples. The DNA was measured with flow cytometry, as described in the Materials and

1027  Methods. On the y-axis of each histogram is humber of cells and on the x-axis the fluorescence
1028  per cell.
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1031 Cell size (fL)
1032
1033 FIGURE S2. Levels of tRNAs, peaking early in the cell cycle. The tRNAs were from clusters
1034 1 and 3 in Figure 2, with significantly different levels (p<0.05; Log2(FC)z1) between any two
1035 points in the cell cycle, based on bootstrap ANOVA. Sequences corresponding to the tRNAs
1036  shown peaked in abundance at cell sizes from 40 to 50 fL. Cell size is shown on the x-axis (in
1037  fL), while the Log2-transformed ‘Transcripts Per Kilobase Million’ (TPM) values for each tRNA
1038  from all 24 data points are shown on the y-axis. Loess curves and confidence bands indicating
1039 the standard errors on the curve at a 0.95 level were drawn using the default settings of the
1040  panel.smoother function of the latticeExtra R language package.
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FIGURE S3. Transcriptome-proteome correlations. A, The spectral counts corresponding to
the proteins identified in this study were averaged from the three biological replicates for each
cell size pool we analyzed from the soluble fractions (from the ‘sol_psm’ dataset, see Table S1),
and shown on the y-axis. On the x-axis are the RNA read counts from the corresponding loci
(from the ‘rna_reads’ dataset, see Table 1). All values were Log2-transformed for display
purposes. The Spearman correlation coefficients (p) shown in each case were calculated with
the rcorr function of the Hmisc R language package. B, Similar analysis as in A, except that the
input dataset for the spectral counts (y-axis) was from the insoluble proteome fractions (from the
‘pel_psm’ dataset, see Table S1).
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1053 FIGURE S4. Overlap of protein datasets whose levels change in the cell cycle. Matrix

1054  layout for all intersections of the four ANOVA-identified sets containing proteins with significantly
1055  different levels (p<0.05; Log2(FC)z1) between any two points in the cell cycle. The names of all
1056  proteins in each set are shown in File4/ Sheet: ‘proteins_sets’. The graph was drawn with the
1057 UpSet R language package.
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1059 Cell Size (fL)

1060 FIGURE S5. Ribosomal protein abundance in ribosomes is not periodic in the cell cycle.
1061  The levels of each ribosomal protein (see Figure 4) detected were normalized against the sum
1062  of all ribosomal proteins detected in that sample, and displayed as Log2-transformed expressed
1063  ratios (y-axis), while cell size (in fL) is on the x-axis. In none of the few cases (e.g.,

1064  Rps8,9,26,27,28p; Rpl14,17Ap) where the abundance of the ribosomal protein in question

1065  appeared to fluctuate somewhat in the cell cycle the changes were periodic (FDR>0.05), and
1066  these changes likely reflect experimental error in the quantification.
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1068
1069 FIGURE S6. Little, if any, evidence for cell cycle-dependent changes in codon usage.
1070  From the 333 cell cycle-regulated proteins shown in Figure 3, we selected the ones who were
1071  not identified as ubiquitylated by (Swaney et al., 2013), and whose corresponding mRNA levels
1072 were not changing (from Figure 2). These proteins were further grouped according to their cell
1073  cycle expression pattern (peaking in G1: in clusters 1&2 (n=29); peaking in S: in clusters 3&4
1074  (n=24): peaking in G1/M: in cluster 5 (n=29); peaking in G2/M: in clusters 6&7 (n=90)). For each
1075 codon in each mRNA encoding each of these proteins, we obtained the ratio of the actual to
1076  expected usage, based on (Tumu et al., 2012). These values are displayed as violin plots, for
1077  the four codons shown that there were statistically significant differences between the groups for
1078  each codon (based on bootstrapped ANOVA: p<0.05). For differences between groups in each
1079  codon, the p-values shown were obtained from posthoc statistical tests, using the mcppb20
1080  function of the WRS2 R language package. The red horizontal lines indicate equal
1081  actual:expected codon usage in each case.
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