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ABSTRACT 

The genetic effect explains the causality from genetic mutation to the 
development of complex diseases. Existing genome-wide association study 
(GWAS) approaches are always built under a linear assumption, restricting 
their generalization in dissecting complicated causality such as the 
recessive genetic effect. Therefore, a sophisticated and general GWAS 
model that can work with different types of genetic effects is highly desired. 
Here, we introduce a Deep Association Kernel learning (DAK) model to 
enable automatic causal genotype encoding for GWAS at pathway level. 
DAK can detect both common and rare variants with complicated genetic 
effects that existing approaches fail. When applied to real-world GWAS 
data, our approach discovered potential casual pathways that could be 
explained by alternative biological studies.  
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Introduction 

The genome-wide association study (GWAS) is extensively used for 
uncovering potential causal loci from complex biological phenotypes1-3. The 
classical GWAS models assume that single-locus contributes to the 
disease independently and the risk increases linearly with the number of 
minor alleles. These linear models are only powerful in discovering variants 
with strong and direct associations4. As an improvement, pathway-based 
methods were proposed by taking groups of biologically meaningful genes 
into consideration5-7. For instance, gene-set enrichment methods derive 
pathway-level statistic scores by combing P-values from single-locus tests 
8-10; SKAT 11 and its variants 12, 13 perform association test using kernel 
regression. However, these existing approaches rely on some pre-
assumed genetic models to conduct hand-crafted genotype encoding. 
Unfortunately, in practice, the genetic effect of complex disease is unknown 
and can hardly be appropriately modeled in advance. Therefore, a genetic-
model-free GWAS approach that can reasonably model the inherent 
relation between genotype and phenotype is highly needed.  

We introduce the Deep Association Kernel learning (DAK) framework to 
conduct pathway-level GWAS (Fig. 1). Our DAK framework incorporates 
convolutional layers to encode raw SNPs as latent genetic representation. 
Then, kernel regression layers are connected with these encoded genetic 
representations to predict the disease status. More importantly, this kernel 
regression layer allows performing statistical significance tests on the 
learned genetic representations to uncover the disease-associated 
pathways. Both the convolutional and kernel regression layers are trained 
jointly using multiple-instance loss in an end-to-end manner. Therefore, 
DAK relies on no pre-assumed genetic model and can learn all model 
parameters in a pure data-driven manner.  

We compared DAK with seven representative gene/pathway based 
methods: classical statistic method (Burden test)14, enrichment methods 
(GATES, HYST and aSPU)9, 15, 16 and kernel methods (SKAT and SKAT-
o)11, 12. DAK is the only approach that consistently performs well under a 
wide range of genetic models including additive, multiplicative, dominant, 
recessive and heterozygous effects. We further applied our method to four 
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disease datasets including gastric cancer, colorectal cancer, lung cancer 
and psychiatric disorder. 

 

Results  

Deep association kernel learning 

We introduced deep association kernel (DAK) learning to achieve the 
detection of complex associations and enhance the interpretability of 
GWAS (Fig. 1 and Methods). Here, alleles are coded in the one-hot 
representations to enable flexible modeling of genotype effects for each 
locus. Variants in the same biological pathway are grouped together and 
the combinational effects of multiple SNPs within a pathway are considered 
at the same time. Then, pathway-level features are extracted by 
convolutional layers (Supplementary Fig. 1), followed by a kernel 
regression layer to derive the statistical significance (Supplementary Fig. 
2). To allow learning from labels at individual level, the whole framework is 
trained with a multiple instance loss in an end-to-end manner. Finally, the 
variance tests used in SKAT are performed on the learned kernel matrix to 
derive statistical P-values (Supplementary Figs. 3 and 4). 

Type-I error 

In each simulation experiment, we simulated dataset under null (no causal 
pathway) or alternative (disease was caused by different genetic 
associations) hypothesis (Fig. 2a and Methods). All seven methods were 
tested on simulated datasets. Performances of different approaches were 
evaluated using type I error rates (corresponding to null hypothesis) and 
empirical powers (corresponding to alternative hypothesis) (Methods) in 
100 replicates. 

We first report the Type-I error. If no causal loci existed in all pathways (null 
hypothesis), all methods showed low error rate level (Supplementary Fig. 
5). Changing the sample size had little effects on the results. The training 
curve showed DAK converged within several iterations (Supplementary 
Fig. 6). 

Single effect 
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We then considered that the disease was caused by a single common 
variant. To illustrate different functional pathway of genes to the disease, 
we assumed the allele of the causal locus contributed to the disease in five 
different genetic models: 1) additive model, minor homozygous genotype 
had two-fold effect than the heterozygous type; 2) dominant mode, two 
genotypes showed the same effect size; 3) multiplicative model, minor 
alleles increased the disease risk exponentially; 4) recessive model, only 
minor homozygous genotypes had effects; and 5) heterozygous model, 
only heterozygous alleles had effects (Fig. 2a). 

On the most widely-used additive disease mode, we found that all methods 
showed reasonable accuracy to identify the pathway with disease locus 
(Fig. 2b and Supplementary Fig. 7). However, when the fundamental 
genetic model changes, the power of all comparing methods dropped 
dramatically while DAK maintained reliable performances with best power 
across all conditions. Specifically, for the challenging recessive genetic 
model, accuracies of all comparing methods greatly decreased and were 
far below the performances of DAK. The performance of DAK was further 
improved when increasing the effect size while other methods were still of 
low accuracy (Supplementary Fig. 8). We further noted that when the 
sample size was increased to 5,000, the power of all methods were 
increased and DAK was still the best (Fig. 2b and Supplementary Fig. 7). 

The discovery of rare variants (minor allele frequency < 0.5%) is a 
challenging task in GWAS due to the low gene frequency. We simulated a 
rare dataset of 5,000 samples where the disease was caused by single 
rare variant under five genotype models. Again, DAK obtained much higher 
performances than others on recessive and multiplicative genetic models 
(Fig. 2c and Supplementary Fig. 9). When the effect size was decreased, 
other comparing approaches failed but DKA can still maintain very reliable 
performances (Supplementary Fig. 9). We demonstrated DAK could 
discover the causal rare variant at power around 0.8 on datasets even only 
with 3,000 samples (Fig. 2d and Supplementary Fig. 9), which was a 
challenging task for other methods.  

Joint effect 

Most diseases are results of the joint-effect of multiple genes. However, it 
can be more challenging to identify the combined and mixed effect signals 
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from multiple causal variants. Here, we simulated joint-effects by randomly 
assigning 3 causal common variants and generated phenotype under 5 
genetic models (Methods). Performances of all methods were much lower 
compared with results under single variant. However, DAK still dramatically 
outperformed other methods and achieved the most stable performance 
among all experiments (Fig. 3a and Supplementary Fig. 10). The 
performances of all methods was enhanced when the effect size was 
increased. The advantages of DAK were more obvious when the causal 
positions were rare variants. (Figs. 3b, c and Supplementary Fig. 11) 

Applications to real datasets 

We performed DAK on four disease datasets: gastric cancer, colorectal 
cancer, lung cancer and schizophrenia (Supplementary Table 1). After the 
quality control steps, we divided all SNPs into pathway groups by their 
genetic coordinates (Methods). DAK was optimized on one-hot coded 
pathways and score test was conducted on each pathway using learned 
neural network parameters to get the statistical P-value.  

For the gastric cancer (GC) dataset, three KEGG pathways exhibited 
genome-wide significance after Bonferroni correction ( �  = 0.05/186 = 
2.68E-4). Two of them (Terpenoid backbone biosynthesis and oxidative 
phosphorylation) showed strong associations (Fig. 4a and Supplementary 
Table 2). In a previous study, terpenoid backbone biosynthesis was 
identified as a strong relation to Hepatocellular carcinoma (HCC) using 
miRNA and mRNA high-throughput sequencing17. Oxidative 
phosphorylation is closely related to the biological process in mitochondria 
and it plays an essential role in the development of tumors 18. Existing 
studies have shown its association to endometrial carcinoma, leukemias, 
lymphomas, etc 19. Recent work also indicated it could be an important 
target to treat cancer using relevant inhibitor 20. For the focal adhesion 
pathway, it is important for cell proliferation, cell survival and cell migration. 
In cancer, activities of focal adhesion were altered during tumor formation 
and developing21. It is also a widely known target for cancer therapy 
development22. For the other three pathways showing borderline 
significances, alpha linolenic acid metabolism was discovered to 
downregulated human and mouse colon cancers23; Function of ubiquitin 
mediated proteolysis on cancers was also widely known24. 
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For the colorectal cancer (CRC) dataset, DAK identified two KEGG 
pathways showing genome-wide significance (Fig. 4b and Supplementary 
Table 3). The most significant pathway, allograft rejection, is well known as 
an immune action pathway. The relation between allograft rejection, blood 
transfusion and colorectal cancer recurrence was reported at early time25. 
The other significant pathway glyoxylate and dicarboxylate metabolism was 
recently identified to be related to the metabolic switch in colorectal cancer 
cells 26. Other three pathways, one carbon pool by folate, oocyte meiosis 
and amino sugar and nucleotide sugar metabolism were also discovered as 
high risky pathways to CRC. The mechanism between one-carbon 
metabolism and CRC has been studied27 and several key mutations in this 
pathway has been related to CRC28. Oocyte meiosis was identified to be 
associated to colonic diseases in previous study based on expression 
data29 and amino sugar and nucleotide sugar metabolism may contribute to 
the lipid metabolism abnormality in CRC30. 

For the lung cancer (LC) dataset, DAK reported two significant pathways: 
lysine degradation and proteasome (Fig. 4c and Supplementary Table 4). 
In LC treatment, proteasome inhibitor has been used to non-small cell and 
small cell LC31-33 while lysine modification was discovered to impact a wide 
range of cancer types34. Other three pathways also had relatively small P-
values. Colorectal cancer pathway indicates that LC may share causal 
genes with certain types of CRC. Lysosome was reported to support the 
development LC35. For primary immunodeficiency pathway, it is known to 
lead to infections and cancers36. 

For the schizophrenia (SP) dataset, we did not identify pathways reaching 
genome-wide significance after statistical correction (Fig. 4d and 
Supplementary Table 5). Interestingly, one pathway, dilated 
cardiomyopathy (DCM), showed borderline significance with SP. This 
pathway is related to the heart muscle disease and can lead to heart failure. 
There is no existing study indicating its biological connection to SP. 
However, one clinical investigation has shown that after neuroleptics of SP, 
patients had a significantly increased possibility to get DCM37. In other 
detailed case reports, the usage of clozapine as the treatment to SP finally 
lead to DCM 38-40. This implies that SP and DCM may share biological 
pathways and the treatment may target at the process that is important to 
both. 
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Taken together, DAK efficiently discovered pathways that were known to 
be associated with diseases and also revealed new potential causal 
pathways. 

Methods 

DAK architecture 

For the �-th individual from a total number of � samples, ��  denotes the 
phenotype (such as disease or control); �� � ��  is an adjusted vector 
composed of � environmental related factors (e.g. gender, stratification and 
bias). The genotype of each SNP belongs to one of three types: major 
homozygous, heterozygous and minor homozygous genotypes. Therefore, 
it is natural to represent the genotype of each SNP by a one-hot vector with 
the non-zero entry indicating its particular genotype. 

We grouped all 
��� SNPs on the �-th pathway of individual � together and 

get the corresponding pathway-level genotype matrix ��

��� � �������  After 
pathway assembling, we get a total number of 
 pathways for all samples.  

We transform each ��

���  through convolutional layers ������ |Θ	� with  � 
convolutional operators: 

��

��� � ��� ���

����Θ	� �
�max !�	�

���

���|"	�
�# , max !�	�

���

���|"	�
�# , … , max !�	�

���

���|"	� �#&� � ��, 

where �	�
�� |"	�

� represents the '-th convolutional operator with parameter 

"	�
 and max ��&  is the max-pooling operator. Θ	 � ("	�

, … "	� )  denotes all 

learnable parameters of the convolutional layer.  

By applying the output of the convolutional layers through a *
 layer41, we 
obtained the kernel representation of the �-th pathway for individual �, 

*
 ���

���� � �+ ���

���, ��
���� , … + ���

���, ��

���� … + ���

���, ��
����& , ' -  � 

where +��,�� is a kernel function12 and � is the number of samples.  

We then define a pathway-level kernel regression function: 
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�

��� � . ��� , *
 ���

���� �/� � ��� 0 1*
 ���

���� 

where / � (�, 1) contains learnable regression coefficients for environment 
factor and genotype features, respectively. For individual � , we can get 

�
�
��� … 
�

���& from a total number of 
 pathways. 

We noticed that the labels (disease v.s. non-disease) are only provided at 
the individual level while not at each single pathway level. We hence 
consider multiple instance learning loss and define the individual level label 
for sample � as: 

2� � max �
�
��� … 
�

���& 
This multiple instance learning loss is naturally explained in the context of 
GWAS: a sample is treated as a patient if at least one of his pathways is 
associated with the disease. The training loss is defined as: 

3=4 5|�� 6 2�|5�
�

���
 

This loss function is optimized by TensorFlow in batches.  

After well training, we performed score test to quantify the statistical 
significance of each pathway using the same approach in SKAT12. For 
each pathway �, the statistic score was derived from the kernel similarity 

matrix 7��� � !*
 ���
���� , … *
 ���

���� … *
 ���
����#�

 via: 

8� � �2 6 9��7����2 6 9� 

where 2 � �
�
���, … , 
�

���& (resp. 9 � ���, … , ��&) is the predicted (resp. ground 
truth) disease statues for the pathway � across � samples. As introduced 
in SKAT, the 8� was compared with the mixture of χ� distributions to obtain 
P-value.  

Simulation of genotype and data preprocessing 

We downloaded haplotypes of CEU population from 1000 Genomes 
Project42. Based on this reference, we simulated full genome data of 
10,000 samples using HapGen 2 software43. On simulated dataset, we 
performed the following data quality control steps using Plink4: removing 
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individuals with missingness > 0.05; removing SNPs with missing rate > 
0.05 or Hardy-Weinberg equilibrium <1e-5. After that, all data were 
converted into raw files. 

Simulation of phenotype 

Phenotypes for samples were simulated based on statistical hypothesis. 
Under null hypothesis that no causal pathway existed, case / control 
(represented in 1 / 0) labels were assigned randomly. Under alternative 
hypotheses, phenotypes were generated using linear models: 

log� >�

1 6 >�

� � � 0 1��� 0 @�� 0 A  

where >�  is the probability for sample +  being a disease; �� � ��  is the 
vector of environmental factors as mentioned before and 1 � ��  is the 
corresponding effect weights; �� � � is the genotype of pre-selected causal 
SNP and is coded according to the genetic model assumption. For example, 
�� � 0, 1, 0 for the genotype “AA”, “Aa”, “aa”, respectively. For multiplicative 
genetic model where the disease increased exponentially, we first 
determine the risk >�  for samples with “Aa” allele and then exponentially 
increase the risk for “aa” samples. @ is the effect size of genotype. We 
followed the same setting in SKAT13, with a 0.2 effect size equivalent to 
odd ratio of 1.22. 

For simulation of disease caused by joint effects, we extend the linear 
model to  

log� >�

1 6 >�

� � � 0 1��� 0 4 @�����

���

��

���

0 A  

where �	 is the number of causal SNPs. After simulating phenotypes, we 
randomly selected 50% cases and 50% controls for analyses. 

Pathway set assembling 

A total of 186 Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathways were downloaded from the database of The Molecular 
Signatures Database (MSigDB) in the items of “C2: curated gene sets”44. 
The whole-genome SNPs were firstly mapped to genes based on their 
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positions (RefSeq hg1945). Then genes grouped in the same pathway were 
further assembled together.  

Real dataset collections 

The genotyping data of GWASs of gastric cancer and schizophrenia were 
deposited in the database of Genotypes and Phenotypes (dbGaP; 
phs000361 and phs000021, separately). The genotyping data of GWASs of 
colorectal cancer and lung cancer were derived from previous studies46, 47.  

All GWAS datasets were firstly imputed using SHAPEIT and IMPUTE2 
based on the 1000 Genomes Project (Phase I, version 3, 1092 individuals. 
Then the imputed SNPs were cleaned with the criteria of (i) MAF < 0.01; (ii) 

call rate < 95%; (iii) Hardy–Weinberg equilibrium P < 1.0 × 10-6; (V) info 

score < 0.3. The population structure was estimated by a PCA using 
EIGENSOFT 5.0.1, and the principle components were extracted as 
covariates, corresponding with age, sex and variables if appropriate for 
modeling adjustment. 

Evaluation 

Performances of all methods were quantified under two metrics: type I error 
rate and empirical power, corresponding to experiments conducted under 
assumptions that no disease existed or causal pathway existed. On 
simulated datasets, all comparing methods were used to derive pathway-
level P-values. Under each experimental setting, the association analysis 
was repeated 100 times on different datasets that were randomly sampled 
from simulated data. Then, the type I error rate / empirical power was 
defined as the proportion of experiments detecting significant pathways 
among 100 repeats. 

Comparison methods 

HYST: HYST combines extended Simes’ test and scaled ��  test from 
single SNP association results.  

Burden: Burden test uses MAF as weights and additively combines all 
SNPs. 
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GATES: GATES takes extended Simes’ test to aggregate single SNP test 
results. 

SKAT: SKAT employs kernels to model the similarity between individuals 
and directly calculates the association significance between sample kernels 
and sample phenotypes. Here we used the default kernel setting 
(“linear.weighted”) and default parameters. 

aSPU: aSPU is a method for adaptive test of association analysis. It 
employs the sum of powered score test to combine single SNPs. 

SKAT-o: SKAT-o combines SKAT and Burden test and selects best results 
from them. We also used the default settings for SKAT. 

DAK: The detail structure of DAK was illustrated in Supplementary Fig. 1. 
We also employed linear kernel to be comparable with SKAT. The model 
was constructed in TensorFlow framework and was run on machine with 
Nvidia Titan X GPU. We set the training epoch to 100. 

Software availability 

DAK is available from Github: https://github.com/fbaothu/DAK 

Other tools used in this work can be downloaded from: 

Plink: http://zzz.bwh.harvard.edu/plink/ 

HAPGEN 2: https://mathgen.stats.ox.ac.uk/genetics_software/hapgen/ 
hapgen2.html. 

The 1000 Genomes Project: http://www.1000genomes.org/. 

UCSC Genome Browser: https://genome.ucsc.edu/ 

SKAT and SKAT-o: https://www.hsph.harvard.edu/skat/ 

GATES, HYST and aSPU: https://cran.r-project.org/web/packages 
/aSPU/index.html 
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Figures 

Figure 1. The framework of DAK. SNPs are grouped into pathway-level
gene set and coded into one-hot format. Convolutional layers are employed
to encode causal loci into deep features. Kernel machine regression is
incorporated to enable statistical tests of association via SKAT framework.
Multiple instance learning selects the most suspicious pathway at individual
level. Parameters of the whole framework are optimized in an end-to-end
manner through backpropagation. 
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Figure 2. Disease risk levels for different genotypes in five genetic models. 
(a) Performances to discover the disease pathway resulted from single 
common variant. Effect size was set to 0.2 and simulated phenotypes were 
generated under five effect models. Under each sample size (3,000, 5,000), 
seven methods (four showed here and three in Supplementary Figures) 
were used to discover the disease pathway. Power was calculated from 
100 replicates after Bonferroni correction. (b) Performances to discover the 
disease pathway resulted from single rare variant. Effect size was set to 1, 
1.5 and 1.8, respectively to simulate phenotypes. 5,000 samples were 
considered. (c) Performances of DAK to discover the disease pathway 
resulted from single rare variant under small sample size (3,000). 
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Figure 3. (a) Performances to discover the disease pathway resulted from 
three common variant. Effect size was set to 0.1, 0.2, 0.3 and simulated 
phenotypes were generated under five effect models. Under each sample 
size (3,000, 5,000), seven methods (four illustrated here) were used to 
discover the disease pathway. The power was calculated from 100 repeats 
after Bonferroni correction. (b) Performances to discover the disease 
pathway resulted from three rare variant. Effect size was set to 1, 1.5 and 
only 5,000 samples were considered. (c) Performances of DAK to discover 
the disease pathway resulted from three rare variant when only a small 
sample size (3,000) is available.  
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Figure 4. Scatter plots of P-values of KEGG pathways by DAK on four real 
datasets. Pathways showing genome-wide significances after Bonferroni 
correction (  = 0.05/186 = 2.68E-4) were marked in red. 
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