

1 **Title:** Abundances of transcripts, proteins, and metabolites in the cell cycle of budding
2 yeast reveals coordinate control of lipid metabolism

3

4 **Authors:** Heidi M. Blank¹, Ophelia Papoulias^{2,3}, Nairita Maitra¹, Riddhiman Garge^{2,3}, Brian
5 K. Kennedy⁴⁻⁶, Birgit Schilling⁶, Edward M. Marcotte^{2,3}, Michael Polymenis¹

6

7 **Affiliations:** ¹Department of Biochemistry and Biophysics, Texas A&M University, College
8 Station, TX 77843

9 ²Center for Systems and Synthetic Biology, University of Texas at Austin, Austin,
10 TX 78712

11 ³Department of Molecular Biosciences, University of Texas at Austin, Austin, TX
12 78712

13 ⁴Departments of Biochemistry and Physiology, Yong Loo Lin School of Medicine,
14 National University of Singapore, Singapore 117596.

15 ⁵Centre for Healthy Ageing, National University of Singapore, National University
16 Health System, Singapore 117609.

17 ⁶Buck Institute for Research on Aging, Novato, CA 94945

18

19 **Correspondence:** marcotte@icmb.utexas.edu, polymenis@tamu.edu

20

21 **Key words:** mass spectrometry, proteomics, lipidomics, metabolomics, *Saccharomyces*
22 *cerevisiae*

23 **ABSTRACT**

24 Establishing the pattern of abundance of molecules of interest during cell division has been a
25 long-standing goal of cell cycle studies. In several systems, including the budding yeast
26 *Saccharomyces cerevisiae*, cell cycle-dependent changes in the transcriptome are well studied.
27 In contrast, few studies queried the proteome during cell division, and they are often plagued by
28 low agreement with each other and with previous transcriptomic datasets. There is also little
29 information about dynamic changes in the levels of metabolites and lipids in the cell cycle. Here,
30 for the first time in any system, we present experiment-matched datasets of the levels of RNAs,
31 proteins, metabolites, and lipids from un-arrested, growing, and synchronously dividing yeast
32 cells. Overall, transcript and protein levels were correlated, but specific processes that appeared
33 to change at the RNA level (e.g., ribosome biogenesis), did not do so at the protein level, and
34 vice versa. We also found no significant changes in codon usage or the ribosome content during
35 the cell cycle. We describe an unexpected mitotic peak in the abundance of ergosterol and
36 thiamine biosynthesis enzymes. Although the levels of several metabolites changed in the cell
37 cycle, by far the most significant changes were in the lipid repertoire, with phospholipids and
38 triglycerides peaking strongly late in the cell cycle. Our findings provide an integrated view of the
39 abundance of biomolecules in the eukaryotic cell cycle and point to a coordinate mitotic control
40 of lipid metabolism.

41 **INTRODUCTION**

42 Exemplified by the discovery of cyclin proteins (Evans *et al.*, 1983), identifying biomolecules
43 whose abundance changes in the cell cycle has been a critical objective of cell cycle studies for
44 decades. Recognizing such molecular landmarks in the cell cycle is a valuable, and often
45 necessary, step for deciphering how and why cell cycle pathways are integrated.

46 Over the last twenty years, cell cycle-dependent changes in mRNA levels during the cell
47 cycle of *S. cerevisiae* have been comprehensively defined not only from several arrest-and-
48 release synchronization approaches (Cho *et al.*, 1998; Spellman *et al.*, 1998; de Lichtenberg *et*
49 *al.*, 2005; Pramila *et al.*, 2006; Granovskaia *et al.*, 2010), but also elutriation (Spellman *et al.*,
50 1998; Blank *et al.*, 2017). Unlike transcript profiling, cell cycle-dependent proteomic and
51 metabolomic changes have been more limited and challenging to interpret due to different or
52 poor synchronization, lack of matched transcriptomic datasets, and divergent results among the
53 various studies. For example, there has only been one mass spectrometry-based proteomic
54 analysis of the budding yeast cell cycle, sampling cultures at four time-points after they were
55 released from arrest (Flory *et al.*, 2006). Remarkably few proteins had altered levels during the
56 time course of that experiment, and there was no correlation with the available transcriptomic
57 datasets (Flory *et al.*, 2006). Hence, at least in *S. cerevisiae*, it is not clear to what extent protein
58 abundances are dynamic in the cell cycle, and how tightly they are linked to transcriptional
59 changes, if at all.

60 The picture is not much clearer in other experimental systems. In fission yeast, two
61 recent studies used highly similar arrest-and-release synchronization and protein labeling
62 (stable isotope labeling by amino acids in the cell culture (Mann, 2006)) methods, followed by
63 mass spectrometry, to probe cell cycle-dependent changes in the proteome. In one study only a
64 single protein changed in abundance more than 2-fold (Carpy *et al.*, 2014), while in the other
65 report ~150 proteins did (Swaffer *et al.*, 2016). Neither study had experiment-matched

66 transcriptomic datasets. Previously, hundreds of transcripts were reported to be periodic in the
67 cell cycle of fission yeast (Rustici *et al.*, 2004; Oliva *et al.*, 2005).

68 In human cells, several reports sampled the proteome in the cell cycle with mass
69 spectrometry, but there is little consensus among them (Dephoure *et al.*, 2008; Olsen *et al.*,
70 2010; Lane *et al.*, 2013; Ly *et al.*, 2014; Becher *et al.*, 2018; Dai *et al.*, 2018; Schillinger *et al.*,
71 2018). The fraction of proteins identified as periodic ranged from ~5% (Ly *et al.*, 2014), to >65%
72 (Schillinger *et al.*, 2018). Synchronization was mostly achieved by release from chemical arrest,
73 but two studies also used elutriation (Ly *et al.*, 2014; Dai *et al.*, 2018). In the only report where
74 an experiment-matched transcriptomic dataset was generated (Ly *et al.*, 2014), the correlation
75 with transcript abundance was positive ($p=0.63$, based on the Spearman rank correlation
76 coefficient). Some of the differences among the above studies may arise from the use of
77 different cell lines, such as: HeLa (Dephoure *et al.*, 2008; Olsen *et al.*, 2010; Lane *et al.*, 2013;
78 Becher *et al.*, 2018); K562 (Dai *et al.*, 2018); SW480 (Schillinger *et al.*, 2018); or NB4 (Ly *et al.*,
79 2014). However, even for the same cell line (HeLa), synchronization (release from thymidine
80 block and nocodazole arrest), and point in the cell cycle (0.5 h after nocodazole arrest), the
81 relative change in abundance of the 3,298 proteins identified in common between the two
82 studies (Olsen *et al.*, 2010; Becher *et al.*, 2018) was uncorrelated ($p=0.097$, based on
83 Spearman's rank correlation coefficient; see Materials and Methods).

84 In *S. cerevisiae*, metabolites have been measured in the cell cycle after arrest-and-
85 release synchronization in minimal medium with ethanol as a carbon source, focusing on
86 exogenous control of cell cycle progression and downstream effects on metabolism (Ewald *et*
87 *al.*, 2016). At the G1/S transition, it is generally thought that cyclin-dependent kinase activity
88 triggers lipolysis (Kurat *et al.*, 2009) and mobilizes storage carbohydrates (Ewald *et al.*, 2016;
89 Zhao *et al.*, 2016), to provide resources for cell division. In other systems, there is evidence of
90 cell cycle-dependent changes on metabolite levels for the green alga *Chlamydomonas*

91 *reinhardtii* (Juppner *et al.*, 2017), fly (Sanchez-Alvarez *et al.*, 2015), and human HeLa cells
92 (Atilla-Gokcumen *et al.*, 2014; Scaglia *et al.*, 2014; Ahn *et al.*, 2017). Despite these advances,
93 there has been no experiment-matched sampling of the transcriptome or proteome in any of
94 these studies, making it difficult to integrate these datasets with gene expression, at the mRNA
95 or protein levels.

96 Here, for the first time in any system, we generated comprehensive datasets for RNAs,
97 proteins, metabolites, and lipids, from the same samples of *S. cerevisiae* cells progressing
98 synchronously in the cell cycle. Importantly, these samples were from elutriated, un-arrested
99 cells, maintaining as much as possible the normal coupling between cell growth and division.
100 We found that while there is a broad correlation between the relative abundances of mRNAs
101 and their corresponding proteins, cell cycle-dependent changes in transcriptional patterns are
102 significantly dampened at the proteome level. The cellular lipid profile is highly cell cycle-
103 regulated, with triglycerides and phospholipids peaking late in the cell cycle, together with
104 protein levels of ergosterol biosynthetic enzymes, highlighting the importance of integrating
105 multiple 'omic' datasets to identify cell cycle-dependent cellular processes.

106 **RESULTS**

107 **Samples for the multi-omic cell cycle analysis**

108 To apply genome-wide methods for the identification of cell cycle-dependent changes in the
109 abundance of molecules of interest, one must first obtain highly synchronous cell cultures.
110 Preferably, synchronization must be achieved in a way that minimally perturbs cellular
111 physiology and the coordination between cell growth and division (Mitchison, 1971; Aramayo
112 and Polymenis, 2017). When cells are chemically or genetically arrested in the cell cycle to
113 induce synchrony, known arrest-related artifacts can bias the results (Mitchison, 1971; Ly *et al.*,
114 2015; Aramayo and Polymenis, 2017). An alternative synchronization method is elutriation, a
115 physical process that fractionates an asynchronous cell population by cell size and
116 sedimentation density properties of the cells, with minimal perturbation of cellular functions
117 (Lindahl, 1948; Creanor and Mitchison, 1979; Banfalvi, 2008). Hence, we used centrifugal
118 elutriation to obtain our synchronous cell cultures (see Materials and Methods, and Figure 1A).
119 Elutriation separates cells primarily based on size, and size is used as a normalizing reference
120 across different elutriation experiments. We isolated 101 different elutriated cultures, which were
121 combined into 24 pools, based on the size at which they were harvested. Hence, we generated
122 a cell size-series, spanning a range from 40 to 75 fL, sampled approximately every 5 fL
123 intervals. These 24 pools were processed as independent samples in all analytical downstream
124 pipelines. For statistical analysis (e.g., with the bootstrap ANOVA), the 24 cell size pools were
125 grouped in 8 groups, for each of the approximately 5 fL increments in the cell size series (see
126 Figure 1A). The same 24 distinct pools were aliquoted as needed (see Materials and Methods)
127 to generate the input samples for measurements of RNA (with RNAseq), proteins (with LC-
128 MS/MS), and metabolites (GC-TOF MS for primary metabolites; HILIC-QTOF MS/MS for
129 biogenic amines; and CSH-QTOF MS/MS for lipids).

130 To gauge the synchrony of our samples by microscopy, we used budding as a
131 morphological landmark, which roughly coincides with the initiation of DNA replication in *S.*
132 *cerevisiae* (Pringle, 1981). The percentage of budded cells across the cell size series (Figure
133 1B) rose steadily from ~0% in the smallest cells (at 40 fL), to >80% at the largest cell size (75
134 fL). The cell size at which half the cells were budded (a.k.a. ‘critical size’, a proxy for the
135 commitment step START) in our cell size series was ~62 fL (Figure 1B). This value is the same
136 as the critical size these cells display in typical time-series experiments (Hoose *et al.*, 2012). We
137 also measured the DNA content of the cells with flow cytometry, confirming the synchrony of the
138 samples (Figure S1). From the RNAseq data that we will describe later (Figure 2), mRNAs that
139 are known to increase in abundance at the G1/S transition (G1 cyclins; *CLN1,2*), or later in G2
140 phase (cyclin *CLB2*), peaked as expected in the cell size series (Figure 1C). Hence, based on
141 cytological (Figures 1B and S1) and molecular (cyclin mRNAs, Figure 1C) markers of cell cycle
142 progression, the synchrony of our samples was of high quality.

143

144 **Overview of the datasets**

145 One type of extract was analyzed for each class of the following biomolecules: RNA, primary
146 metabolites, biogenic amines, and lipids (see Materials and Methods and Table S1). For
147 proteomic analysis, we used soluble protein extracts (designated as ‘sol’ in the datasets, see
148 Table S1) and material from the same extract that was recovered in an insoluble pellet
149 (designated as ‘pel’ in the datasets, see Table S1). The pellet was subsequently solubilized with
150 detergents (see Materials and Methods) and analyzed in parallel to the soluble sample by liquid
151 chromatography tandem mass spectrometry (LC-MS/MS). For label-free relative quantification
152 of proteins, we used both spectral counts (designated as ‘psm’ in the datasets, see Table S1)
153 and peak areas (designated as ‘pa’ in the datasets, see Table S1). For RNAs, the signal we
154 used for quantification was read counts, either raw or after normalization as Transcripts Per

155 kilobase Million (TPM) (see Materials and Methods and Table S1). For the metabolites, the
156 signal was the peak heights from mass spectrometry (designated as 'ph' in the datasets, see
157 Table S1). The raw values for all datasets are in File1.

158 For the quantification of proteins and metabolites, each dataset was first normalized for
159 input. Hence, for proteins or metabolites, comparisons across the 24 samples were scaled
160 based on the sum of the signals detected in each of the 24 samples. For RNA, we used TPM-
161 normalized values and raw reads (see Table S1). All input datasets that entered the
162 downstream computational analyses are in File2. For each dataset, we used a bootstrap-based
163 ANOVA (see Materials and Methods; the output files named as 'anova' in the datasets, see
164 Table S1). Also, for RNA, we used the *DESeq2* pipeline ((Love *et al.*, 2014); see Materials and
165 Methods; the output file designated as 'deseq2', see Table S1). All output datasets are in File3.
166 Only biomolecules that changed ≥ 2 -fold in our cell size series, *and* had an adjusted p-value or
167 FDR<0.05, were considered as significantly changing in the cell cycle.

168 For display purposes, in all the heatmaps and most plots, we show Log2-transformed
169 expressed ratio values. These are the ratios of the levels that we measured for each
170 biomolecule in each cell cycle point, reflecting the magnitude of the ratio of abundance relative
171 to the average of that biomolecule across all the cell cycle points we sampled. This approach
172 was originally used to describe microarray cell cycle experiments in yeast (Spellman *et al.*,
173 1998), and has been the standard in displaying and analyzing differential expression in the cell
174 cycle.

175

176 **RNAs in the cell cycle**

177 The RNAseq data were analyzed (see Materials and Methods, Figure 2, and Table S1), to
178 identify RNAs that change in abundance in the cell cycle. The names of all the RNAs in each set

179 are shown in File4/ Sheet: 'rna_sets'. The number of identified RNAs varied, depending on the
180 computational method. Based on the *DESeq2* approach, ~40% of the transcripts (n=2,456)
181 were significantly different between any two points in the cell cycle. The ANOVA-based
182 approach identified 652 RNAs, whose levels changed significantly in the cell size series (Figure
183 2). In addition to the expected clusters of RNAs associated with DNA replication (cluster 2) and
184 mitotic cell cycle progression (cluster 4), there was a large cluster of transcripts enriched for
185 processes related to ribosome biogenesis (cluster 1, Figure 2; see also File4), peaking in the G1
186 phase. These transcripts also appeared periodic in past studies that relied on elutriation as a
187 synchronization method to identify cell cycle-regulated RNAs (Spellman *et al.*, 1998; Blank *et*
188 *al.*, 2017), but not in studies that used arrest-and-release methods (Spellman *et al.*, 1998). An
189 increase in the levels of transcripts involved in ribosome biogenesis before commitment to
190 division has also been described in transcriptomic profiles of *S. pombe* (Oliva *et al.*, 2005).
191 Despite these changes at the transcript level, whether the ribosome content of the cell changes
192 during the cell cycle is not known. We will describe results that do not support any cell cycle-
193 dependent changes in assembled ribosomes (Figure 4).

194 Early in the cell cycle (cluster 1 & 3, Figure 2), we noticed that there were some tRNAs
195 whose levels were higher. Note that tRNAs were not examined in the two prior studies that
196 queried the transcriptome of elutriated *S. cerevisiae* cells, because those studies focused on
197 polyA-tailed selected transcripts (Spellman *et al.*, 1998; Blank *et al.*, 2017). It has been argued
198 that polyA selection biases the transcriptome quantification (Weinberg *et al.*, 2016). Hence, in
199 this study, we relied only on rRNA subtraction to prepare the RNAseq libraries (see Materials
200 and Methods), which does not remove tRNAs and other non-coding RNAs. We also note that
201 tRNAs are notoriously difficult to measure by RNAseq due to factors such as their high level of
202 modification, sequence similarity between different tRNAs, and the difficulty to discriminate
203 between cleaved and mature tRNAs. The tRNAs whose levels appeared to change in the cell

204 cycle are shown in Figure S2. These results are difficult to reconcile with the extreme stability of
205 mature tRNAs (from 9 h to several days -exceeding the duration of multiple cell cycles, see
206 (Hopper, 2013)), unless these tRNAs are targets of quality control mechanisms (Hopper, 2013).
207 In any case, as we show later (Figure S6) we found very little evidence to support a significant
208 role for altered codon usage in the cell cycle.

209

210 **Cell cycle-dependent changes in the proteome**

211 From the soluble and insoluble extracts (see Materials and Methods), we identified 3,571 *S.*
212 *cerevisiae* proteins, at one or more cell cycle points. Although this represents a reasonably
213 thorough sampling of the yeast proteome, we did not find some low abundance proteins (e.g.,
214 cyclins). This was not unexpected, since a recent, aggregate analysis of all available datasets of
215 protein abundances in yeast (measured with tandem affinity purification (TAP), followed by
216 immunoblot analysis-, mass spectrometry-, and GFP tag-based methods), placed proteins of
217 the gene ontology process ‘mitotic cell cycle regulation’ as the least abundant group (Ho *et al.*,
218 2018). The extent to which mRNA levels can explain protein levels is debated (Lu *et al.*, 2007;
219 Vogel and Marcotte, 2012; Csardi *et al.*, 2015; Lahtvee *et al.*, 2017). For most species, RNA
220 levels explain between one to two-thirds of the variation in protein abundances (Vogel and
221 Marcotte, 2012). To examine the broad correlation between transcript and protein levels, we
222 looked at the association of count data from our transcriptomic (reads) and proteomic (spectral
223 counts) datasets (Figure S3). Across all the points in our cell size series, the Spearman rank
224 coefficients (ρ) for the transcriptome-proteome correlations ranged from 0.52 to 0.63 (Figure
225 S3).

226 To identify proteins that changed in abundance in the cell cycle, we examined separately
227 each of the four proteomic datasets: soluble and insoluble extracts, each quantified by spectral

228 counts and by peak areas (see Table S1 and Materials and Methods). The overlap between the
229 proteins in each dataset that appeared to change in abundance in the cell cycle was minimal
230 (see Figure S4). Based on ANOVA analysis, we identified 333 proteins whose levels changed
231 significantly in the cell size series, in at least one of the four proteomic datasets (shown in the
232 heatmap, in Figure 3B). We will describe additional proteins whose levels change significantly in
233 the cell cycle, but due to irregular patterns and missing values were not identified as such by the
234 ANOVA-based method we used (see Figure 5).

235 Our analysis provided numerous examples of physiologically relevant, cell cycle-
236 dependent changes in protein abundance. Among these, were several whose levels are well
237 known to be periodic at both the protein and RNA levels. These include proteins involved in
238 DNA replication-related processes, such as both isoforms (Rnr1p and Rnr3p) of the large
239 subunit of ribonucleotide-diphosphate reductase, peaking as cells enter S phase (Figure 3A,
240 bottom). However, other groups of proteins that we found to change in abundance in the cell
241 cycle, were not so at the RNA level. For example, several enzymes of ergosterol biosynthesis
242 (Erg1,11,3,5,7p) peaked late in the cell cycle (Figure 3A, top). Of those, only the levels of the
243 mRNA for Erg3p (C-5 sterol desaturase) changed in the cell cycle (see File4/Sheet:
244 'rnas_anova_heatmap'). The coordinate upregulation in the levels of enzymes involved in
245 ergosterol biosynthesis is consistent with the mitotic increase in lipid levels that we will describe
246 later (Figure 6).

247 Despite the transcriptional upregulation in G1 of transcripts involved in ribosome
248 biogenesis (see Figure 2), we did not observe such broad changes at the proteomic level. In
249 earlier reports, the synthesis of ribosomal components was not cell cycle-dependent (Shulman
250 *et al.*, 1973; Elliott *et al.*, 1979; Warner, 1999). To our knowledge, however, it is not known if the
251 ribosome content in the cell, or the composition of ribosomal proteins in assembled ribosomes,
252 changes in the cell cycle. Hence, we asked if the total amount of ribosomal proteins or their

253 proportion in assembled ribosomes varies significantly in the cell cycle. To this end, we isolated
254 assembled ribosomes through sucrose ultra-centrifugation from wild type cells (Figure 4A; see
255 Materials and Methods). Ribosomal protein abundance was measured with SWATH-mass
256 spectrometry (see Materials and Methods). Note that for this experiment, extracts were not
257 made from pools of different elutriated cultures, but from the same early G1 elutriated cells at
258 different points as they progressed in the cell cycle (see Materials and Methods). Neither the
259 sum of all ribosomal protein abundances (Figure 4B) nor the relative abundance of the
260 individual ribosomal proteins were significantly different in the cell cycle (Figures 4C and S5).
261 These results do not support, but also do not unambiguously exclude, the possibility that
262 individual, specialized ribosomes may be formed during the cell cycle. However, at least based
263 on these population-averaged measurements, ribosome levels and the composition of
264 assembled ribosomes seem unaffected in the cell cycle.

265 Lastly, we interrogated our proteomic data for evidence of differences in codon usage
266 during the cell cycle. It has been proposed that optimal codon usage is more prevalent in
267 mRNAs expressed in the G1 phase of the cell cycle, contributing to the abundance of proteins
268 that peak in G1 (Frenkel-Morgenstern *et al.*, 2012). Altered tRNA abundances during stress
269 conditions in *S. cerevisiae* may also regulate protein synthesis (Torrent *et al.*, 2018). To avoid
270 confounding effects from differential transcription of RNAs encoding the proteins that we
271 identified to change in abundance in the cell cycle (Figure 3B), we focused on the proteins
272 whose corresponding mRNAs were not changing in the cell cycle (Figure 2). Moreover, to
273 minimize effects from regulated proteolysis, we excluded from the analysis proteins for which
274 there is evidence for ubiquitylation and regulated proteolysis (Swaney *et al.*, 2013). For the vast
275 majority of codons in the remaining proteins, there were no significant changes between their
276 actual and expected frequencies in the cell cycle, based on gene-specific codon usage (Tumu
277 *et al.*, 2012). Only four codons (AGC, UAU, AGG, AAC) were used with statistically significant

278 differences in the cell cycle, but the magnitude of those differences was minimal nonetheless
279 (Figure S6). Overall, despite hints at the transcriptional level (Figure 2) for upregulation of
280 processes associated with protein synthesis in the G1 phase, at least from these population-
281 based experiments, our data argue against any significant cell cycle-dependent changes in the
282 ribosome content (Figure 4B), composition (Figure 4C), or codon usage (Figure S6), suggesting
283 that at the proteome level those changes in RNA levels have been dampened extensively.

284

285 **Thiamine biosynthesis and TDP-dependent enzymes in the cell cycle**

286 To identify other proteins whose levels could change in the cell cycle but were not identified as
287 such by the computational methods we used, we looked at proteins with the largest change in
288 their levels, regardless of missing values or statistical cutoffs. Remarkably, a group of enzymes
289 involved in thiamine biosynthesis peaked coordinately in abundance late in the cell cycle when
290 the cells reached a cell size of ~65 fL (Figure 5A). These enzymes participate in thiamine
291 diphosphate (TDP) synthesis in the cytoplasm. To validate these results, we queried in the cell
292 cycle the levels of a TAP-tagged version of Thi7p from a commercially available strain collection
293 (Ghaemmaghami *et al.*, 2003), expressed from its endogenous chromosomal location. Thi7p
294 showed the smallest difference (slightly over 2-fold) in abundance during the cell cycle from our
295 mass spectrometry experiments and could provide a good measure to validate our results. Early
296 G1 cells carrying the *THI7-TAP* allele (the only available *THI* gene in the TAP-tagged strain
297 collection encoding any of the proteins shown in Figure 5A) were obtained by elutriation and the
298 levels of the corresponding proteins were evaluated by immunoblotting at regular intervals, as
299 the cultures progressed in the cell cycle (Figure 5B). We confirmed by immunoblotting that the
300 abundance of Thi7p was elevated late in the cell cycle (see Figure 5B; compared to the levels of
301 the control protein Pgk1p). These results are consistent with the notion that there might be a
302 coordinate, mitotic upregulation of thiamine biosynthesis enzymes.

303 Next, we asked if any TDP-dependent enzymes also change in abundance in the cell
304 cycle and if strains lacking these proteins have cell cycle-related phenotypes. TDP is a cofactor
305 for several enzymes, including transketolase (Tkl1,2p), α -ketoglutarate dehydrogenase (Kgd1p),
306 E1 subunit of pyruvate dehydrogenase (Pda1p), pyruvate decarboxylase (Pdc1,5,6p), and
307 phenylpyruvate decarboxylase (Aro10p). Only the levels of Tkl2p, Pdc5p, and Aro10p appeared
308 to be elevated late in the cell cycle (Figure 5C), at the same time as the levels of thiamine
309 biosynthesis enzymes were also raised (Figure 5A).

310 Cell size phenotypes are often used as a proxy for disrupted cell cycle progression with
311 an increased cell size phenotype typically accompanying mitotic defects. Of all deletion strains
312 lacking a protein that requires TDP as a cofactor, only the loss of Tkl2p increased cell size
313 significantly (Figure 5D). We found that both birth size and the mean size of *tkl2Δ* cells were
314 larger (Figure 5D). Note that the *tkl2Δ* deletion strain was not in the panels that were examined
315 in genome-wide screens of cell size mutants (Jorgensen *et al.*, 2002; Zhang *et al.*, 2002). The
316 mitotic upregulation in the levels of thiamine biosynthesis enzymes (Figure 5A) and Tkl2p itself
317 (Figure 5C) are suggestive of possible mitotic roles for Tkl2p, which might depend on the
318 available TDP pools in the cell. In the Discussion, we speculate on such putative roles, based
319 on the published reports.

320

321 **Cell cycle-dependent changes in metabolites and lipids**

322 From the same elutriated pools we used to measure RNAs and proteins (see Figure 1), we also
323 measured metabolites and lipids. The assays were performed at the West Coast Metabolomics
324 Center at UC Davis, an NIH RCMRC (Regional Comprehensive Metabolomics Resource Core).
325 Each class of metabolites was measured with distinct mass spectrometry-based assays (see
326 Materials and Methods). From these assays, thousands of compounds were detected, but most

327 could not be assigned confidently to known metabolites, and they were not considered further.
328 Instead, we focused on the 406 primary metabolites, biogenic amines, and complex lipids that
329 were identified across the cell size series. As with our analysis of RNAs and proteins, we used
330 ANOVA (see Table S1 and Figure 6) to identify compounds whose levels change in the cell
331 cycle. Previous reports showed that storage carbohydrates are mobilized at the G1/S transition
332 (Ewald *et al.*, 2016; Zhao *et al.*, 2016). Consistent with these studies, we also found that
333 trehalose levels rise in G1 to their highest levels when cell size reaches 50 fL, but drop
334 significantly at the G1/S transition (Figure 6). By far, however, the class of metabolites that
335 changed the most in abundance in the cell cycle was complex lipids, which peaked late in the
336 cell cycle (Figure 6). These included phospholipids (phosphatidyl-inositol (PI), -ethanolamine
337 (PE), -serine (PS)) and triglycerides (Figure 6). The higher triglyceride levels are also consistent
338 with the elevated levels of neutral lipid droplets late in the G2/M phase, as reported previously
339 (Blank *et al.*, 2017). Overall, the coordinate increase in the levels of ergosterol biosynthesis
340 enzymes we identified from the proteomic analysis (Figure 3A) and the increase in lipids (Figure
341 6), strongly suggest that lipid metabolism is significantly upregulated late in the cell cycle. In the
342 Discussion, we will expand on the significance of these results.

343 **DISCUSSION**

344 The sample-matched datasets for RNAs, proteins, metabolites, and lipids we generated from
345 budding yeast cells progressing synchronously in the cell cycle provide a comprehensive view
346 of these biomolecules in dividing cells. We discuss our findings in the context of the relation
347 between the transcriptome and the proteome and the integration of metabolite and lipid
348 measurements with other 'omic' datasets.

349 In yeast, the latest meta-analyses from all available studies estimated that between 37%
350 and 56% of the variance in protein abundance is explained by mRNA abundance (Ho *et al.*,
351 2018). These estimates are within the range of previous ones from multiple species (Vogel and
352 Marcotte, 2012). Based on the absolute quantification of protein and mRNA abundances
353 (Lahtvee *et al.*, 2017), the overall correlation between mRNA and protein abundances was also
354 in that range ($R^2=0.45$, based on Pearson's correlation coefficient). The level of correlation
355 between the transcriptome and the proteome we observed appears to be somewhat higher
356 ($p=0.52-0.63$, based on Spearman's coefficient), probably because our experiments were done
357 from synchronous cells, and because cell cycle transitions are associated with transcriptional
358 waves (Spellman *et al.*, 1998). A critical role for transcription in shaping the proteome takes
359 place as cells transition in different environments, and during such transitions changes in protein
360 levels were much more highly correlated with the changes in mRNA levels ($R^2>0.9$) (Lahtvee *et*
361 *al.*, 2017). Hence, the relatively high correlation we observed between the transcriptome and the
362 proteome in the cell cycle is not surprising, and it is probably an underestimate, since some
363 extremely unstable cell cycle regulators whose levels rise as a result of transcription (e.g.,
364 cyclins, see Figure 1C), were absent from our proteomic datasets because of their low
365 abundance.

366 Despite the correlation between the transcriptome and the proteome we discussed
367 above, there were clear groups of transcripts and proteins whose abundance was incongruent.

368 Ribosomal biosynthesis, reflected on the levels of individual ribosomal proteins or assembled
369 ribosomes, was not periodic at the proteomic level (Figures 4 and S5), despite a large G1
370 transcriptional wave of RNAs involved in this process (Figure 2). We noted that a similar
371 phenomenon was recently reported for the integrated stress response, a well-characterized
372 transcriptional response in yeast involving ~900 transcripts (Gasch *et al.*, 2000), which was not
373 seen at all at the protein level (Ho *et al.*, 2018). The observation that the ribosome content of the
374 cell is constant in the cell cycle (Figure 4) suggests that changes in translational efficiency of
375 some mRNAs described previously (Blank *et al.*, 2017) are likely due to transcript-specific
376 mechanisms, rather than global changes in the steady-state ribosome content (Lodish, 1974).

377 The mitotic peak in the levels of TDP biosynthesis enzymes was surprising (Figure 5).
378 The physiological significance of such a change in the levels of these enzymes is unclear.
379 Through some uncharacterized roles, the TDP-dependent transketolase activity is necessary for
380 meiotic progression in mouse oocytes (Kim *et al.*, 2012). In bacteria, transketolase participates
381 in chromosomal topology, and *E.coli* cells lacking transketolase are UV-sensitive (Hardy and
382 Cozzarelli, 2005). However, we found that yeast *tkl2Δ* cells are not sensitive to UV or other
383 DNA-damaging agents (not shown). Overall, despite the intriguing observations that late in the
384 cell cycle, levels of the TDP-dependent Tkl2p transketolase were higher (Figure 5C) and loss of
385 Tkl2p increased cell size (Figure 5D), the molecular mechanism connecting these observations
386 remains to be determined.

387 The coordinate upregulation of ergosterol biosynthetic enzymes late in the yeast cell
388 cycle (Figure 3), not evident at the RNA level (Figure 2), was unexpected. To our knowledge,
389 there is no prior report of such a response. It should be noted that the lack of cell cycle-
390 dependent changes at the levels of mRNAs encoding the enzymes of ergosterol biosynthetis
391 was seen not only in our dataset, but also in the other datasets aggregated in the Cyclebase 3.0
392 database for yeast and other organisms (Santos *et al.*, 2015). Of the enzymes we show in

393 Figure 3A, only *ERG3* had a rank score of 624, while all others were not periodic (scores >800)
394 (Santos *et al.*, 2015). Note that we also found *ERG3* mRNA levels to significantly change in the
395 cell cycle (see File4/Sheet: 'rnas_anova_heatmap').

396 The mitotic rise in the levels of sterol biosynthetic enzymes is significant in the context of
397 our metabolite measurements, showing that lipid levels (especially phospholipids and
398 triglycerides) increased at the same time (Figure 6). Our observations are consistent with
399 several other reports linking lipid metabolism with cell cycle progression and mitotic entry in
400 yeast (Anastasia *et al.*, 2012; McCusker and Kellogg, 2012). Levels of triglycerides increase in
401 wild-type cells synchronized in mitosis (Blank *et al.*, 2017), storage of triglycerides in lipid
402 droplets is thought to fuel mitotic exit (Yang *et al.*, 2016), and lipid-exchange proteins integrate
403 lipid signaling with cell-cycle progression (Huang *et al.*, 2018). Note that there have not been
404 analytical measurements of distinct lipids in the cell cycle in yeast. The data we show here are
405 not only consistent with, but also significantly expand the prior studies mentioned above. It is
406 also important to stress that an increase in lipids late in the cell cycle cannot simply be due to a
407 need for cell surface material. We had shown previously that increased lipogenesis does not
408 increase cell size (Blank *et al.*, 2017). Hence, the increase in the abundance of lipids likely
409 reflects changes in the composition of membranes or other more specialized, cell cycle-
410 dependent process, not necessarily a simplistic need for more cell surface building blocks.

411 One also needs to consider the dramatic changes in cellular morphology. Especially
412 during mitosis, when the cell adopts the characteristic hourglass structure. The lipid content
413 must accommodate dynamic changes in membrane curvature. For example, during cytokinesis,
414 it is thought that lipids that confer negative curvature must be deposited on the outer leaflet of
415 the bilayer (Furse and Shearman, 2018). In yeast and human cells, inhibition of de novo fatty
416 acid biosynthesis arrests cells in mitosis (Hasslacher *et al.*, 1993; Schneiter *et al.*, 1996; Al-Feel
417 *et al.*, 2003; Scaglia *et al.*, 2014). In human cells, cholesterol synthesis may affect multiple

418 points in the cell cycle. In an earlier report, inhibition of cholesterol synthesis arrested human
419 cells in mitosis (Suarez *et al.*, 2002), while in a later report the cells arrested in G1 (Singh *et al.*,
420 2013). Cholesterol's role in mitosis appears to be complex, not only affecting the distribution of
421 phospholipids in the plasma membrane but also governing the formation of a vesicular network
422 at the midbody during cytokinesis (Kettle *et al.*, 2015). Interestingly, ergosterol may have a cell
423 cycle regulatory role in yeast, distinct from its bulk, structural role in membrane integrity (Dahl *et*
424 *al.*, 1987), but that role remains unclear (Gaber *et al.*, 1989). Lastly, our results argue for post-
425 transcriptional mechanisms leading to mitotic upregulation of sterol biosynthesis. As to how the
426 differential abundance of the ergosterol biosynthetic enzymes might come about, we note that
427 all the enzymes we show in Figure 3A, including Erg3p, have been shown to be
428 ubiquitinylated (Peng *et al.*, 2003; Swaney *et al.*, 2013), raising the possibility of regulated
429 proteolysis.

430 Overall, our data underscore the value of having metabolite measurements along with
431 other 'omic' datasets, to strengthen the efforts of identifying physiologically relevant cellular
432 responses. In future work, employing targeted metabolic profiling and flux analysis in the cell
433 cycle will increase our understanding of how the transcriptome and proteome shape dynamic
434 changes in metabolism and how resources are allocated during cell division.

435 **ACKNOWLEDGEMENTS:** This work was supported by NIH grants R01GM123139 to M.P. and
436 grants from the NIH (R01 HD085901, R01 DK110520, R35 GM122480) and Welch Foundation
437 (F-1515) to E.M.M., with additional mass spectrometry research support from the Army
438 Research Laboratory (Cooperative Agreement # W911NF-17-2-0091). We also acknowledge
439 the support from the NCRR shared instrumentation grant 1S10 OD016281 (Buck Institute) and
440 from NIH grant 1U24DK097154 (UC Davis "West Coast Metabolomics Center").

441

442 **DATA AVAILABILITY:** The RNAseq data are deposited at GEO (GSE135476). The LC-MS/MS
443 data are deposited at ProteomeXchange (PXD015273). The SWATH-MS data are deposited at
444 <ftp://massive.ucsd.edu/MSV000084302/> with the MassIVE ID MSV000084302; it is also
445 available at ProteomeXchange (PXD015345). All other files related to the data and their
446 analyses are provided as supplements to the manuscript.

447

448 **AUTHOR CONTRIBUTIONS:** MP and EMM conceptualized the project. HMB, OP, EMM, BKK,
449 BS, and MP designed experiments. MP collected the cells and helped in extract preparation.
450 HMB prepared the RNA samples for RNAseq, performed most of the follow-up experiments for
451 thiamine biosynthesis and TPP-dependent enzymes, and analyzed the relevant data. OP
452 prepared the extracts for LC-MS/MS, ran the mass spectrometry experiments, and analyzed the
453 relevant data. NM examined the cell size of some TPP-dependent enzymes. RG helped with
454 extract preparation for the proteomic samples. MP processed the data, performed most of the
455 analysis, and wrote the first draft of the manuscript. All authors were involved in the editing of
456 the manuscript.

457

458 **COMPETING INTERESTS:** The authors declare no competing interests.

459 **STRUCTURED METHODS**

460 **REAGENTS AND TOOLS TABLE**

461 Where known, the Research Resource Identifiers (RRIDs) are shown.

Designation	Source	Identifier/ Catalog#	Additional information	
<i>S. cerevisiae</i> strain	(Giaever <i>et al.</i> , 2002); http://www.euroscarf.de/index.php?name=News	RRID:SCR_003093	BY4743	<i>MATα his3Δ1/his3Δ1 leu2Δ0/leu2Δ0 LYS2/lys2Δ0 met15Δ0/MET15 ura3Δ0/ura3Δ0</i>
<i>S. cerevisiae</i> strain	(Giaever <i>et al.</i> , 2002); http://www.euroscarf.de/index.php?name=News	RRID:SCR_003093	BY4742	<i>MATα his3Δ1 leu2Δ0 lys2Δ0 ura3Δ0</i>
<i>S. cerevisiae</i> strain	(Giaever <i>et al.</i> , 2002); http://www.euroscarf.de/index.php?name=News	RRID:SCR_003093	BY4741	<i>MATα his3Δ1 leu2Δ0 met15Δ0 ura3Δ0</i>
<i>S. cerevisiae</i> strain	Dharmacon	YSC1178-202232418		<i>THI7-TAP::HIS3MX6</i> , BY4741 otherwise
<i>S. cerevisiae</i> strain	Dharmacon	YSC6272-201919629	13256	<i>tkl2Δ::KanMX</i> , BY4742 otherwise
Chemical, reagent	Sigma-Aldrich	Y1625	Yeast extract	
Chemical, reagent	Sigma-Aldrich	P5905	Peptone	
Chemical, reagent	Sigma-Aldrich	D9434	Dextrose	
Chemical, reagent	Calbiochem	239763-M	Cycloheximide	
Chemical, reagent	Sigma-Aldrich	S2002	Sodium azide	
Chemical, reagent	Sigma-Aldrich	252859	Tris(hydroxymethyl)aminomethane	
Chemical, reagent	Roche	TRIS-RO	Tris base	
Chemical, reagent	Sigma-Aldrich	S7653	Sodium chloride	
Chemical, reagent	Sigma-Aldrich	792780	Ethanol	

Chemical, reagent	Sigma-Aldrich	S2889	Sodium acetate
Chemical, reagent	Sigma-Aldrich	D5758	Diethyl pyrocarbonate, (DEPC)
Chemical, reagent	Ambion	AM9720	Acid-Phenol:Chloroform, pH 4.5 (with IAA, 125:24:1)
Chemical, reagent	USP	1374248	Magnesium chloride hexahydrate
Chemical, reagent	Sigma-Aldrich	D0632	Dithiothreitol, (DTT)
Chemical, reagent	Sigma-Aldrich	T8787	Triton™ X-100
Chemical, reagent	ThermoFisher	AM2238	Turbo DNase I
Chemical, reagent	Scientific Industries	SI-BG05	Glass beads
Consumable	Beckman Coulter	349622	13x51 mm polycarbonate centrifuge tubes
Chemical, reagent	Sigma-Aldrich	S0389	Sucrose
Chemical, reagent	Sigma-Aldrich	P4417	Phosphate buffered saline (PBS)
Chemical, reagent	ThermoFisher Scientific	84850	C18 Spin Tips
Chemical, reagent	Millipore	Z720003	C18 Ziptips
Chemical, reagent	Sigma-Aldrich	436143	Sodium dodecyl sulfate (SDS)
Chemical, reagent	Sigma-Aldrich	207861	Ammonium carbonate
Chemical, reagent	Sigma-Aldrich	650501	Acetone
Chemical, reagent	Sigma-Aldrich	D6750	Sodium deoxycholate
Chemical, reagent	ThermoFisher Scientific	77720	Tris(2-carboxyethyl)phosphine (TCEP), Bond-Breaker™ TCEP Solution
Chemical, reagent	Sigma-Aldrich	I6125	Iodoacetamide
Chemical, reagent	Pierce	90058	Trypsin Protease, MS-Grade
Chemical, reagent	Sigma-Aldrich	F0507	Formic acid
Chemical, reagent	Sigma-Aldrich	C7715	Amicon® Ultra-15 Centrifugal Filter Units
Chemical, reagent	Sigma-Aldrich	499609	Calcium chloride
Chemical, reagent	Sigma-Aldrich	T63002	Trifluoroethanol
Chemical, reagent	Sigma-Aldrich	H3375	4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid, N-(2-

			Hydroxyethyl)piperazine-N'-(2-ethanesulfonic acid), (HEPES)
Chemical, reagent	Sigma-Aldrich	78830	Phenylmethanesulfonyl fluoride (PMSF)
Chemical, reagent	Sigma-Aldrich	431788	Ethylenediaminetetraacetic acid (EDTA)
Chemical, reagent	ThermoFisher	D1306	DAPI (4',6-Diamidino-2-Phenylindole, Dihydrochloride)
Chemical, reagent	Epicentre	MRZY1324	Ribo-Zero™ Magnetic Gold Kit (Yeast), for rRNA subtraction
Chemical, reagent	Epicentre	SSV21124	ScriptSeq™ v2 RNA-Seq Library Preparation Kit
Antibody	Sigma-Aldrich	P1291	Peroxidase Anti-Peroxidase (PAP) Soluble Complex
Antibody	abcam	ab38007	Anti-Pgk1p antibody, rabbit polyclonal
Chemical, reagent	ThermoFisher	XP04125	Novex™ WedgeWell™ 4-12% Tris-Glycine gels
Software, algorithm	https://www.metaboanalyst.ca/	RRID:SCR_015539	MetaboAnalyst, web server for statistical, functional and integrative analysis of metabolomics data
Software, algorithm	Beckman Coulter	383550	AccuComp Z2, software to monitor number and size of cells with Z2 cell counter
Software, algorithm	https://www.nikoninstruments.com/Products/Software	RRID:SCR_014329	NIS-Elements, microscope imaging software suite used with Nikon products
Software, algorithm	https://imagej.net/	RRID:SCR_003070	ImageJ, image processing software
Software, algorithm	http://www.rstudio.com/	RRID:SCR_000432	RStudio, software for the R statistical computing environment
Software, algorithm	http://www.yeastgenome.org/	RRID:SCR_004694	SGD, <i>Saccharomyces</i> Genome Database
Software, algorithm	https://www.r-project.org	v3.5.2 RRID:SCR_001905	R, Statistical Computing Environment
Software, algorithm	http://www.geneontology.org/	RRID:SCR_002811	Gene ontology, enrichment analysis
Software, algorithm	https://biognosys.com/shop/spectronaut		Spectronaut™, Biognosys software for the targeted analysis of DIA measurements from various MS platforms

462

463

464 **METHODS AND PROTOCOLS**

465 **Strains and media**

466 All the strains used in this study are shown in the Key Resources Table, above. Unless noted
467 otherwise, the cells were cultivated in the standard, rich, undefined medium YPD (1% w/v yeast
468 extract, 2% w/v peptone, 2% w/v dextrose), at 30 °C (Kaiser *et al.*, 1994).

469

470 **Elutriation**

471 To collect enough cells for the downstream measurements of RNA, proteins, and metabolites,
472 we followed the same strategy we described previously (Blank *et al.*, 2017). Briefly, elutriated
473 wild type, G1 cells (diploid BY4743 background) were allowed to progress in the cell cycle until
474 they reached the desired cell size. At that point, they were quenched (with 100 $\mu\text{g/ml}$
475 cycloheximide and 0.1% sodium azide) and frozen away, and later pooled with cells of similar
476 size (Figure 1A). Overall, we had to collect 101 individual samples, to generate the 24 pools
477 shown in Figure 1A.

478 For other elutriation experiments (e.g., see Figures 4,5), only an early G1 elutriated
479 fraction was collected, from which samples were taken at regular intervals as the cells
480 progressed in the cell cycle.

481

482 **Cell size and DNA content measurements**

483 The methods to measure DNA content and the cell size (birth or mean size) of asynchronous
484 cultures and estimate the critical size of asynchronous cultures, have been described in detail
485 previously (Guo *et al.*, 2004; Truong *et al.*, 2013; Soma *et al.*, 2014; Maitra *et al.*, 2019).

486

487 **Proteomic samples**

488 We used ~1E+09 cells from each of the 24 pools of the cell size series (see Figure 1) to prepare
489 extracts for LC-MS/MS. For each sample, the cells were resuspended in 0.75 ml of lysis solution
490 (10 mM Tris pH 7.8, 10 mM NaCl). Glass beads were added to the top of liquid level, the
491 samples were placed in a Mini Beadbeater (Biospec), and the cells broken by 'bead-beating'
492 twice at the maximum speed for 90 s each time, placed on ice for 60 s between. The extract
493 from each sample was collected by punching a hole with a 21-gauge syringe needle at the
494 bottom of the tube. Lastly, the soluble material from the lysates were clarified by centrifugation
495 at 14,000 g at 4 °C, for 10 m. Insoluble pellets were resuspended in 500 µl of lysis buffer and
496 both clarified supernatants and pellets were stored at -80 °C until processing for mass
497 spectrometry.

498 For mass spectral analysis, clarified extracts were thawed and protease inhibitors
499 immediately added. 50 µl of each supernatant sample was mixed with 50 µl trifluoroethanol
500 (TFE) and reduced with 5mM tris(2-carboxyethyl)phosphine (TCEP) at 56 °C for 45 m, cooled
501 for 5 m at room temperature, and alkylated with 25 mM iodoacetamide in the dark, at room
502 temperature for 30 m. Samples were diluted 10-fold with digestion buffer (50 mM Tris pH 8.0, 2
503 mM calcium chloride), digested with trypsin (added at 1:50 ratio) at 37 °C for 5 h. Digestion was
504 stopped with 100 µl of 10% formic acid and sample volumes were reduced to 100-250 µl in a
505 SpeedVac. Following filtration with an Amicon® Ultra-15 Centrifugal Filter Unit the peptides
506 were desalted using C18 Spin Tips, according to the manufacturer's instructions. The volume of
507 the samples was then reduced to 5-10 µl in a SpeedVac. Lastly, the samples were resuspended
508 in 100 µl of a 95% water, 5% acetonitrile, 0.1% formic acid solution, and subjected to LC-
509 MS/MS analysis.

510 The insoluble pellets from the same extracts described above were processed based on
511 a method reported previously (Lin *et al.*, 2013). The pellets were resuspended in 50 µl of 2% ^{w/v}
512 sodium dodecyl sulfate (SDS), 50 mM ammonium carbonate and heated at 95 °C for 10 m.

513 Following clarification each supernatant was transferred to a fresh tube, mixed with six volumes
514 of cold acetone (-20 °C), and incubated at 4 °C for 4 h to form a precipitate. Precipitate was
515 recovered by centrifugation at 13,000 g for 15 m, the supernatant carefully removed by
516 aspiration, and the pellets washed twice with 0.4 ml of cold acetone. After each wash the
517 samples were centrifuged at 14,000 g for 1 m and the supernatant carefully aspirated. Pellets
518 were solubilized in 500 µl of 1% w/v sodium deoxycholate, 50 mM ammonium carbonate with
519 two rounds of sonication (10 m each) in a water bath sonicator with 5 m on ice in between. 50 µl
520 of each sample was reduced and alkylated with TCEP and iodoacetamide as described above.
521 Unreacted iodoacetamide was quenched with 12 mM dithiothreitol (DTT). The samples were
522 brought to 80 µl with digestion buffer and digested with trypsin (added at 1:50 ratio) at 37 °C for
523 5 h. Digestion was stopped with 1% formic acid and samples were centrifuged at 14,000 g for
524 10 m to pellet the precipitated sodium deoxycholate. Peptides were desalted with C18 Spin
525 Tips, and resuspended for LC-MS/MS as described above.

526

527 **LC-MS/MS**

528 Mass spectra were acquired on a Thermo Orbitrap Fusion. 5 µl (supernatant samples) or 2 µl
529 (pellet samples) of peptides were separated using reverse phase chromatography on a Dionex
530 Ultimate 3000 RSLC nano UHPLC system (Thermo Scientific) with a C18 trap to Acclaim C18
531 PepMap RSLC column (Dionex; Thermo Scientific) configuration. Peptides were eluted using a
532 3-45% acetonitrile gradient over 70 min and directly injected into the mass spectrometer using
533 nano-electrospray. Data-dependent tandem mass spectrometry was performed using a top
534 speed HCD method with full precursor ion scans (MS1) collected at 120,000 m/z resolution and
535 a cycle time of 3 sec. Monoisotopic precursor selection and charge-state screening were
536 enabled, with ions of charge >□+□1 selected with dynamic exclusion of 30□s for ions selected
537 once within a 30□s window. Selected precursor ions underwent high-energy collision-induced

538 dissociation (HCD) at 31% energy stepped +/-4%. All MS2 scans were centroid and done in
539 rapid mode. Raw files were processed using Proteome Discoverer 2.2 and the label-free
540 quantification workflow.

541

542 **RNA samples and libraries**

543 We used the same approach we had described previously (Blank *et al.*, 2017), to collect cells
544 from elutriated cultures of wild type (BY4743 strain background). For each of the 24 samples,
545 from ~3E+07 cells total RNA was prepared with the hot phenol method. Briefly, the frozen
546 pellets were re-suspended in 0.4 ml TES buffer (10 mM Tris pH = 7.5, 10mM EDTA, 0.5%
547 SDS), in DEPC-treated water, and ~0.05 ml glass beads were added. Then, 0.4 ml of acid
548 phenol:chloroform was added to each pellet, and the samples were incubated at 65 °C for 30 m,
549 and vortexed briefly every 5 m during that time. The samples were centrifuged at 14,000 g for 5
550 m, and 0.3 ml of the top, aqueous layer were placed in a 2-ml screw-cap tube containing 1 ml
551 cold ethanol with 40 µl of a 3M sodium acetate solution. The samples were incubated at 4 °C
552 overnight and then centrifuged at 14,000 g for 20 m. The pellets were washed with 80% ethanol
553 and centrifuged at 14,000 g for 5 m. The pellets were air-dried and resuspended in 25 µl of
554 DEPC-treated water. For the RNAseq libraries, we also used the same approach we had
555 described (Blank *et al.*, 2017), except that we did not select for polyA-tailed RNAs. Instead, from
556 total RNA, we depleted rRNA, using the ‘Ribo-Zero™ Magnetic Gold Kit (Yeast)’, according to
557 the manufacturer’s instructions. All libraries were sequenced on an Illumina HiSeq4000, with
558 multiplexing, at the Texas A&M AgriLife Genomics and Bioinformatics Facility. Raw sequencing
559 data (fastq files) have been deposited (GEO: GSE135476).

560 The reads were aligned to the *S. cerevisiae* reference genome (version R64-1-1) using
561 the *Rsubread* R language package (Liao *et al.*, 2019). First, an index was built using the

562 command: buildindex(basename = "R64", reference = "Saccharomyces_cerevisiae.R64-1-
563 1.dna.toplevel.fa", gappedIndex=TRUE). Then, for each of the 24 libraries, the paired end reads
564 were aligned with the command: align(index = 'R64', readfile1 = '....fastq.gz', readfile2 =
565 '....fastq.gz', type = "rna"). For each library, we obtained >10 million uniquely mapped reads,
566 and the output BAM files were then used in the featureCounts function of the *Rsubread*
567 package, with the following command: featureCounts(files = "...subread.BAM", ispairedEnd =
568 TRUE, requireBothEndsMapped = TRUE, annotext = "Saccharomyces_cerevisiae.R64-1-
569 1.95.gtf", countChimericFragments = FALSE, isGTFAnnotationFile = TRUE). All the read counts
570 are in File1/sheet 'rna_reads'.

571 For differential RNA levels between any two points in the cell cycle using the *DESeq2* R
572 language package (Love *et al.*, 2014), the raw read data (File2/sheet 'rna_deseq2_i') were used
573 as input. For this statistical analysis, the 24 cell size pools were grouped in 8 groups, for each of
574 the approximately 5 fL increments in the cell size series (see Figure 1A). Additional analyses
575 with ANOVA-based methods were performed as for the other biomolecules, and they are
576 described below.

577

578 **Metabolite samples and analysis**

579 The untargeted, primary metabolite, biogenic amine, and complex lipid analyses were done at
580 the NIH-funded West Coast Metabolomics Center at the University of California at Davis,
581 according to their mass spectrometry protocols. Gas Chromatography-Time-of-Flight Mass
582 Spectrometry (GC-TOF MS) was used for Primary metabolites. For biogenic amines, separation
583 and detections was achieved by Hydrophilic Interaction Chromatography (HILIC), followed by
584 Quadrupole time-of-flight (QTOF) MS/MS. Lastly, for complex lipids, Charged Surface Hybrid
585 (CSH™) C18 separation was followed with QTOF MS/MS for lipids. Extract preparation was

586 also done at the same facility, from 1E+07 cells in each sample, from the same ones used for
587 proteomic and RNA profiling (Figure 1). The cells were provided to the Metabolomics facility as
588 frozen (at -80 °C) pellets. Detected species that could not be assigned to any compound were
589 excluded from the analysis.

590

591 **ANOVA-based computational approaches to identify differentially expressed**
592 **biomolecules**

593 For RNA samples, we used the TPM normalized values. For all other biomolecules, the input
594 values we used were scaled-normalized for input values per sample. All the input and output
595 datasets are shown in Table S1. To identify significant differences in the levels of biomolecules
596 between any two points in the cell cycle we used the robust bootstrap ANOVA, via the *t1waybt*
597 function, and the posthoc tests via the *mcppb20* function, of the *WRS2* R language package
598 (Wilcox, 2011). The function is shown in File6, using as an example the 'File2/sol_pa_anova
599 spreadsheet. For this statistical analysis, the 24 cell size pools were grouped in 8 groups, for
600 each of the approximately 5 fL increments in the cell size series (see Figure 1A).

601

602 **SWATH-Mass spectrometry**

603 The samples used to measure ribosomal protein abundances were from elutriated, diploid wild
604 type BY4743 cells (see Key Resources Table). Once the cells reached the desired cell size,
605 they were quenched with 100 µg/ml cycloheximide and 0.1% sodium azide. Cells were
606 harvested from three independently elutriated cultures (5E+07 cells in each sample). The cells
607 were re-suspended in a buffer containing 20 mM Tris-Cl (pH 7.4), 150 mM NaCl, 5 mM MgCl₂, 1
608 mM DTT, 100 µg/ml cycloheximide, 1% Triton X-100, and 25 U/ml Turbo DNase I, to a
609 volume of 0.35 ml. Then, 0.2 ml of 0.5mm glass beads were added to each sample, and

610 vortexed at maximum speed for 15 s, eight times, placing on ice for 15 s in between. The
611 lysates were clarified by centrifuging at 5,000 rpm for 5 m, at 4 °C, and again for 5 m at 13,000
612 rpm at 4 °C. The supernatant was transferred to a 13×51 mm polycarbonate ultracentrifuge
613 tube, underlaid with 0.90 ml of 1 M sucrose, and the ribosomes were pelleted by centrifugation
614 in a TLA100.3 rotor (Beckman) at 100,000 rpm at 4 °C for 1 h. The protein pellets from three
615 biological replicates for various time points during the cell cycle (40, 45, 50, 55, 60, 65, 70 and
616 75 fL) were then re-suspended in PBS, subjected to a Filter-Aided Sample Preparation (FASP)
617 protocol tryptic digestion (Wisniewski *et al.*, 2009), desalted using C-18 Ziptips, and analyzed by
618 data-independent acquisition (DIA)/SWATH-mass spectrometry, as described previously
619 (Schilling *et al.*, 2017).

620 Briefly, samples were analyzed by reverse-phase HPLC-ESI-MS/MS using an Eksigent
621 Ultra Plus nano-LC 2D HPLC system (Dublin, CA) with a cHiPLC system (Eksigent) which was
622 directly connected to a quadrupole time-of-flight (QqTOF) TripleTOF 6600 mass spectrometer
623 (SCIEX, Concord, CAN) (Christensen *et al.*, 2018). After injection, peptide mixtures were loaded
624 onto a C18 pre-column chip (200 µm x 0.4 mm ChromXP C18-CL chip, 3 µm, 120 Å, SCIEX)
625 and washed at 2 µl/min for 10 min with the loading solvent (H₂O/0.1% formic acid) for desalting.
626 Subsequently, peptides were transferred to the 75 µm x 15 cm ChromXP C18-CL chip, 3 µm,
627 120 Å, (SCIEX), and eluted at a flow rate of 300 nL/min with a 3 h gradient using aqueous and
628 acetonitrile solvent buffers.

629 For quantification, all peptide samples were analyzed by data-independent acquisition
630 (Gillet *et al.*, 2012), using 64 variable-width isolation windows (Collins *et al.*, 2017; Schilling *et*
631 *al.*, 2017). The variable window width is adjusted according to the complexity of the typical MS1
632 ion current observed within a certain m/z range using a DIA ‘variable window method’ algorithm
633 (more narrow windows were chosen in ‘busy’ m/z ranges, wide windows in m/z ranges with few
634 eluting precursor ions). DIA acquisitions produce complex MS/MS spectra, which are a
635 composite of all the analytes within each selected Q1 m/z window. The DIA cycle time of 3.2 s

636 included a 250 ms precursor ion scan followed by 45 ms accumulation time for each of the 64
637 variable SWATH segments.

638 The DIA/SWATH data was processed with the Spectronaut™ software platform
639 (Biognosys) for relative quantification comparing peptide peak areas among different time points
640 during the cell cycle. For the DIA/SWATH MS2 data sets quantification was based on XICs of 6-
641 10 MS/MS fragment ions, typically y- and b-ions, matching to specific peptides present in the
642 spectral libraries. Significantly changed proteins were accepted at a 5% FDR (q-value < 0.05).

643

644 **Immunoblot analysis**

645 For protein surveillance, protein extracts were made as described previously (Amberg *et al.*,
646 2006), and run on 4-12% Tris-Glycine SDS-PAGE gels. To detect TAP-tagged proteins with the
647 PAP reagent, we used immunoblots from extracts of the indicated strains as we described
648 previously (Blank *et al.*, 2017). Loading was evaluated with an anti-Pgk1p antibody.

649

650 **Comparison of the relative protein abundances in (Becher *et al.*, 2018) and (Olsen *et al.*, 651 2010)**

652 For the datasets generated in human, HeLa cells, 0.5 h after nocodazole arrest, the data were
653 from Table S1 in (Becher *et al.*, 2018) and Supplementary Table_S1 in (Olsen *et al.*, 2010). In
654 the former study the authors reported the Log2-transformed ratios of the measured abundance
655 over the median abundance of asynchronous cultures. For the (Olsen *et al.*, 2010) proteins, the
656 data were the isotopic ratios reported. In both cases, these values represented the
657 corresponding protein abundances in that sample, among all the proteins identified in each
658 sample in each study (see File7). To compare the rank order of the 3,298 proteins identified in

659 common in the two studies, Spearman's rank correlation rho (ρ) was estimated ($p=0.09687857$)
660 with the `spearman.test` function of the *pspearman* R language package.

661 **REFERENCES**

662 Ahn, E., Kumar, P., Mukha, D., Tzur, A., and Shlomi, T. (2017). Temporal fluxomics reveals
663 oscillations in TCA cycle flux throughout the mammalian cell cycle. *Molecular systems*
664 *biology* 13, 953.

665 Al-Feel, W., DeMar, J.C., and Wakil, S.J. (2003). A *Saccharomyces cerevisiae* mutant strain
666 defective in acetyl-CoA carboxylase arrests at the G2/M phase of the cell cycle. *Proceedings*
667 *of the National Academy of Sciences of the United States of America* 100, 3095-3100.

668 Amberg, D.C., Burke, D.J., and Strathern, J.N. (2006). Yeast protein extracts. *CSH Protoc* 2006,
669 pdb. prot4152.

670 Anastasia, S.D., Nguyen, D.L., Thai, V., Meloy, M., MacDonough, T., and Kellogg, D.R. (2012).
671 A link between mitotic entry and membrane growth suggests a novel model for cell size
672 control. *The Journal of cell biology* 197, 89-104.

673 Aramayo, R., and Polymenis, M. (2017). Ribosome profiling the cell cycle: lessons and
674 challenges. *Current genetics* 63, 959-964.

675 Atilla-Gokcumen, G.E., Muro, E., Relat-Goberna, J., Sasse, S., Bedigian, A., Coughlin, M.L.,
676 Garcia-Manyes, S., and Eggert, U.S. (2014). Dividing cells regulate their lipid composition
677 and localization. *Cell* 156, 428-439.

678 Banfalvi, G. (2008). Cell cycle synchronization of animal cells and nuclei by centrifugal
679 elutriation. *Nature protocols* 3, 663-673.

680 Becher, I., Andres-Pons, A., Romanov, N., Stein, F., Schramm, M., Baudin, F., Helm, D.,
681 Kurzawa, N., Mateus, A., Mackmull, M.T., Typas, A., Muller, C.W., Bork, P., Beck, M., and
682 Savitski, M.M. (2018). Pervasive Protein Thermal Stability Variation during the Cell Cycle.
683 *Cell* 173, 1495-1507.e1418.

684 Blank, H.M., Perez, R., He, C., Maitra, N., Metz, R., Hill, J., Lin, Y., Johnson, C.D., Bankaitis,
685 V.A., Kennedy, B.K., Aramayo, R., and Polymenis, M. (2017). Translational control of
686 lipogenic enzymes in the cell cycle of synchronous, growing yeast cells. *The EMBO journal*
687 36, 487-502.

688 Carpy, A., Krug, K., Graf, S., Koch, A., Popic, S., Hauf, S., and Macek, B. (2014). Absolute
689 proteome and phosphoproteome dynamics during the cell cycle of *Schizosaccharomyces*
690 *pombe* (Fission Yeast). *Molecular & cellular proteomics : MCP* 13, 1925-1936.

691 Cho, R.J., Campbell, M.J., Winzeler, E.A., Steinmetz, L., Conway, A., Wodicka, L., Wolfsberg,
692 T.G., Gabrielian, A.E., Landsman, D., Lockhart, D.J., and Davis, R.W. (1998). A genome-
693 wide transcriptional analysis of the mitotic cell cycle. *Molecular cell* 2, 65-73.

694 Christensen, D.G., Meyer, J.G., Baumgartner, J.T., D'Souza, A.K., Nelson, W.C., Payne, S.H.,
695 Kuhn, M.L., Schilling, B., and Wolfe, A.J. (2018). Identification of Novel Protein Lysine
696 Acetyltransferases in *Escherichia coli*. *mBio* 9.

697 Collins, B.C., Hunter, C.L., Liu, Y., Schilling, B., Rosenberger, G., Bader, S.L., Chan, D.W.,
698 Gibson, B.W., Gingras, A.C., Held, J.M., Hirayama-Kurogi, M., Hou, G., Krisp, C., Larsen,
699 B., Lin, L., Liu, S., Molloy, M.P., Moritz, R.L., Ohtsuki, S., Schlapbach, R., Selevsek, N.,
700 Thomas, S.N., Tzeng, S.C., Zhang, H., and Aebersold, R. (2017). Multi-laboratory
701 assessment of reproducibility, qualitative and quantitative performance of SWATH-mass
702 spectrometry. *Nature communications* 8, 291.

703 Creanor, J., and Mitchison, J. (1979). Reduction of perturbations in leucine incorporation in
704 synchronous cultures of *Schizosaccharomyces pombe* made by elutriation. *Journal of*
705 *General Microbiology* 112, 385-388.

706 Csardi, G., Franks, A., Choi, D.S., Airoldi, E.M., and Drummond, D.A. (2015). Accounting for
707 experimental noise reveals that mRNA levels, amplified by post-transcriptional processes,
708 largely determine steady-state protein levels in yeast. *PLoS genetics* 11, e1005206.

709 Dahl, C., Biemann, H.P., and Dahl, J. (1987). A protein kinase antigenically related to pp60v-src
710 possibly involved in yeast cell cycle control: positive in vivo regulation by sterol. *Proceedings
711 of the National Academy of Sciences of the United States of America* 84, 4012-4016.

712 Dai, L., Zhao, T., Bisteau, X., Sun, W., Prabhu, N., Lim, Y.T., Sobota, R.M., Kaldis, P., and
713 Nordlund, P. (2018). Modulation of Protein-Interaction States through the Cell Cycle. *Cell*
714 173, 1481-1494.e1413.

715 de Lichtenberg, U., Wernersson, R., Jensen, T.S., Nielsen, H.B., Fausboll, A., Schmidt, P.,
716 Hansen, F.B., Knudsen, S., and Brunak, S. (2005). New weakly expressed cell cycle-
717 regulated genes in yeast. *Yeast* 22, 1191-1201.

718 Dephoure, N., Zhou, C., Villen, J., Beausoleil, S.A., Bakalarski, C.E., Elledge, S.J., and Gygi,
719 S.P. (2008). A quantitative atlas of mitotic phosphorylation. *Proceedings of the National
720 Academy of Sciences of the United States of America* 105, 10762-10767.

721 Elliott, S.G., Warner, J.R., and McLaughlin, C.S. (1979). Synthesis of ribosomal proteins during
722 the cell cycle of the yeast *Saccharomyces cerevisiae*. *Journal of bacteriology* 137, 1048-
723 1050.

724 Evans, T., Rosenthal, E.T., Youngblom, J., Distel, D., and Hunt, T. (1983). Cyclin: a protein
725 specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division.
726 *Cell* 33, 389-396.

727 Ewald, J.C., Kuehne, A., Zamboni, N., and Skotheim, J.M. (2016). The Yeast Cyclin-Dependent
728 Kinase Routes Carbon Fluxes to Fuel Cell Cycle Progression. *Molecular cell* 62, 532-545.

729 Flory, M.R., Lee, H., Bonneau, R., Mallick, P., Serikawa, K., Morris, D.R., and Aebersold, R.
730 (2006). Quantitative proteomic analysis of the budding yeast cell cycle using acid-cleavable
731 isotope-coded affinity tag reagents. *Proteomics* 6, 6146-6157.

732 Frenkel-Morgenstern, M., Danon, T., Christian, T., Igarashi, T., Cohen, L., Hou, Y.M., and
733 Jensen, L.J. (2012). Genes adopt non-optimal codon usage to generate cell cycle-
734 dependent oscillations in protein levels. *Molecular systems biology* 8, 572.

735 Furse, S., and Shearman, G.C. (2018). Do lipids shape the eukaryotic cell cycle? *Biochimica et
736 biophysica acta. Molecular and cell biology of lipids* 1863, 9-19.

737 Gaber, R.F., Copple, D.M., Kennedy, B.K., Vidal, M., and Bard, M. (1989). The yeast gene
738 ERG6 is required for normal membrane function but is not essential for biosynthesis of the
739 cell-cycle-sparking sterol. *Molecular and cellular biology* 9, 3447-3456.

740 Gasch, A.P., Spellman, P.T., Kao, C.M., Carmel-Harel, O., Eisen, M.B., Storz, G., Botstein, D.,
741 and Brown, P.O. (2000). Genomic expression programs in the response of yeast cells to
742 environmental changes. *Molecular biology of the cell* 11, 4241-4257.

743 Ghaemmaghami, S., Huh, W.K., Bower, K., Howson, R.W., Belle, A., Dephoure, N., O'Shea,
744 E.K., and Weissman, J.S. (2003). Global analysis of protein expression in yeast. *Nature*
745 425, 737-741.

746 Giaever, G., Chu, A.M., Ni, L., Connelly, C., Riles, L., Veronneau, S., Dow, S., Lucau-Danila, A.,
747 Anderson, K., Andre, B., Arkin, A.P., Astromoff, A., El-Bakkoury, M., Bangham, R., Benito,
748 Brachat, S., Campanaro, S., Curtiss, M., Davis, K., Deutschbauer, A., Entian, K.D.,
749 Flaherty, P., Foury, F., Garfinkel, D.J., Gerstein, M., Gotte, D., Guldener, U., Hegemann,
750 J.H., Hempel, S., Herman, Z., Jaramillo, D.F., Kelly, D.E., Kelly, S.L., Kotter, P., LaBonte,
751 D., Lamb, D.C., Lan, N., Liang, H., Liao, H., Liu, L., Luo, C., Lussier, M., Mao, R., Menard,
752 P., Ooi, S.L., Revuelta, J.L., Roberts, C.J., Rose, M., Ross-Macdonald, P., Scherens, B.,
753 Schimmack, G., Shafer, B., Shoemaker, D.D., Sookhai-Mahadeo, S., Storms, R.K.,
754 Strathern, J.N., Valle, G., Voet, M., Volckaert, G., Wang, C.Y., Ward, T.R., Wilhelmy, J.,
755 Winzeler, E.A., Yang, Y., Yen, G., Youngman, E., Yu, K., Bussey, H., Boeke, J.D., Snyder,
756 M., Philippsen, P., Davis, R.W., and Johnston, M. (2002). Functional profiling of the
757 *Saccharomyces cerevisiae* genome. *Nature* 418, 387-391.

758 Gillet, L.C., Navarro, P., Tate, S., Rost, H., Selevsek, N., Reiter, L., Bonner, R., and Aebersold,
759 R. (2012). Targeted data extraction of the MS/MS spectra generated by data-independent

760 acquisition: a new concept for consistent and accurate proteome analysis. *Molecular &*
761 *cellular proteomics* : MCP 11, O111.016717.

762 Granovskaia, M.V., Jensen, L.J., Ritchie, M.E., Toedling, J., Ning, Y., Bork, P., Huber, W., and
763 Steinmetz, L.M. (2010). High-resolution transcription atlas of the mitotic cell cycle in budding
764 yeast. *Genome biology* 11, R24.

765 Guo, J., Bryan, B.A., and Polymenis, M. (2004). Nutrient-specific effects in the coordination of
766 cell growth with cell division in continuous cultures of *Saccharomyces cerevisiae*. *Archives*
767 *of microbiology* 182, 326-330.

768 Hardy, C.D., and Cozzarelli, N.R. (2005). A genetic selection for supercoiling mutants of
769 *Escherichia coli* reveals proteins implicated in chromosome structure. *Molecular*
770 *microbiology* 57, 1636-1652.

771 Hasslacher, M., Ivessa, A.S., Paltauf, F., and Kohlwein, S.D. (1993). Acetyl-CoA carboxylase
772 from yeast is an essential enzyme and is regulated by factors that control phospholipid
773 metabolism. *The Journal of biological chemistry* 268, 10946-10952.

774 Ho, B., Baryshnikova, A., and Brown, G.W. (2018). Unification of Protein Abundance Datasets
775 Yields a Quantitative *Saccharomyces cerevisiae* Proteome. *Cell systems* 6, 192-205.e193.

776 Hoose, S.A., Rawlings, J.A., Kelly, M.M., Leitch, M.C., Ababneh, Q.O., Robles, J.P., Taylor, D.,
777 Hoover, E.M., Hailu, B., McEnery, K.A., Downing, S.S., Kaushal, D., Chen, Y., Rife, A.,
778 Brahmabhatt, K.A., Smith, R., 3rd, and Polymenis, M. (2012). A systematic analysis of cell
779 cycle regulators in yeast reveals that most factors act independently of cell size to control
780 initiation of division. *PLoS genetics* 8, e1002590.

781 Hopper, A.K. (2013). Transfer RNA post-transcriptional processing, turnover, and subcellular
782 dynamics in the yeast *Saccharomyces cerevisiae*. *Genetics* 194, 43-67.

783 Huang, J., Mousley, C.J., Dacquay, L., Maitra, N., Drin, G., He, C., Ridgway, N.D., Tripathi, A.,
784 Kennedy, M., Kennedy, B.K., Liu, W., Baetz, K., Polymenis, M., and Bankaitis, V.A. (2018).
785 A Lipid Transfer Protein Signaling Axis Exerts Dual Control of Cell-Cycle and Membrane
786 Trafficking Systems. *Dev Cell* 44, 378-391.e375.

787 Jorgensen, P., Nishikawa, J.L., Breitkreutz, B.J., and Tyers, M. (2002). Systematic identification
788 of pathways that couple cell growth and division in yeast. *Science* 297, 395-400.

789 Juppner, J., Mubeen, U., Leisse, A., Caldana, C., Brust, H., Steup, M., Herrmann, M.,
790 Steinhauser, D., and Giavalisco, P. (2017). Dynamics of lipids and metabolites during the
791 cell cycle of *Chlamydomonas reinhardtii*. *The Plant journal : for cell and molecular biology*
792 92, 331-343.

793 Kaiser, C., Michaelis, S., Mitchell, A., and Cold Spring Harbor Laboratory. (1994). Methods in
794 yeast genetics : a Cold Spring Harbor Laboratory course manual. Cold Spring Harbor
795 Laboratory Press: Cold Spring Harbor, NY.

796 Kettle, E., Page, S.L., Morgan, G.P., Malladi, C.S., Wong, C.L., Boadle, R.A., Marsh, B.J.,
797 Robinson, P.J., and Chircop, M. (2015). A Cholesterol-Dependent Endocytic Mechanism
798 Generates Midbody Tubules During Cytokinesis. *Traffic* (Copenhagen, Denmark) 16, 1174-
799 1192.

800 Kim, Y., Kim, E.Y., Seo, Y.M., Yoon, T.K., Lee, W.S., and Lee, K.A. (2012). Function of the
801 pentose phosphate pathway and its key enzyme, transketolase, in the regulation of the
802 meiotic cell cycle in oocytes. *Clinical and experimental reproductive medicine* 39, 58-67.

803 Kurat, C.F., Wolinski, H., Petschnigg, J., Kaluarachchi, S., Andrews, B., Natter, K., and
804 Kohlwein, S.D. (2009). Cdk1/Cdc28-dependent activation of the major triacylglycerol lipase
805 Tgl4 in yeast links lipolysis to cell-cycle progression. *Molecular cell* 33, 53-63.

806 Lahtvee, P.-J., Sánchez, B.J., Smialowska, A., Kasvandik, S., Elsemman, I.E., Gatto, F., and
807 Nielsen, J. (2017). Absolute quantification of protein and mRNA abundances demonstrate
808 variability in gene-specific translation efficiency in yeast. *Cell systems* 4, 495-504. e495.

809 Lane, K.R., Yu, Y., Lackey, P.E., Chen, X., Marzluff, W.F., and Cook, J.G. (2013). Cell cycle-
810 regulated protein abundance changes in synchronously proliferating HeLa cells include
811 regulation of pre-mRNA splicing proteins. *PLoS one* 8, e58456.

812 Liao, Y., Smyth, G.K., and Shi, W. (2019). The R package Rsubread is easier, faster, cheaper
813 and better for alignment and quantification of RNA sequencing reads. *Nucleic acids*
814 research 47, e47.

815 Lin, Y., Liu, H., Liu, Z., Liu, Y., He, Q., Chen, P., Wang, X., and Liang, S. (2013). Development
816 and evaluation of an entirely solution-based combinative sample preparation method for
817 membrane proteomics. *Analytical biochemistry* 432, 41-48.

818 Lindahl, P.E. (1948). Principle of a counter-streaming centrifuge for the separation of particles of
819 different sizes. *Nature* 161, 648.

820 Lodish, H.F. (1974). Model for the regulation of mRNA translation applied to haemoglobin
821 synthesis. *Nature* 251, 385-388.

822 Love, M.I., Huber, W., and Anders, S. (2014). Moderated estimation of fold change and
823 dispersion for RNA-seq data with DESeq2. *Genome biology* 15, 550.

824 Lu, P., Vogel, C., Wang, R., Yao, X., and Marcotte, E.M. (2007). Absolute protein expression
825 profiling estimates the relative contributions of transcriptional and translational regulation.
826 *Nature biotechnology* 25, 117-124.

827 Ly, T., Ahmad, Y., Shlien, A., Soroka, D., Mills, A., Emanuele, M.J., Stratton, M.R., and Lamond,
828 A.I. (2014). A proteomic chronology of gene expression through the cell cycle in human
829 myeloid leukemia cells. *eLife* 3, e01630.

830 Ly, T., Endo, A., and Lamond, A.I. (2015). Proteomic analysis of the response to cell cycle
831 arrests in human myeloid leukemia cells. *eLife* 4, e04534.

832 Maitra, N., Anandhakumar, J., Blank, H.M., Kaplan, C.D., and Polymenis, M. (2019).
833 Perturbations of Transcription and Gene Expression-Associated Processes Alter Distribution
834 of Cell Size Values in *Saccharomyces cerevisiae*. *G3* 9, 239-250.

835 Mann, M. (2006). Functional and quantitative proteomics using SILAC. *Nature reviews.*
836 *Molecular cell biology* 7, 952-958.

837 McCusker, D., and Kellogg, D.R. (2012). Plasma membrane growth during the cell cycle:
838 unsolved mysteries and recent progress. *Current opinion in cell biology* 24, 845-851.

839 Mitchison, J.M. (1971). Synchronous Cultures. In: *The Biology of the Cell Cycle*: Cambridge
840 University Press, 25-57.

841 Oliva, A., Rosebrock, A., Ferrezuelo, F., Pyne, S., Chen, H., Skiena, S., Futcher, B., and
842 Leatherwood, J. (2005). The cell cycle-regulated genes of *Schizosaccharomyces pombe*.
843 *PLoS biology* 3, e225.

844 Olsen, J.V., Vermeulen, M., Santamaria, A., Kumar, C., Miller, M.L., Jensen, L.J., Gnad, F.,
845 Cox, J., Jensen, T.S., Nigg, E.A., Brunak, S., and Mann, M. (2010). Quantitative
846 phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis.
847 *Science signaling* 3, ra3.

848 Peng, J., Schwartz, D., Elias, J.E., Thoreen, C.C., Cheng, D., Marsischky, G., Roelofs, J.,
849 Finley, D., and Gygi, S.P. (2003). A proteomics approach to understanding protein
850 ubiquitination. *Nature biotechnology* 21, 921-926.

851 Pramila, T., Wu, W., Miles, S., Noble, W.S., and Breeden, L.L. (2006). The Forkhead
852 transcription factor Hcm1 regulates chromosome segregation genes and fills the S-phase
853 gap in the transcriptional circuitry of the cell cycle. *Genes & development* 20, 2266-2278.

854 Pringle, J.R., Hartwell, L.H. (1981). The *Saccharomyces cerevisiae* Cell Cycle. In: *The*
855 *Molecular and Cellular Biology of the Yeast Saccharomyces*, vol. 1: Cold Spring Harbor
856 Laboratory Press, 97-142.

857 Rustici, G., Mata, J., Kivinen, K., Lio, P., Penkett, C.J., Burns, G., Hayles, J., Brazma, A., Nurse,
858 P., and Bahler, J. (2004). Periodic gene expression program of the fission yeast cell cycle.
859 *Nature genetics* 36, 809-817.

860 Sanchez-Alvarez, M., Zhang, Q., Finger, F., Wakelam, M.J., and Bakal, C. (2015). Cell cycle
861 progression is an essential regulatory component of phospholipid metabolism and
862 membrane homeostasis. *Open biology* 5, 150093.

863 Santos, A., Wernersson, R., and Jensen, L.J. (2015). Cyclebase 3.0: a multi-organism database
864 on cell-cycle regulation and phenotypes. *Nucleic acids research* 43, D1140-1144.

865 Scaglia, N., Tyekucheva, S., Zadra, G., Photopoulos, C., and Loda, M. (2014). De novo fatty
866 acid synthesis at the mitotic exit is required to complete cellular division. *Cell cycle*
867 (Georgetown, Tex.) 13, 859-868.

868 Schilling, B., Gibson, B.W., and Hunter, C.L. (2017). Generation of High-Quality SWATH((R))
869 Acquisition Data for Label-free Quantitative Proteomics Studies Using TripleTOF((R)) Mass
870 Spectrometers. *Methods in molecular biology* (Clifton, N.J.) 1550, 223-233.

871 Schillinger, J., Severin, K., Kaschani, F., Kaiser, M., and Ehrmann, M. (2018). HTRA1-
872 Dependent Cell Cycle Proteomics. *Journal of proteome research* 17, 2679-2694.

873 Schneiter, R., Hitomi, M., Ivessa, A.S., Fasch, E.V., Kohlwein, S.D., and Tartakoff, A.M. (1996).
874 A yeast acetyl coenzyme A carboxylase mutant links very-long-chain fatty acid synthesis to
875 the structure and function of the nuclear membrane-pore complex. *Molecular and cellular*
876 *biology* 16, 7161-7172.

877 Shulman, R.W., Hartwell, L.H., and Warner, J.R. (1973). Synthesis of ribosomal proteins during
878 the yeast cell cycle. *Journal of molecular biology* 73, 513-525.

879 Singh, P., Saxena, R., Srinivas, G., Pande, G., and Chattopadhyay, A. (2013). Cholesterol
880 biosynthesis and homeostasis in regulation of the cell cycle. *PLoS one* 8, e58833.

881 Soma, S., Yang, K., Morales, M.I., and Polymenis, M. (2014). Multiple metabolic requirements
882 for size homeostasis and initiation of division in *Saccharomyces cerevisiae*. *Microb Cell* 1,
883 256-266.

884 Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B., Brown, P.O.,
885 Botstein, D., and Futcher, B. (1998). Comprehensive identification of cell cycle-regulated
886 genes of the yeast *Saccharomyces cerevisiae* by microarray hybridization. *Molecular biology*
887 of the cell 9, 3273-3297.

888 Suarez, Y., Fernandez, C., Ledo, B., Ferruelo, A.J., Martin, M., Vega, M.A., Gomez-Coronado,
889 D., and Lasuncion, M.A. (2002). Differential effects of ergosterol and cholesterol on Cdk1
890 activation and SRE-driven transcription. *European journal of biochemistry / FEBS* 269,
891 1761-1771.

892 Swaffer, M.P., Jones, A.W., Flynn, H.R., Snijders, A.P., and Nurse, P. (2016). CDK Substrate
893 Phosphorylation and Ordering the Cell Cycle. *Cell* 167, 1750-1761.e1716.

894 Swaney, D.L., Beltrao, P., Starita, L., Guo, A., Rush, J., Fields, S., Krogan, N.J., and Villen, J.
895 (2013). Global analysis of phosphorylation and ubiquitylation cross-talk in protein
896 degradation. *Nat Methods* 10, 676-682.

897 Torrent, M., Chalancon, G., de Groot, N.S., Wuster, A., and Madan Babu, M. (2018). Cells alter
898 their tRNA abundance to selectively regulate protein synthesis during stress conditions.
899 *Science signaling* 11.

900 Truong, S.K., McCormick, R.F., and Polymenis, M. (2013). Genetic Determinants of Cell Size at
901 Birth and Their Impact on Cell Cycle Progression in *Saccharomyces cerevisiae*. *G3* 3, 1525-
902 1530.

903 Tumu, S., Patil, A., Towns, W., Dyavaiah, M., and Begley, T.J. (2012). The gene-specific codon
904 counting database: a genome-based catalog of one-, two-, three-, four- and five-codon
905 combinations present in *Saccharomyces cerevisiae* genes. *Database : the journal of*
906 *biological databases and curation* 2012, bas002.

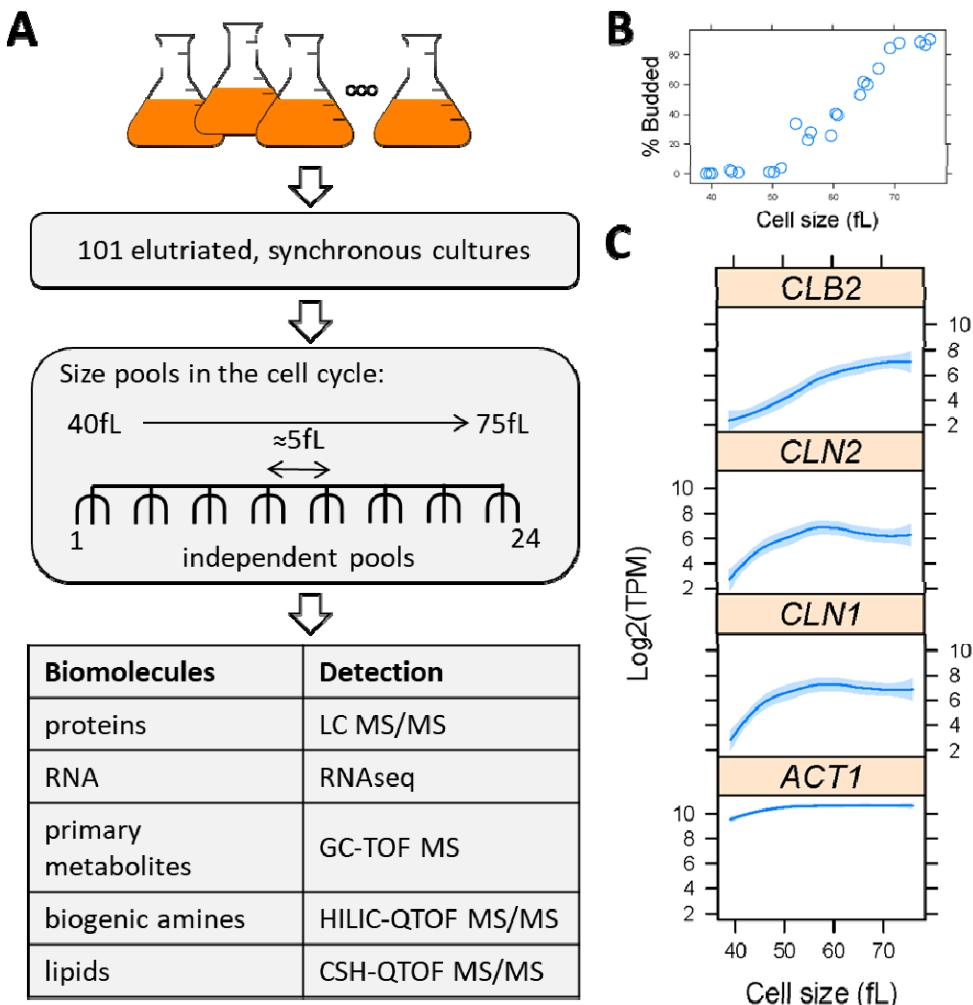
907 Vogel, C., and Marcotte, E.M. (2012). Insights into the regulation of protein abundance from
908 proteomic and transcriptomic analyses. *Nature reviews. Genetics* 13, 227-232.

909 Warner, J.R. (1999). The economics of ribosome biosynthesis in yeast. *Trends in biochemical*
910 *sciences* 24, 437-440.

911 Weinberg, D.E., Shah, P., Eichhorn, S.W., Hussmann, J.A., Plotkin, J.B., and Bartel, D.P.
912 (2016). Improved Ribosome-Footprint and mRNA Measurements Provide Insights into
913 Dynamics and Regulation of Yeast Translation. *Cell reports* 14, 1787-1799.
914 Wilcox, R.R. (2011). Introduction to robust estimation and hypothesis testing. Academic press.
915 Wisniewski, J.R., Zougman, A., Nagaraj, N., and Mann, M. (2009). Universal sample
916 preparation method for proteome analysis. *Nature methods* 6, 359-362.
917 Yang, P.L., Hsu, T.H., Wang, C.W., and Chen, R.H. (2016). Lipid droplets maintain lipid
918 homeostasis during anaphase for efficient cell separation in budding yeast. *Molecular*
919 *biology of the cell* 27, 2368-2380.
920 Zhang, J., Schneider, C., Ottmers, L., Rodriguez, R., Day, A., Markwardt, J., and Schneider,
921 B.L. (2002). Genomic scale mutant hunt identifies cell size homeostasis genes in *S.*
922 *cerevisiae*. *Current biology : CB* 12, 1992-2001.
923 Zhao, G., Chen, Y., Carey, L., and Futcher, B. (2016). Cyclin-Dependent Kinase Co-Ordinates
924 Carbohydrate Metabolism and Cell Cycle in *S. cerevisiae*. *Molecular cell* 62, 546-557.

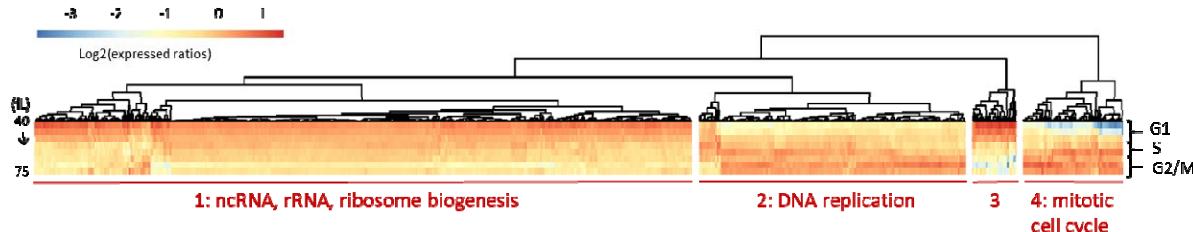
925

926 **FIGURES**

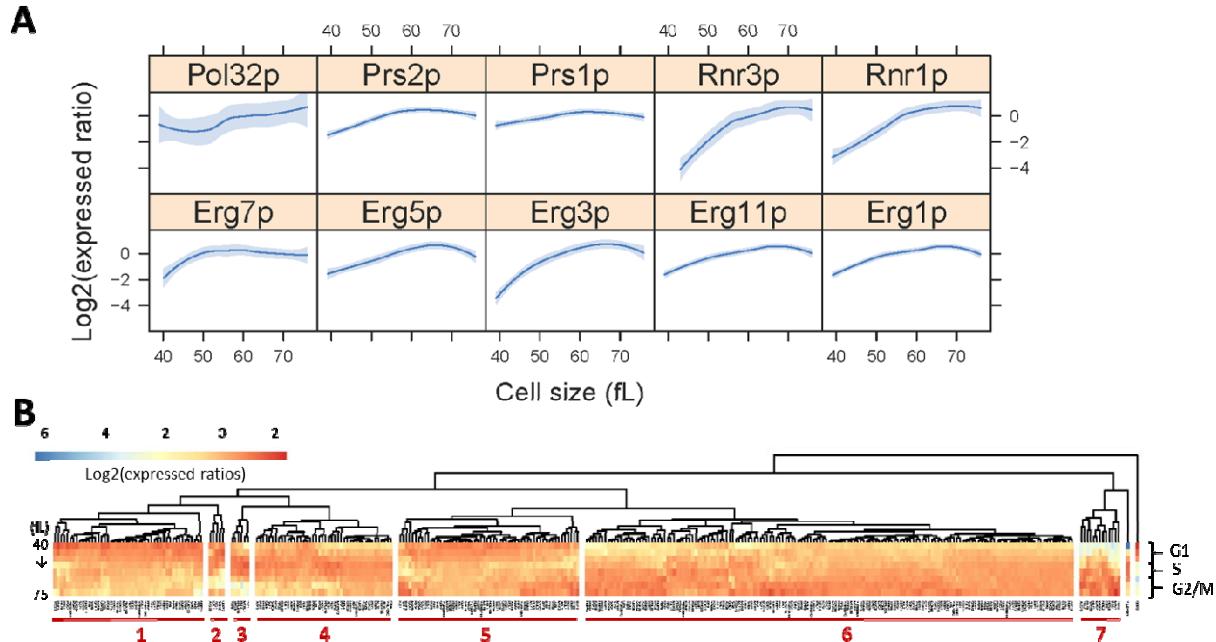


927

928 **FIGURE 1. Overview of the experimental design to query cell cycle-dependent changes in**
929 **the levels of RNAs, proteins, and metabolites. A**, Generation of sample-matched, multiomic
930 datasets from synchronous cultures of cells of different size, during the cell cycle. **B**, Serving as
931 a morphological marker of cell cycle progression, the percentage of budded cells (y-axis) as a
932 function of cell size (x-axis) is shown for each cell size pool. Cell size corresponds to the mean
933 cell size of the population, and in this case it is the weighted average of all the mean cell sizes
934 of all the elutriated samples that constituted each of the 24 pools. **C**, The levels of mitotic
935 (CLB2) or G1 (CLN1,2) cyclin mRNAs, which are known to be periodic in the cell cycle, are
936 shown along with those of a non-periodic transcript (ACT1; encoding actin). Cell size is shown
937 on the x-axis (in fL), while the Log2-transformed 'Transcripts Per Kilobase Million' (TPM) values
938 for each transcript are shown on the y-axis. All 24 values, one for each pool, were plotted in
939 these graphs. Loess curves and confidence bands indicating the standard errors on the curve at
940 a 0.95 level were drawn using the default settings of the panel.loess function of the
941 *latticeExtra* R language package.



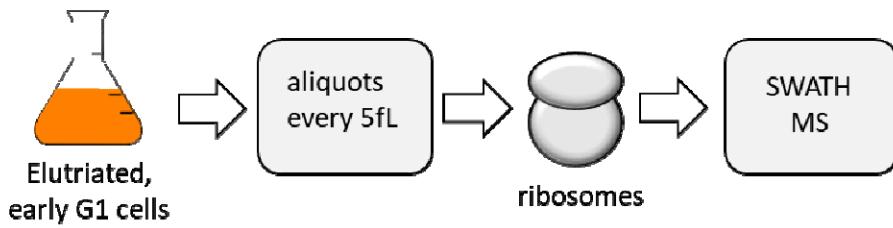
942
943
944 **FIGURE 2. Transcripts changing in abundance in the cell cycle.** Heatmap of the levels of
945 652 differentially expressed RNAs with significantly different levels ($p<0.05$; $\text{Log2}(FC)\geq 1$)
946 between any two points in the cell cycle, based on bootstrap ANOVA. The levels of each RNA
947 were the average of each triplicate for the cell size indicated, which was then divided by the
948 average value of the entire cell size series for that RNA. These 'expressed ratios' were then
949 Log2-transformed. The Log2(expressed ratios) values were hierarchically clustered and
950 displayed with the *pheatmap* R language package, using the default unsupervised algorithms of
951 the package. The different rows of the heatmap correspond to the different cell sizes (40-75 fL,
952 top to bottom, in 5fL intervals). The cell cycle phases approximately corresponding to these
953 sizes are shown to the right of the heatmap. The names of all RNAs, values, and clustering
954 classifications are in File4/Sheet: 'rnas_anova_heatmap'. The gene ontology enrichment
955 analysis for each cluster was done on the PANTHER platform, and the detailed output is in
956 File4/Sheet: 'rnas_clusters'.
957



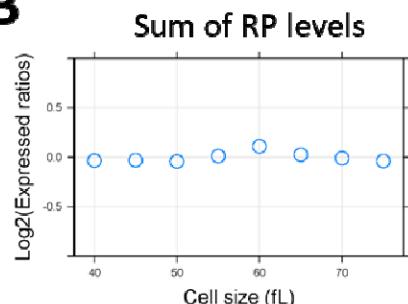
958

959 **FIGURE 3. Proteins with cell cycle-dependent abundance. A**, Levels of selected proteins
960 whose levels changed significantly ($p<0.05$; $\text{Log2}(FC)\geq 1$) between any two points in the cell
961 cycle, based on bootstrap ANOVA, in the cell cycle: *Top*, enzymes involved in ergosterol
962 biosynthesis. *Bottom*, enzymes involved in DNA metabolism (Pol32p: DNA polymerase δ ;
963 Prs1,2p: PRPP synthase; Rnr1,3p: ribonucleotide-diphosphatase). The corresponding
964 Log2(expressed ratios) values from all 24 data points are on the y-axis, and cell size values are
965 on the x-axis. Loess curves and confidence bands indicating the standard errors on the curve at
966 a 0.95 level were drawn using the default settings of the *panel.smooth* function of the
967 *latticeExtra* R language package. **B**, Heatmap displaying the relative abundance of the 333
968 proteins in one or more of the four 'anova' sets shown in Figure S4. In cases where the same
969 protein was in the intersection of more than one datasets, we chose to display the values from
970 the dataset from which the changes in the protein abundance in the cell cycle was the most
971 significant (i.e., lowest p -value) and greater in magnitude (i.e., highest $\text{Log2}(FC)$). The heatmap
972 was generated as in Figure 2. All the relevant data are in File4/Sheet:
973 'proteins_anova_heatmap'.
974

A



B



C

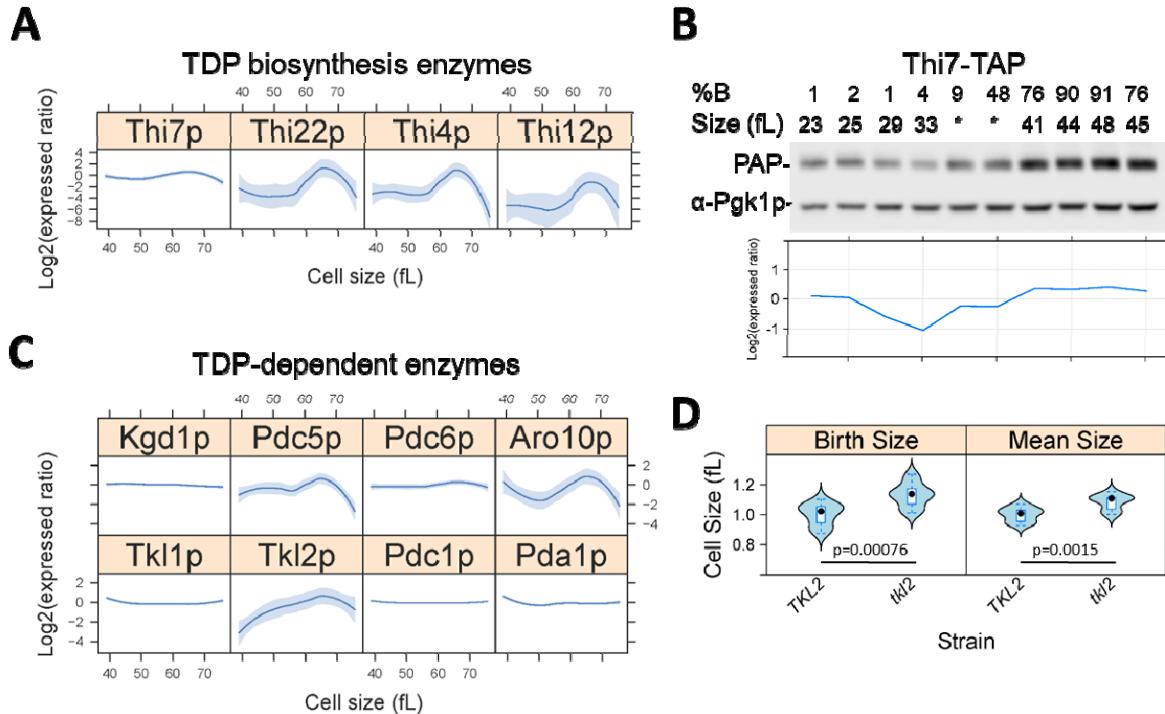
RP composition - correlations

	40fL	45fL	50fL	55fL	60fL	65fL	70fL	75fL
40fL	1	1	0.99	0.99	0.99	0.99	0.99	0.99
45fL	1	1	1	0.99	0.99	0.99	0.99	0.99
50fL	0.99	1	1	0.99	0.99	0.99	1	0.99
55fL	0.99	0.99	0.99	1	0.98	0.98	0.98	0.99
60fL	0.99	0.99	0.99	0.98	1	1	0.99	0.99
65fL	0.99	0.99	0.99	0.98	1	1	1	1
70fL	0.99	0.99	1	0.98	0.99	1	1	1
75fL	0.99	0.99	0.99	0.99	0.99	1	1	1

975

FIGURE 4. Ribosomal protein abundance in ribosomes does not change in the cell cycle.
A, Elutriated, early G1 cells were cultured, and sampled at regular intervals in the cell cycle, in three biological replicates at each 5fL range, from 40 to 75 fL. Protein extracts from the same number of cells were then fractionated by sucrose ultra-centrifugation, to isolated ribosomes on mRNAs, which were then analyzed by SWATH-mass spectrometry (see materials and Methods). B, The peak areas corresponding to each ribosomal protein (RP) detected were summed and averaged across the triplicate for each cell size interval. The Log2(expressed ratios) values for the 'Sum of RP levels' are shown on the y-axis, while cell size is on the x-axis. C, Correlation matrix of the relative abundance of individual ribosomal proteins in assembled ribosomes on mRNAs. The Spearman correlation coefficients (ρ) shown in each case were calculated with the rcorr function of the *Hmisc* R language package. The cell cycle profiles for each ribosomal protein are shown in Figure S4.

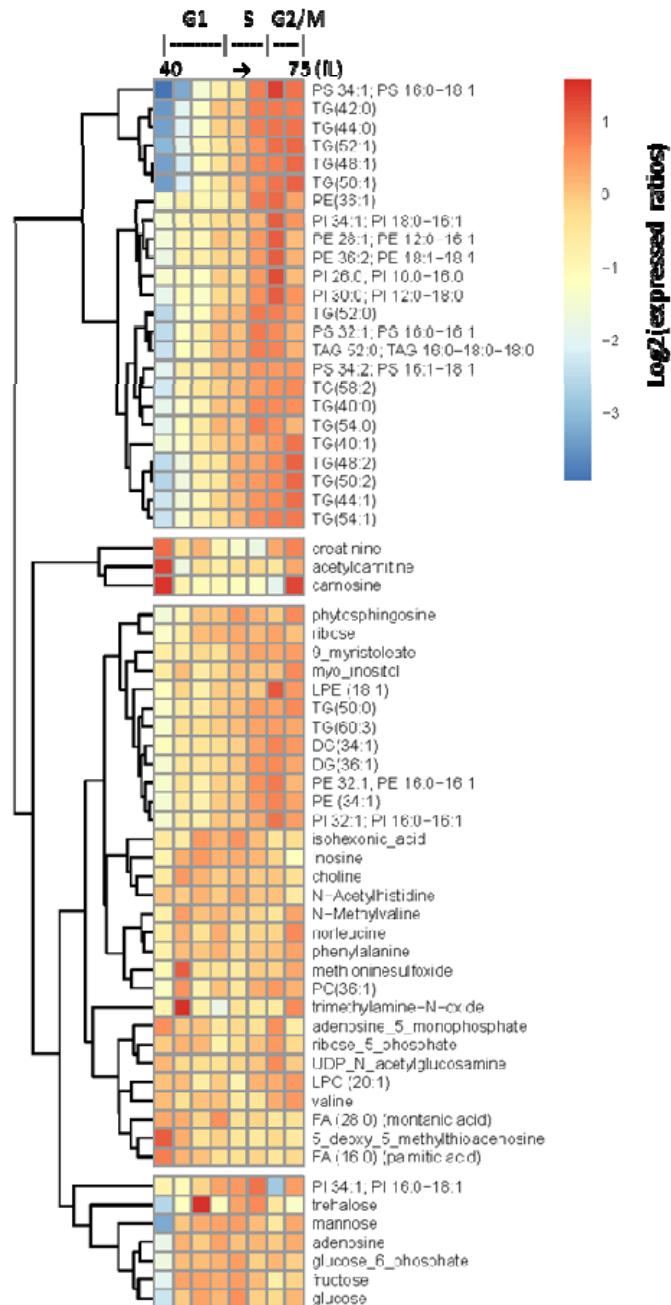
988



989

990 **FIGURE 5. Thiamine biosynthesis and TDP-dependent enzymes in the cell cycle. A,**
991 Abundances of the indicated proteins of thiamine biosynthesis from LC-MS/MS, across the cell
992 size series (x-axis, in fL). The corresponding Log2(expressed ratios) values from all 24 data
993 points are on the y-axis. Loess curves and confidence bands indicating the standard errors on
994 the curve at a 0.95 level were drawn using the default settings of the panel.smoother function of
995 the *latticeExtra* R language package. **B**, The abundance of Thi7-TAP by immunoblotting from
996 synchronous, elutriated cells, progressing in the cell cycle and sampled at regular intervals, as
997 indicated (%B is the percentage of budded cells; fL is the cell size). Pgk1p levels are also
998 shown from the same samples, to indicate loading. For the two samples indicated with asterisk
999 (*) in the Thi7-TAP series, there were no size data due to instrument malfunction. At the bottom,
1000 the band intensities were quantified with ImageJ software, and the Log2-transformed expressed
1001 ratios of Thi7-TAP are shown, after they were normalized against Pgk1p. **C**, Abundances of the
1002 indicated TDP-dependent proteins, determined and displayed as in A. **D**, The birth and mean
1003 size of *tkl2* cells and experiment-matched wild type (*TKL2*) cultures from exponentially dividing
1004 cells in rich, undefined media (YPD). At least twelve independent cultures were measured in
1005 each case. Significant differences and the associated p values were indicated by the non-
1006 parametric Wilcoxon rank sum test, performed with the *wilcox.test* function of the R *stats*
1007 package.

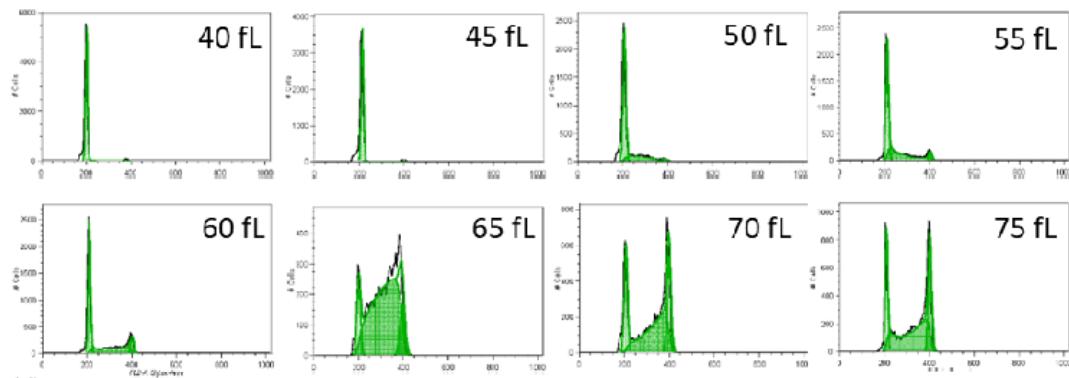
1008
1009



1021

1022 **SUPPLEMENTARY FIGURES**

1023

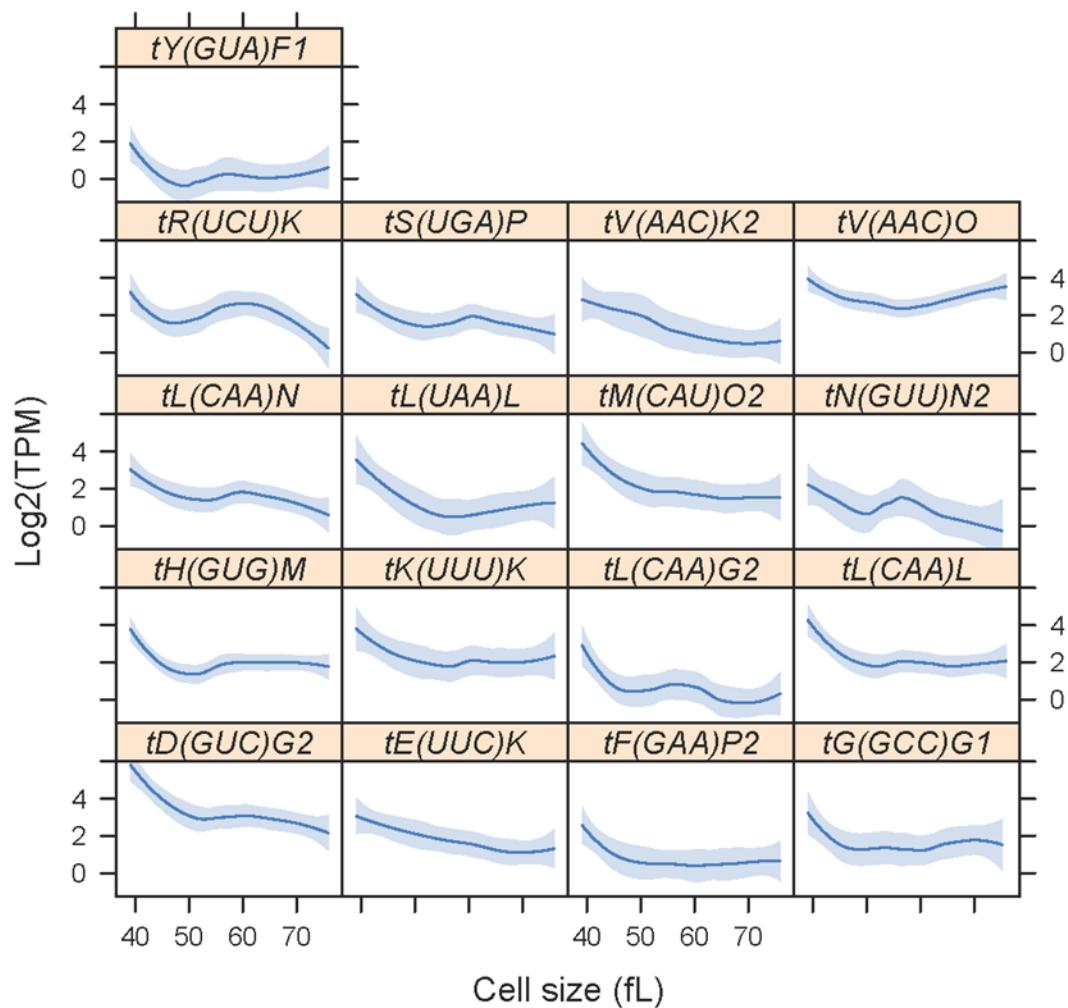


1024

1025 **FIGURE S1. DNA content of samples spanning the cell size series from the elutriated**
1026 **samples.** The DNA was measured with flow cytometry, as described in the Materials and
1027 Methods. On the y-axis of each histogram is number of cells and on the x-axis the fluorescence
1028 per cell.

1029

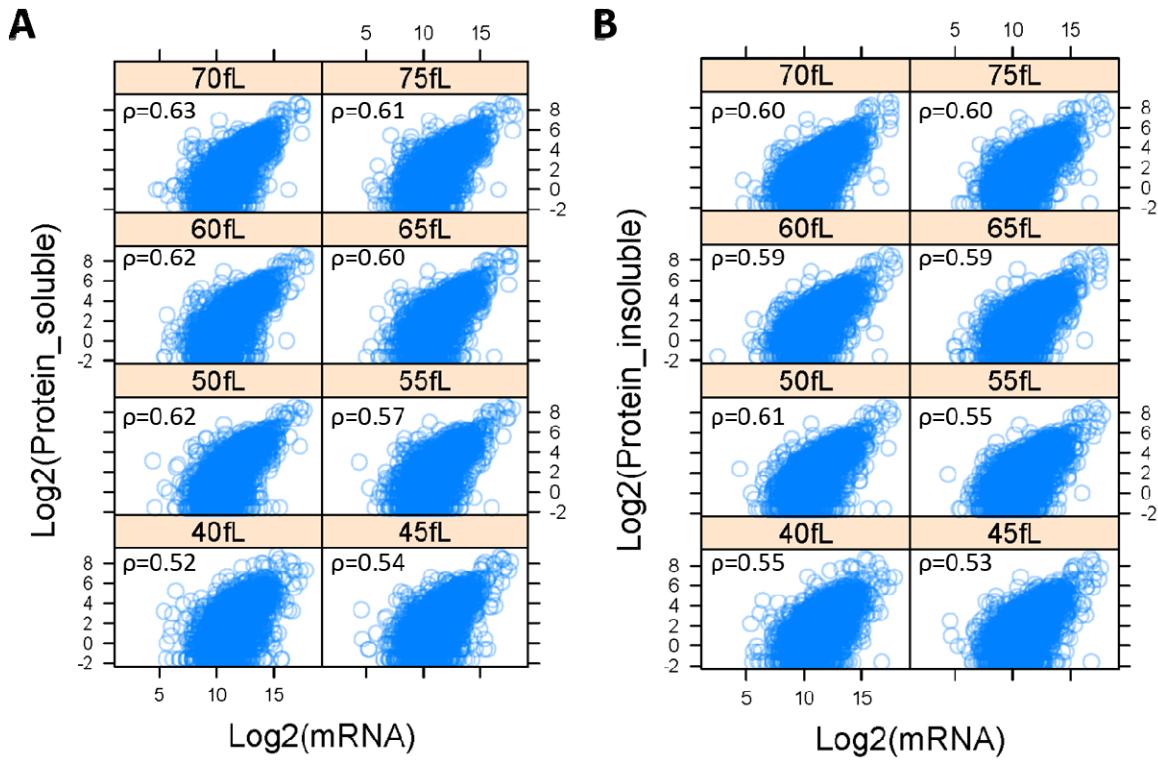
1030



1031

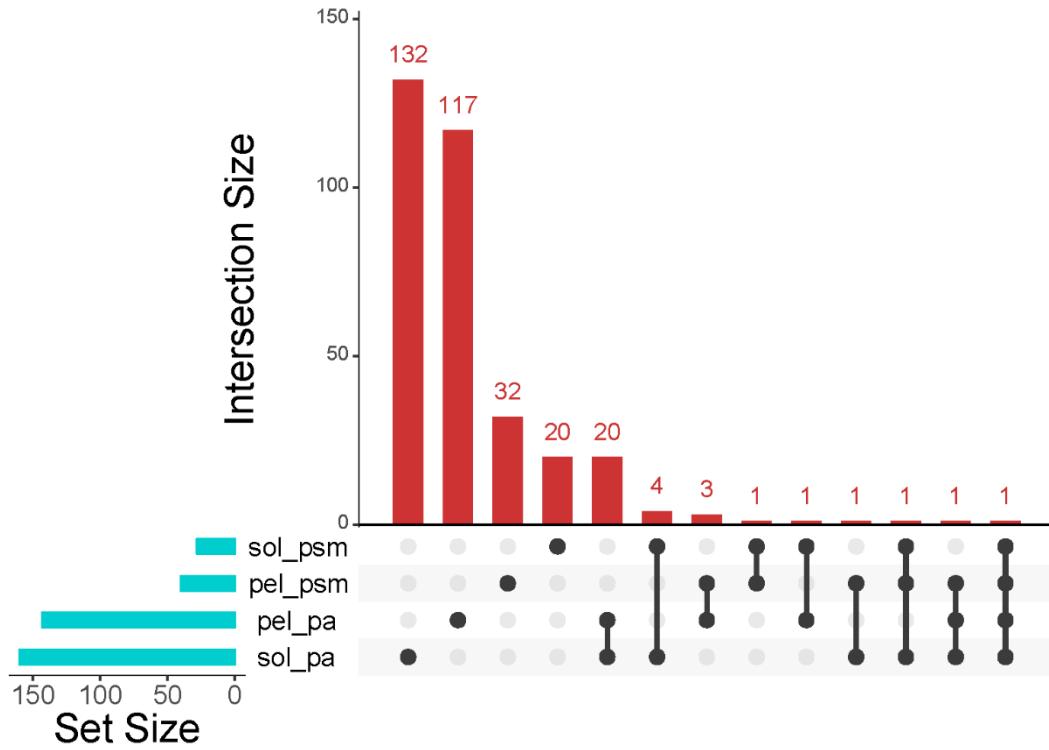
1032

1033 **FIGURE S2. Levels of tRNAs, peaking early in the cell cycle.** The tRNAs were from clusters
1034 1 and 3 in Figure 2, with significantly different levels ($p<0.05$; $\text{Log2}(FC)\geq 1$) between any two
1035 points in the cell cycle, based on bootstrap ANOVA. Sequences corresponding to the tRNAs
1036 shown peaked in abundance at cell sizes from 40 to 50 fL. Cell size is shown on the x-axis (in
1037 fL), while the Log2-transformed 'Transcripts Per Kilobase Million' (TPM) values for each tRNA
1038 from all 24 data points are shown on the y-axis. Loess curves and confidence bands indicating
1039 the standard errors on the curve at a 0.95 level were drawn using the default settings of the
1040 panel.smoother function of the *latticeExtra* R language package.



1041

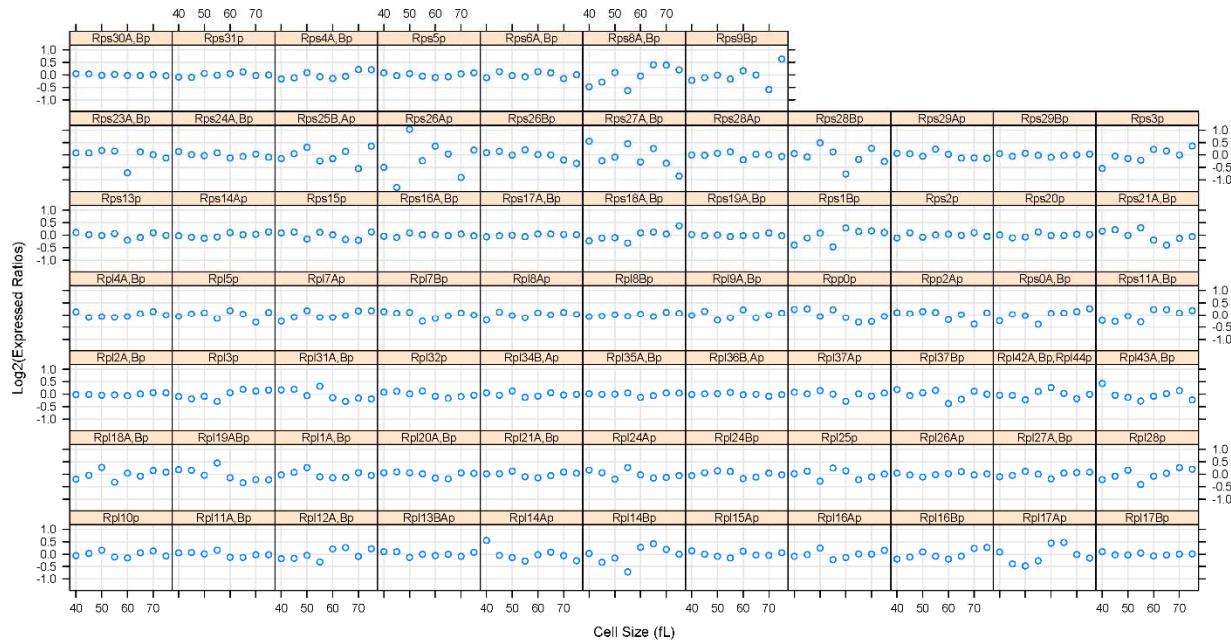
1042 **FIGURE S3. Transcriptome-proteome correlations.** **A**, The spectral counts corresponding to
1043 the proteins identified in this study were averaged from the three biological replicates for each
1044 cell size pool we analyzed from the soluble fractions (from the 'sol_psm' dataset, see Table S1),
1045 and shown on the y-axis. On the x-axis are the RNA read counts from the corresponding loci
1046 (from the 'rna_reads' dataset, see Table 1). All values were Log2-transformed for display
1047 purposes. The Spearman correlation coefficients (ρ) shown in each case were calculated with
1048 the rcorr function of the *Hmisc* R language package. **B**, Similar analysis as in A, except that the
1049 input dataset for the spectral counts (y-axis) was from the insoluble proteome fractions (from the
1050 'pel_psm' dataset, see Table S1).
1051



1052

1053 **FIGURE S4. Overlap of protein datasets whose levels change in the cell cycle.** Matrix
1054 layout for all intersections of the four ANOVA-identified sets containing proteins with significantly
1055 different levels ($p<0.05$; $\text{Log}_2(\text{FC})\geq 1$) between any two points in the cell cycle. The names of all
1056 proteins in each set are shown in File4/ Sheet: 'proteins_sets'. The graph was drawn with the
1057 UpSet R language package.

1058

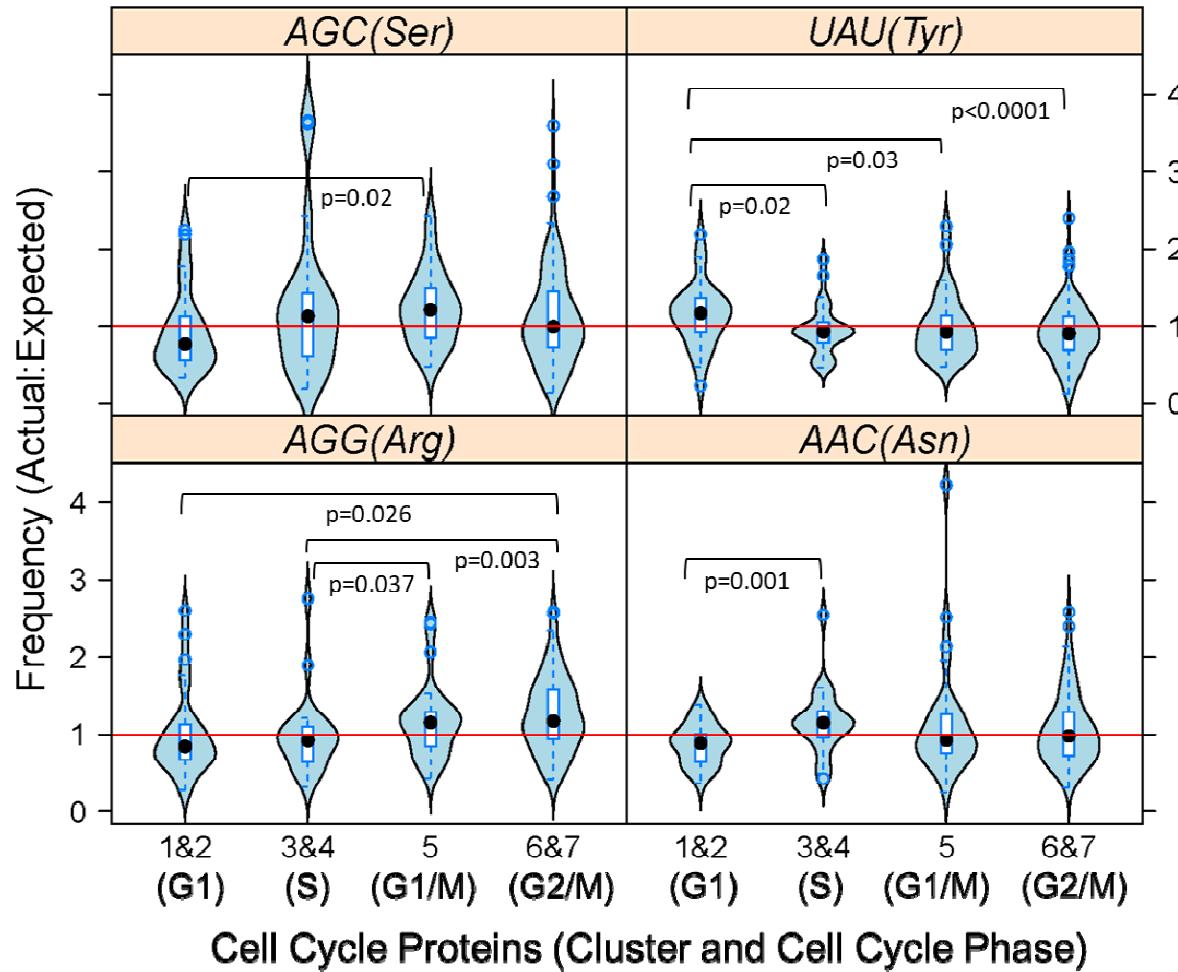


1059

FIGURE S5. Ribosomal protein abundance in ribosomes is not periodic in the cell cycle.

The levels of each ribosomal protein (see Figure 4) detected were normalized against the sum of all ribosomal proteins detected in that sample, and displayed as Log2-transformed expressed ratios (y-axis), while cell size (in fL) is on the x-axis. In none of the few cases (e.g., Rps8,9,26,27,28p; Rpl14,17Ap) where the abundance of the ribosomal protein in question appeared to fluctuate somewhat in the cell cycle the changes were periodic (FDR>0.05), and these changes likely reflect experimental error in the quantification.

1067



1068

1069 **FIGURE S6. Little, if any, evidence for cell cycle-dependent changes in codon usage.**
1070 From the 333 cell cycle-regulated proteins shown in Figure 3, we selected the ones who were
1071 not identified as ubiquitylated by (Swaney *et al.*, 2013), and whose corresponding mRNA levels
1072 were not changing (from Figure 2). These proteins were further grouped according to their cell
1073 cycle expression pattern (peaking in G1: in clusters 1&2 (n=29); peaking in S: in clusters 3&4
1074 (n=24); peaking in G1/M: in cluster 5 (n=29); peaking in G2/M: in clusters 6&7 (n=90)). For each
1075 codon in each mRNA encoding each of these proteins, we obtained the ratio of the actual to
1076 expected usage, based on (Tumu *et al.*, 2012). These values are displayed as violin plots, for
1077 the four codons shown that there were statistically significant differences between the groups for
1078 each codon (based on bootstrapped ANOVA: p<0.05). For differences between groups in each
1079 codon, the p-values shown were obtained from posthoc statistical tests, using the mcppb20
1080 function of the WRS2 R language package. The red horizontal lines indicate equal
1081 actual:expected codon usage in each case.
1082