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Abstract

Many tools for dealing with compositional “’omics” data produce feature-wise val-
ues that can be ranked in order to describe features’ associations with some sort of
variation. These values include differentials (which describe features’ associations with
specified covariates) and feature loadings (which describe features’ associations with
variation along a given axis in a biplot). Although prior work has discussed the use of
these “rankings” as a starting point for exploring the log-ratios of particularly high- or
low-ranked features, such exploratory analyses have previously been done using cus-
tom code to visualize feature rankings and the log-ratios of interest. This approach
is laborious, prone to errors, and raises questions about reproducibility. To address
these problems we introduce Qurro, a tool that interactively visualizes a plot of feature
rankings (a “rank plot”) alongside a plot of selected features’ log-ratios within samples
(a “sample plot”). Qurro’s interface includes various controls that allow users to select
features from along the rank plot to compute a log-ratio; this action updates both
the rank plot (through highlighting selected features) and the sample plot (through
displaying the current log-ratios of samples). Here we demonstrate how this unique
interface helps users explore feature rankings and log-ratios simply and effectively.
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1 Introduction

High-throughput sequencing and metabolomics data detailing the organisms, genes or molecules

identified within a microbial sample are inherently compositional [1, 2]: that is, absolute

abundances are often inaccessible and only relative information can be obtained from the

data. These data must be interpreted accordingly. Performing a compositionally coherent

analysis of how features change in a dataset generally requires selecting a “reference frame”

(denominator) for log-ratio analysis, then relating the resulting log-ratios to sample metadata

[2, 1].

Various tools for differential abundance analyses including but not limited to ALDEx2

[3] and Songbird [2] can produce differentials, which describe the log-fold change in relative

abundance for features in a dataset with respect to certain covariate(s) [2]. Similarly, tools

like DEICODE [4] can produce feature loadings that characterize features’ impacts in a

compositional biplot [5]. Differentials and feature loadings alike can be sorted numerically

and used as feature rankings, and this representation provides relative information about

features’ associations with some sort of variation in a dataset [2, 4]. The natural next step

is to use these rankings as a guide for log-ratio analyses (e.g. by examining the log-ratios

of high- to low-ranked features). However, modern studies commonly describe hundreds or

thousands of observed features: manually exploring feature rankings, whether as a tabular

representation or as visualized using one-off scripts, is inconvenient.

Here we present Qurro (pronounced “churro”), a visualization tool that supports the

analysis of feature log-ratios in the context of feature rankings and sample metadata. Qurro

uses a two-plot interface: a “rank plot” shows how features are differentially ranked for a

selected ranking column, and a “sample plot” shows log-ratios of the selected features across

samples relative to selected sample metadata field(s). These plots are linked [6]: selecting

2

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 18, 2019. ; https://doi.org/10.1101/2019.12.17.880047doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.17.880047
http://creativecommons.org/licenses/by/4.0/


features for a log-ratio highlights these features in the rank plot and updates the y-axis values

of samples (corresponding to the value of the currently-selected log-ratio for each sample) in

the sample plot. Due to its unique display, and the availability of multiple controls for feature

selection and plot customization, Qurro simplifies the process of performing compositionally

coherent analyses of ’omic data.

2 Implementation

Qurro’s source code is released under the BSD 3-clause license and is available at

https://github.com/biocore/qurro.

Qurro’s codebase includes a Python 3 program that generates a visualization and the

HTML/JavaScript/CSS code that manages this visualization. Qurro can be used as a stan-

dalone program or as a QIIME 2 plugin [7].

Both plots in a Qurro visualization are embedded as Vega-Lite JSON specifications [8],

which are generated by Altair [9] in Qurro’s Python code. An advantage of Qurro’s use of

the Vega infrastructure is that both plots in a Qurro visualization can be customized to the

user’s liking in the Vega-Lite or Vega grammars. As an example of this customizability, the

Vega-Lite specifications defining Figs. 1(a–c) and 2(a–c) of this paper were edited program-

matically in order to increase font sizes, change the number of ticks shown, etc. (Our Python

script that makes these modifications is available online; please see the “Data Availability”

section.)

2.1 Code dependencies

In addition to Altair, Qurro’s Python code directly relies on the BIOM format [10], Click

(https://palletsprojects.com/p/click), NumPy [11], pandas [12], and scikit-bio (http://scikit-

bio.org) libraries. Qurro’s web code relies on Vega [13], Vega-Lite [8], Vega-Embed

(https://github.com/vega/vega-embed), RequireJS (https://requirejs.org), jQuery
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(https://jquery.com), DataTables (https://datatables.net), Bootstrap

(https://getbootstrap.com), and Popper.js (https://popper.js.org).

3 Case study: the gills of Scomber japonicus

To demonstrate the utility of Qurro, we applied it to an extant dataset of V4-region 16S

rRNA sequencing data from Pacific chub mackerel (Scomber japonicus) and environmental

samples [14]. This dataset includes samples taken from five Scomber japonicus body sites

(digesta, GI, gill, pyloric caeca, and skin) from 229 fish captured across 38 time points

in 2017, along with many seawater, marine sediment, positive/negative control, and non-

Scomber japonicus fish samples. A Jupyter Notebook [15] showing the steps taken during

our re-analysis of this dataset is available online; see the “Data Availability” section.

3.1 Sample processing and re-analysis

When these samples were initially processed, the KatharoSeq protocol [16] was followed.

This led us to exclude samples with less than 1,370 total counts from our re-analysis of this

dataset.

Sequencing data (already processed using QIIME 1.9.1 [17] and Deblur [18] on Qiita

[19]) were further processed and analyzed using QIIME 2 [7]. Taxonomic classification was

performed using q2-feature-classifier’s classify-sklearn method [20, 21]. In particular, we

trained a Näıve Bayes classifier on the SILVA 132 99% database [22] on sequences extracted

using the same forward [23] and reverse [24] primers that were used for sample processing.

Due to upstream filtering in the re-analysis (a combination of filtering out non-Scomber

japonicus and non-seawater samples, applying the aforementioned KatharoSeq sample ex-

clusion criterion, Songbird’s default --min-feature-count of each feature needing to be

present in at least 10 samples, and Qurro’s behavior of filtering out empty samples and

features), 639 samples and 985 features were included in the Qurro visualization produced
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for this case study.

3.2 Computing “body site” differentials

One basic question about this dataset we decided to investigate using Qurro was of which

features were associated with which Scomber japonicus body sites. To produce feature rank-

ings accordingly, we used Songbird [2] to compute differentials detailing features’ associations

with samples from each of the five studied body sites, using seawater samples in the dataset

as a reference (supplementary information, section 1).

In general, highly-ranked features in a given differential column are positively associated

with samples from that column’s corresponding body site, while lowly-ranked features are

negatively associated with samples from that column’s corresponding body site (both in the

context of the seawater samples). These differentials can be thought of as a starting point

for investigating differentially abundant features for particular fish body sites in this dataset

in a compositionally coherent manner.

3.3 Using Qurro to analyze differentials and log-ratios

Qurro simplifies the process of analyzing features’ differential abundances in the context of

these differentials. The “rank plot” of a Qurro visualization is a bar plot where each bar

corresponds to a single differentially ranked feature: the y-axis values of each bar are the

literal differential or feature loading values, and features are sorted in ascending order by

these values along the x-axis. The ranking column used is configurable, so Qurro users can

quickly toggle among the input differentials or feature loadings; for the case study Qurro vi-

sualization, this means that users can—for example—switch between differentials computed

based on association with skin samples to differentials computed based on association with

gill samples.

5

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 18, 2019. ; https://doi.org/10.1101/2019.12.17.880047doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.17.880047
http://creativecommons.org/licenses/by/4.0/


Figure 1: Various outputs from the case study showing the log-ratio of classified Shewanella
features to classified Synechococcales features. (a) “Rank plot” showing differentials com-
puted based on association with gill samples, using seawater samples as a reference. She-
wanella features are colored in red, and Synechococcales features are colored in blue. (b)
“Sample plot” in boxplot mode, showing samples’ Shewanella-to-Synechococcales log-ratios
by sample body site. Note that only 285 samples are represented in this plot; other samples
were either filtered out upstream in the analysis or contained zeroes on at least one side
of their log-ratio. (c) “Sample plot,” showing a scatterplot of samples’ selected log-ratios
versus estimated fish age. Individual samples are colored by body site. As in Fig. 1(b),
only 285 samples are present. (d) Ordinary-least-squares linear regression (R2 ≈ 0.1008)
between estimated fish age and the selected log-ratio for just the 143 gill samples shown in
Fig. 1(b) and 1(c), computed outside of Qurro using scikit-learn [21] and pandas [12] and
plotted using matplotlib [25].
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3.3.1 Highlighting features on the rank plot.

The initial study of this dataset [14] agreed with prior work [26] on the frequency of She-

wanella spp. in the fish gill microbiome. Qurro supports searching for features using arbi-

trary feature metadata (e.g. taxonomic annotations), and using this functionality to highlight

Shewanella spp. on the rank plot of gill differentials (supplementary information, section 2)

corroborates these findings: as Fig. 1(a) shows, the majority of identified Shewanella spp.

are highly ranked in association with gill samples using seawater samples as a reference.

Particularly high- or low-ranked features like Shewanella spp. can merit further examina-

tion via a log-ratio analysis [2]; in particular, one question we might be interested in asking

at this point is if Shewanella spp. are similarly abundant across other fish body sites. The

remainder of this case study discusses a simple investigation in pursuit of an answer to this

question, as well as to a few other questions that came up along the way.

3.3.2 Choosing a suitable “reference frame.”

The compositional nature of marker gene sequencing data means that we cannot simply

compare the abundances of Shewanella across samples in this dataset alone; however, we

can instead compare the log-ratio of Shewanella and other features in this dataset across

samples [2].

For demonstrative purposes, we chose the taxonomic order Synechococcales as the denomi-

nator (“reference frame”) for the first log-ratio shown here. Features in this dataset belonging

to this order included sequence variants classified in the genera Cyanobium, Prochlorococ-

cus, and Synechococcus. These are common genera of planktonic picocyanobacteria found

ubiquitously in marine surface waters [27]. The expected stability of this group of features

across samples in this dataset supports its use as a denominator here [2]. Furthermore, as

shown in Qurro’s rank plot in Fig. 1(a), many Synechococcales features are relatively lowly

ranked in association with gill samples (or at least relative to most Shewanella features);

this gives additional reason to expect a comparative difference among gill samples for the
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Shewanella-to-Synechococcales log-ratio.

3.3.3 Relating log-ratios to sample metadata.

Upon selecting a numerator and a denominator for a log-ratio (in this case, by searching

through taxonomic annotations), Qurro updates the sample plot so that all samples’ y-axis

(“Current Natural Log-Ratio”) values are equal to the value of the selected log-ratio for

that sample. The x-axis field, color field, and scale types of these fields—along with other

options—can be adjusted by the user interactively to examine the selected log-ratio from a

new perspective.

Once the log-ratio of Shewanella-to-Synechococcales was selected, Fig. 1(b) was pro-

duced by setting the sample plot x-axis to the categorical sample type body site field and

checking the “Use boxplots for categorical data?” checkbox. The resulting boxplot shows

that the Shewanella-to-Synechococcales log-ratio is relatively high in gill samples, compared

with other body sites’ samples (Fig. 1(b)). This observation corroborates the initial study

of this dataset on the frequency of Shewanella particular to the fish gill microbiome [14].

Qurro can visualize quantitative sample metadata, as well. Using this functionality,

we can add additional perspectives to our previously-reached observation. Age has been

discussed as a factor impacting the microbiota of fish gills in this and other datasets [26, 14].

By setting the x-axis field to the age 2 metadata column (estimated fish age), changing the x-

axis field scale type to “Quantitative,” and setting the color field to sample type body site,

we get Fig. 1(c)—a scatterplot showing the selected log-ratio viewed across samples by the

estimated age of their host fish.

One trend that stood out to us in this scatterplot was an apparent negative correlation

between the selected log-ratio and estimated fish age for gill samples. To support further

investigation of patterns like this, Qurro can export the data backing the sample plot to a

standard tab-separated file format—this file can then be loaded and analyzed in essentially

any modern statistics software or programming language. This functionality was used to
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generate Fig. 1(d), in which we quantify and visualize this correlation for gill samples using

ordinary-least-squares linear regression (R2 ≈ 0.1008). Although obviously not evidence of

a causal relationship, this result opens the door for further investigation of this trend. One

of many possible explanations for this observed trend is that the gills of younger fish are

differentially colonized by Shewanella spp. and/or by Synechococcales ; this may, in turn, be

reflective of factors like vertical habitat use, immune development, or food choice.

3.3.4 Interrogating the “multiverse” of reference frames.

Prior literature has shown the impact that choices in data processing can have on a study’s

results, and on the corresponding “multiverse” of datasets generated during this process [28].

We submit that the choice of reference frame (denominator) in log-ratio analyses introduces a

similar “multiverse”: for a set of n features, there are O(2n) possible subsets [2], so manually

checking all possible reference frames for a given numerator is an intractable effort for the

vast majority of datasets (although various heuristic methods have been proposed to address

this sort of problem, e.g. [29]). In spite of this, the interactive nature of Qurro simplifies the

task of validating results across reference frames.

Revisiting our analysis of Shewanella spp. in the gills of Scomber japonicus, there are

multiple reasonable choices for reference frames. We chose Synechococcales mostly due to its

expected ubiquity and stability across the marine samples in this dataset, but many other

plausible choices exist.

In Fig. 2, we repeat the exact same analysis as in Fig. 1 : but instead of using Synechococ-

cales as the denominator of our log-ratio, we instead select the bottom ∼ 10% (98/985) of

features as ranked by gill differentials as the denominator (Fig. 2(a); supplementary infor-

mation, section 2). Refreshingly, this log-ratio also shows clear “separation” of gill samples

from other body sites’ samples in the dataset (Fig. 2(b)), as well as a similar negative

correlation between estimated fish age and this log-ratio for gill samples (Figs. 2(c) and

2(d)) (R2 ≈ 0.1350). This serves as further evidence for our previous claims: although we
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Figure 2: Various outputs from the case study (analogous to those in Fig. 1) showing
the log-ratio of classified Shewanella features to the bottom 98 ranked features for the gill
differentials. (a) “Rank plot” analogous to that shown in Fig. 1(a). (b) “Sample plot”
in boxplot mode, showing the selected log-ratios of samples by body site. 252 samples are
represented in this plot; as in Fig. 1(b), other samples were either filtered out upstream in
the analysis or contained zeroes on at least one side of their log-ratio. (c) “Sample plot,”
showing a scatterplot of samples’ selected log-ratios versus estimated fish age. Individual
samples are colored by body site. As in Fig. 2(b), only 252 samples are present. (d)
Ordinary-least-squares linear regression (R2 ≈ 0.1350) between estimated fish age and the
selected log-ratio for just the 96 gill samples shown in Fig. 2(b) and 2(c), computed outside
of Qurro as specified for Fig. 1(d).
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still can’t say for sure, we can now more confidently state that Shewanella spp. seem to be

dominant in the gills of Scomber japonicus, and that Shewanella abundance in these fishes’

gills seems to be negatively correlated with (estimated) fish age—since the trends shown

in Figs. 1(b–d) and 2(b–d) have held up across multiple log-ratios with Shewanella as the

numerator.

3.3.5 Handling “invalid” samples.

It is worth noting that many samples—including all of the seawater samples in the Qurro

visualization (supplementary information, section 3)—are not present in Figs. 1(b–d) or

2(b–d). If a given sample in Qurro cannot be displayed for some reason—for example, the

sample has a zero in the numerator and/or denominator of the currently selected log-ratio—

Qurro will drop that particular sample from the sample plot. Furthermore, to make sure the

user understands the situation, Qurro will update a text display below the plot that includes

the number and percentage of samples excluded for each “reason.” This behavior helps users

avoid spurious results caused by visualizing only a small proportion of a dataset’s samples.

3.4 Using Qurro in practice

Since Qurro visualizations are essentially just web pages it is trivial to host them online, thus

making them viewable by anyone using a compatible web browser. As an example of this

we have made Qurro visualizations of various datasets, including the case study’s, publicly

available at https://biocore.github.io/qurro. We encourage users of Qurro to share

their visualizations in this way, whenever possible, in order to encourage reproducibility and

facilitate public validation of the conclusions drawn. Furthermore, we encourage readers of

this paper to reconstruct Figs. 1 and 2 and verify that this paper’s claims are accurate.
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4 Conclusions

Qurro serves as a natural “first step” for users of modern differential abundance tools to con-

sult in order to analyze feature rankings, simplifying the work needed to go from hypothesis

to testable result. We have already found it useful in a variety of contexts (e.g. [30]), and it

is our hope that others find similar value.

As more techniques for differentially ranking features become available, we believe that

Qurro will fit in as a useful piece within the puzzles represented by modern ’omic studies.

5 Data Availability

All data used was obtained from study ID 11721 on Qiita. Deblur output artifact ID 56427

was used, in particular. Sequencing data is also available at the ENA (study accession

PRJEB27458). Various Jupyter Notebooks and files used in the creation of this paper are

available at https://github.com/knightlab-analyses/qurro-mackerel-analysis.
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