

Host prion protein expression levels impact prion tropism for the spleen

Vincent Béringue^{1*}, Philippe Tixador¹, Olivier Andréoletti², Fabienne Reine¹, Johan Castille³, Thanh-Lan Lai¹, Annick Le Dur¹, Aude Laisné¹, Laetitia Herzog¹, Bruno Passet³, Human Rezaei¹, Jean-Luc Vilotte³, Hubert Laude¹

¹*VIM, INRA, Université Paris-Saclay, Jouy-en-Josas, France*

²*IHAP, INRA, ENVT, Toulouse, France*

³*GABI, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France*

*Corresponding author

Email: vincent.beringue@inra.fr

Short title: PrP^C level features in prion lymphotropism

1 **Abstract**

2 Prions are pathogens formed from abnormal conformers (PrP^{Sc}) of the host-encoded cellular
3 prion protein (PrP^{C}). PrP^{Sc} conformation to disease phenotype relationships extensively vary
4 among prion strains. In particular, prions exhibit a strain-specific tropism for lymphoid
5 tissues. Prions can be composed of several substrain components. There is evidence that these
6 substrains can propagate in distinct tissues (e.g. brain and spleen) of a single individual,
7 providing an experimental paradigm to study the cause of prion tissue selectivity. Previously,
8 we showed that PrP^{C} expression levels govern prion substrain selection in the brain.
9 Transmission of sheep scrapie isolates (termed LAN) to multiple lines of transgenic mice
10 expressing varying levels of ovine PrP^{C} in the brain resulted in the phenotypic expression of
11 the dominant sheep substrain in mice expressing near physiological PrP^{C} levels, whereas a
12 minor substrain replicated preferentially on high-expressors. Considering that PrP^{C} expression
13 levels are markedly decreased in the spleen compared to the brain, we interrogate whether
14 spleen PrP^{C} dosage could drive prion selectivity. The outcome of the transmission of a large
15 cohort of LAN-like scrapie isolates in the spleen from high-expressors correlated with the
16 replication rate dependency on PrP^{C} amount; There was a prominent spleen colonization by
17 the substrain preferentially replicating on low-expressors and a relative incapacity of the
18 substrain with higher- PrP^{C} level need to propagate in the spleen. Early colonization of the
19 spleen allowed neuropathological expression of the lymphoid substrain after intraperitoneal
20 inoculation. In addition, a pair of substrain variants resulting from the adaptation of human
21 prions to ovine high-expressors, and exhibiting differing brain versus spleen tropism, showed
22 different tropism on transmission to low-expressors, with the lymphoid substrain colonizing
23 the brain. Overall, these data suggest that PrP^{C} expression levels are instrumental in prion
24 substrain lymphotropism.

1 **Author summary**

2 The cause of prion phenotype variation among prion strains remains poorly understood. In
3 particular prions replicate in a strain-dependent manner in the spleen. This can result in prion
4 asymptomatic carriers. Based on our previous observations that dosage of the prion precursor
5 (PrP) determined prion substrain selection in the brain, we examine whether PrP levels in the
6 spleen could drive prion replication in this tissue, due to the low levels of the protein. We
7 observe that the prion substrain with higher PrP need for replication did barely replicate in the
8 spleen, while the component with low PrP need replicated efficiently. In addition, other
9 human co-propagating prions with differing spleen and brain tropism showed different
10 tropism on transmission to mice expressing low PrP levels, with the lymphoid substrain
11 colonizing the brain. PrP^C expression levels may thus be instrumental in prion tropism for the
12 lymphoid tissue. From a diagnostic point of view, given the apparent complexity of prion
13 diseases with respect to prion substrain composition, these data advocate to type extraneuronal
14 tissues or fluids for a comprehensive identification of the circulating prions in susceptible
15 mammals.

1 **Introduction**

2 Mammalian prions are proteinaceous pathogens causing fatal neurodegenerative
3 diseases termed transmissible spongiform encephalopathies (TSE) in humans and animals.
4 TSE include scrapie in sheep and goats, bovine spongiform encephalopathy (BSE) in cattle,
5 chronic wasting disease (CWD) in cervid populations and Creutzfeldt-Jakob disease (CJD) in
6 humans [1]. Prions are formed from abnormal, β -sheet enriched conformers (PrP^{Sc}) of the
7 host encoded cellular prion protein (PrP^{C}). Prions replicate by templating the conversion and
8 polymerization of PrP^{C} by an autocatalytic process [2, 3]. Multiple strains of prions are
9 recognized phenotypically within the same host species. Strains are conformational variants
10 of PrP^{Sc} , at the level of the tertiary and/or quaternary structure [4-6]. In the infected host,
11 prion strains exhibit specific incubation periods, stereotyped clinical signs and
12 neuropathology, and specific tropism for the central nervous system (CNS) and lymphoid
13 tissues (for review [7, 8]). Thus, certain prions can replicate early and at fairly high levels in
14 tissues of the lympho-reticular system such as the Peyer's patches, spleen and lymph nodes
15 [9-11]. Lymphotropic prions are then transported from these early reservoirs of infectivity to
16 the brain either by the enteric nervous system (Peyer's patches) or by the peripheral nervous
17 system and the spinal cord (spleen, lymph nodes) [12-14]. After peripheral infection, the
18 presence of differentiated follicular dendritic cells (FDC) is required for efficient prion
19 replication in the lymphoid tissue and subsequent neuroinvasion [9, 15-21]. Yet, prions can
20 differ in their capacity to neuroinvade. Certain prions can persist in the lymphoid tissue
21 without accessing the CNS [22-25]. Of particular concern are BSE/variant CJD prions, which
22 are suspected to accumulate in human lymphoid tissue without neuroinvasion. 1:2000
23 exposed individuals in the UK may be silent carriers in the lymphoid tissue, causing risks of
24 secondary transmission [26].

1 Although one dominant PrP^{Sc} conformation is usually detected by conventional
2 immunodetection methods, there is clear evidence that natural or experimental prion sources
3 can be composed of several substrains, in variable proportions, and with differing PrP^{Sc}
4 conformations [27-30]. As a result, experimental prion transmission, in a homotypic context
5 (i.e. host PrP^C and prion PrP^{Sc} share identical primary sequence) or not, can lead to the
6 isolation of different substrains in the brain and spleen of a single transgenically modified
7 mouse expressing PrP [22, 23, 28, 31]. The reasons for such substrain segregation between
8 the brain and the spleen and more generally for the incapacity of certain strains to replicate in
9 the spleen remain poorly understood. It has been proposed that tertiary or quaternary PrP^{Sc}
10 conformations impact peripheral prion replication [25, 31-33]. The aforementioned tissue
11 segregative transmission provides a relevant experimental paradigm to study prion
12 lymphotropism.

13 Intracerebral transmission of natural sheep scrapie isolates (referred to as LAN isolates [9,
14 34]) to multiple lines of transgenic mice expressing ovine PrP^C (VRQ allele at codons 136,
15 154 and 171 of the PrP-encoding gene, where V, R, and Q stand for valine, arginine, and
16 glutamine, respectively) and at variable levels revealed that the PrP^C expression level in the
17 brain critically determines prion substrain selection [29]. The so-called LA21K dominant
18 component in the sheep brain (giving the strain signature of LAN isolates) was selected in the
19 brain of mice expressing near physiological PrP^C levels, while preferential selection of the so-
20 called LA19K prion subcomponent occurred in the brain of ‘high-expressor’ mice.

21 PrP^C levels are markedly lowered in the spleen, - approximately 20-fold compared to the
22 brain-, in wild-type mice as in some high-expressor transgenic mouse models [22]. We thus
23 interrogate whether PrP^C expression levels could impact prion peripheralization. We compare
24 the outcome of the transmission of a large cohort of sheep scrapie isolates, including the

1 LAN-like isolates, in the brain and spleen tissue of high-expressors. In accordance with their
2 affinity for PrP^C levels, we show preferential replication of LA21K and absence of replication
3 of LA19K prions in the spleen. Consequently, varying the inoculation route allows the
4 dominant expression of LA21K prions in the brain of high-expressors. Further, we show that
5 a pair of strains resulting from the adaptation of cortical MM2 CJD subtype to ovine high-
6 expressors, and exhibiting differing brain versus spleen tropism (T1^{Ov} strain in spleen and
7 T2^{Ov} strain in brain [28]) showed opposite tropism in low-expressors. Collectively, these data
8 raise the possibility that PrP^C expression levels are instrumental in specific tropism for the
9 lymphoid tissue.

10

11 **Methods**

12 **Ethics statement**

13 Animal care and experiments were conducted in strict compliance with ECC and EU
14 directives 86/009 and 2010/63. They were reviewed and approved by the local ethics
15 committee of the author's institution, (name: COMETHEA: Comité d'Ethique en
16 Expérimentation Animale du Centre INRA de Jouy-en-Josas et AgroParisTech). The permit
17 numbers delivered by the COMETHEA are 12/034 and 15/056.

18 **Transgenic mice**

19 As high-expressors, we used tg338 mice that overexpress the VRQ allele of ovine PrP. The
20 transgene construct consists of a large DNA sequence derived from ovine BAC libraries,
21 encompassing natural regulatory sequences of the PrP gene transcription unit [35]. The PrP^C
22 levels in the brain are ~8-fold higher than in the sheep brain [29]. The spleen-to-brain PrP^C
23 ratio (~1:20) in tg338 mice is comparable to that found in conventional mouse models [22].
24 The strongest PrP^C staining in tg338 spleens is FDC-associated [22]. Thus, there is no

1 aberrant expression of PrP^C in the spleen of these mice, quantitatively or qualitatively. As
2 low-expressor mice, we used tg335^{+/−} (same transgene construct as the tg338 mice) and
3 tg143^{+/−} mice, which express 1.2-fold and 1.5-fold PrP^C as compared to sheep brain,
4 respectively [29, 35].

5 **TSE sources**

6 Brain and spleen from sheep terminally affected with natural scrapie (LAN404 isolate) were
7 provided by the Institut National de la Recherche Agronomique (O. Andréoletti, Toulouse,
8 France). Brain extracts from French, Dutch, Spanish, Irish, and English sheep scrapie isolates
9 were provided by the Institut National de la Recherche Agronomique (O. Andréoletti,
10 Toulouse, France), the Central Veterinary Institute (J.M. Langeveld, Wageningen, Lelystad,
11 Netherlands), the French National TSE Reference Laboratory (T. Baron, Anses, Lyon,
12 France), CISA-INIA (J.M. Torres, Madrid, Spain), the Central Veterinary Research
13 Laboratory, (E. Monks, Dublin, Ireland) and the former European TSE Reference Laboratory
14 (J. Spiropoulos, VLA, Addlestone, UK). The CH1641 sheep scrapie strain [36] was provided
15 by the Institute for Animal Health (N. Hunter, Edinburgh, UK). The TSE isolates are detailed
16 in [supplemental Table 1](#).

17 The T1^{Ov} and T2^{Ov} strains were isolated after serial transmission of a human sporadic CJD
18 brain (MM2, rare cortical form) to ovine PrP tg338 mice [28]. As inoculum, a pool of brains
19 from tg338 mice at the 4th serial passage of MM2-CJD and containing T1^{Ov} and T2^{Ov} prions,
20 with T2^{Ov} in higher proportion, was used. For comparison, pools of brains from tg338 mice
21 inoculated with cloned T1^{Ov} or bicloned T2^{Ov} prions were used [28].

1 **Mouse transmission assays**

2 Sheep tissue extracts were prepared as 10% w/v homogenate in 5% w/v glucose with a
3 Precellys rybolyzer (Ozyme, Montigny-le-Bretonneux, France). To avoid any cross-
4 contamination, a strict protocol based on the use of disposable equipment and preparation of
5 all inocula in a class II microbiological cabinet was followed. For intracerebral inoculations,
6 twenty microliters were inoculated in the right hemisphere to groups of individually identified
7 mice, at the level of the parietal cortex. For intraperitoneal inoculations, hundred microliters
8 of a 2% w/v solution in 5% glucose were used. For subsequent passage, mouse brains and
9 spleens were collected with dedicated, sterile, disposable tools, homogenized at 20% w/v in
10 5% glucose; twenty microliters were reinoculated intracerebrally at 10% w/v. Animals were
11 supervised daily for TSE development. Animals at terminal stage of disease or at end life
12 were euthanized. To study the kinetics of PrP^{Sc} accumulation in the spleen and in the brain
13 after intraperitoneal or intracerebral infection, mice were euthanized healthy in triplicates at
14 regular time-points post-inoculation, as indicated. For immunoblot analyses, brains and
15 spleens were immediately frozen at -80°C until use. For histoblot analyses, the collected
16 brains were frozen on dry ice before storage at -80°C.

17 **Immunoblot analyses**

18 Brains and spleens were analyzed for proteinase K (PK)-resistant PrP^{Sc} (PrP^{res}) content using
19 a previously published protocol [28]. Briefly, PrP^{res} was extracted from 20 % w/v tissue
20 homogenates with the Bio-Rad TeSeE detection kit. Aliquots were digested with PK (200
21 µg/ml final concentration) for 10 min at 37 °C before B buffer precipitation and centrifugation
22 at 28,000 × g for 15 min. Pellets were resuspended in Laemmli sample buffer, denatured, run
23 on 12 % Bis/Tris gels (Bio-Rad), electrotransferred onto nitrocellulose membranes, and
24 probed with 0.1 µg/ml biotinylated anti-PrP monoclonal antibody Sha31 antibody (human PrP

1 epitope 145-152, [37]) or with 0.1 µg/ml anti-PrP 12B2 antibody (human PrP epitope 89-93,
2 epitope, [38]) and followed by streptavidin conjugated to horseradish peroxidase (HRP) or by
3 HRP conjugated to goat anti-mouse IgG1 antibody (1/20 000 final dilution), respectively.
4 Immunoreactivity was visualized by chemiluminescence (GE Healthcare). The relative
5 amounts of PrP^{res} glycoforms were determined by the use of GeneTools software after
6 acquisition of chemiluminescent signals with a GeneGnome digital imager (Syngene,
7 Frederick, MD).

8 **Histoblot analyses**

9 Brain cryosections were cut at 8-10 µm, transferred onto Superfrost slides and kept at -20 °C
10 until use. Histoblot analyses were performed as described [39], using the 12F10 anti-PrP
11 antibody (human PrP epitope 142-160, [40]). Analysis was performed with a digital camera
12 (Coolsnap, Photometrics) mounted on a binocular glass (SZX12, Olympus). The sections
13 presented are representative of the analysis of three brains samples.

14 **Resistance to proteinase K digestion**

15 20% (w/v) brain homogenates from tg338 mice infected with 127S and LA19K prions were
16 diluted at 5% in a solubilization buffer (20 mM HEPES pH 7.4, 150 mM NaCl, 5 mM EDTA,
17 1 mM DTT, 2% (w/v) dodecyl- β-D-maltoside (Sigma)) 2% N-lauryl sarcosine (Fluka), final
18 concentrations) and digested for 2h at 37°C with increasing concentrations of PK (0 to
19 10 000 µg/ml), as indicated. After digestion, the samples were diluted in equal volumes of
20 Laemmli buffer, denatured and analyzed for PrP content by western blot, as above.

1 **PrP^{Sc} degradation by primary cultured peritoneal macrophages**

2 To induce the multiplication of peritoneal macrophages, healthy tg338 mice were
3 intraperitoneally injected with 3% Brewer thioglycolate broth (BD Biosciences). Three days
4 after the injection, mice were euthanized by cervical column disruption. Peritoneal lavage was
5 performed with 5 ml D-PBS (Gibco). The lavage fluid was mixed with an equivalent volume
6 of 4°C Dulbecco's Modified Eagle Medium (DMEM, Lonza) supplemented with 10% fetal
7 calf serum (FCS, Biowhitaker), streptomycin and penicillin (PS, Gibco) before centrifugation
8 at 100 x g for 5 min. Red cells were lysed with hematolytic medium (155 mM ammonium
9 chloride, 12 mM sodium carbonate, pH 7.4). The cells were resuspended in DMEM-10%
10 FCS-PS and washed twice by centrifugation. After a live cell count, the cells were aliquoted
11 in 6-well plates (6.10^6 cells / well) and incubated at 37°C. After 24h, non-adhering cells were
12 discarded by washing the wells with D-PBS. Macrophages were exposed to brain
13 homogenates from tg338 mice infected with 127S and LA19K prions (1% (w/v) dilution in
14 DMEM-10% FCS-PS) for 24h at 37°C. After two washes in D-PBS, the cells were lysed or
15 incubated for 9 days. At regular time points, the contents of the wells were lysed in lysis
16 buffer (0.5% sodium deoxycholate, 0.5 Triton X-100, 50 mM Tris-HCl, pH 7,4) and
17 centrifuged for 1 min at 500 x g. The supernatants were collected and analyzed for protein
18 content (MicroBCA kit, Pierce). The equivalent of 250 μ g of proteins was digested by 1 μ g of
19 PK for 1h at 37°C. The samples were then methanol precipitated, resuspended in Laemmli
20 buffer, denatured and analyzed for PrP^{res} content by western blot.

21

1 **Results**

2 **Distinct PrP^{res} types in the brain and spleen of high-expressor mice intracerebrally**

3 **inoculated with LAN-like and CH1641-like sheep scrapie isolates**

4 The tg338 mice overexpress the VRQ allele of ovine PrP. The PrP^C levels in the brain are ~8-
5 fold higher than in the sheep brain [29]. The spleen-to-brain PrP^C ratio is ~1:20 in tg338, as in
6 wild-type mice [22]. We transmitted by intracerebral (IC) route 37 sheep scrapie isolates from
7 various countries and genotypes (including VRQ) to tg338 mice (details in [supplemental](#)
8 [Table 1](#)). The isolates were from the LAN group [29] or closely resembling to CH1641 sheep
9 scrapie isolate ([41-44], [Figure S1](#)). Sheep brains from the LAN group exhibit a PrP^{res}
10 electrophoretic signature with unglycosylated fragments migrating around 21 kDa (21K-
11 PrP^{res}, [Figure 1A](#)). These cases are composed of two prion strain types termed LA21K and
12 LA19K, which are preferentially selected in transgenic mice expressing low or high levels of
13 PrP^C, respectively [29]. The CH1641-like isolates exhibit a 19 kDa signature in the brain, as
14 CH1641 (19K-PrP^{res}, [Figure 1A](#), [Figure S1](#), [42, 43]). Initially, these isolates were found to
15 exhibit a signature similar to BSE in sheep and were termed BSE-compatible isolates ([Figure](#)
16 [S1](#), [41]). However, transmission of CH1641-like isolates to ovine PrP mice (ARQ or VRQ
17 allele) led to isolation of prions with strain features similar to LA19K prions ([41-43] and this
18 study). For comparison, the PG127 sheep scrapie isolate ([Figure 1A](#)), which led to the
19 accumulation of the same prion strain type in tg338 brain and spleen was used [45].
20 All the inoculated isolates induced a typical prion disease in tg338 mice. The PrP^{res}
21 electrophoretic signature was compared between the brain and spleen of the same animals at
22 the terminal stage of disease, so as to determine which substrain component was preferentially
23 replicated. The results are summarized in [Table 1](#) and a representative immunoblot is shown
24 in [Figure 1A](#).

25

1 **Table 1. Pr^{Pres} electrophoretic pattern in the brain and spleen after intracerebral
2 inoculation of sheep scrapie field isolates to tg338 mice**

TSE sources	Number ^a	Pr ^{Pres} type ^b		
		Sheep brain	tg338 brain (n/n ₀) ^c	tg338 spleen (n/n ₀) ^c
LAN-like	26	21K	19K (77/79)	21K (53/53)
CH1641-like	11	19K	19K (38/38)	21K (18/21) ^d
PG127	1	21K	21K	21K

4 ^aNumber of isolates transmitted to tg338 mice

5 ^bAs referred to the size of unglycosylated Pr^{Pres} in immunoblots

6 ^cNumber of mice with the Pr^{Pres} type/number of mice tested

7 ^d3 spleens were Pr^{Pres} negative

8 After IC inoculation of LAN- and CH1641-like isolates, all but two tg338 brains analyzed

9 showed prominent accumulation of 19K-Pr^{Pres}, as reported previously with the prototypal

10 LAN404 isolate [29]. The resulting agent was termed LA19K because of this prominent 19K-

11 Pr^{Pres} signature in the brain [29]. In striking contrast, nearly all the spleens analyzed exhibited

12 a 21K-Pr^{Pres} signature. The distinct Pr^{Pres} patterns in the brain and spleen from the same mice

13 were observed over iterative passages of brain material by IC route, as illustrated with the

14 LAN404 isolate (LA19K at the 6th passage, [Figure 1B](#)).

15 Transmission of sheep scrapie isolates from the LAN group occasionally led to the emergence

16 of a highly pathogenic ‘mutant’ designated LA21K *fast* in a minority of tg338 mice [29]. IC-

17 inoculation of LAN-like isolates resulted in the emergence of LA21K *fast* in two out of the 79

18 brains analyzed ([Table 1](#)).

19 As LA21K *fast* prions accumulate in tg338 mouse spleens ([Figure 1B](#) and [46]), we

20 questioned whether the 21K-Pr^{Pres} signature observed in the spleen on IC inoculation of

21 LAN-like and CH1641-like isolates could be similar to the LA21K *fast* one. The strain-

22 specific [47] glycoform profile from LA21K *fast* Pr^{Pres} in the spleen was distinct from that of

23 the 21K-Pr^{Pres} found in the spleen on serial passage of LAN404, the latter being enriched in

24 diglycosylated forms ([Figure 1B-C](#)). The prion types accumulating in the spleen on IC

1 inoculation of LAN-like and CH1641-like isolates are thus likely different from LA21K *fast*
2 prions.

3 A time-course analysis of Pr^{Pres} accumulation was performed in the brain and spleen tissue at
4 the 5th passage of LAN404 in tg338 mice. As shown in [Figure 1D](#), 21K-Pr^{Pres} accumulation
5 plateaued in the spleen from day 60 post-infection onward (bottom panel).

6 In the brain, 21K-Pr^{Pres} was detected at day 60. At day 100 and at terminal stage of the
7 disease, 19K-Pr^{Pres} was mostly detected (top panel). The use of the 21K-selective anti-PrP
8 monoclonal antibody 12B2 [38] to reveal the immunoblots demonstrated that 21K-Pr^{Pres} was
9 still present in the brain at these time points (middle panel). This suggested co-propagation of
10 the 19K-Pr^{Pres} and 21K-Pr^{Pres} components in the brain.

11 To summarize, while IC transmission of LAN-like and CH1641-like isolates to tg338 mice
12 leads to the isolation of LA19K prions in the brain, a divergent, prominent 21K-Pr^{Pres}
13 signature was observed in the spleen. This 21K-Pr^{Pres} signature, also subdominant in the
14 brain, differed from that of LA21K *fast*, suggesting that LA21K prions replicated in the
15 spleen of the infected mice.

16

17 **Co-propagation of LA19K and LA21K prion strain variants in the brain and spleen of**
18 **high-expressor mice**

19 To substantiate the view that the 21K-Pr^{Pres} signature in the spleen is associated with LA21K
20 replication and formally exclude LA21K *fast* replication or a tissue-specific proteolytic
21 processing of the LA19K strain type [48], we transmitted (IC route) spleen and brain extracts
22 from the same tg338 mouse infected with LA19K (3rd passage of LAN404) to reporter tg338
23 mice. We also challenged intracerebrally low-expressor tg143^{+/−} mice (expressing 1.5-fold
24 PrP^C compared to sheep brain [29]), as they allow the dominant propagation of LA21K prions
25 in the brain [29]. The resulting disease phenotypes in the two mouse lines are summarized in

1 Figure 2A. In tg338 mice, the mean incubation duration (ID) was >3-fold longer with the
2 spleen than with the brain extract. The spleen ID was also 3-fold longer than LA21K *fast* ID
3 at the limiting dilution [6, 29]. The Pr^{Pres} pattern found after inoculation of spleen material
4 was 21K in all the brains and spleens analyzed (Figure 2A-B). The neuroanatomical
5 deposition pattern of Pr^{Pres} strikingly differed after inoculation of brain and spleen. In
6 particular, numerous plaque-like Pr^{Pres} deposits were seen specifically after inoculation of the
7 spleen extract (Figure 2C). This phenotype was reminiscent of LA21K prions [29]. Similar
8 isolation of LA21K prions in tg338 mouse brains was observed on IC transmission of spleens
9 from tg338 mice inoculated with other LAN- or CH1641-like isolates (Figure S2). In tg143^{+/−}
10 mice, the spleen and brain extracts induced a long incubation time, with a 21K-Pr^{Pres} pattern.
11 Such characteristics were reminiscent of LA21K prions in these mice (Figures 2A-B, [29]).
12 To consolidate the view that the 19K-Pr^{Pres} and the 21K-Pr^{Pres} components were independent
13 replicative entities in tg338 mice, we investigated the brain versus spleen colonization
14 following IC challenge with cloned LA19K prions (double biological cloning by limiting
15 dilution at the 3rd iterative passage of LA404 [29]). 19K-Pr^{Pres} was detected in the brain
16 (Figure 1B), with no evidence for the co-preservation of a minor 21K-Pr^{Pres} signature, as assessed
17 with 12B2 antibody (Figure 1D). All the spleens of the terminally-sick animals were Pr^{Pres}-
18 negative (Figure 1B-1D). Reporter tg338 mice were inoculated IC with these negative spleens
19 to estimate the amount of LA19K infectivity by an incubation time bioassay. As shown in
20 Figure 2A, the spleen extracts induced disease in 2 out of 8 mice >300 days post-infection,
21 with a 19K-Pr^{Pres} signature in the brain. On the basis of such ID and the low attack rate [6],
22 the spleen of biologically cloned LA19K prions harbored 10⁵-fold less infectivity than the
23 brain.
24 Collectively, these data indicate that IC inoculation of LAN- and CH1641-like isolates to
25 tg338 mice results in the preferential replication of the LA19K and LA21K subcomponents in

1 the brain and spleen, respectively. In the brain, both LA19K and LA21K subcomponents
2 coexist, with the LA19K subcomponent in higher proportion. In the spleen, LA21K prions
3 dominate, LA19K prions being barely detectable. LA19K prions thus show a preferential
4 tropism for tg338 mouse brain. Such tissue-dependent segregation is reminiscent of the
5 diverging selection of LA19K and LA21K prions on transmission to transgenic mice
6 expressing PrP^C at varying levels [29].

7

8 **Expression of LA21K prions in high-expressor mouse brain on intraperitoneal
9 inoculation of the LAN-like and CH1641-like isolates**

10 Intraperitoneal (IP) inoculation primarily favors the neuroinvasion of prions that primo-
11 replicate in the spleen, by transport through the peripheral nervous system and the spinal cord
12 (review [49]). We thus asked whether extraneuronal inoculation of LAN-like and CH1641-like
13 isolates would lead to the dominant expression of LA21K prions in the brain as LA21K
14 prions rapidly colonized the spleen of high-expressor tg338 mice. A group of representative
15 sheep scrapie sources was transmitted to tg338 mice by IP route. The dose injected was the
16 same as for the IC route. Four isolates were from the LAN-like group (LAN404, ARQ16,
17 378, 454) and 2 from the CH1641-like group (O100 and m48). The PG127 isolate and
18 LA19K prions served for comparison. Mice were euthanized at regular time-points post-
19 injection and at terminal stage of disease (or end life) to examine early spleen colonization
20 and analyze the molecular PrP^{res} profile in both the spleen and the brain. In conventional
21 mouse models inoculated IP with splenotropic prions, PrP^{res} is detected at early time-points
22 and the mean IDs are ~1.3-fold prolonged compared to IC infections at similar dose [50-53].
23 Similar features were found with the PG127 isolate with regard to early PrP^{res} positivity in the
24 spleen (from day 30) and ID prolongation (Figures 3A-B; supplemental Table S2). Similarly,
25 the spleens were uniformly and early PrP^{res}-positive following IP inoculation with the LAN-

1 like and CH1641-like sheep scrapie isolates (Figures 3A-B). Yet, the tempo and the clinical
2 manifestation of the disease and the dominant strain type replicating in the brain were not
3 uniform amongst the mice analyzed. The mean IDs were ~3-fold longer than in the IC
4 inoculated animals, ranging from 520 to 560 days (Figure 3A). Twenty-four percent of the
5 brains analyzed were Pr^{Pres}-negative. Fifty-nine percent of the brains exhibited a 21K-Pr^{Pres}
6 pattern and sixteen percent a 19K-Pr^{Pres} pattern (Figures 3A-B). The 21K- Pr^{Pres} pattern
7 dominated over the 19K- Pr^{Pres} pattern for all but one isolate (ARQ16). We conclude that IP
8 inoculation of LAN-like and CH1641-like isolates favors the neuropathological expression of
9 the splenotropic LA21K prions at the expense of LA19K prions. The significant proportion of
10 mice with no Pr^{Pres} in the brain despite early, widespread accumulation of Pr^{Pres} in the spleen
11 suggests a delayed efficacy of LA21K prions to replicate at full attack rate in the brain
12 following IP inoculation.

13 We studied whether changing the inoculation route similarly impacted the pathogenesis of
14 LA19K prions. Two distinct passages were used, the 4th and the 6th IC-brain passage of
15 LAN404. We detected an early accumulation of 21K-Pr^{Pres} in all the spleen analyzed,
16 independently of the number of passages (Figures 3A, 3C). In the brain, the proportion of
17 21K-Pr^{Pres} mice decreased with the number of passages, at the expense of the 19K-signature.
18 71% and ~45% of the brains analyzed were 21K-positive at the 4th and 6th passage of
19 LAN404, respectively (Figures 3A, 3C). These results were consistent with an enrichment in
20 LA19K prions over serial IC passaging.

21 IP inoculation of bi-cloned LA19K prions resulted in a disease at near full attack-rate, with
22 19K-Pr^{Pres} accumulating in the positive brains, whereas all the spleens remained Pr^{Pres}-
23 negative (Figures 3A, 3C). These findings suggest that LA19K prions could directly
24 neuroinvade from the peripheral sites of infection, a pathway previously observed for other
25 prions in situation of impaired replication in the spleen [20, 21, 54]. However, the ID was still

1 ~2.6-fold longer than by IC route, approaching values obtained with primary sheep material
2 or uncloned LA19K prions (Figure 3A), indicating a delayed efficacy of LA19K prions to
3 neuroinvade from the periphery.

4

5 **Preferential selection of LA21K prions on inoculation of high-expressor mice with spleen
6 material from LAN404 primary isolate**

7 We asked whether a similar distinctive splenotropism between LA21K and LA19K prions
8 pre-existed in the original sheep isolate. A spleen extract from the LAN404 isolate was
9 inoculated by IC and IP routes to tg338 mice. At variance with the IC-inoculation of LAN404
10 brain material which resulted in dominant expression of LA19K prions in the brain and
11 LA21K in the spleen ([29] and Figure 4A), IC-inoculation of LAN404 spleen material led to
12 accumulation of prions with a 21K-PrP^{res} signature in both brain and spleen in ~450 days
13 (Figure 4A-B). After IP inoculation, the incubation time established at 660 days and all the
14 brains and spleens analyzed exhibited a 21K-PrP^{res} signature (Figure 3A-B).

15 We conclude that in the spleen of the natural host, the LA21K component predominates over
16 the LA19K component to levels allowing molecular expression in the CNS and in the spleen
17 on primary transmission to high-expressor mice.

18

19 **Another pair of strains co-propagating in high-expressor mice and with differing
20 tropism for the brain and spleen shows divergent selection according to PrP^C expression
21 level**

22 To further explore the possibility that prion capacity to replicate in the spleen is controlled by
23 PrP^C expression levels, we compared the replicative capacity in mice expressing low levels of
24 PrP^C of two pairs of strains with opposite splenotropism in high expressors. Previously, we

1 reported that a pair of prion strains, designated T1^{Ov} and T2^{Ov}, isolated through the adaptation
2 of cortical MM2 sporadic CJD (MM2-sCJD) prions to tg338 mice exhibited differing tissue
3 tropism. T2^{Ov} replicated dominantly in the brain with T1^{Ov} being present as a subcomponent,
4 while T1^{Ov} preferentially populated the spleen ([28] and [Figure 5A-B](#)). A brain extract from
5 tg338-passaged MM2-sCJD prions (4th passage) was inoculated by IC route to tg335^{+/−} mice,
6 expressing 1.2-fold PrP^C compared to sheep brain [29]. For comparison, brain extracts
7 containing solely T2^{Ov} prions (obtained by bicloning by limiting dilution [28]) or T1^{Ov} prions
8 (PMCA selection and single cloning [28]) were inoculated to tg335^{+/−} mice. The transmission
9 of tg338-passaged MM2-sCJD prions to tg335^{+/−} mice led to the dominant expression of T1^{Ov}
10 prions, as based on the mean ID ([Figure 5A](#)), the PrP^{res} signature in brain and spleen by
11 western blot ([Figure 5B](#)) and the neuroanatomical distribution of PrP^{res} by histoblotting
12 ([Figure 5C](#)), which all showed the T1^{Ov} characteristics observed after infection with cloned
13 T1^{Ov} prions. The apparent counter-selection of T2^{Ov} prions in tg335^{+/−} mice was not due to
14 their incapacity to replicate on low-expressor mice as bicloned T2^{Ov} prions elicited disease in
15 these mice in ~330 days ([Figure 5A](#)) with a T2^{Ov}-PrP^{res} specific banding pattern in the brain
16 ([Figure 5B](#)) and presence of low levels of PrP^{res} by histoblotting ([Figure 5C](#)). Together, these
17 data indicate that for another pair of co-propagating prion strains, there is a tight correlation
18 between capacity to replicate in the spleen and capacity to be dominantly expressed on mice
19 expressing low PrP^C-levels in the brain.

20 Remarkably, the dominant expression of T1^{Ov} prions on passage of tg338-passaged MM2-
21 sCJD prions to tg335^{+/−} mice occurred to the detriment of T2^{Ov} prions. Over two serial back
22 passages to tg338 mice, T2^{Ov} prions were not phenotypically recovered. The T1^{Ov} signature
23 remained dominant in all brains and spleens from tg338 mice ([Figure 5A, 5C](#)). Such outcome
24 was not observed on retro passage of LAN-like isolates from low- to high-expressor mice as
25 LA19K prions were recovered after intermediate passage onto low-expressors [29].

- 1 Alternance of transmission in mice expressing variable levels of PrP^C may thus result in a
- 2 strain evolution as strong as that observed in a heterotypic PrP transmission context.

3

1 Discussion

2 Building on our previous observations that the phenotypic expression of two prion
3 subcomponents present in variable proportions in numerous sheep scrapie isolates is driven by
4 PrP^C expression levels in transgenic mice, we now show that the segregation between these
5 two agents occurs between the brain and the spleen of the same infected high-expressor
6 mouse, these tissues expressing different PrP^C levels. Further, the replicative dominance in
7 the brain of a pair of strains derived from sporadic CJD prions with opposite tropism for the
8 brain and spleen appears tightly controlled by PrP^C expression levels in transgenic mice
9 expressing varying PrP^C levels. Host PrP^C levels may thus impact prion (in)capacity to
10 replicate in the lymphoid tissue.

11

12 LA19K prions predominated in high-PrP^C expressor tg338 mouse brains inoculated IC with a
13 large panel of natural sheep scrapie isolates composed in variable proportion of LA19K and
14 LA21K prions (LAN-like, [29] and this study). Here, we show early, widespread and
15 dominant accumulation of LA21K in the spleen of these mice, -as based on molecular strain
16 typing, and phenotypic characterization on high- and low-PrP^C expressor mice. The
17 LA19K/LA21K segregation was also observed after IC inoculation of CH1641-like isolates in
18 which the 19K subcomponent was originally dominant, indicating that the lymphoid tissue is
19 a privileged site for LA21K prions replication. In contrast, cloned LA19K prions replicated
20 with limited efficacy in the spleen, and thus were considered as mostly neurotropic.
21 That co-propagating TSE substrains replicate preferentially in distinct tissues from the same
22 host is not restricted to transgenic mice nor to the VRQ allele of ovine PrP. We show here a
23 similar enrichment of LA21K prions in the spleen relative to brain in the LAN-infected sheep.
24 A similarly distinct selection of PrP^{res} conformers with 19K and 21K signature was observed
25 in the brain and spleen tissue from transgenic mice expressing the ARQ allele of ovine PrP

1 inoculated with CH1641-like scrapie isolates [55]. A similar tissue-specific segregation of
2 prion subcomponents due to distinct tropism was observed on transmission of a human vCJD
3 case to transgenic mice overexpressing human PrP [23, 56], on transmission of cortical MM2-
4 sporadic CJD to tg338 mice [28], directly in a sporadic CJD individual [57] and in CWD-
5 infected elk [58].

6 These data advocate for strain typing in both brain and spleen tissues, including in high
7 expressor mice. Blind strain typing of LAN-like isolates using tg338 mouse brain only would
8 categorize them as CH1641 prions. However, examining the lymphoid tissue or changing the
9 route of infection allows expression of the LA21K strain component, consistent with studies
10 in transgenic mice expressing variable PrP levels. *In fine* transgenic mice in which PrP is
11 introduced by additional transgenesis prove to be a valuable tool to reveal natural prion strain
12 diversity present in TSE isolates, provided the PrP-encoding constructs allow correct PrP^C
13 expression in the lymphoid tissue.

14

15 The host and structural requirements for prion replication in the lymphoid tissue remain
16 mostly unknown. From the prion pathogen viewpoint, two broad hypotheses recently
17 emerged, the sensitivity to degradation of the PrP^{Sc} assemblies and their aggregation size. A
18 study from Shikiya et al. suggested that absence of DY prions replication in hamster spleens
19 was due to a particular sensitivity of DY PrP^{Sc} to protease digestion [59], yet without
20 providing *in vivo* or *ex vivo* evidence (e.g., clearance of PrP^{Sc} by macrophages). Here, we
21 firmly exclude this possibility as LA19K prions were not more sensitive than 127S prions to
22 either PK digestion or clearance by peritoneal macrophages (Figure 6). Aguilar-Calvo et al.
23 proposed that prion conformations could impact pathogenesis after peripheral infection, i.e.,
24 highly fibrillar prion assemblies are poor neuroinvaders compared to subfibrillar prions but
25 high replicators in the spleen [31]. PrP^{Sc} assemblies' particulate profile may indeed impact

1 access to the FDC from the site of infection [60, 61]. LA21K prions and vCJD prions would
2 follow this rule as they would be categorized as ‘highly fibrillar’, as based on their
3 sedimentation velocity profile and the presence of plaque-like deposits in the brain (this study
4 and [23, 62]). However, T1^{Ov} and T2^{Ov} prions would escape such a rule as they exhibit similar
5 ‘subfibrillar’ aggregation size [63], despite distinct tropism for the spleen.
6 From the host viewpoint, mature FDC are necessary [9, 15-21, 64, 65], being ontogenetically
7 present or induced by chronic inflammation [66]. Co-factors have been proposed to be
8 involved, including notably complement [67, 68], but the differential requirement amongst
9 strains is not known. Here, LA19K / LA21K prions preferential targeting for brain and spleen
10 correlated with PrP^C expression levels in these tissues. The superimposable PrP^C-dependent
11 selection obtained with a second pair of prion strains isolated from MM2-sCJD in tg338 mice
12 and showing differing tropism for the lymphoid versus the cerebral tissue, that is the most
13 lymphotropic is preferentially replicated on low-PrP^C expressor mice and the most
14 neurotropic on high-PrP^C expressor mice, further argues that PrP^C expression levels may be a
15 major driver of prion (sub)strain selection in different tissues of the infected host.
16 Additionally, at the molecular level, PrP^C conformational landscape is likely to differ between
17 spleen and brain, due to different trimming [48], glycosylation [69] including sialylation [70],
18 and thus may impact conversion by certain PrP^{Sc} subspecies, as observed during cross-species
19 prion transmission. A combination of both PrP^C expression levels and variations in spleen
20 PrP^C conformations may well explain why intermediate passage of tg338-passaged-MM2-
21 sCJD prions on low expressors resulted in the abrupt exclusion of T2^{Ov} prions on back
22 passage to tg338 mice, an outcome that was reminiscent of that observed during cross-species
23 transmission events (for reviews [7, 8]). Such factors may be drivers of within-host prion
24 diversification/evolution during homotypic transmissions.

25

1 It may be noted that PrP^C expression levels are classically quantified in the whole spleen and
2 in the whole brain, yet meaning that different variations in PrP^C levels could occur locally in
3 prion-replicating cells [71]. The exact contribution of FDC to spleen PrP^C expression level is
4 unknown due to the fact that these cells only account for 0.1-1% of the cells, making isolation
5 and quantification of their PrP^C expression levels a highly challenging issue. However, we
6 previously reported by immunofluorescence that PrP^C expression levels appeared low in
7 tg338 FDC compared to neurons [22].

8

9 As a tentative explanation for strain-dependent polymerization rate as a function of PrP^C levels,
10 we inferred by mathematical modelling that differences in the number of PrP^C monomers
11 integrated in the growing PrP^{Sc} assemblies (different kinetic order of the templating process)
12 could explain PrP^C-dependent substrain selection [29]. LA19K growth would necessitate
13 integration of more PrP^C molecules than for LA21K prions. In theory, the strain necessitating
14 more PrP^C to replicate should also start accumulating in the spleen. However, the plateau of
15 PrP^{Sc} accumulation observed in the spleen quite early after infection [10, 23, 45], possibly due
16 to a cessation of replication activity [72, 73] would prevent the chance that the kinetically-
17 disadvantaged substrain replicates in this tissue.

18

19 The IP route of inoculation, known to favor neuroinvasion of prions from the lymphoid tissue
20 (review [49]) allowed dominant accumulation of LA21K PrP^{res} in the brain of a proportion of
21 high-expressor mice at the expense of LA19K PrP^{res}. The incubation time lengthening when IP
22 and IC routes of infection were compared for LAN-like isolates was overtly prolonged as
23 compared to PG127 in tg338 mice or other experimental models and a number of IP-inoculated
24 tg338 mice remained PrP^{res}-negative in the brain while their spleen was strongly and early
25 positive. This suggests an impaired capacity of LA21K prions to establish at full attack rate in

1 the brain, as previously observed with other prion types [23, 24]. Bicloned LA19K prions were
2 able to establish in the brain after IP infection, despite absence of replication in the spleen, by
3 a direct neuroinvasion process. However, direct neuroinvasion after IP infection usually results
4 in ID similar to those observed after primo-replication in the spleen [20, 21]. This suggests that
5 the IC versus IP ID was also aberrantly prolonged for bicloned LA19K prions. Comparison of
6 ID on low- versus high-expressors after inoculation of LA21K *fast* versus LA19K prions show
7 ‘abnormal’ prolongation of ID for the latter [29]. It is therefore likely that PrP^C-limiting events
8 are similarly occurring in high-expressor mice during prion neuroinvasion after IP inoculation.
9 Of note, when LAN404 sheep spleen instead of brain was transmitted to tg338 mice, the IP
10 versus IC injection delay observed (x1.47, [Figure 4](#)) was rather consistent with the ~1.3 value
11 found in other experimental models [50-53] and with PG127 in tg338 mice ([Figure 3](#)). As the
12 sheep spleen is less enriched than the brain in LA19K prions, these data would collectively
13 suggest that LA19K prions give the disease tempo after IP infection even if LA21K PrP^{res}
14 molecular signature prions can be dominant.

15
16 In conclusion, these data and our previous report [29] suggest an emerging contribution of PrP
17 as a molecular driver/modulator of within-host prion selection. Events similar to the
18 brain/spleen segregation observed here could also occur directly within the brain owing to the
19 regional heterogeneity in PrP^C levels and conformations in this tissue [74]. From a diagnostic
20 point of view, given the apparent complexity of natural animal and human TSE isolates in terms
21 of substrain heterogeneity [27, 75, 76], these data advocate to type extraneuronal tissues or fluids
22 for a comprehensive identification of the TSE agents circulating in susceptible mammals.

23
24

1 Acknowledgements

2 We thank the staff of Animalerie Rongeurs (IERP, INRA, 2018. Infectiology of fishes and
3 rodent facility, doi: 10.15454/1.5572427140471238E12, Jouy-en-Josas, France) for animal
4 care, N. Moriceau for excellent technical help, P. Clayette (Bertin Pharma, Montigny-le-
5 Bretonneux, France) and J. Langeveld (Wageningen University, Lelystad, The Netherlands) for
6 the kind gift of Sha31 and 12B2 anti-PrP monoclonal antibodies, respectively. We thank our
7 colleagues for kindly providing sheep TSE sources.

8

9 Data Availability

10 All relevant data are within the manuscript and its supporting information files. Data are fully
11 available without restriction.

12

13 Figure legends

14

15 **Figure 1. PrP^{res} electrophoretic pattern in brains and spleens of high-expressor tg338 16 mice inoculated IC with LAN-like and CH1641-like isolates.**

17 A) Distinct PrP^{res} electrophoretic pattern in the brain and spleen of tg338 high-expressor
18 mice following IC challenge with representative LAN-like and CH1641-like isolates.
19 The patterns observed after PG127 inoculation are shown as control. The PrP^{res} profile
20 in the sheep brain are shown for comparison on the left side of the western blot.

21 B) PrP^{res} detection and electrophoretic pattern in the brain and spleen of tg338 mice on
22 serial transmission by IC route (6th passage) of LAN404 isolate (LA19K), cloned
23 LA19K and LA21K *fast* prions. MM: molecular mass markers.

1 C) Ratio of diglycosylated *vs* monoglycosylated Pr^{Pres} in the spleen of mice on serial
2 transmission of LAN404 isolate (gray symbol), LA21K *fast* (green symbol) and PG127
3 (orange symbol) ($n=5$ spleens analyzed at the 6th passage, data plotted as mean \pm SEM).
4 D) Time course analysis of Pr^{Pres} accumulation in the brain and spleen of tg338 mice on
5 serial transmission (5th passage) of LAN404 isolate (LA19K). Three mice were
6 analyzed at each time point. The immunoblots were revealed with Sha31 and 12B2 anti-
7 PrP antibodies, as indicated. Pr^{Pres} detection with these antibodies was also performed
8 with tissues from terminally-sick mice after infection with cloned LA19K and LA21K
9 *fast* prions. The amount of mg tissue loaded on the gels is indicated.
10
11

12 **Figure 2. Strain phenotype of prions replicating in tg338 mouse spleens on serial passage
13 of LAN404 isolate.**

14 A) Summary of the transmissions by IC route of brain or spleen extracts from tg338 mice
15 infected with 19K prions (3rd passage of LAN404) or with bicloned LA19K prions to
16 reporter tg338 mice or to tg143^{+/−} mice expressing ovine PrP^C at near physiological
17 levels. Transmission with brain or spleen extracts are indicated with black and red
18 lines, respectively. The number of affected/inoculated mice (mice with TSE and
19 positive for brain Pr^{Pres} by immunoblot) and the mean survival times in days \pm SEM
20 are indicated for each inoculated group. Segmented, doubled circles are used to
21 indicate the proportion of mice with 19K Pr^{Pres} signature (blue), 21K Pr^{Pres} signature
22 (grey) or absence of Pr^{Pres} in the brain (inside of the circle, black lines) and the spleen
23 (outside of the circle, red lines). The data shown are representative of 5 independent
24 transmission experiments with different mice infected with LA19K or cloned LA19K
25 prions. Data in italic are from [29].

1 B) Representative immunoblot showing PrP^{res} electrophoretic pattern in brain and spleen
2 from high-expressor tg338 mice and low-expressor tg143^{+/−} mice, depending on
3 whether tg338-passaged brain (Br) or spleen (Sp) material (3rd tg338-passage of
4 LAN404) is used for IC inoculation.
5 C) Representative histoblots at the level of the striatum (left panel) and the brain stem
6 (right panel) showing the distribution of PrP^{res} deposits in the brains of high-expressor
7 tg338 mice inoculated with brain or spleen extracts (3rd tg338-passage of LAN404).
8 Scale bar, 1 mm.
9

10 **Figure 3. PrP^{res} electrophoretic pattern in brains and spleens of high-expressor tg338
11 mice inoculated IP with LAN-like and CH1641-like isolates.**

12 A) Comparison of the transmissions by IP versus IC route of PG127, LAN-like, CH1641-
13 like sheep scrapie isolates and LA19K prions (4th and 6th IC-brain-passage (4p, 6p)
14 and cloned agent). The mean ±SEM incubation durations (ID) are indicated following
15 challenge by IC route (green bar) and IP route (red bar). The ID_{IP} / ID_{IC} ratio are
16 indicated. The grey vertical bar indicates the time at which PrP^{res} was first detected in
17 the spleen ([Supplemental Table S2](#)). Segmented, doubled circles are used to indicate
18 the proportion of mice with 19K PrP^{res} signature (blue), 21K PrP^{res} signature (grey) or
19 absence of PrP^{res} in the brain (inside of the circle, black lines) and the spleen (outside
20 of the circle, red lines).

21 B) Representative immunoblot showing PrP^{res} electrophoretic pattern in brain and spleen
22 from tg338 high-expressor mice inoculated IP with isolates from the LAN-like and
23 CH1641-like groups, at the terminal stage of disease. The spleen and the brain from
24 the same animal are presented, meaning that the brain can harbor a 21K or 19K PrP^{res}
25 signature whereas a unique 21K signature is detected in the spleen. The spleen PrP^{res}

1 profiles are also shown at early time points post-inoculation (from 50 to 200 days
2 depending on the isolate, [Supplemental Table S2](#)). Patterns after PG127 infection are
3 shown for comparison.

4 C) Representative immunoblot showing Pr^{Pres} electrophoretic pattern in brain and spleen
5 from tg338 high-expressor mice inoculated IP with LA19K prions (4th IC-brain-
6 passage (4p), 6th IC-brain-passage (6p) and cloned (cl)), at the terminal stage of
7 disease. The spleen and the brain from the same animal are presented, meaning that
8 the brain can harbor a 21K or 19K Pr^{Pres} signature (with the 6th pass, a double 21/19K
9 signature was observed) whereas a unique 21K signature is detected in the spleen. The
10 spleen Pr^{Pres} profiles are also shown at early time points post-inoculation (from 20 to
11 50 days depending on the number of passages, [Supplemental Table S2](#)). Patterns after
12 PG127 infection are shown for comparison.

13

14 **Figure 4. Strain phenotype of prions replicating in tg338 mouse spleen and brain on
15 primary passage of LAN404 spleen.**

16 A) Summary of the transmissions by IC or IP route of brain or spleen extracts from
17 LAN404 sheep scrapie isolate to tg338 mice. Legends are as in Figure 2. Data in italic
18 are from [29].

19 B) Representative immunoblot showing Pr^{Pres} electrophoretic pattern in (Br) and spleen
20 (Sp) from high-expressor tg338 mice, upon inoculation with LAN404 spleen material
21 by IP or IC route. Pr^{Pres} electrophoretic pattern of LA21K *fast* and cloned LA19K in
22 tg338 mouse brain is shown for comparison.

23

24 **Figure 5. PrP^C-level dependent selection of prions with differing splenotropism in ovine
25 PrP transgenic mice**

1 A) Summary of the transmissions by IC route of brain extracts from tg338 mice infected
2 with MM2-sCJD prions (4th passage) or with cloned T1^{Ov} and T2^{Ov} prions to tg335^{+/}-
3 mice expressing ovine PrP^C at near physiological levels, before back passage to tg338
4 mice. The number of affected/inoculated mice (mice with TSE and positive for brain
5 PrP^{res} by immunoblot) and the mean survival time in days ± SEM are indicated for
6 each inoculated group. Segmented, doubled circles are used to indicate the proportion
7 of mice with T2^{Ov} (brown or clear brown depending on the accumulation levels) or
8 T1^{Ov} (yellow or clear yellow) PrP^{res} signatures in their brains (inside of the circle,
9 black lines) and spleens (outside of the circle, red lines). Data in italic are from [28].
10 B) Representative immunoblot showing PrP^{res} electrophoretic pattern in brain and spleen
11 from tg338 high-expressor mice and tg335^{+/}- low-expressor mice infected with MM2-
12 sCJD prions (4th passage) or with cloned T1^{Ov} and T2^{Ov} prions. The gels on the right
13 side are portions of the gels (colored red and green lines) that are purposely
14 overexposed to detect T2^{Ov} PrP^{res} in the spleen.
15 C) Representative immunoblot showing PrP^{res} electrophoretic pattern in brain and spleen
16 from tg338 high-expressor mice after one or two back passages from tg335^{+/}- low-
17 expressor mice infected with MM2-sCJD prions or with cloned T1^{Ov} and T2^{Ov} prions.
18 PrP^{res} signatures from T1^{Ov} and T2^{Ov} prions in tg338 mice are shown for comparison.
19 D) PrP^{res} deposition pattern in the brain of tg335^{+/}- low-expressor mice infected with
20 tg338-passaged MM2-sCJD, T1^{Ov} and T2^{Ov} prions. Representative histoblots of
21 antero-posterior coronal brain sections at the level of the septum (i), hippocampus (ii),
22 midbrain (iii) and brainstem (iv). Scale bar, 1 mm.
23

24 **Figure 6. PrP^{res} electrophoretic pattern in brains and spleens of high-expressor tg338**
25 **mice inoculated IC with LAN and CH1641-like isolates.**

1 A) Comparative PK digestion assay performed on brain material from tg338 inoculated
2 with 127S or cloned LA19K prions. The homogenates were treated with increasing
3 concentrations of PK, as indicated, and analyzed by western blotting.
4 B) Representative immunoblot showing PrP^{res} degradation in tg338 peritoneal
5 macrophages exposed to 127S and LA19K prion for the indicated period of time
6 (duplicates analysis).
7

1

2 **References**

3 1. Collinge J. Prion diseases of humans and animals: their causes and molecular basis.
4 Annu Rev Neurosci. 2001;24:519-50. PubMed PMID: 11283320.

5 2. Prusiner SB. Novel proteinaceous infectious particles cause scrapie. Science.
6 1982;216(4542):136-44. PubMed PMID: 6801762.

7 3. Lansbury PT, Jr., Caughey B. The chemistry of scrapie infection: implications of the
8 'ice 9' metaphor. Chem Biol. 1995;2(1):1-5. PubMed PMID: 9383397.

9 4. Bessen RA, Marsh RF. Distinct PrP properties suggest the molecular basis of strain
10 variation in transmissible mink encephalopathy. J Virol. 1994;68(12):7859-68. Epub
11 1994/12/01. PubMed PMID: 7966576; PubMed Central PMCID: PMC237248.

12 5. Telling GC, Parchi P, DeArmond SJ, Cortelli P, Montagna P, Gabizon R, et al.
13 Evidence for the conformation of the pathologic isoform of the prion protein enciphering and
14 propagating prion diversity. Science. 1996;274(5295):2079-82. Epub 1996/12/20. PubMed
15 PMID: 8953038.

16 6. Tixador P, Herzog L, Reine F, Jaumain E, Chapuis J, Le Dur A, et al. The physical
17 relationship between infectivity and prion protein aggregates is strain-dependent. PLoS
18 Pathog. 2010;6(4):e1000859. Epub 2010/04/27. doi: 10.1371/journal.ppat.1000859. PubMed
19 PMID: 20419156; PubMed Central PMCID: PMC2855332.

20 7. Beringue V, Villette JL, Laude H. Prion agent diversity and species barrier. Vet Res.
21 2008;39(4):47. Epub 2008/06/04. doi: 10.1051/vetres:2008024
22 v08241 [pii]. PubMed PMID: 18519020.

23 8. Collinge J, Clarke AR. A general model of prion strains and their pathogenicity.
24 Science. 2007;318(5852):930-6. PubMed PMID: 17991853.

1 9. Andreoletti O, Berthon P, Marc D, Sarradin P, Grosclaude J, van Keulen L, et al. Early
2 accumulation of PrP(Sc) in gut-associated lymphoid and nervous tissues of susceptible sheep
3 from a Romanov flock with natural scrapie. *J Gen Virol.* 2000;81(Pt 12):3115-26. doi:
4 10.1099/0022-1317-81-12-3115. PubMed PMID: 11086143.

5 10. Beringue V, Adjou KT, Lamoury F, Maignien T, Deslys JP, Race R, et al. Opposite
6 effects of dextran sulfate 500, the polyene antibiotic MS-8209, and Congo red on
7 accumulation of the protease-resistant isoform of PrP in the spleens of mice inoculated
8 intraperitoneally with the scrapie agent. *J Virol.* 2000;74(12):5432-40. PubMed PMID:
9 10823847; PubMed Central PMCID: PMCPMC112027.

10 11. Kimberlin RH, Walker CA. Pathogenesis of mouse scrapie: dynamics of agent
11 replication in spleen, spinal cord and brain after infection by different routes. *J Comp Pathol.*
12 1979;89(4):551-62. PubMed PMID: 120379.

13 12. Beekes M, Baldauf E, Diringer H. Sequential appearance and accumulation of
14 pathognomonic markers in the central nervous system of hamsters orally infected with
15 scrapie. *J Gen Virol.* 1996;77 (Pt 8):1925-34. doi: 10.1099/0022-1317-77-8-1925. PubMed
16 PMID: 8760444.

17 13. Haik S, Faucheu BA, Sazdovitch V, Privat N, Kemeny JL, Perret-Liaudet A, et al.
18 The sympathetic nervous system is involved in variant Creutzfeldt-Jakob disease. *Nat Med.*
19 2003;9(9):1121-3. doi: 10.1038/nm922. PubMed PMID: 12937415.

20 14. van Keulen LJ, Schreuder BE, Vromans ME, Langeveld JP, Smits MA. Pathogenesis
21 of natural scrapie in sheep. *Arch Virol Suppl.* 2000;(16):57-71. PubMed PMID: 11214935.

22 15. Mabbott NA, Mackay F, Minns F, Bruce ME. Temporary inactivation of follicular
23 dendritic cells delays neuroinvasion of scrapie. *Nat Med.* 2000;6(7):719-20. doi:
24 10.1038/77401. PubMed PMID: 10888894.

1 16. Mabbott NA, Young J, McConnell I, Bruce ME. Follicular dendritic cell
2 dedifferentiation by treatment with an inhibitor of the lymphotoxin pathway dramatically
3 reduces scrapie susceptibility. *J Virol.* 2003;77(12):6845-54. PubMed PMID: 12768004;
4 PubMed Central PMCID: PMCPMC156207.

5 17. McCulloch L, Brown KL, Bradford BM, Hopkins J, Bailey M, Rajewsky K, et al.
6 Follicular dendritic cell-specific prion protein (PrP) expression alone is sufficient to sustain
7 prion infection in the spleen. *PLoS Pathog.* 2011;7(12):e1002402. doi:
8 10.1371/journal.ppat.1002402. PubMed PMID: 22144895; PubMed Central PMCID:
9 PMCPMC3228802.

10 18. Montrasio F, Frigg R, Glatzel M, Klein MA, Mackay F, Aguzzi A, et al. Impaired
11 prion replication in spleens of mice lacking functional follicular dendritic cells. *Science.*
12 2000;288(5469):1257-9. PubMed PMID: 10818004.

13 19. Prinz M, Heikenwalder M, Junt T, Schwarz P, Glatzel M, Heppner FL, et al.
14 Positioning of follicular dendritic cells within the spleen controls prion neuroinvasion. *Nature.*
15 2003;425(6961):957-62. doi: 10.1038/nature02072. PubMed PMID: 14562059.

16 20. Beringue V, Lasmezas CI, Adjou KT, Demaimay R, Lamoury F, Deslys JP, et al.
17 Inhibiting scrapie neuroinvasion by polyene antibiotic treatment of SCID mice. *J Gen Virol.*
18 1999;80 (Pt 7):1873-7. doi: 10.1099/0022-1317-80-7-1873. PubMed PMID: 10423158.

19 21. Lasmezas CI, Cesbron JY, Deslys JP, Demaimay R, Adjou KT, Rioux R, et al.
20 Immune system-dependent and -independent replication of the scrapie agent. *J Virol.*
21 1996;70(2):1292-5. PubMed PMID: 8551598; PubMed Central PMCID: PMCPMC189946.

22 22. Beringue V, Herzog L, Jaumain E, Reine F, Sibille P, Le Dur A, et al. Facilitated
23 cross-species transmission of prions in extraneuronal tissue. *Science.* 2012;335(6067):472-5.
24 Epub 2012/01/28. doi: 10.1126/science.1215659
25 335/6067/472 [pii]. PubMed PMID: 22282814.

1 23. Beringue V, Le Dur A, Tixador P, Reine F, Lepourry L, Perret-Liaudet A, et al.
2 Prominent and persistent extraneuronal infection in human PrP transgenic mice infected with
3 variant CJD. *PLoS One*. 2008;3(1):e1419. Epub 2008/01/10. doi:
4 10.1371/journal.pone.0001419. PubMed PMID: 18183299; PubMed Central PMCID:
5 PMC2171367.

6 24. Collis SC, Kimberlin RH. Long-term persistence of scrapie infection in mouse spleens
7 in the absence of clinical disease. *FEMS Microbiology Letters*. 1985;29:111-4.

8 25. Bett C, Joshi-Barr S, Lucero M, Trejo M, Liberski P, Kelly JW, et al. Biochemical
9 properties of highly neuroinvasive prion strains. *PLoS Pathog*. 2012;8(2):e1002522. Epub
10 2012/02/10. doi: 10.1371/journal.ppat.1002522

11 PPATHOGENS-D-11-02044 [pii]. PubMed PMID: 22319450; PubMed Central PMCID:
12 PMC3271082.

13 26. Gill ON, Spencer Y, Richard-Loendt A, Kelly C, Dabaghian R, Boyes L, et al.
14 Prevalent abnormal prion protein in human appendixes after bovine spongiform
15 encephalopathy epizootic: large scale survey. *BMJ*. 2013;347:f5675. doi: 10.1136/bmj.f5675.
16 PubMed PMID: 24129059; PubMed Central PMCID: PMCPMC3805509.

17 27. Angers RC, Kang HE, Napier D, Browning S, Seward T, Mathiason C, et al. Prion
18 strain mutation determined by prion protein conformational compatibility and primary
19 structure. *Science*. 2010;328(5982):1154-8. doi: 10.1126/science.1187107. PubMed PMID:
20 20466881; PubMed Central PMCID: PMCPMC4097672.

21 28. Chapuis J, Moudjou M, Reine F, Herzog L, Jaumain E, Chapuis C, et al. Emergence of
22 two prion subtypes in ovine PrP transgenic mice infected with human MM2-cortical
23 Creutzfeldt-Jakob disease prions. *Acta neuropathologica communications*. 2016;4(1):2-15.
24 doi: 10.1186/s40478-016-0284-9.

1 29. Le Dur A, Lai TL, Stinnakre MG, Laisne A, Chenais N, Rakotobe S, et al. Divergent
2 prion strain evolution driven by PrPC expression level in transgenic mice. *Nat Commun.*
3 2017;8:14170. doi: 10.1038/ncomms14170. PubMed PMID: 28112164; PubMed Central
4 PMCID: PMCPMC5264111.

5 30. Notari S, Capellari S, Langeveld J, Giese A, Strammiello R, Gambetti P, et al. A
6 refined method for molecular typing reveals that co-occurrence of PrP(Sc) types in
7 Creutzfeldt-Jakob disease is not the rule. *Lab Invest.* 2007;87(11):1103-12. Epub 2007/09/26.
8 doi: 10.1038/labinvest.3700676. PubMed PMID: 17893675.

9 31. Aguilar-Calvo P, Bett C, Sevillano AM, Kurt TD, Lawrence J, Soldau K, et al.
10 Generation of novel neuroinvasive prions following intravenous challenge. *Brain Pathol.*
11 2018. Epub 2018/03/06. doi: 10.1111/bpa.12598. PubMed PMID: 29505163.

12 32. Shikiya RA, Langenfeld KA, Eckland TE, Trinh J, Holec SAM, Mathiason CK, et al.
13 PrPSc formation and clearance as determinants of prion tropism. *PLoS Pathog.*
14 2017;13(3):e1006298. Epub 2017/03/30. doi: 10.1371/journal.ppat.1006298. PubMed PMID:
15 28355274; PubMed Central PMCID: PMCPMC5386299.

16 33. Bett C, Lawrence J, Kurt TD, Orru C, Aguilar-Calvo P, Kincaid AE, et al. Enhanced
17 neuroinvasion by smaller, soluble prions. *Acta Neuropathol Commun.* 2017;5(1):32. doi:
18 10.1186/s40478-017-0430-z. PubMed PMID: 28431576; PubMed Central PMCID:
19 PMCPMC5399838.

20 34. Elsen JM, Amigues Y, Schelcher F, Ducrocq V, Andreoletti O, Eychenne F, et al.
21 Genetic susceptibility and transmission factors in scrapie: detailed analysis of an epidemic in
22 a closed flock of Romanov. *Arch Virol.* 1999;144(3):431-45. PubMed PMID: 10226611.

23 35. Villette JL, Soulier S, Essalmani R, Stinnakre MG, Vaiman D, Lepourry L, et al.
24 Markedly increased susceptibility to natural sheep scrapie of transgenic mice expressing

1 ovine prp. J Virol. 2001;75(13):5977-84. doi: 10.1128/JVI.75.13.5977-5984.2001. PubMed
2 PMID: 11390599; PubMed Central PMCID: PMCPMC114313.

3 36. Foster JD, Dickinson AG. The unusual properties of CH1641, a sheep-passaged isolate
4 of scrapie. Vet Rec. 1988;123(1):5-8. Epub 1988/07/02. PubMed PMID: 3140468.

5 37. Feraudet C, Morel N, Simon S, Volland H, Frobert Y, Creminon C, et al. Screening of
6 145 anti-PrP monoclonal antibodies for their capacity to inhibit PrPSc replication in infected
7 cells. J Biol Chem. 2005;280(12):11247-58. Epub 2004/12/25. doi: 10.1074/jbc.M407006200.
8 PubMed PMID: 15618225.

9 38. Langeveld JP, Jacobs JG, Erkens JH, Bossers A, van Zijderveld FG, van Keulen LJ.
10 Rapid and discriminatory diagnosis of scrapie and BSE in retro-pharyngeal lymph nodes of
11 sheep. BMC Vet Res. 2006;2:19. doi: 10.1186/1746-6148-2-19. PubMed PMID: 16764717;
12 PubMed Central PMCID: PMCPMC1544330.

13 39. Le Dur A, Beringue V, Andreoletti O, Reine F, Lai TL, Baron T, et al. A newly
14 identified type of scrapie agent can naturally infect sheep with resistant PrP genotypes. Proc
15 Natl Acad Sci U S A. 2005;102(44):16031-6. Epub 2005/10/22. doi: 0502296102 [pii]
16 10.1073/pnas.0502296102. PubMed PMID: 16239348; PubMed Central PMCID:
17 PMC1276041.

18 40. Krasemann S, Groschup MH, Harmeyer S, Hunsmann G, Bodemer W. Generation of
19 monoclonal antibodies against human prion proteins in PrP^{0/0} mice. Mol Med.
20 1996;2(6):725-34. Epub 1996/11/01. PubMed PMID: 8972487; PubMed Central PMCID:
21 PMCPMC2230140.

22 41. Beck KE, Sallis RE, Lockey R, Vickery CM, Beringue V, Laude H, et al. Use of
23 murine bioassay to resolve ovine transmissible spongiform encephalopathy cases showing a
24 bovine spongiform encephalopathy molecular profile. Brain Pathol. 2012;22(3):265-79. Epub

1 2011/09/17. doi: 10.1111/j.1750-3639.2011.00526.x. PubMed PMID: 21919992; PubMed
2 Central PMCID: PMCPMC3505794.

3 42. Baron T, Bencsik A, Vulin J, Biacabe AG, Mornignat E, Verchere J, et al. A C-terminal
4 protease-resistant prion fragment distinguishes ovine "CH1641-like" scrapie from bovine
5 classical and L-Type BSE in ovine transgenic mice. PLoS Pathog. 2008;4(8):e1000137. doi:
6 10.1371/journal.ppat.1000137. PubMed PMID: 18769714; PubMed Central PMCID:
7 PMCPMC2516186.

8 43. Baron T, Biacabe AG. Molecular behaviors of "CH1641-like" sheep scrapie isolates in
9 ovine transgenic mice (TgOvPrP4). J Virol. 2007;81(13):7230-7. doi: 10.1128/JVI.02475-06.
10 PubMed PMID: 17442721; PubMed Central PMCID: PMCPMC1933328.

11 44. Tang Y, Gielbert A, Jacobs JG, Baron T, Andreoletti O, Yokoyama T, et al. All major
12 prion types recognised by a multiplex immunofluorometric assay for disease screening and
13 confirmation in sheep. J Immunol Methods. 2012;380(1-2):30-9. Epub 2012/04/14. doi:
14 10.1016/j.jim.2012.03.004. PubMed PMID: 22498749.

15 45. Langevin C, Andreoletti O, Le Dur A, Laude H, Beringue V. Marked influence of the
16 route of infection on prion strain apparent phenotype in a scrapie transgenic mouse model.
17 Neurobiol Dis. 2011;41(1):219-25. Epub 2010/09/30. doi: S0969-9961(10)00311-6 [pii]
18 10.1016/j.nbd.2010.09.010. PubMed PMID: 20875860.

19 46. Sarradin P, Viglietta C, Limouzin C, Andreoletti O, Daniel-Carlier N, Barc C, et al.
20 Transgenic Rabbits Expressing Ovine PrP Are Susceptible to Scrapie. PLoS Pathog.
21 2015;11(8):e1005077. doi: 10.1371/journal.ppat.1005077. PubMed PMID: 26248157;
22 PubMed Central PMCID: PMCPMC4527776.

23 47. Wadsworth JD, Hill AF, Joiner S, Jackson GS, Clarke AR, Collinge J. Strain-specific
24 prion-protein conformation determined by metal ions. Nat Cell Biol. 1999;1(1):55-9. Epub
25 1999/11/13. doi: 10.1038/9030. PubMed PMID: 10559865.

1 48. Dron M, Moudjou M, Chapuis J, Salamat MK, Bernard J, Cronier S, et al.

2 Endogenous proteolytic cleavage of disease-associated prion protein to produce C2 fragments

3 is strongly cell- and tissue-dependent. *J Biol Chem.* 2010;285(14):10252-64. doi:

4 10.1074/jbc.M109.083857. PubMed PMID: 20154089; PubMed Central PMCID:

5 PMCPMC2856230.

6 49. Kimberlin RH, Walker CA. Pathogenesis of experimental scrapie. *Ciba Found Symp.*

7 1988;135:37-62. PubMed PMID: 3137002.

8 50. Kimberlin RH, Walker CA. Pathogenesis of mouse scrapie: effect of route of

9 inoculation on infectivity titres and dose-response curves. *J Comp Pathol.* 1978;88(1):39-47.

10 Epub 1978/01/01. PubMed PMID: 563870.

11 51. Kimberlin RH, Walker C. Characteristics of a short incubation model of scrapie in the

12 golden hamster. *J Gen Virol.* 1977;34(2):295-304. Epub 1977/02/01. doi: 10.1099/0022-1317-

13 34-2-295. PubMed PMID: 402439.

14 52. Kimberlin RH. Early events in the pathogenesis of scrapie in mice: biological and

15 biochemical studies. In: Gajdusek DC, editor. *Slow Transmissible disease of the nervous*

16 *system. Volume 2.* New-York: Academic Press; 1979. p. 33-54.

17 53. Lasmezas CI, Deslys JP, Demaimay R, Adjou KT, Hauw JJ, Dormont D. Strain

18 specific and common pathogenic events in murine models of scrapie and bovine spongiform

19 encephalopathy. *J Gen Virol.* 1996;77 (Pt 7):1601-9. Epub 1996/07/01. doi: 10.1099/0022-

20 1317-77-7-1601. PubMed PMID: 8758005.

21 54. Fraser H, Dickinson AG. Studies of the lymphoreticular system in the pathogenesis of

22 scrapie: the role of spleen and thymus. *J Comp Pathol.* 1978;88(4):563-73. Epub 1978/10/01.

23 PubMed PMID: 101558.

24 55. Baron T, Bencsik A, Mornignat E. Prions of ruminants show distinct splenotropisms in

25 an ovine transgenic mouse model. *PLoS One.* 2010;5(4):e10310. doi:

1 10.1371/journal.pone.0010310. PubMed PMID: 20436680; PubMed Central PMCID:
2 PMCPMC2859945.

3 56. Halliez S, Reine F, Herzog L, Jaumain E, Haik S, Rezaei H, et al. Accelerated, spleen-
4 based titration of variant Creutzfeldt-Jakob disease infectivity in transgenic mice expressing
5 human prion protein with sensitivity comparable to that of survival time bioassay. *J Virol.*
6 2014;88(15):8678-86. doi: 10.1128/JVI.01118-14. PubMed PMID: 24850746; PubMed
7 Central PMCID: PMCPMC4135959.

8 57. Bougard D, Brandel JP, Belondrade M, Beringue V, Segarra C, Fleury H, et al.
9 Detection of prions in the plasma of presymptomatic and symptomatic patients with variant
10 Creutzfeldt-Jakob disease. *Sci Transl Med.* 2016;8(370):370ra182. doi:
11 10.1126/scitranslmed.aag1257. PubMed PMID: 28003547.

12 58. Davenport KA, Christiansen JR, Bian J, Young M, Gallegos J, Kim S, et al.
13 Comparative analysis of prions in nervous and lymphoid tissues of chronic wasting disease-
14 infected cervids. *J Gen Virol.* 2018. Epub 2018/03/28. doi: 10.1099/jgv.0.001053. PubMed
15 PMID: 29580373.

16 59. Shikiya RA, Langenfeld KA, Eckland TE, Trinh J, Holec SA, Mathiason CK, et al.
17 PrPSc formation and clearance as determinants of prion tropism. *PLoS Pathog.*
18 2017;13(3):e1006298. Epub 2017/03/30. doi: 10.1371/journal.ppat.1006298. PubMed PMID:
19 28355274; PubMed Central PMCID: PMCPMC5386299.

20 60. Cyster JG. B cell follicles and antigen encounters of the third kind. *Nat Immunol.*
21 2010;11(11):989-96. Epub 2010/10/21. doi: 10.1038/ni.1946. PubMed PMID: 20959804.

22 61. Michel B, Meyerett-Reid C, Johnson T, Ferguson A, Wyckoff C, Pulford B, et al.
23 Incunabular immunological events in prion trafficking. *Sci Rep.* 2012;2:440. Epub
24 2012/06/09. doi: 10.1038/srep00440. PubMed PMID: 22679554; PubMed Central PMCID:
25 PMCPMC3368226.

1 62. Igel-Egalon A, Laferriere F, Moudjou M, Bohl J, Mezache M, Knapple T, et al. Early
2 stage prion assembly involves two subpopulations with different quaternary structures and a
3 secondary templating pathway. *Commun Biol.* 2019;2:363. Epub 2019/10/12. doi:
4 10.1038/s42003-019-0608-y. PubMed PMID: 31602412; PubMed Central PMCID:
5 PMCPMC6778151.

6 63. Igel-Egalon A, Moudjou M, Martin D, Busley A, Knapple T, Herzog L, et al.
7 Reversible unfolding of infectious prion assemblies reveals the existence of an oligomeric
8 elementary brick. *PLoS Pathog.* 2017;13(9):e1006557. Epub 2017/09/08. doi:
9 10.1371/journal.ppat.1006557. PubMed PMID: 28880932; PubMed Central PMCID:
10 PMCPMC5589264.

11 64. Ierna M, Farquhar CF, Outram GW, Bruce ME. Resistance of neonatal mice to scrapie
12 is associated with inefficient infection of the immature spleen. *J Virol.* 2006;80(1):474-82.
13 Epub 2005/12/15. doi: 10.1128/JVI.80.1.474-482.2006. PubMed PMID: 16352571; PubMed
14 Central PMCID: PMCPMC1317550.

15 65. Brown KL, Wathne GJ, Sales J, Bruce ME, Mabbott NA. The effects of host age on
16 follicular dendritic cell status dramatically impair scrapie agent neuroinvasion in aged mice. *J*
17 *Immunol.* 2009;183(8):5199-207. Epub 2009/09/30. doi: 10.4049/jimmunol.0802695.
18 PubMed PMID: 19786551.

19 66. Heikenwalder M, Zeller N, Seeger H, Prinz M, Klohn PC, Schwarz P, et al. Chronic
20 lymphocytic inflammation specifies the organ tropism of prions. *Science.*
21 2005;307(5712):1107-10. Epub 2005/01/22. doi: 10.1126/science.1106460. PubMed PMID:
22 15661974.

23 67. Mabbott NA, Bruce ME, Botto M, Walport MJ, Pepys MB. Temporary depletion of
24 complement component C3 or genetic deficiency of C1q significantly delays onset of scrapie.
25 *Nat Med.* 2001;7(4):485-7. Epub 2001/04/03. doi: 10.1038/86562. PubMed PMID: 11283677.

1 68. Brown KL, Gossner A, Mok S, Mabbott NA. The effects of host age on the transport
2 of complement-bound complexes to the spleen and the pathogenesis of intravenous scrapie
3 infection. *J Virol.* 2012;86(1):25-35. Epub 2011/10/28. doi: 10.1128/JVI.05581-11. PubMed
4 PMID: 22031932; PubMed Central PMCID: PMCPMC3255866.

5 69. Guillerme-Bosselut F, Forestier L, Jayat-Vignoles C, Villette JL, Popa I, Portoukalian
6 J, et al. Glycosylation-related gene expression profiling in the brain and spleen of scrapie-
7 affected mouse. *Glycobiology.* 2009;19(8):879-89. doi: 10.1093/glycob/cwp062. PubMed
8 PMID: 19386898.

9 70. Katorcha E, Makarava N, Savtchenko R, D'Azzo A, Baskakov IV. Sialylation of prion
10 protein controls the rate of prion amplification, the cross-species barrier, the ratio of PrPSc
11 glycoform and prion infectivity. *PLoS Pathog.* 2014;10(9):e1004366. doi:
12 10.1371/journal.ppat.1004366. PubMed PMID: 25211026; PubMed Central PMCID:
13 PMCPMC4161476.

14 71. Lotscher M, Recher M, Hunziker L, Klein MA. Immunologically induced,
15 complement-dependent up-regulation of the prion protein in the mouse spleen: follicular
16 dendritic cells versus capsule and trabeculae. *J Immunol.* 2003;170(12):6040-7. Epub
17 2003/06/10. doi: 10.4049/jimmunol.170.12.6040. PubMed PMID: 12794132.

18 72. Beringue V, Demoy M, Lasmezas CI, Gouritin B, Weingarten C, Deslys JP, et al. Role
19 of spleen macrophages in the clearance of scrapie agent early in pathogenesis. *J Pathol.*
20 2000;190(4):495-502. doi: 10.1002/(SICI)1096-9896(200003)190:4<495::AID-
21 PATH535>3.0.CO;2-T. PubMed PMID: 10700001.

22 73. Farquhar CF, Dickinson AG. Prolongation of scrapie incubation period by an injection
23 of dextran sulphate 500 within the month before or after infection. *J Gen Virol.* 1986;67 (Pt
24 3):463-73. doi: 10.1099/0022-1317-67-3-463. PubMed PMID: 2419489.

1 74. Beringue V, Mallinson G, Kaisar M, Tayebi M, Sattar Z, Jackson G, et al. Regional
2 heterogeneity of cellular prion protein isoforms in the mouse brain. *Brain*. 2003;126(Pt
3 9):2065-73. doi: 10.1093/brain/awg205. PubMed PMID: 12821516.

4 75. Polymenidou M, Stoeck K, Glatzel M, Vey M, Bellon A, Aguzzi A. Coexistence of
5 multiple PrP^{Sc} types in individuals with Creutzfeldt-Jakob disease. *Lancet Neurol*.
6 2005;4(12):805-14. Epub 2005/11/22. doi: 10.1016/S1474-4422(05)70225-8. PubMed PMID:
7 16297838.

8 76. Uro-Coste E, Cassard H, Simon S, Lugan S, Bilheude JM, Perret-Liaudet A, et al.
9 Beyond PrP^{9res}) type 1/type 2 dichotomy in Creutzfeldt-Jakob disease. *PLoS Pathog*.
10 2008;4(3):e1000029. Epub 2008/04/05. doi: 10.1371/journal.ppat.1000029. PubMed PMID:
11 18389084; PubMed Central PMCID: PMCPMC2279301.

12 77. Bencsik A, Baron T. Bovine spongiform encephalopathy agent in a prion protein
13 (PrP)ARR/ARR genotype sheep after peripheral challenge: complete immunohistochemical
14 analysis of disease-associated PrP and transmission studies to ovine-transgenic mice. *J Infect*
15 *Dis*. 2007;195(7):989-96. Epub 2007/03/03. doi: 10.1086/512087. PubMed PMID: 17330789.

16

17 **Supporting Information Legends**

18
19 **Figure S1. PrP^{res} electrophoretic profile from CH1641-like isolates**
20 Electrophoretic pattern of PrP^{res} in the brain from CH1641-like cases, compared with CH1641
21 isolate [36], PG127 isolate [35] and sheep experimentally inoculated with BSE prions [77].

22
23 **Figure S2. Strain phenotype of prions replicating in tg338 mouse spleens on serial passage**
24 **of LAN-like or CH1641-like isolates.**

1 Transmissions by IC route of brain or spleen extracts from tg338 mice infected with the LAN-
2 like isolate (99-378 isolate, 2nd passage) or the CH1641-like isolate (O100 isolate, 2nd
3 passage) to reporter tg338 mice. Transmission with brain or spleen extracts are indicated with
4 black and red lines, respectively. The number of affected/inoculated mice (mice with TSE and
5 positive for brain Pr^{Pres} by immunoblot) and the mean survival times in days \pm SEM are
6 indicated for each inoculated group. Segmented, doubled circles are used to indicate the
7 proportion of mice with 19K Pr^{Pres} signature (blue) or 21K Pr^{Pres} signature (grey) in the brain
8 (inside of the circle, black lines) and the spleen (outside of the circle, red lines).

9

10 **Supplementary Table 1**

11 TSE sources transmitted to tg338 mice.

12

13 **Supplementary Table 2**

14 Pr^{Pres} signature in the brain and spleen after intraperitoneal inoculation of LAN, CH1641-like
15 isolates and LA19K prions to tg338 mice.

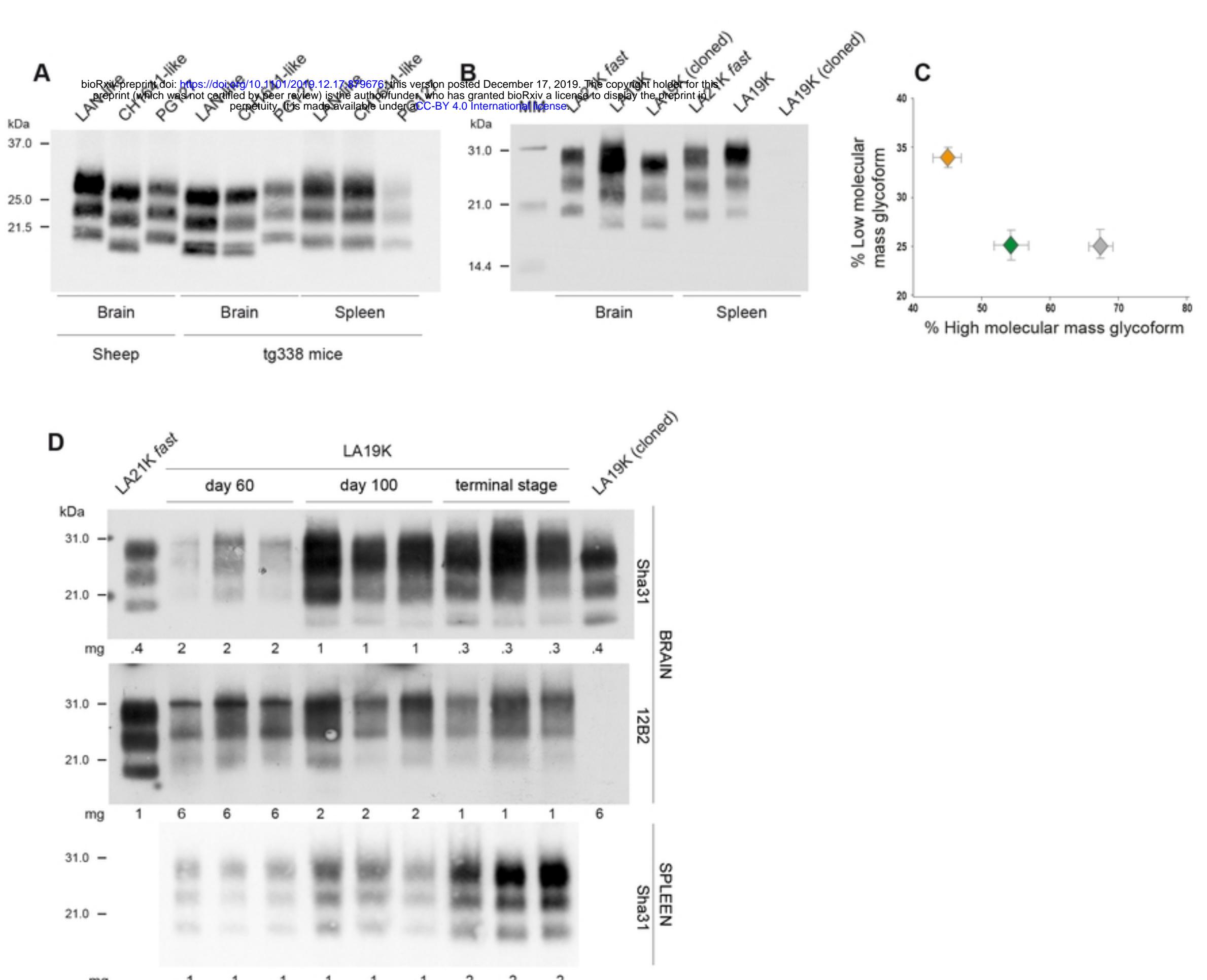
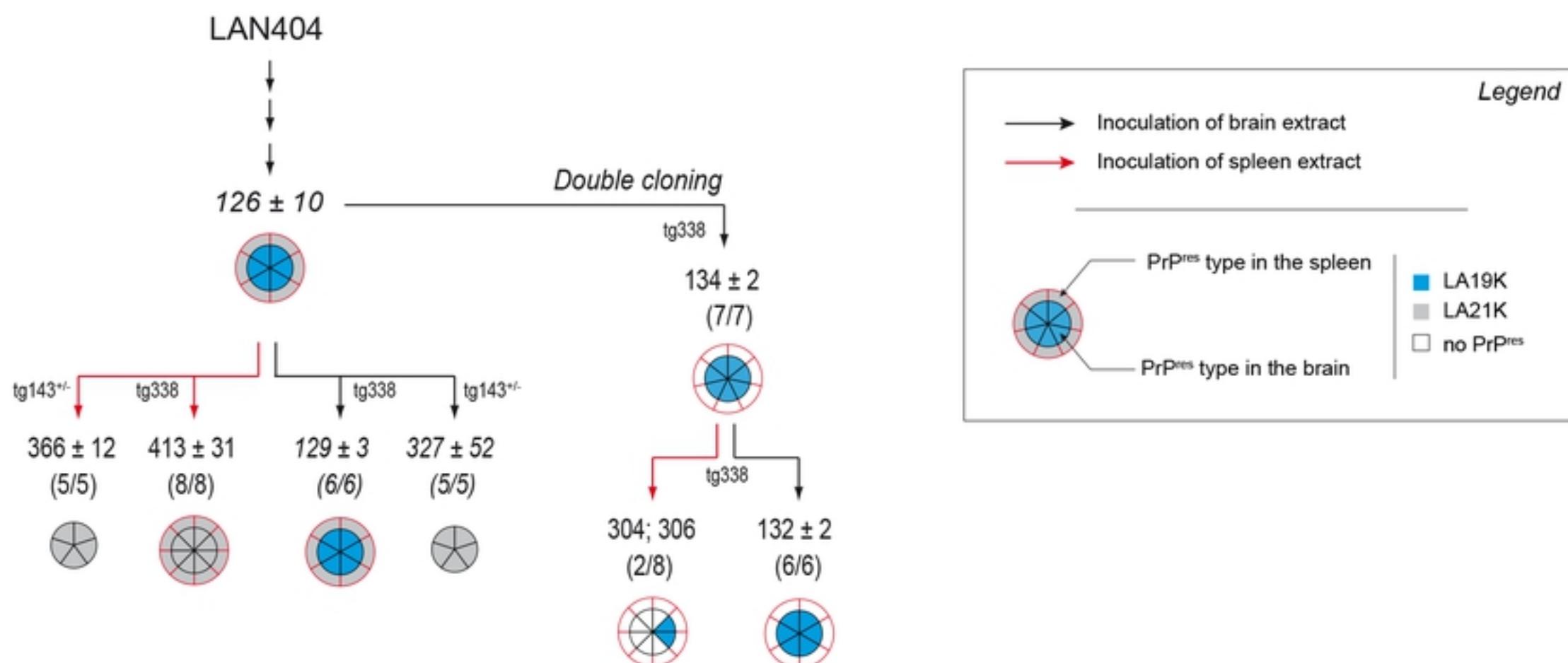
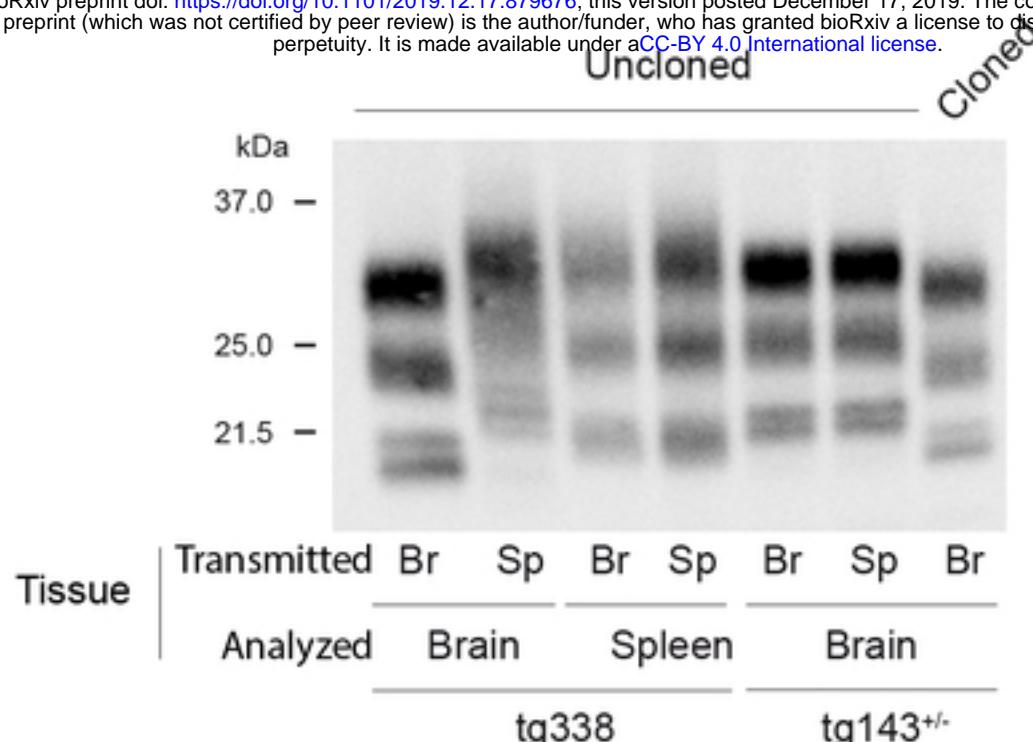
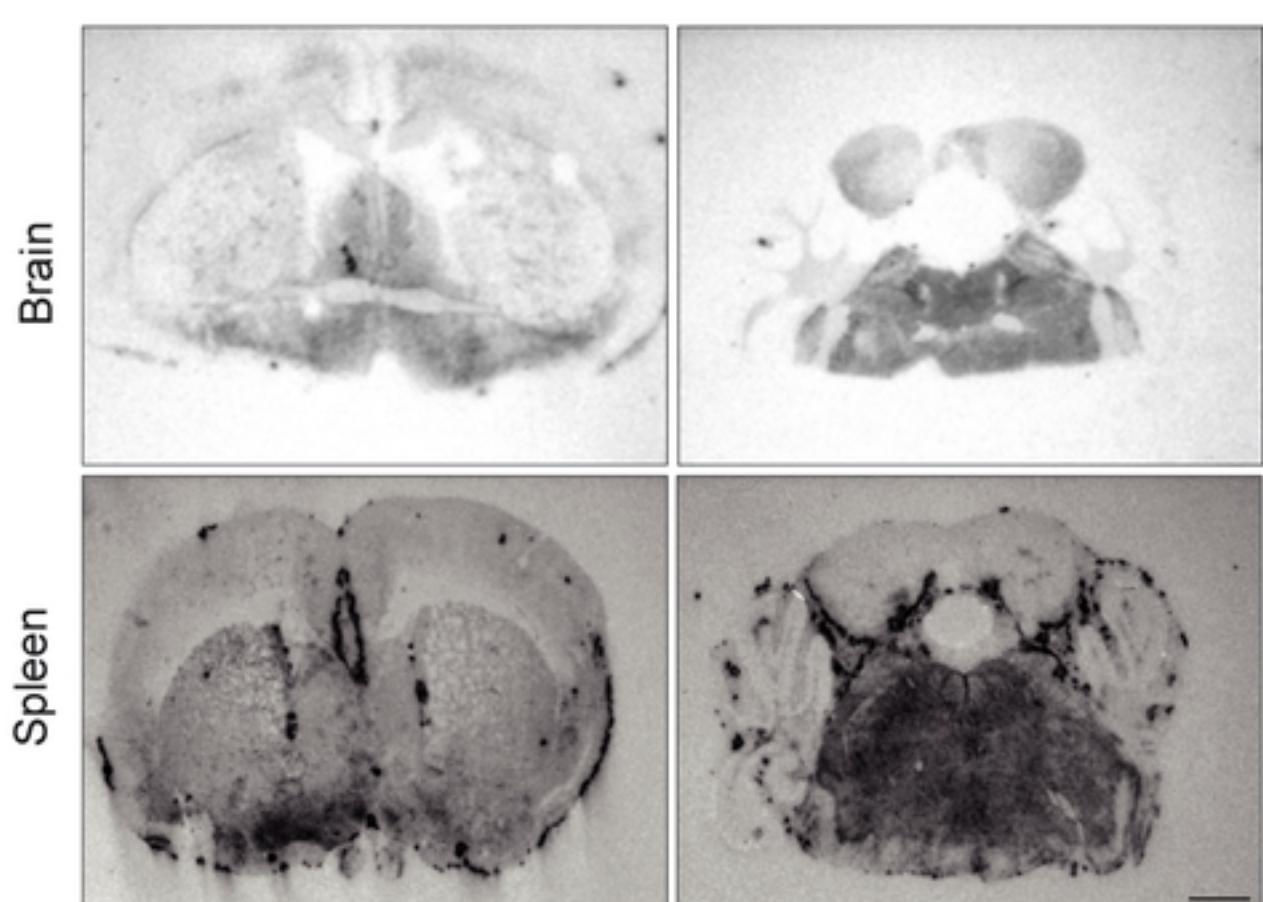





Figure 1

A**B**

bioRxiv preprint doi: <https://doi.org/10.1101/2019.12.17.879676>; this version posted December 17, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.

C**Figure 2**

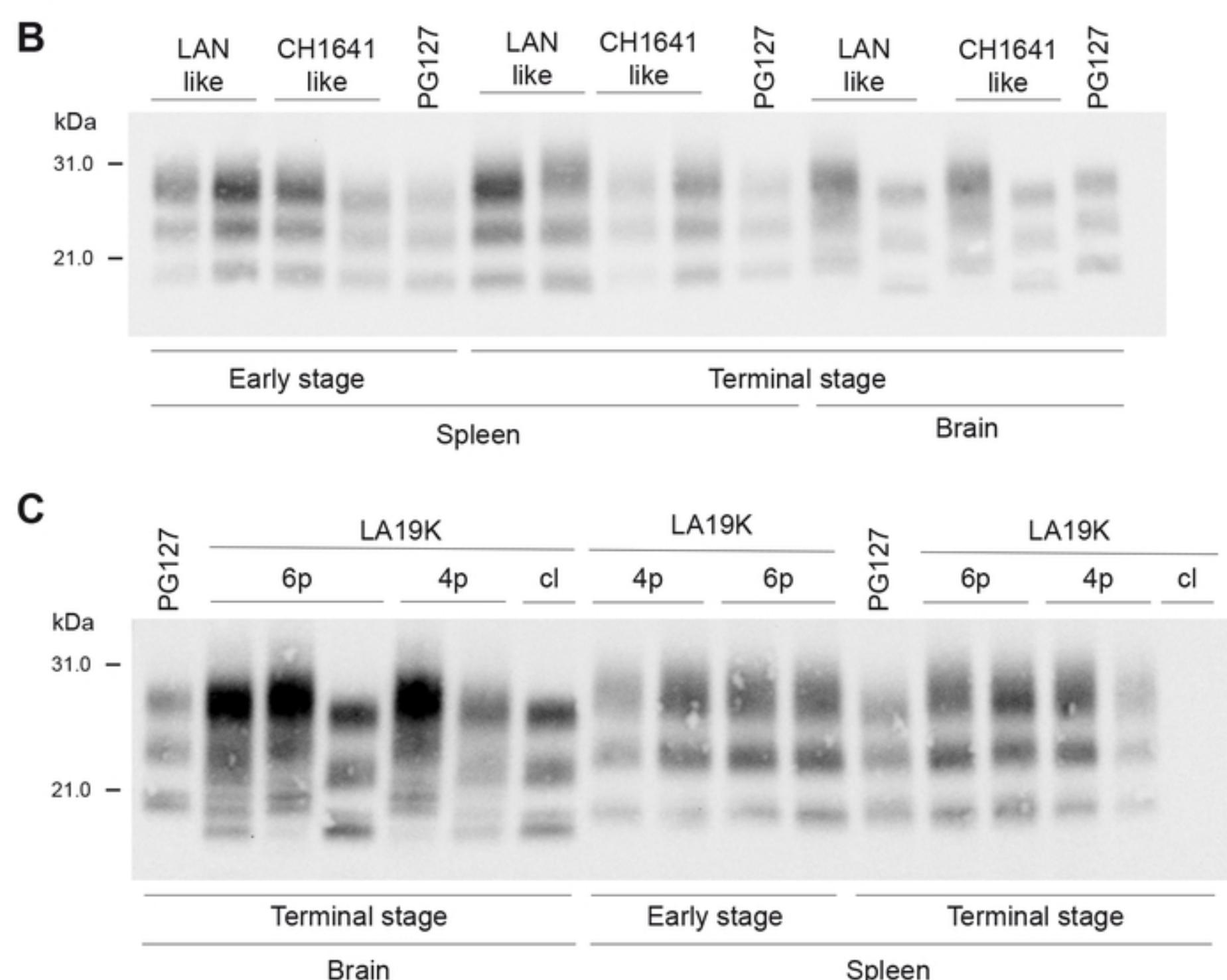
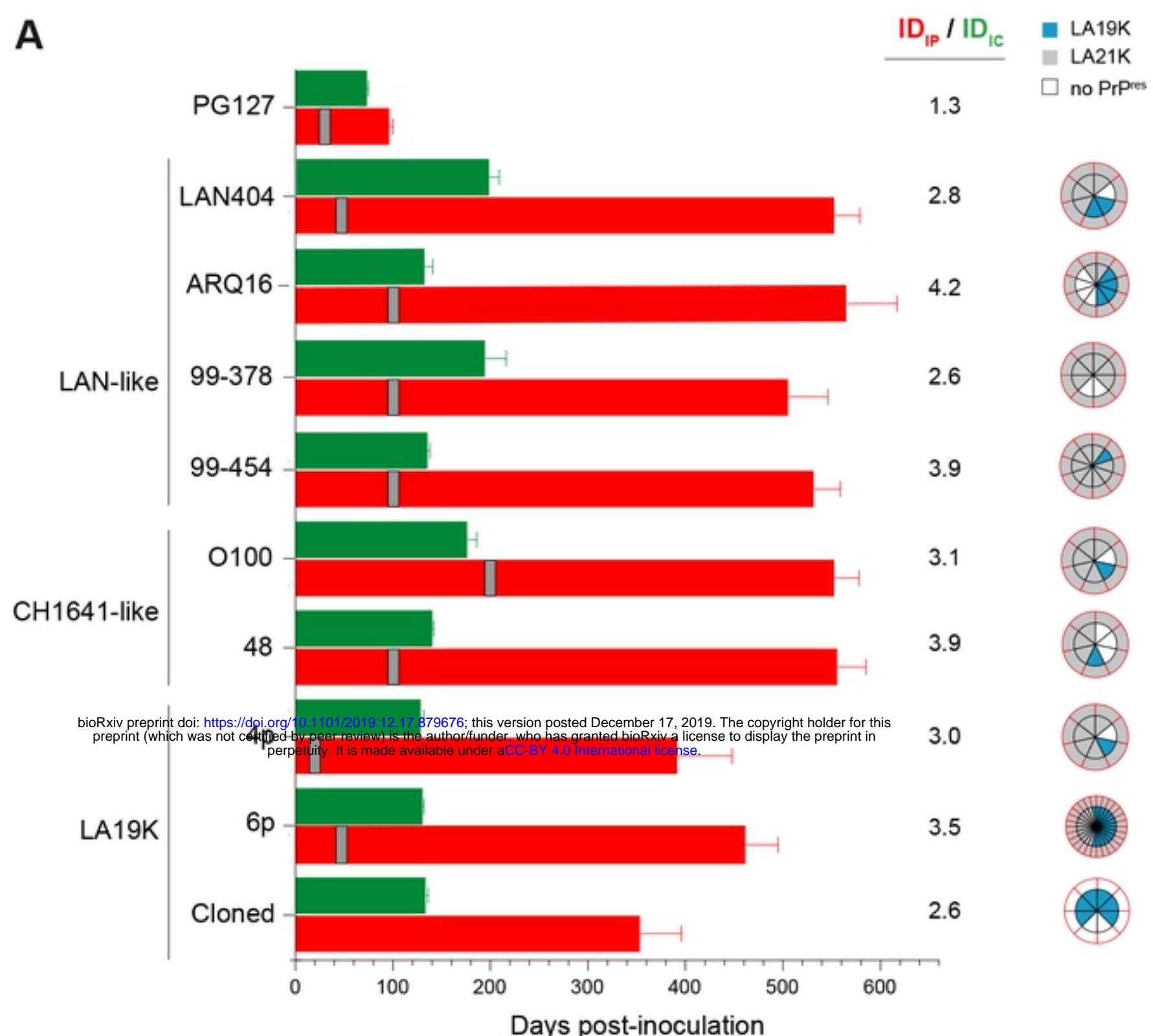



Figure 3

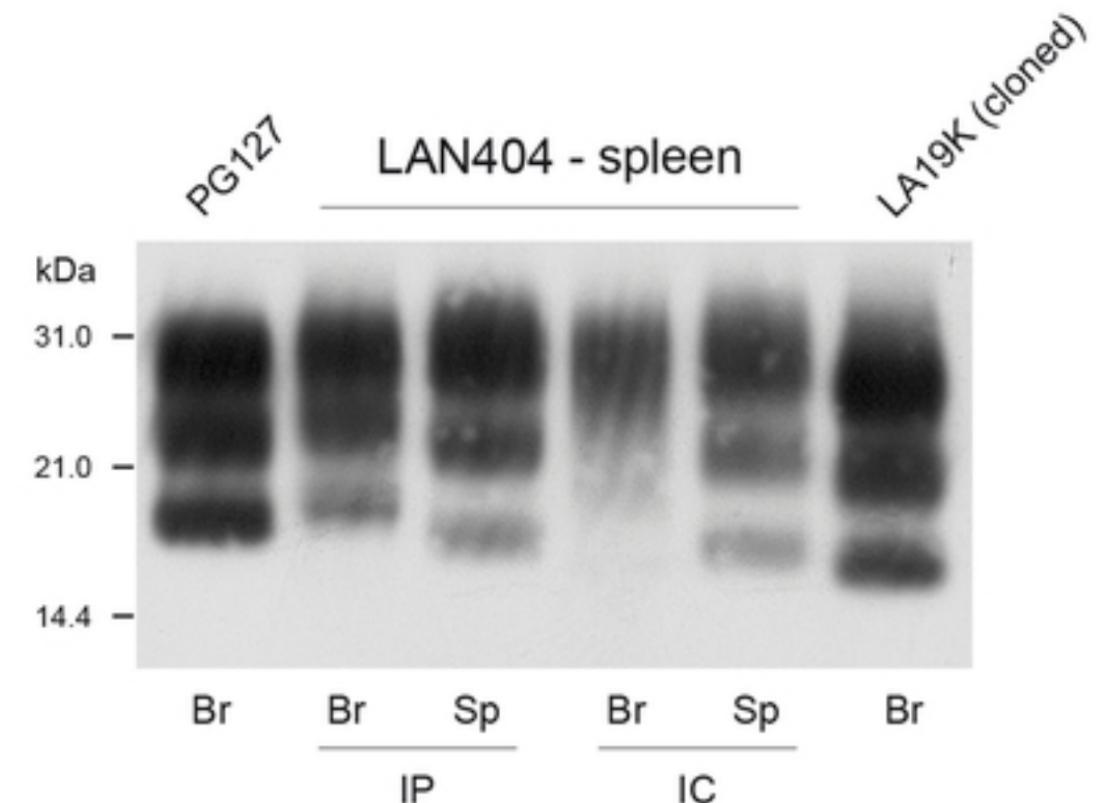
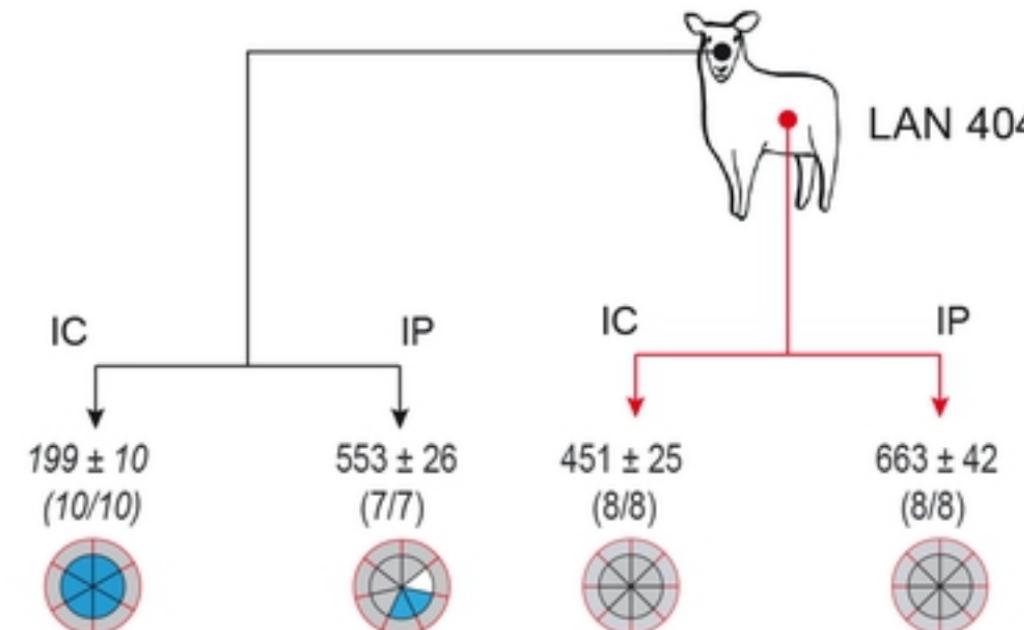
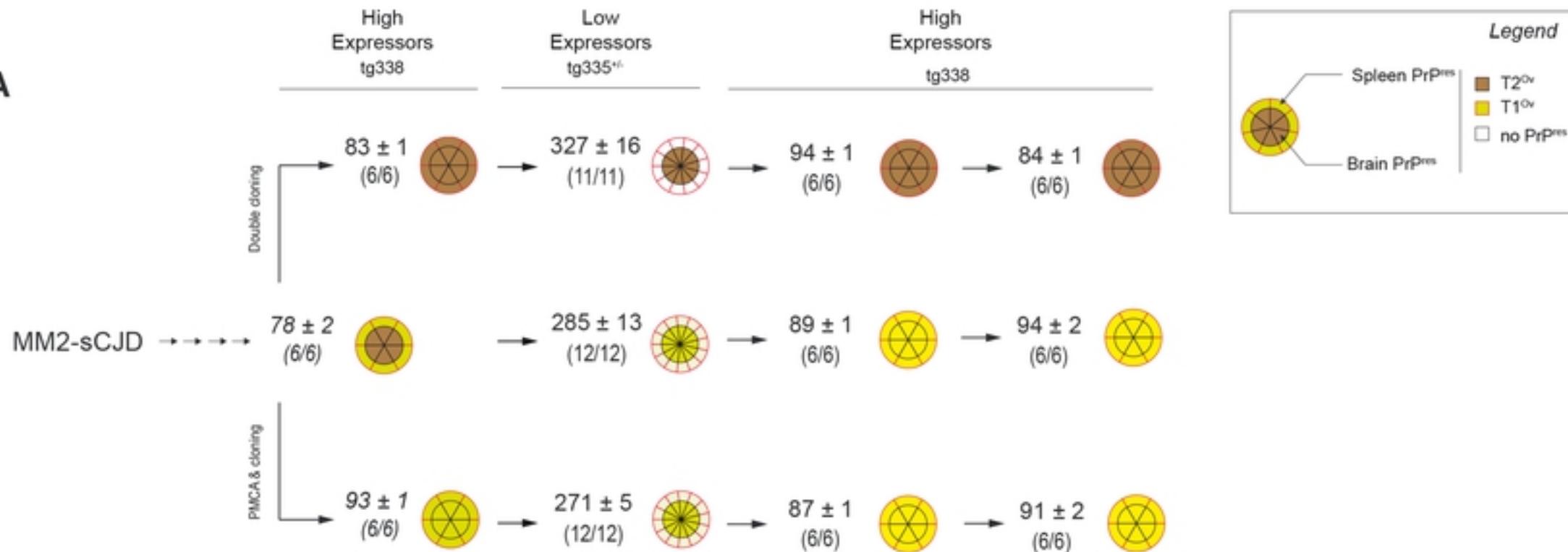
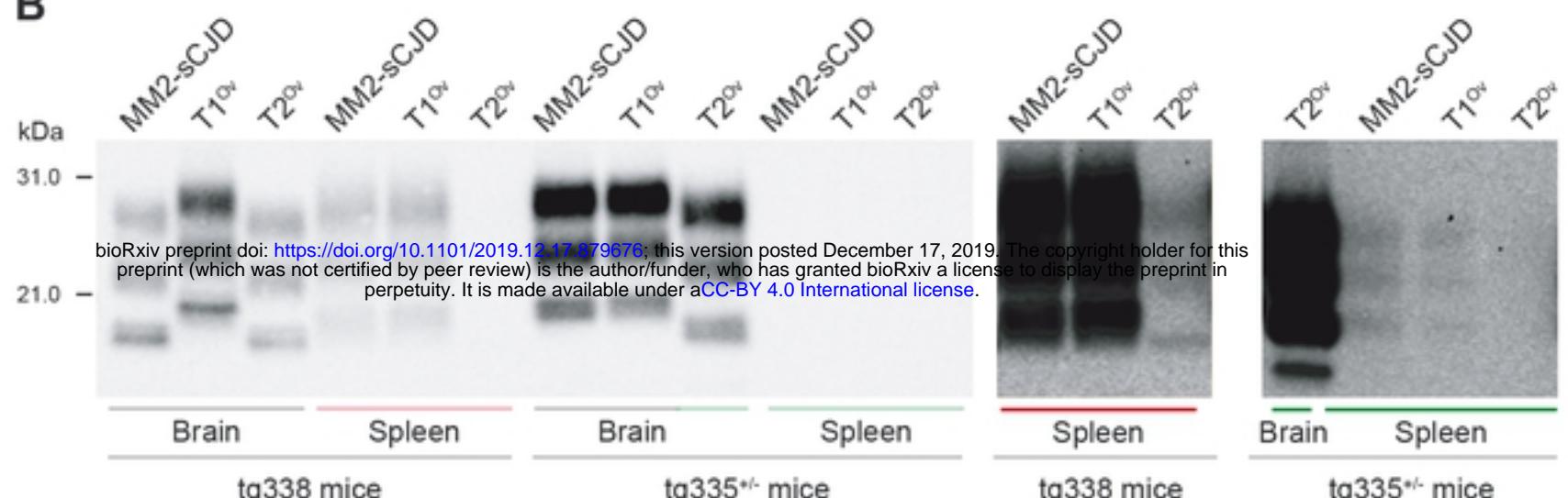
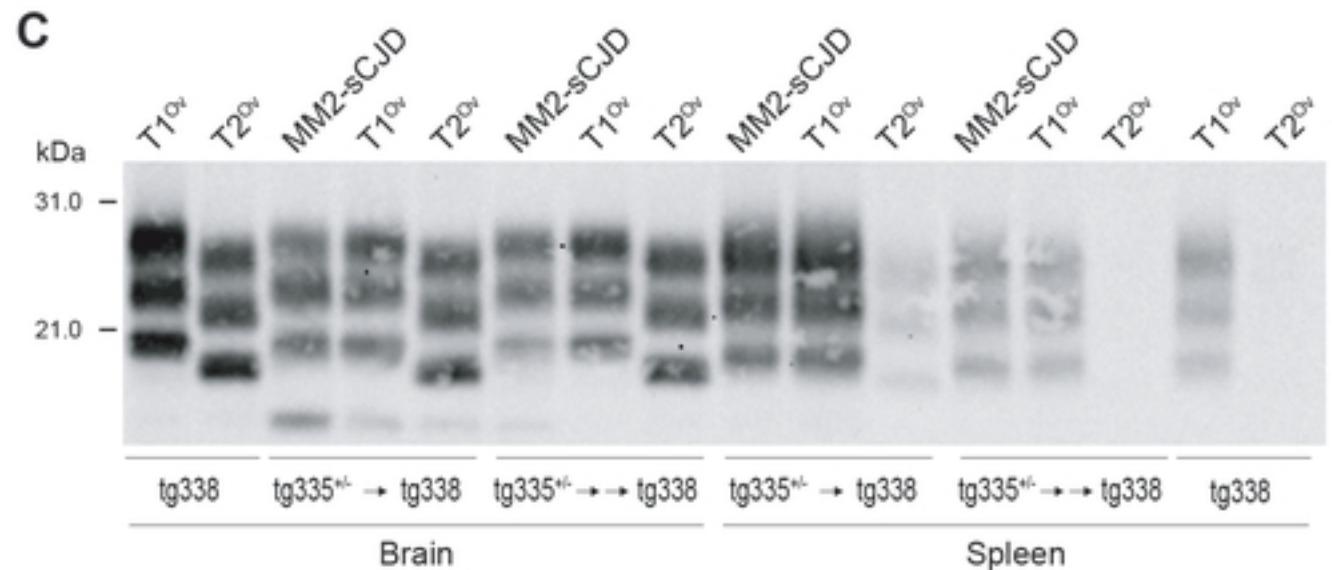
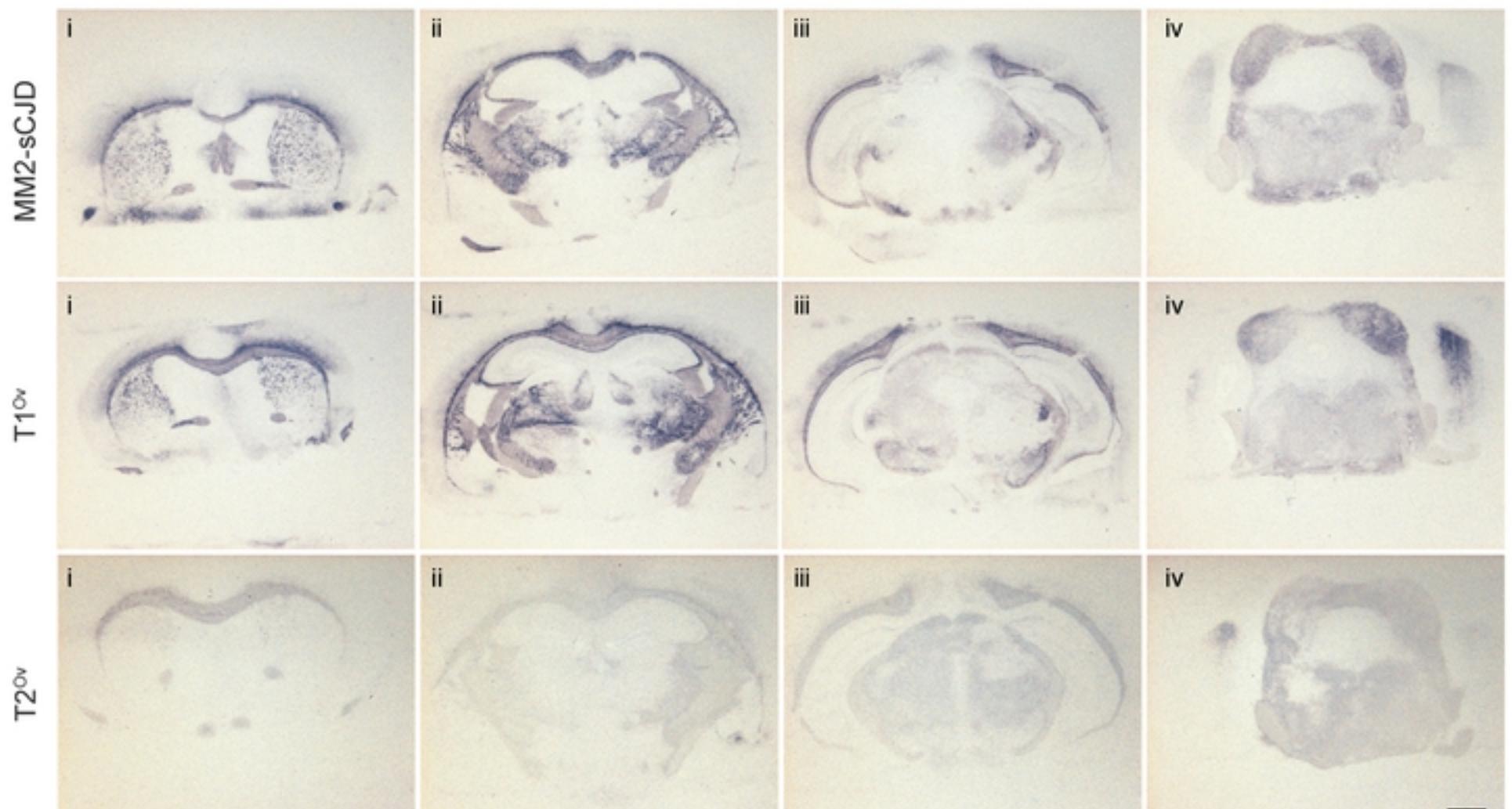
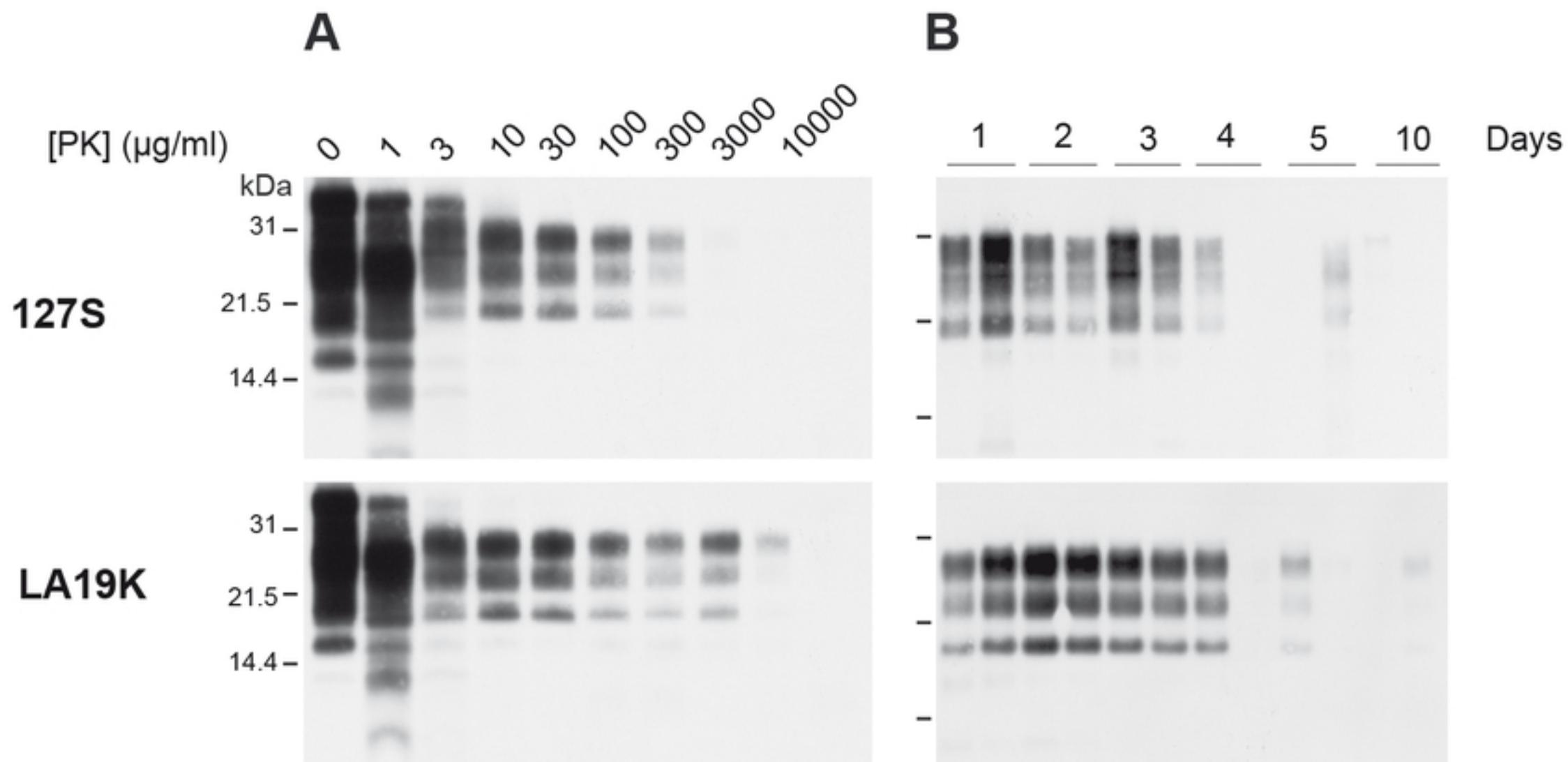








Figure 4

A**B****C****D****Figure 5**

Figure 6