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ABSTRACT

The genetic effect explains the causality from genetic mutation to the
development of complex diseases. Existing genome-wide association study
(GWAS) approaches are always built under a linear assumption, restricting
their generalization in dissecting complicated causality such as the
recessive genetic effect. Therefore, a sophisticated and general GWAS
model that can work with different types of genetic effects is highly desired.
Here, we introduce a Deep Association Kernel learning (DAK) model to
enable automatic causal genotype encoding for GWAS at pathway level.
DAK can detect both common and rare variants with complicated genetic
effects that existing approaches fail. When applied to real-world GWAS
data, our approach discovered potential casual pathways that could be
explained by alternative biological studies.
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Introduction

The genome-wide association study (GWAS) is extensively used for
uncovering potential causal loci from complex biological phenotypes'=. The
classical GWAS models assume that single-locus contributes to the
disease independently and the risk increases linearly with the number of
minor alleles. These linear models are only powerful in discovering variants
with strong and direct associations®. As an improvement, pathway-based
methods were proposed by taking groups of biologically meaningful genes
into consideration®’. For instance, gene-set enrichment methods derive
pathway-level statistic scores by combing P-values from single-locus tests
810. SKAT ™ and its variants ** ** perform association test using kernel
regression. However, these existing approaches rely on some pre-
assumed genetic models to conduct hand-crafted genotype encoding.
Unfortunately, in practice, the genetic effect of complex disease is unknown
and can hardly be appropriately modeled in advance. Therefore, a genetic-
model-free GWAS approach that can reasonably model the inherent
relation between genotype and phenotype is highly needed.

We introduce the Deep Association Kernel learning (DAK) framework to
conduct pathway-level GWAS (Fig. 1). Our DAK framework incorporates
convolutional layers to encode raw SNPs as latent genetic representation.
Then, kernel regression layers are connected with these encoded genetic
representations to predict the disease status. More importantly, this kernel
regression layer allows performing statistical significance tests on the
learned genetic representations to uncover the disease-associated
pathways. Both the convolutional and kernel regression layers are trained
jointly using multiple-instance loss in an end-to-end manner. Therefore,
DAK relies on no pre-assumed genetic model and can learn all model
parameters in a pure data-driven manner.

We compared DAK with seven representative gene/pathway based
methods: classical statistic method (Burden test)'®, enrichment methods
(GATES, HYST and aSPU)* ™ *® and kernel methods (SKAT and SKAT-
o)'"' . DAK is the only approach that consistently performs well under a
wide range of genetic models including additive, multiplicative, dominant,
recessive and heterozygous effects. We further applied our method to four
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disease datasets including gastric cancer, colorectal cancer, lung cancer
and psychiatric disorder.

Results
Deep association kernel learning

We introduced deep association kernel (DAK) learning to achieve the
detection of complex associations and enhance the interpretability of
GWAS (Fig. 1 and Methods). Here, alleles are coded in the one-hot
representations to enable flexible modeling of genotype effects for each
locus. Variants in the same biological pathway are grouped together and
the combinational effects of multiple SNPs within a pathway are considered
at the same time. Then, pathway-level features are extracted by
convolutional layers (Supplementary Fig. 1), followed by a kernel
regression layer to derive the statistical significance (Supplementary Fig.
2). To allow learning from labels at individual level, the whole framework is
trained with a multiple instance loss in an end-to-end manner. Finally, the
variance tests used in SKAT are performed on the learned kernel matrix to
derive statistical P-values (Supplementary Figs. 3 and 4).

Type-l error

In each simulation experiment, we simulated dataset under null (no causal
pathway) or alternative (disease was caused by different genetic
associations) hypothesis (Fig. 2a and Methods). All seven methods were
tested on simulated datasets. Performances of different approaches were
evaluated using type | error rates (corresponding to null hypothesis) and
empirical powers (corresponding to alternative hypothesis) (Methods) in
100 replicates.

We first report the Type-I error. If no causal loci existed in all pathways (null
hypothesis), all methods showed low error rate level (Supplementary Fig.
5). Changing the sample size had little effects on the results. The training
curve showed DAK converged within several iterations (Supplementary
Fig. 6).

Single effect
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We then considered that the disease was caused by a single common
variant. To illustrate different functional pathway of genes to the disease,
we assumed the allele of the causal locus contributed to the disease in five
different genetic models: 1) additive model, minor homozygous genotype
had two-fold effect than the heterozygous type; 2) dominant mode, two
genotypes showed the same effect size; 3) multiplicative model, minor
alleles increased the disease risk exponentially; 4) recessive model, only
minor homozygous genotypes had effects; and 5) heterozygous model,
only heterozygous alleles had effects (Fig. 2a).

On the most widely-used additive disease mode, we found that all methods
showed reasonable accuracy to identify the pathway with disease locus
(Fig. 2b and Supplementary Fig. 7). However, when the fundamental
genetic model changes, the power of all comparing methods dropped
dramatically while DAK maintained reliable performances with best power
across all conditions. Specifically, for the challenging recessive genetic
model, accuracies of all comparing methods greatly decreased and were
far below the performances of DAK. The performance of DAK was further
improved when increasing the effect size while other methods were still of
low accuracy (Supplementary Fig. 8). We further noted that when the
sample size was increased to 5,000, the power of all methods were
increased and DAK was still the best (Fig. 2b and Supplementary Fig. 7).

The discovery of rare variants (minor allele frequency < 0.5%) is a
challenging task in GWAS due to the low gene frequency. We simulated a
rare dataset of 5,000 samples where the disease was caused by single
rare variant under five genotype models. Again, DAK obtained much higher
performances than others on recessive and multiplicative genetic models
(Fig. 2c and Supplementary Fig. 9). When the effect size was decreased,
other comparing approaches failed but DKA can still maintain very reliable
performances (Supplementary Fig. 9). We demonstrated DAK could
discover the causal rare variant at power around 0.8 on datasets even only
with 3,000 samples (Fig. 2d and Supplementary Fig. 9), which was a
challenging task for other methods.

Joint effect

Most diseases are results of the joint-effect of multiple genes. However, it
can be more challenging to identify the combined and mixed effect signals
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from multiple causal variants. Here, we simulated joint-effects by randomly
assigning 3 causal common variants and generated phenotype under 5
genetic models (Methods). Performances of all methods were much lower
compared with results under single variant. However, DAK still dramatically
outperformed other methods and achieved the most stable performance
among all experiments (Fig. 3a and Supplementary Fig. 10). The
performances of all methods was enhanced when the effect size was
increased. The advantages of DAK were more obvious when the causal
positions were rare variants. (Figs. 3b, ¢ and Supplementary Fig. 11)

Applications to real datasets

We performed DAK on four disease datasets: gastric cancer, colorectal
cancer, lung cancer and schizophrenia (Supplementary Table 1). After the
guality control steps, we divided all SNPs into pathway groups by their
genetic coordinates (Methods). DAK was optimized on one-hot coded
pathways and score test was conducted on each pathway using learned
neural network parameters to get the statistical P-value.

For the gastric cancer (GC) dataset, three KEGG pathways exhibited
genome-wide significance after Bonferroni correction (a = 0.05/186 =
2.68E-4). Two of them (Terpenoid backbone biosynthesis and oxidative
phosphorylation) showed strong associations (Fig. 4a and Supplementary
Table 2). In a previous study, terpenoid backbone biosynthesis was
identified as a strong relation to Hepatocellular carcinoma (HCC) using
miRNA and mRNA high-throughput  sequencing’’.  Oxidative
phosphorylation is closely related to the biological process in mitochondria
and it plays an essential role in the development of tumors '°. Existing
studies have shown its association to endometrial carcinoma, leukemias,
lymphomas, etc *°. Recent work also indicated it could be an important
target to treat cancer using relevant inhibitor ?°. For the focal adhesion
pathway, it is important for cell proliferation, cell survival and cell migration.
In cancer, activities of focal adhesion were altered during tumor formation
and developing®. It is also a widely known target for cancer therapy
development®®. For the other three pathways showing borderline
significances, alpha linolenic acid metabolism was discovered to
downregulated human and mouse colon cancers®; Function of ubiquitin
mediated proteolysis on cancers was also widely known®*.
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For the colorectal cancer (CRC) dataset, DAK identified two KEGG
pathways showing genome-wide significance (Fig. 4b and Supplementary
Table 3). The most significant pathway, allograft rejection, is well known as
an immune action pathway. The relation between allograft rejection, blood
transfusion and colorectal cancer recurrence was reported at early time?°.
The other significant pathway glyoxylate and dicarboxylate metabolism was
recently identified to be related to the metabolic switch in colorectal cancer
cells ?°. Other three pathways, one carbon pool by folate, oocyte meiosis
and amino sugar and nucleotide sugar metabolism were also discovered as
high risky pathways to CRC. The mechanism between one-carbon
metabolism and CRC has been studied®” and several key mutations in this
pathway has been related to CRC?®. Oocyte meiosis was identified to be
associated to colonic diseases in previous study based on expression
data®® and amino sugar and nucleotide sugar metabolism may contribute to
the lipid metabolism abnormality in CRC®.

For the lung cancer (LC) dataset, DAK reported two significant pathways:
lysine degradation and proteasome (Fig. 4c and Supplementary Table 4).
In LC treatment, proteasome inhibitor has been used to non-small cell and
small cell LC*"* while lysine modification was discovered to impact a wide
range of cancer types®*. Other three pathways also had relatively small P-
values. Colorectal cancer pathway indicates that LC may share causal
genes with certain types of CRC. Lysosome was reported to support the
development LC*®. For primary immunodeficiency pathway, it is known to
lead to infections and cancers>®.

For the schizophrenia (SP) dataset, we did not identify pathways reaching
genome-wide significance after statistical correction (Fig. 4d and
Supplementary Table 5). Interestingly, one pathway, dilated
cardiomyopathy (DCM), showed borderline significance with SP. This
pathway is related to the heart muscle disease and can lead to heart failure.
There is no existing study indicating its biological connection to SP.
However, one clinical investigation has shown that after neuroleptics of SP,
patients had a significantly increased possibility to get DCM*’. In other
detailed case reports, the usage of clozapine as the treatment to SP finally
lead to DCM *“°. This implies that SP and DCM may share biological
pathways and the treatment may target at the process that is important to
both.
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Taken together, DAK efficiently discovered pathways that were known to
be associated with diseases and also revealed new potential causal
pathways.

Methods

DAK architecture

For the i-th individual from a total number of N samples, y; denotes the
phenotype (such as disease or control); x; € RX is an adjusted vector
composed of K environmental related factors (e.g. gender, stratification and
bias). The genotype of each SNP belongs to one of three types: major
homozygous, heterozygous and minor homozygous genotypes. Therefore,
it is natural to represent the genotype of each SNP by a one-hot vector with
the non-zero entry indicating its particular genotype.

We grouped all {®) SNPs on the p-th pathway of individual i together and
get the corresponding pathway-level genotype matrix gi(p) € RIV*3 After
pathway assembling, we get a total number of P pathways for all samples.

(»)

We transform each g;

convolutional operators:

£ = cov (¢26,) =
[max [fcl (gi(p)wcl)] , max [fCZ (gi(p)|962)] , ..., max [fCM (gi(p)wa )]]T e RM,

through convolutional layers conv(: |0,) with M

where fe; ( |HC].) represents the j-th convolutional operator with parameter
O and max [-] is the max-pooling operator. 0, = {6, ...6.,, } denotes all
learnable parameters of the convolutional layer.

By applying the output of the convolutional layers through a h, layer**, we
obtained the kernel representation of the p-th pathway for individual i,

he, (fl_(p)) = [k (fi(p)’ 1(10))’ Tk (fi(p)’fj(p)) Kk (fi(p), I\EP))] Vj# i

where k() is a kernel function* and N is the number of samples.

We then define a pathway-level kernel regression function:
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(P = £ (x,heo () |0) = ax; + Bhes (£P)

where w = {a, B} contains learnable regression coefficients for environment
factor and genotype features, respectively. For individual i , we can get

[z§1> zgp )] from a total number of P pathways.

We noticed that the labels (disease v.s. non-disease) are only provided at
the individual level while not at each single pathway level. We hence
consider multiple instance learning loss and define the individual level label
for sample i as:

L; = max [IV ...1¢7]

This multiple instance learning loss is naturally explained in the context of
GWAS: a sample is treated as a patient if at least one of his pathways is
associated with the disease. The training loss is defined as:

N 2
C:E |y = Ll
i=1

This loss function is optimized by TensorFlow in batches.

After well training, we performed score test to quantify the statistical
significance of each pathway using the same approach in SKAT. For
each pathway p, the statistic score was derived from the kernel similarity

matrix K ® = [hoo ( 1(”)), P (fi(p)) P ( N@))]T via:
Qy=UL-VTK®UL-Y)

where L = [lip), ...,l,(vp)] (resp. Y = [y4, ..., yn]) Is the predicted (resp. ground
truth) disease statues for the pathway p across N samples. As introduced
in SKAT, the Q, was compared with the mixture of x? distributions to obtain
P-value.

Simulation of genotype and data preprocessing

We downloaded haplotypes of CEU population from 1000 Genomes

Project*”. Based on this reference, we simulated full genome data of

10,000 samples using HapGen 2 software®®. On simulated dataset, we

performed the following data quality control steps using Plink*: removing
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individuals with missingness > 0.05; removing SNPs with missing rate >
0.05 or Hardy-Weinberg equilibrium <le-5. After that, all data were
converted into raw files.

Simulation of phenotype

Phenotypes for samples were simulated based on statistical hypothesis.
Under null hypothesis that no causal pathway existed, case / control
(represented in 1 / 0) labels were assigned randomly. Under alternative
hypotheses, phenotypes were generated using linear models:

Tk
|
0g(7

Y=a+ BTx, +yc, +¢

Tk

where 1, is the probability for sample k being a disease; x;, € R¥ is the
vector of environmental factors as mentioned before and g € R¥ is the
corresponding effect weights; ¢, € R is the genotype of pre-selected causal
SNP and is coded according to the genetic model assumption. For example,
¢, = 0,1,0 for the genotype “AA”, “Aa”, “aa”, respectively. For multiplicative
genetic model where the disease increased exponentially, we first
determine the risk r;, for samples with “Aa” allele and then exponentially
increase the risk for “aa” samples. y is the effect size of genotype. We
followed the same setting in SKAT™®, with a 0.2 effect size equivalent to
odd ratio of 1.22.

For simulation of disease caused by joint effects, we extend the linear
model to

N¢
7 e
log(l_k ) =a+BTxk+Zy(1)c,(c])+e
1y =

where N, is the number of causal SNPs. After simulating phenotypes, we
randomly selected 50% cases and 50% controls for analyses.

Pathway set assembling

A total of 186 Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathways were downloaded from the database of The Molecular
Signatures Database (MSigDB) in the items of “C2: curated gene sets™“.
The whole-genome SNPs were firstly mapped to genes based on their
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positions (RefSeq hg19*). Then genes grouped in the same pathway were
further assembled together.

Real dataset collections

The genotyping data of GWASSs of gastric cancer and schizophrenia were
deposited in the database of Genotypes and Phenotypes (dbGaP;
phs000361 and phs000021, separately). The genotyping data of GWASSs of
colorectal cancer and lung cancer were derived from previous studies*® *'.

All GWAS datasets were firstly imputed using SHAPEIT and IMPUTE2
based on the 1000 Genomes Project (Phase I, version 3, 1092 individuals.
Then the imputed SNPs were cleaned with the criteria of (i) MAF < 0.01; (ii)

call rate < 95%; (iii) Hardy—Weinberg equilibrium P < 1.0 x 10°; (V) info
score < 0.3. The population structure was estimated by a PCA using
EIGENSOFT 5.0.1, and the principle components were extracted as

covariates, corresponding with age, sex and variables if appropriate for
modeling adjustment.

Evaluation

Performances of all methods were quantified under two metrics: type | error
rate and empirical power, corresponding to experiments conducted under
assumptions that no disease existed or causal pathway existed. On
simulated datasets, all comparing methods were used to derive pathway-
level P-values. Under each experimental setting, the association analysis
was repeated 100 times on different datasets that were randomly sampled
from simulated data. Then, the type | error rate / empirical power was
defined as the proportion of experiments detecting significant pathways
among 100 repeats.

Comparison methods

HYST: HYST combines extended Simes’' test and scaled y? test from
single SNP association results.

Burden: Burden test uses MAF as weights and additively combines all
SNPs.
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GATES: GATES takes extended Simes’ test to aggregate single SNP test
results.

SKAT: SKAT employs kernels to model the similarity between individuals
and directly calculates the association significance between sample kernels
and sample phenotypes. Here we used the default kernel setting
(“linear.weighted”) and default parameters.

aSPU: aSPU is a method for adaptive test of association analysis. It
employs the sum of powered score test to combine single SNPs.

SKAT-0: SKAT-0 combines SKAT and Burden test and selects best results
from them. We also used the default settings for SKAT.

DAK: The detail structure of DAK was illustrated in Supplementary Fig. 1.
We also employed linear kernel to be comparable with SKAT. The model
was constructed in TensorFlow framework and was run on machine with
Nvidia Titan X GPU. We set the training epoch to 100.

Software availability

DAK is available from Github: https://github.com/fbaothu/DAK
Other tools used in this work can be downloaded from:
Plink: http://zzz.bwh.harvard.edu/plink/

HAPGEN 2: https://mathgen.stats.ox.ac.uk/genetics_software/hapgen/
hapgen2.html.

The 1000 Genomes Project: http://www.1000genomes.org/.
UCSC Genome Browser: https://genome.ucsc.edu/
SKAT and SKAT-o: https://www.hsph.harvard.edu/skat/

GATES, HYST and aSPU: https://cran.r-project.org/web/packages
/aSPU/index.html
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Figure 1. The framework of DAK. SNPs are grouped into pathway-level
gene set and coded into one-hot format. Convolutional layers are employed
to encode causal loci into deep features. Kernel machine regression is
incorporated to enable statistical tests of association via SKAT framework.
Multiple instance learning selects the most suspicious pathway at individual
level. Parameters of the whole framework are optimized in an end-to-end
manner through backpropagation.
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Figure 2. Disease risk levels for different genotypes in five genetic models.
(a) Performances to discover the disease pathway resulted from single
common variant. Effect size was set to 0.2 and simulated phenotypes were
generated under five effect models. Under each sample size (3,000, 5,000),
seven methods (four showed here and three in Supplementary Figures)
were used to discover the disease pathway. Power was calculated from
100 replicates after Bonferroni correction. (b) Performances to discover the
disease pathway resulted from single rare variant. Effect size was set to 1,
1.5 and 1.8, respectively to simulate phenotypes. 5,000 samples were
considered. (c) Performances of DAK to discover the disease pathway
resulted from single rare variant under small sample size (3,000).
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Figure 3. (a) Performances to discover the disease pathway resulted from
three common variant. Effect size was set to 0.1, 0.2, 0.3 and simulated
phenotypes were generated under five effect models. Under each sample
size (3,000, 5,000), seven methods (four illustrated here) were used to
discover the disease pathway. The power was calculated from 100 repeats
after Bonferroni correction. (b) Performances to discover the disease
pathway resulted from three rare variant. Effect size was set to 1, 1.5 and
only 5,000 samples were considered. (c) Performances of DAK to discover
the disease pathway resulted from three rare variant when only a small
sample size (3,000) is available.
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Figure 4. Scatter plots of P-values of KEGG pathways by DAK on four real
datasets. Pathways showing genome-wide significances after Bonferroni
correction (= 0.05/186 = 2.68E-4) were marked in red.
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