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Abstract

Brain structural networks have been shown to consistently organize in functionally meaningful architectures
covering the entire brain. However, to what extent brain structural architectures match the intrinsic functional
networks in different functional domains remains under explored. In this study, based on independent
component analysis, we revealed 45 pairs of structural-functional (S-F) component maps, distributing across 9
functional domains, in both a discovery cohort (n=6005) and a replication cohort (UK Biobank, n=9214),
providing a well-match multimodal spatial map template for public use. Further network module analysis
suggested that unimodal cortical areas (e.g. somatomotor and visual networks) indicate higher S-F coherence,
while heteromodal association cortices, especially the frontoparietal network (FPN), exhibit more S-F
divergence. Collectively, these results suggest that the expanding and maturing brain association cortex
demonstrates a higher degree of changes compared to unimodal cortex, which may lead to higher

inter-individual variability and lower S-F coherence.
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Introduction

Human brain is a complex network of neurons that link physical neural structure to multiple human functions
(Power JD et al. 2010; Alexander-Bloch A et al. 2013). Multiple computational studies have suggested that
the underlying anatomical architecture of cerebral cortex shapes resting state functional connectivity on
multiple time scales (Misic B et al. 2016). More evidence has now begun to suggest that specific networks
derived from gray matter architectures are resembling intrinsic functional resting-state networks (Stephen
Smith ED, Adrian Groves, Thomas E. Nichols, Saad Jbabdi, Lars T. Westlye, Christian K. Tamnes, Andreas
Engvig, Kristine B. Walhovd, Anders M. Fjell, Heidi Johansen-Berg and Gwenaé&le Douaud 2019). Although
structural networks of the human brain have typically been constructed directly using various white matter
connectivity measurements obtained from diffusion weighted imaging (Bassett DS and ET Bullmore 2009),
they have also been inferred indirectly from the inter-regional covariation of gray matter measured at the
group level, providing information of spatially distinct regions with common covariation among subjects (Xu
L et al. 2009). In parallel, the regions spatially correlated using time courses derived from spontaneous
fluctuations at “resting brain” were identified as the intrinsic functional resting-state networks. Using these
two kinds of features, Segall et al. revealed that basal ganglia network exhibited highest structural to
resting-state functional spatial correlations on 603 healthy participants (Segall JM et al. 2012). In addition to
offering information about the structure-function relationship of the healthy brain, various multimodal fusion
studies also revealed that impaired structure topography are correlated with functional damages in mental
disease (Luo N et al. 2018; Sui J et al. 2018). However, to date, fundamental questions have not been
answered on whether different structure-function correspondence can be detected in different function
domains/modules, i.e., unimodal cortex and heteromodal association cortex. In addition, identification of
patterns in a larger dataset (15000+ participants) with more components can provide a finer and more
common degree of details, providing a stable structure-function correspondence template that may be of use to
the larger neuroimaing community.

To this end, we have used a discovery dataset of 7104 functional scans (within 6005 structural scans were
matched for same subjects) collected at the University of New Mexico and the University of Colorado
Boulder, and a replication dataset of 9214 participants from UK Biobank. As shown in Figure 1, first, 100
“source-based morphometry networks” with spatially distinct regions were identified based on independent

component analysis (ICA), providing information about localization of gray matter (GM) variation and their
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covariation among individuals (Xu L et al. 2009). Similar job was done for the 7104 resting-state functional
magnetic resonance imaging (fMRI) scans, generating 100 intrinsic functional networks (components). These
GM and fMRI components were subsequently parcellated into 9 brain network modules. Spatial coherence
were measured between the effective grey matter networks and intrinsic functional connectivity networks by
spatial correlation. Second, segmentation on GM of replication data were conducted, to verify the
reproducibility of the identified structural-functional (S-F) paired components. Third, the replicated S-F
component pairs were further compared across different domains. Interestingly, the unimodal cortical areas
(e.g. somatomotor and visual networks) indicate higher S-F coherence in both discovery and replication data,
while those made from heteromodal association cortices, e.g., frontoparietal network, exhibit more S-F
divergence. To the best of our knowledge, this is the first study to assess differences of structure-function

coherence across different function domains on the currently largest dataset.

Materials and Methods

Data acquisition and preprocessing

Discovery data

All 6101 structural scans and 7500 resting state functional scans were collected from anonymized subjects
with informed consent at the University of New Mexico (UNM) and the University of Colorado Boulder (UC,
Boulder). Data from the UC, Boulder site were collected using a 3T Siemens TIM Trio MRI scanner with 12
channel radio frequency coils, while data from the UNM site were acquired using the same type of 3T
Siemens TIM Trio MRI scanner, and a 1.5T Avanto MRI scanner. All the data were previously collected,
anonymized, and had informed consent received from subjects including both healthy and patients. As it is a
de-identified convenience dataset, we do not have access to the health and identifier information. We have
confirmed that the brain images do not have any obvious pathology or atrophy. The fMRI data were used in a
previous study that evaluated replicability in time-varying functional connectivity patterns (Abrol A et al.
2017). The sMRI data were used in a previous study which measured age-related structural variations across
the adult lifespan. The details of data acquisition and preprocessing are as bellows.

T1-weighted structural images were acquired with a five-echo MPRAGE sequence with TE = 1.64, 3.5, 5.36,
7.22,9.08 ms, TI = 1.2 s, TR = 2.53 s, number of excitations = 1, flip angle = 7< field of view = 256 mm,

slice thickness = 1 mm, resolution = 256 x 256. The structural images were then preprocessed using voxel
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based morphometry (VBM) based on the SPM12 old segmentation, including: (1) spatial registration to a
reference brain; (2) tissue classification into gray matter, white matter and CSF using SPM12 old
segmentation; (3) bias correction of intensity non-uniformities; (4) spatial normalization to the standard
Montreal Neurological Institute (MNI) space using nonlinear transformation; (5) modulated by scaling with
the amount of volume changes. The modulated GM data, representing the GM volumes, were resliced to 2
mm %<2 mm %2 mm and smoothed with a 10 mm Gaussian model (Silver M et al. 2011). The smoothed GMV
was then correlated to the mean of all scans to identify outliers. Those scans with a correlation less than 0.7
were removed, thus leaving behind a total number of 6005 scans for the correspondence analysis. The
demographic information of the 6005 subjects were shown in Figure 2.

T2-weighted functional images were acquired using a gradient-echo EPI sequence with TE=29ms, TR=2s
or 1.3 s, slice thickness = 3.5 mm, flip angle =75< field of view =240 mm, slice gap = 1.05 mm, voxel
size = 3.75 mm x3.75 mm x4.55 mm, matrix size =64 x64. The data preprocessing pipeline included
discard of the first three images for the magnetization equilibrium, realignment using INRIalign, timing
correction with the middle slice as reference, spatial normalization into the MNI space, reslicing to 3>3>3 mm
and smoothing with a 10 mm Gaussian model (Silver M et al. 2011). More details were provided in our
previous study (Abrol A et al. 2017). After preprocessing, 7104 functional scans were remained for the
subsequent analysis, of which 6005 scans have corresponding structural images.

Replication data

The UK Biobank is a large-scale prospective study of over 500,000 individuals from across the United
Kingdom, with a major aim being to characterize subjects before disease onset. Participants were 40-69 years
of age at baseline recruitments. Here, we used the sMRI data from the February 2017 release of ~10,000
participants (Alfaro-Almagro F et al. 2018). VBM-related processing was performed with FMRIB Software
Library v10.0. A study-specific template was created using an average T1-weighted image (provided by the
UK Biobank) from 5,000 subjects. To generate the template, brain extraction and tissue segmentation was
performed on the average T1-weighted image. The gray matter image from the segmentation was then
registered to the avgl52T1 gray template available in FSL. Segmented gray matter images from each
subject, available as part of the UK Biobank imaging data release, were non-linearly registered to the study
specific template. Each registered grey matter image was also multiplied by the Jacobian of the warp field
as a compensation (or "modulation™) for the contraction/enlargement due to the non-linear component of the

transformation. The resulting GM image was then smoothed with a 6 mm Gaussian kernel. The smoothed GM
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was then correlated with the mean of all scans to remove scans with a correlation less than 0.7, resulting in a
total number of 9214 subjects for the analysis. The demographic information of the replication data was

shown in Figure 2.

Group ICA on rsfMRI data

ICA decomposition on the fMRI data were conducted in our previous study (Abrol A et al. 2017) using Group
ICA based on the GIFT toolbox (Calhoun VD et al. 2001), with a model order of 100 components (Figure
1A) . The spatial maps and time courses of the components were examined to select physiologically
non-artifactual and previously established functional networks, as reported in (Allen EA et al. 2011; Du YH et
al. 2015). Following this, 61 components were selected, which had local peak activations lying in gray matter,
with time-courses dominated by low-frequency fluctuations, and exhibiting high spatial overlap with the

established rsfMRI networks.

Source-based morphometry

The segmented GM images were decomposed using spatial ICA through the GIFT toolbox (Xu L et al. 2009;
Cota Navin Gupta JAT, Vince D. Calhoun 2017), which linearly decomposed the GM matrix into a mixing
matrix that represents the relative weight of each subject for every component, and the source matrix
representing the maximally spatially independent GM regions. We chose a model order of 100 components to
match the numbers of components used in the fMRI analysis (Figure 1A). All 100 structural components
were visually inspected by three experts. We excluded structural components that had significant spatial
overlaps with ventricles, white matter, large vasculature, and the brainstem, or components located at the
boundaries between these regions and GM. For the purpose of spatial correlation, the GM components were
resliced to 3 mm %<3 mm >3 mm to match the dimensions of the functional components.

We then defined 9 domains/networks based on Yeo et al.’s seven-network template (Yeo BTT et al. 2011),
with two extended networks including cerebellar and subcortical network. The 9 networks are: visual network
(VIS), somatomotor network (SM), dorsal attention network (DA), ventral attention network (VA),
subcortical network (SUB), limbic network (LIMBIC), frontoparietal network (FP), DMN and cerebellar
network (CB). All the effective GM and fMRI components were further grouped into the 9 networks

following a criteria based on which network/domain the peak region belongs to.
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Spatial cross-correlation between structural and functional components

To assess both linear and nonlinear spatial correspondence, we calculated spatial correlation between the
selected structural and functional spatial maps using Pearson correlation and mutual information. Given two
random variables x andy, their Pearson correlation can be defined in terms of their covariance cov(x,y),
standard deviation of x and y as Equation (1) and their mutual information (Figure 1C, computed using the
mutualinfo package in Matlab) is defined in terms of their probabilistic density functions p(x),p(y), and

p(x,y) as Equation (2).

pry = o) (1)
xOy
165y) = [ [ p(xy)log£o2dx dy 2

Note that before computing the correspondence, the ICA-decomposed spatial maps have been converted to

Z-scores and thresholded at |Z|>2.

Replication using the UK Biobank data

In order to validate the matched S-F component pairs, we used spatial ICA to decompose the replication data
with the same model order of 100 components (Figure 1B). The same inclusion criteria of component
selection in the discovery dataset was applied to select good components in the replication dataset. We then
computed the spatial correlation between GM components in the replication dataset and fMRI components in
the discovery dataset, as well as GM components in the discovery dataset (Figure 1C). If one matched
structural-structural pair between discovery and replication cohorts both show high correlation with the same

fMRI component, then the S-F pair in the discovery cohort was regarded as replicated.

Comparison between different network modules

We subsequently counted the numbers of matched S-F pairs in each network module using the discovery
dataset and the replicated percentage in each network module using the replication dataset. We then added up
the values of PC and MI in both cohorts for each S-F pair and sorted them into a decreased order to explore
which network module would present more S-F correspondence and which module indicate more S-F
divergence (Figure 1D). Moreover, we examined the S-F correspondence of different network modules using

PC or Ml separately.
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Results

Structural architectures match intrinsic functional networks

In the discovery dataset, 71 structural GM components (Figure S1) and 61 fMRI components (Figure S2)
were retained for analysis after removing artifactual components through visual inspections by three
professors. Out of the 71 GM versus 61 fMRI components comparisons, 44 (62%) structural components were
matched with 47 (77.05%) functional components passing the predetermined Pearson correlation (PC)
coefficient threshold of |r| > 0.25 and mutual information (MI) threshold of MI > 0.2 (Figure S3). Note that
the correlation coefficient threshold corresponds to a significance level of p<le-12, passing Bonferroni
correlation (p=0.05/71/61). Empirically, we set 0.2 as threshold for mutual information and when we
increased the threshold, the main results were maintained. As more than one functional component matched
per structural component, and also one functional component sometimes matched with several structural
components, these matched components in discovery dataset together formed 70 S-F pairs. After sorting the
matched S-F pairs into 9 domains/networks, we computed the numbers of matched S-F pairs in each brain
network of the discovery dataset (Figure 3). The numbers of matched S-F pairs were higher in the visual
network (15 pairs), default model network (13 pairs), and cerebellar network (11 pairs), but relatively lower in
ventral_attention (5 pairs), dorsal_attention (5 pairs) and limbic networks (2 pairs).

95 structural components in the replication data were selected as non-artifactual components after ICA
decomposition. In the comparison of 95 structural components (replication dataset) and 61 functional
components (discovery dataset), 66 (69.47%) structural components were matched with 49 (80.33%)
functional components (Figure S4). Meanwhile, 57 (60%) structural components in the replication dataset
were matched with 50 (70.42%) structural components of discovery dataset (Figure S5). If one matched
structural-structural pair between discovery and replication cohorts both showed high correlation with the
same fMRI component, then the S-F pair in the discovery cohort was regarded as replicated. In total, 45
(64.28%) out of the 70 matched S-F pairs in the discovery dataset were replicated in the UK Biobank data as
shown in Figure 4. We set the same thresholds (|r] > 0.25 and MI > 0.2) as the discovery dataset to select the
significant corresponding component pairs. The replicated percentages in each of networks are presented in
Figure 3, which indicates that the visual (73.33%) and default mode network (69.23%) are highly replicated,
while the frontoparietal network (28.57%) is not well replicated. The detail information on spatial maps and

corresponding values of these 45 replicated S-F pairs are displayed in Figure S6 to Figure S9.


https://doi.org/10.1101/2019.12.17.879502
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.17.879502; this version posted December 19, 2019. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Somatomotor network

A large component, s-IC 12, spanning the supplementary motor areas and bilateral pre- and post- central gyri,
are correlated with four rsfMRI components (Figure S6A). The rs-IC 72, with peaks at the precentral gyri,
presents the highest correspondence of PC and MI to the structural component for both discovery and
replication dataset. The other three rsFMRI components are rs-IC49 and rs-1C52, centered at the paracentral
lobule, and rs-1C99, which represents the bilateral postcentral gyri. A second structural component, s-IC19,
which is also quite large and contains voxels spanning much of the supplementary motor area, is correlated to

rs-1C36 and rs-IC13, with peaks at aspects of the supplementary motor area.

Visual network

Notably, the visual network includes the largest numbers of S-F pairs, which is also observed in the
replication dataset (Figure 3). Structural component s-1C16, which largely centers at the calcarine gyrus,
presents the second highest correspondence to functional component rs-1C25 in all matched S-F pairs and
replicated in rep-sIC60 (Figure S6B). The functional components rs-IC63 and rs-IC 96, centered at the
calcarine gyrus, are also correlated with s-IC16. The other smaller structural component s-1C13 with peaks at
calcarine gyrus and lingual gyrus is correlated with rs-1C25, as well as rs-IC17 and replicated in rep-sIC38.
Component s-1C95 and s-1C96 comprised of a component pair, with peaks at right and left calcarine region
respectively, which are correlated with rs-56, rs-IC3 and rs-IC63. Another correlated region is the lingual
gyrus, where component s-1C66 is associated with rs-1C 17 and replicated in rep-sIC66. The third region with
a replicated S-F correspondence in the visual network is middle occipital gyrus. Structural components s-IC

79 is correlated with functional component rs-1C76, with peaks at the bilateral middle occipital gyrus.

Default mode network

The default mode network also shows a high S-F correspondence (Figure S7C). Component s-IC31, primarily
comprised of the middle cingulate gyrus, is highly correlated with rs-IC 67 and rs-IC46. Component s-I1C7,
which contains voxels residing in the precuneus area, is correlated with three functional components. In order
of correspondence magnitude they are rs-1C34, rs-1C46 and rs-1C30, which presents aspects of precuneus and
middle cingulate gyrus. Structural components, s-IC45 and s-1C52, are symmetrical components, which are
respectively composed of right middle temporal gyrus and left middle temporal gyrus. They are correlated
with a symmetrical pair rs-1C57 and rs-IC75, which are also replicated in a symmetrical pair rep-sIC25 and

rep-sIC18. More interesting, structural components, s-1C40 and s-IC91, containing voxels in different
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sub-divisions of anterior cingulate cortex, are correlated with two components rs-1C39, rs-IC90 and replicated

in rep-sIC 85, rep-sIC 15, centered on the same sub-divisions of anterior cingulate cortex.

Cerebellar network

Component s-1C53 and s-1C46 respectively represent left and right cerebellum, which are correlated with
rs-IC26 and rs-1C40, peaking at left and right cerebellum respectively, and replicated in nine components
(Figure S8D). Component s-1C36, primarily composed of vermis, is correlated with rsfMRI component
rs-IC8 and replicated in rep-sIC1 and rep-sIC48, centered on vermis, a narrow midline zone in cerebellum.
Structural components s-1C10 and s-IC11 are correlated with rs-IC26, replicated in rep-sIC53 and rep-siC4,
primarily comprised of bilateral cerebellum. Results from previous studies have found higher scores on
vocabulary, reading, working memory and set-shifting were associated with increased GM in the posterior
cerebellum (Moore DM et al. 2017), which is an example of how structural abnormalities directly relate to

functional processing.

Subcortical network

Subcortical structure s-1C3, comprising the putamen and parts of caudate, presents high S-F correspondence
with functional component rs-IC33 in discovery dataset (Figure S8E). The other subcortical component
s-1C17, composed of bilateral caudate, is correlated with the same rsfMRI component, primarily comprising
the bilateral putamen and caudate. The putamen and caudate contain the same types of neurons and circuits,
which together form the dorsal striatum. The dorsal striatum plays an important role in the motor and reward
systems, which receives inputs from cortical regions and then serves as the primary input to the rest of basal
ganglia (Ferre S et al. 2010). Thus the putamen and caudate are likely to be decomposed in one functional
component by ICA because of the similar brain function. However, as a white matter tract in the dorsal
striatum structurally separates the caudate nucleus and the putamen (Ferre S et al. 2010), the putamen and

caudate are more likely to be decomposed into two components by ICA for the structural data.

Limbic network

Only component s-IC23, primarily composed of the hippocampus, has been revealed to be correlated to
rs-IC44 and replicated in rep-sIC 77, primarily associated with memory function (van Strien NM et al. 2009).
While S-F coherence of para-hippocampus was also observed in the discovery data as shown in Figure S3-1,

the pair was not well replicated.
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Dorsal_attention network

Component s-IC67, which also largely covers the precuneus, is correlated to rs-1C30 and rs-1C35, replicated
in five components (Figure S9G). Two structural components s-IC 25 and s-1C27 are revealed to be
correlated with the same functional component rs-1C76, which comprised of both parts of middle occipital
gyrus and inferior parietal gyrus. Different from component s-1C79 and s-1C95, which also comprised of
middle occipital but belongs the visual network, s-IC25 and s-1C27 are more close to the inferior parietal
gyrus, sorted to the dorsal attention network. Inferior parietal gyrus is associated with bottom-up attention

(Igelstrom KM and MSA Graziano 2017).

Ventral_attention network

Structural component s-1C 30, centered at the supramarginal gyrus, is correlated with rs-1C 29 and replicated
in rep-sIC73, which represents aspects of the supramarginal gyrus (Figure S9H). Several studies have
reported the supramarginal gyrus in interoceptive attention/awareness tasks (Kashkouli Nejad K et al. 2015).
The other symmetrical components s-IC56 and s-IC76, are correlated with rs-IC31 and rs-1C94 respectively

and replicated in rep-sIC24 and rep-sIC68, primarily composed of the insula.

Frontoparietal network

The frontoparietal network yielded the lowest degree of S-F correspondence and the effects observed in the
discovery sample were largely unreplicated (Figure 3). Only component s-IC18, peaking in the superior
frontal gyrus, is correlated to rs-1C 89 and rs-IC 85, and weakly replicates in rep-sIC 21, which represents

activations over similar regions (Figure S9lI).

Unimodel cortex exhibited better S-F correspondence than hetermodel cortex

except default mode network

Figure 5A depicts the values of PC and MI of each replicated S-F pair in both datasets. Results show that
components from somatomotor and visual networks present the highest S-F correspondence when adding up
values from both metrics (PC and MI) and both cohorts, followed by default mode network (DMN), limbic
and cerebellar networks. In contrast, the values in ventral_attention, dorsal_attention and frontoparietal
networks are relatively lower than other networks, indicating more divergence between brain structure and

function. Furthermore, we computed the S-F correspondence using PC or MI separately. As shown in Figure
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5B and Figure 5C, either using PC or M, the correspondences consistently show that the somatomotor, visual,
and default mode network yield higher S-F correspondences, while components in the dorsal_attention and

frontoparietal networks show more divergence between structure and function.

Discussion

In this study, we demonstrate that human structural architectures match intrinsic functional networks across
the entire brain. With an ICA decomposition on gray matter volumes and spontaneous fluctuations of
discovery data (6000+ scans), the structural components found are largely correspond to functional networks
(62% matched 77.05%). Thus what we are seeing is the functional covariations in resting state BOLD signal,
at the level of group networks across thousands of individuals, correlates in some cases with the structural
correlations. To aid the robustness of the identified pairs, we replicated the S-F coherence in another
independent dataset (UK Biobank 9000+ subjects). While 64.28% pairs are validated, the replicated
percentage in each domain network are not identical. For example, replicated percentage in the frontoparietal
network was 28.57%, implying that individual difference was large in this area. This was consistent with
previous studies, which states that the frontoparietal network has emerged as the most distinctive
fingerprinting feature for identifying individuals (Finn ES et al. 2015). In total, 45 S-F component pairs with
high spatial consistency in both discovery and replication cohorts were identified, which were divided into 9
major networks, providing a stable S-F correspondence template that may be of use to the larger neuroimaing
community.

The replicated S-F pairs and their correspondence values suggested that the unimodal cortical areas
(somatomotor and visual network) show higher S-F correspondence, while heteromodal association cortical
areas, especially the frontoparietal network, exhibit more divergence between intrinsic functional and
structural networks. Unimodal cerebral cortex (Mendoza JE 2011) (somatomotor network and visual network),
especially the precentral gyrus, supplementary motor area, and primary visual cortex (calcarine area, V1),
exhibited higher S-F correpondence than other areas in both the discovery and replication dataset. The
precentral gyrus and supplementary motor area are primarily associated with motor function (Graziano MS et
al. 2002; Nachev P et al. 2008). Visual area V1 receives sensory inputs from the thalamus and plays an
important role in the extraction of early visual features (Mechelli A et al. 2000). The somatomotor and visual
regions have also been revealed to present the least individual differences in functional variability (Mueller S

et al. 2013). However, the heteromodal association cortex (Green R 2004), except the DMN, show relatively
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low S-F correspondence (dorsal_attetntion network, ventral_attention network and frontoparietal network).
The frontoparietal network presents the least S-F correspondence compared to the other networks. It has been
previously demonstrated that the regions presenting the most prominent inter-subject variability are also the
regions showing the most rapid expansion during human brain evolution (Mueller S et al. 2013), as well as
greatest postnatal enlargement and a low maturation rate (Hill J et al. 2010). Wang et al. suggested that a
greatly expanded and slowly maturing association cortex can provide a higher degree of freedom, both in
physical space and time, for influences of environmental factors, potentially giving rise to inter-individual
variability (Wang D and H Liu 2014), leading to weak S-F correspondences in these areas. In contrast, the
unimodal regions mature early in life with a low expansion rate and are more stable to the environmental
factors, which would present less inter-subject variability and more S-F correspondence.

The spatial consistence in default mode network is interesting; for example, the precuneus is split into
two structural sub-regions (s-1C7 and s-1C67), which respectively correspond to two functional sub-regions
(rs-1C34 and rs-1C30). The two sub-regions are consistent with previous subdivisions of the precuneus, which
represent different functions : component s-1C7 and rs-IC34 are the posterior precuneus, which shows strong
functional connectivity with visual-related areas, such as the cuneus (Margulies DS et al. 2009); component
s-1C67 and rs-IC30 are the anterior precuneus, which exhibits strong functional connectivity with
sensorimotor-related regions. Meanwhile, the other similar case is anterior cingulate cortex, where
components s-1C40 and s-1C91 are correlated with two different anterior cingulate cortex in functional data
(rs-1C39 and rs-1C90), consisting with previous subdivision of the anterior cingulate cortex (Bush G et al.
2000). Component s-IC40 is the dorsal part of the anterior cingulate cortex, which is connected with the
prefrontal cortex and parietal cortex, participating in cognitive control (Shenhav A et al. 2016). By contrast,
component s-1C91 is the ventral part of the anterior cingulate cortex, involving in generating emotional
responses (Etkin A et al. 2011). Besides, structural components, s-IC45 and s-1C52, are symmetrical
components, which are respectively composed of right middle temporal gyrus and left middle temporal gyrus,
correlated with symmetrical pair rs-IC57 and rs-1C75 and replicated in a symmetrical pair rep-sIC25 and
rep-siC18. As shown in the Brainnetome Atlas (https://atlas.brainnetome.org/bnatlas.html), which yields
functional characterization of sub-regions based on the BrainMap database using forward and reverse
inferences (Fan LZ et al. 2016), the left middle temporal gyrus is primarily related to cognition, language and

syntax, while the right middle temporal gyrus is involved in action and observation.
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Despite the strengths of the current study, it still has some limitations. The first limitation is of course
methodological: the structural images were generally collected at a much finer resolution (1 mm isotropic,
generally) than the functional images (> 3 mm on a side), and the functional imaging is susceptible to signal
drop-out in inferior areas or near the tissue border. We attempted to address this by reslicing the structural
images to match the functional, and restricting the analysis to areas of gray matter, where signal in both
modalities was robust. The second limitation is the lack of careful assessment of health status for the
individuals included in discovery dataset. However, our results were further replicated in a large independent
dataset with only healthy subjects. We believe the results may be more driven by the common characteristics
on structural-functional correspondence. The third issue is that the MRI scanners and imaging protocols were
not identical across the discovery and replication cohorts. However, since one important aim of this study is to
identify a stable S-F template (i.e. a set of components with higher S-F correspondence), the replicated results

in data with different scanners and imaging protocols provides a more generalizable result.

Acknowledgments

Funding: This work was supported by National Institutes of Health (No. 2RO1EB005846, P20GM103472,
RO1REB020407), National Science Foundation (No. 1539067), the Natural Science Foundation of China (No.
61773380), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB32040100)
and Brain Science and Brain-inspired Technology Plan of Beijing City (No. Z181100001518005).

Author contributions: V.D.C., J.S. and N.L. designed the experiments. N.L. conducted the analysis. V.D.C.
and J.S. supervised and guided all aspects of the work. N.L., V.D.C. and J.S. wrote the paper. A.A. helped
provide the information of the discovery data. Z.F. and E.D. helped select the components. D.C.G and A.L.R
helped provide the information of the UK Biobank data. J.A.T, L.F.,J.C.,D.L.,C.Z.,D.C.G, A.L.R, M.T.B. and
G.D.P. helped revise the paper. Describe the contributions of each author (use initials) to the paper.
Competing interests: The authors declare no competing interests.

Data and materials availability: The multimodal data used in the present study can be accessed upon request

to the corresponding authors.


https://doi.org/10.1101/2019.12.17.879502
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.17.879502; this version posted December 19, 2019. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

References

Abrol A, Damaraju E, Miller RL, Stephen JM, Claus ED, Mayer AR, Calhoun VD. 2017.
Replicability of time-varying connectivity patterns in large resting state fMRI samples. Neuroimage.
163:160-176.

Alexander-Bloch A, Giedd JN, Bullmore E. 2013. Imaging structural co-variance between human
brain regions. Nature Reviews Neuroscience. 14:322.

Alfaro-Almagro F, Jenkinson M, Bangerter NK, Andersson JLR, Griffanti L, Douaud G,
Sotiropoulos SN, Jbabdi S, Hernandez-Fernandez M, Vallee E, Vidaurre D, Webster M, McCarthy P,
Rorden C, Daducci A, Alexander DC, Zhang H, Dragonu |, Matthews PM, Miller KL, Smith SM.
2018. Image processing and Quality Control for the first 10,000 brain imaging datasets from UK
Biobank. Neuroimage. 166:400-424.

Allen EA, Erhardt EB, Damaraju E, Gruner W, Segall JM, Silva RF, Havlicek M, Rachakonda S,
Fries J, Kalyanam R, Michael AM, Caprihan A, Turner JA, Eichele T, Adelsheim S, Bryan AD,
Bustillo J, Clark VP, Feldstein Ewing SW, Filbey F, Ford CC, Hutchison K, Jung RE, Kiehl KA,
Kodituwakku P, Komesu YM, Mayer AR, Pearlson GD, Phillips JP, Sadek JR, Stevens M, Teuscher
U, Thoma RJ, Calhoun VD. 2011. A baseline for the multivariate comparison of resting-state
networks. Frontiers in systems neuroscience. 5:2.

Bassett DS, Bullmore ET. 2009. Human brain networks in health and disease. Curr Opin Neurol.
22:340-347.

Bush G, Luu P, Posner MI. 2000. Cognitive and emotional influences in anterior cingulate cortex.
Trends Cogn Sci. 4:215-222.

Calhoun VD, Adali T, Pearlson GD, Pekar JJ. 2001. A method for making group inferences from
functional MRI data using independent component analysis. Hum Brain Mapp. 14:140-151.

Cota Navin Gupta JAT, Vince D. Calhoun. 2017. Source Based Morphometry: Data-Driven
Multivariate Analysis of Structural Brain Imaging Data. Brain Morphometry.

Du YH, Pearlson GD, Liu JY, Sui J, Yu QB, He H, Castro E, Calhoun VD. 2015. A group ICA
based framework for evaluating resting fMRI markers when disease categories are unclear:
application to schizophrenia, bipolar, and schizoaffective disorders. Neuroimage. 122:272-280.

Etkin A, Egner T, Kalisch R. 2011. Emotional processing in anterior cingulate and medial prefrontal
cortex. Trends Cogn Sci. 15:85-93.

Fan LZ, Li H, Zhuo JJ, Zhang Y, Wang JJ, Chen LF, Yang ZY, Chu CY, Xie SM, Laird AR, Fox PT,
Eickhoff SB, Yu CS, Jiang TZ. 2016. The Human Brainnetome Atlas: A New Brain Atlas Based on
Connectional Architecture. Cerebral Cortex. 26:3508-3526.

Ferre S, Lluis C, Justinova Z, Quiroz C, Orru M, Navarro G, Canela El, Franco R, Goldberg SR.
2010. Adenosine-cannabinoid receptor interactions. Implications for striatal function. Brit J
Pharmacol. 160:443-453.

Finn ES, Shen XL, Scheinost D, Rosenberg MD, Huang J, Chun MM, Papademetris X, Constable
RT. 2015. Functional connectome fingerprinting: identifying individuals using patterns of brain
connectivity. Nat Neurosci. 18:1664-1671.

Graziano MS, Taylor CS, Moore T. 2002. Complex movements evoked by microstimulation of
precentral cortex. Neuron. 34:841-851.

Green R. 2004. Heteromodal association cortex in schizophrenia. Am J Psychiatry. 161:1723-1724;
author reply 1724,


https://doi.org/10.1101/2019.12.17.879502
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.17.879502; this version posted December 19, 2019. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Hill J, Inder T, Neil J, Dierker D, Harwell J, Van Essen D. 2010. Similar patterns of cortical
expansion during human development and evolution. Proc Natl Acad Sci U S A. 107:13135-13140.
Igelstrom KM, Graziano MSA. 2017. The inferior parietal lobule and temporoparietal junction: A
network perspective. Neuropsychologia. 105:70-83.

Kashkouli Nejad K, Sugiura M, Nozawa T, Kotozaki Y, Furusawa Y, Nishino K, Nukiwa T,
Kawashima R. 2015. Supramarginal activity in interoceptive attention tasks. Neurosci Lett.
589:42-46.

Luo N, Sui J, Chen J, Zhang F, Tian L, Lin D, Song M, Calhoun VD, Cui Y, Vergara VM, Zheng F,
LiuJ, Yang Z, Zuo N, Fan L, Xu K, Liu S, LiJ, Xu Y, Liu S, Lv L, Chen J, Chen Y, Guo H, Li P,
Lu L, Wan P, Wang H, Wang H, Yan H, Yan J, Yang Y, Zhang H, Zhang D, Jiang T. 2018. A
Schizophrenia-Related Genetic-Brain-Cognition Pathway Revealed in a Large Chinese Population.
Ebiomedicine. 37:471-482.

Margulies DS, Vincent JL, Kelly C, Lohmann G, Uddin LQ, Biswal BB, Villringer A, Castellanos
FX, Milham MP, Petrides M. 2009. Precuneus shares intrinsic functional architecture in humans and
monkeys. Proc Natl Acad Sci U S A. 106:20069-20074.

Mechelli A, Humphreys GW, Mayall K, Olson A, Price CJ. 2000. Differential effects of word length
and visual contrast in the fusiform and lingual gyri during reading. Proc Biol Sci. 267:1909-1913.
Mendoza JE. 2011. Unimodal Cortex. In: Kreutzer JS, DeLuca J, Caplan B, editors. Encyclopedia of
Clinical Neuropsychology New York, NY: Springer New York p 2578-2578.

Misic B, Betzel RF, de Reus MA, van den Heuvel MP, Berman MG, Mclintosh AR, Sporns O. 2016.
Network-Level Structure-Function Relationships in Human Neocortex. Cereb Cortex. 26:3285-3296.
Moore DM, D'Mello AM, McGrath LM, Stoodley CJ. 2017. The developmental relationship
between specific cognitive domains and grey matter in the cerebellum. Developmental cognitive
neuroscience. 24:1-11.

Mueller S, Wang D, Fox MD, Yeo BT, Sepulcre J, Sabuncu MR, Shafee R, Lu J, Liu H. 2013.
Individual variability in functional connectivity architecture of the human brain. Neuron.
77:586-595.

Nachev P, Kennard C, Husain M. 2008. Functional role of the supplementary and pre-supplementary
motor areas. Nat Rev Neurosci. 9:856-8609.

Power JD, Fair DA, Schlaggar BL, Petersen SE. 2010. The Development of Human Functional Brain
Networks. Neuron. 67:735-748.

Segall JM, Allen EA, Jung RE, Erhardt EB, Arja SK, Kiehl K, Calhoun VD. 2012. Correspondence
between structure and function in the human brain at rest. Frontiers in Neuroinformatics. 6.

Shenhav A, Cohen JD, Botvinick MM. 2016. Dorsal anterior cingulate cortex and the value of
control. Nat Neurosci. 19:1286-1291.

Silver M, Montana G, Nichols TE, Neuroimaging AD. 2011. False positives in neuroimaging
genetics using voxel-based morphometry data. Neuroimage. 54:992-1000.

Stephen Smith ED, Adrian Groves, Thomas E. Nichols, Saad Jbabdi, Lars T. Westlye, Christian K.
Tamnes, Andreas Engvig, Kristine B. Walhovd, Anders M. Fjell, Heidi Johansen-Berg and
Gwenaéle Douaud. 2019. Structural variability in the human brain reflects fine-grained functional
architecture at the population level. The Journal of Neuroscience.

Sui J, Qi S, van Erp TGM, Bustillo J, Jiang R, Lin D, Turner JA, Damaraju E, Mayer AR, Cui Y, Fu
Z, Du Y, Chen J, Potkin SG, Preda A, Mathalon DH, Ford JM, Voyvodic J, Mueller BA, Belger A,


https://doi.org/10.1101/2019.12.17.879502
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.17.879502; this version posted December 19, 2019. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

McEwen SC, O'Leary DS, McMahon A, Jiang T, Calhoun VD. 2018. Multimodal neuromarkers in
schizophrenia via cognition-guided MRI fusion. Nat Commun. 9:3028.

van Strien NM, Cappaert NLM, Witter MP. 2009. The anatomy of memory: an interactive overview
of the parahippocampal-hippocampal network. Nature Reviews Neuroscience. 10:272-282.

Wang D, Liu H. 2014. Functional Connectivity Architecture of the Human Brain: Not All the Same.
The Neuroscientist. 20:432-438.

Xu L, Groth KM, Pearlson G, Schretlen DJ, Calhoun VD. 2009. Source-Based Morphometry: The
Use of Independent Component Analysis to Identify Gray Matter Differences With Application to
Schizophrenia. Hum Brain Mapp. 30:711-724.

Yeo BTT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, Roffman JL, Smoller
JW, Zoller L, Polimeni JR, Fischl B, Liu HS, Buckner RL. 2011. The organization of the human
cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol. 106:1125-1165.


https://doi.org/10.1101/2019.12.17.879502
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.17.879502; this version posted December 19, 2019. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Figure Legends

Figure 1. Schematic of preprocessing and analyses pipelines. (A) Structural data and functional data were
preprocessed through an automated pipeline and then decomposed using spatial ICA. We then compared the
correspondence between structural and functional components using Pearson correlation and mutual
information. (B) A replication dataset from UK Biobank, consisting of 9214 subjects, was preprocessed to
validate the identified S-F pairs. We again applied ICA to decompose the structural replication data and
measured the spatial correspondence between components in the discovery dataset and components in the
replication dataset. (C) If one matched S-F pair presented a high correspondence with the same functional
component, then the S-F pair in the discovery dataset was regarded as replicated. (D) We further sorted the
matched pairs into 9 networks and compared S-F coherence across networks.

Figure 2. Demographic information of both datasets (A) and the distribution of age in the discovery data (B)

and the replication data (C).

Figure 3. The numbers of matched pairs in the discovery data and the replicated percentages in the replication
data. The S-F correspondence in visual (15 pairs), default model network (13 pairs) and cerebellar (11 pairs)
networks are higher, whereas the correspondence in ventral_attention (5 pairs), dorsal_attention (5 pairs) and
limbic networks (2 pairs) are relatively low. Moreover, replicated results indicate that the visual (73.33%) and
DMN (69.23%) are highly replicated, while the frontoparietal network (28.57%) is not well replicated.

Figure 4. The 45 replicated matched structural (A) and functional (B) pairs in 9 networks.

Figure 5. Comparison of S-F coherence across 9 domains. (A) The sum of Pearson correlation and mutual
information in both discovery dataset and replication dataset of each component. The darker grey to white
bars respectively represent the Pearson correlation in the discovery dataset, the Pearson correlation in the
replication dataset, the mutual information in the discovery dataset and the mutual information in the
replication dataset. The blue bar indicates the sum of Pearson correlation and mutual information from the
discovery dataset, while the orange bar shows the sum of Pearson correlation and mutual information from the
replication dataset. (B) The S-F correspondence in discovery and replication dataset measured only by
Pearson correlation. The dark green bar represents the Pearson correlation in the discovery data and the light
green color is the Pearson correlation in the replication data. (C) The S-F correspondence in discovery and
replication dataset measured only by mutual information. The dark blue bar represents the mutual information

in the discovery data and the light blue bar is the mutual information in the replication data.
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Figure 1. Schematic of preprocessing and analyses pipelines. (A) Structural data and functional data were preprocessed
through an automated pipeline and then decomposed using spatial ICA. We then compared the correspondence between
structural and functional components using Pearson correlation and mutual information. (B) A replication dataset from UK
Biobank, consisting of 9214 subjects, was preprocessed to validate the identified S-F pairs. We again applied ICA to
decompose the structural replication data and measured the spatial correspondence between components in the discovery
dataset and components in the replication dataset. (C) If one matched S-F pair presented a high correspondence with the
same functional component, then the S-F pair in the discovery dataset was regarded as replicated. (D) We further sorted the
matched pairs into 9 networks and compared S-F coherence across networks.
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Figure 2. Demographic information of both datasets (A) and the distribution of age in the discovery data (B)
and the replication data (C).
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Figure 3. The numbers of matched pairs in the discovery data and the replicated percentages in the replication
data. The S-F correspondence in visual (15 pairs), default model network (13 pairs) and cerebellar (11 pairs)
networks are higher, whereas the correspondence in ventral_attention (5 pairs), dorsal_attention (5 pairs) and
limbic networks (2 pairs) are relatively low. Moreover, replicated results indicate that the visual (73.33%) and
DMN (69.23%) are highly replicated, while the frontoparietal network (28.57%) is not well replicated.
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Figure 4. The 45 replicated matched structural (A) and functional (B) pairs in 9 networks.
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Figure 5. Comparison of S-F coherence across 9 domains. (A) The sum of Pearson correlation and mutual

information in both discovery dataset and replication dataset of each component. The darker grey to white

bars respectively represent the Pearson correlation in the discovery dataset, the Pearson correlation in the

replication dataset, the mutual information in the discovery dataset and the mutual information in the

replication dataset. The blue bar indicates the sum of Pearson correlation and mutual information from the

discovery dataset, while the orange bar shows the sum of Pearson correlation and mutual information from the

replication dataset. (B) The S-F correspondence in discovery and replication dataset measured only by

Pearson correlation. The dark green bar represents the Pearson correlation in the discovery data and the light

green color is the Pearson correlation in the replication data. (C) The S-F correspondence in discovery and

replication dataset measured only by mutual information. The dark blue bar represents the mutual information

in the discovery data and the light blue bar is the mutual information in the replication data.
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