

1 LAVA: a streamlined visualization tool for longitudinal analysis of viral alleles

2

3 Michelle J. Lin^{1,2,¶} mjlin@uw.edu

4 Ryan C. Shean^{1,2,¶} rcs333@uw.edu

5 Negar Makhsoos^{1,2} negarm@uw.edu

6 Alexander L. Greninger^{1,2,*} agrening@uw.edu

7

8 ¹Department of Laboratory Medicine, University of Washington, Seattle, WA, USA

9 ²Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle,
10 WA, USA

11 [¶]These authors contributed equally

12 ^{*}Corresponding author

13

14

15

16

17

18

19

20

21

22

23

24 **Abstract**

25 With their small genomes, fast evolutionary rates, and clinical significance, viruses have long
26 been fodder for studies of whole genome evolution. One common need in these studies is the
27 analysis of viral evolution over time through longitudinal sampling. However, there exists no
28 simple tool to automate such analyses. We created a simple command-line visualization tool
29 called LAVA (Longitudinal Analysis of Viral Alleles). LAVA allows dynamic and interactive
30 visualization of viral evolution across the genome and over time. Results are easily shared via a
31 single HTML file that also allows interactive analysis based on read depth and allele frequency.
32 LAVA requires minimal input and runs in minutes for most use cases. LAVA is programmed
33 mainly in Python 3 and is compatible with Mac and Linux machines. LAVA is a user-friendly
34 command-line tool for generating, visualizing, and sharing the results of longitudinal viral
35 genome evolution analysis. Instructions for downloading, installing, and using LAVA can be
36 found at <https://github.com/michellejlin/lava>.

37 **Keywords:** LAVA, viral evolution, longitudinal, viral allele, antiviral resistance, bioinformatics,
38 visualization, NGS

39

40

41

42

43

44

45

46

47

48 **Introduction**

49 With the rapid and significant advancements in sequencing technologies in recent years,
50 whole-genome sequencing has become more cost-effective, more efficient, and more accurate
51 than ever (1). A common area of bioinformatics research in virology is the comparison of viral
52 evolution in longitudinal samples. At a basic level, viral genome evolution may be examined
53 over routine passage in cell culture (2,3). Drug manufacturers routinely check for the
54 development of resistance mutations in response to *in vitro* antiviral pressure (4,5). Clinical
55 researchers want to know how viruses evolve longitudinally in normal or immunocompromised
56 patients, in response to a drug pressure, or in different areas of the body (3,6,7).

57 In order to facilitate these routine analyses of viral evolution, we developed a simple
58 command-line tool called Longitudinal Analysis of Viral Alleles (LAVA) for analyzing and
59 visualizing the evolution of minor variants in viral genomes over time. The basic tenor of these
60 analyses involves the calling of a consensus genome for the initial sample and then using that
61 genome as a reference for downstream samples. Viral sequence data is plotted both across the
62 genome to show where mutations cluster and over time to show allele frequency changes. The
63 metadata associated with the experiment may be minimal, consisting simply of sample names
64 and units of time. The units of time are arbitrary and may be minutes, hours, days, months,
65 years or even different categorical experimental conditions. LAVA also generates interactive
66 HTML files for sequence data analysis. The HTML files may be manipulated by users without
67 significant bioinformatic experience according to the nature of their biological question,
68 alleviating a significant conundrum for sequencing and bioinformatics groups as demand for
69 their services continues to increase.

70

71 **Methods**

72 LAVA (Longitudinal Analysis of Viral Alleles) can be downloaded at
73 <https://github.com/michellejin/lava>. Installation and usage instructions, a folder with example
74 inputs, and the full source code, are also available at this link. The general workflow is shown in
75 Figure 1. A brief explanation is also given here, but a more in depth look into the pipeline is
76 available at the GitHub link, including options and arguments passed to third party tools, the full
77 LAVA source code, as well as an informative readme document.

78 Installation of LAVA and all required dependencies is performed by an install script
79 which is included in the GitHub repository. The install script only requires Python, a Java
80 runtime environment, brew/apt-get for Mac/Linux systems, and an Internet connection. All third
81 party tools except for ANNOVAR (8), which must be manually registered for and downloaded,
82 are also automatically installed. The install script can also be run in 'check mode' and the script
83 will check for all required dependencies and print error messages with instructions for how to fix
84 any missing dependencies. The GitHub readme also contains a walkthrough for manually
85 installing all dependencies and LAVA.

86 Before execution, LAVA requires a reference genome for sequencing read alignment,
87 which can be provided as either an NCBI GenBank Accession number, or a local nucleotide
88 FASTA file along with a GFF file to provide gene and protein annotations (9). Sequencing reads
89 for all samples are input as adapter and quality-trimmed FASTQ files. LAVA currently does not
90 perform adapter or quality trimming so this needs to be done beforehand as required. A two-
91 column CSV metadata file is also required to match sample with its longitudinal temporal
92 information such as passage number or day number. Other available options include removing
93 PCR duplicates for metagenomic sequencing, manually specifying the name of the output
94 folder, analyzing variants by nucleotide changes instead of amino acid changes, saving all
95 intermediate files (which LAVA by default removes), automatically specifying an allele frequency
96 cutoff (which is by default set at 1%), and saving output as PNG files.

97 There are two different methods of selecting annotations for the reference sequence:
98 automatic and manual. In automatic mode LAVA begins with searching GenBank for a user
99 provided accession number corresponding to the viral species to be analyzed (10). This record
100 is then downloaded both as a nucleotide FASTA file and the complete GenBank record. LAVA
101 aligns the first FASTQ file provided to the downloaded reference (11,12) and calls a majority
102 consensus sequence based off this alignment using samtools (13–15). Then coding sequence
103 annotations are pulled from the GenBank record and transferred to the new majority consensus
104 FASTA using a MAFFT alignment (16). In manual mode the user specifies a reference FASTA
105 and a GFF file containing protein annotations for this reference sequence. LAVA assumes that
106 the FASTA is the majority consensus for the first sample and the GFF is a correct annotation of
107 the reference nucleotide sequence. The result of both the automatic and manual processes is
108 an annotated majority consensus of the first sample.

109 LAVA then aligns each of the FASTQ files specified in the metadata CSV to this newly
110 generated file, using bwa-mem (17). By default, LAVA does not remove PCR duplicates given
111 the common use of AmpliSeq-like approaches for viral genome sequencing; however, this
112 option can be added in cases where removing PCR duplicates would give a more accurate
113 representation of the data, such as the analysis of metagenomic samples. Variants are called
114 for every position in the genome for every sample using VarScan and saved as standard VCF
115 files (18). These files are removed from the output folder during cleanup to keep disk usage low,
116 but can be saved using the --save option. Variants for all bases are annotated using Annovar
117 and GATK as nonsynonymous, synonymous, complex, stop-gain, or stop-loss, along with the
118 coverage and allele percentage at each base (8,19). The main text file generated by the pipeline
119 is a table called merged.csv containing all the samples, their metadata, and all the amino acid
120 changes. This file, along with reads.csv, the individual .bam files, and the individual
121 .genomcov files, is used for generating the interactive visualization but can also be manually
122 parsed and examined for more in-depth or non-standard analysis. Reads.csv provides read

123 mapping information for each sample, such as total number of reads in sample and percentage
124 of reads mapping to reference. A .bam file is generated for each sample during the alignment
125 process, and these can be viewed for understanding the alignments and how the reads were
126 mapped. Genome coverage for each base in each sample is parsed and extracted into a file
127 with extension .genomcov, so genome-wide depth can be examined and analyzed.

128 LAVA then visualizes this information with the Bokeh Python module (20–22), allowing
129 for an easily readable and interactive data visualization. The output for this step is an HTML file
130 containing two interactive plots (Fig 2). The first plot depicts allele frequency changes for each
131 variant across the genome for each sample. Tabs at the top of the plot allow easy switching
132 between samples. Sliders to the right of the main plot allow the user to dynamically change the
133 visibility of variants by depth and by coverage. To the right side of the plot, a line graph shows
134 per-base coverage across the whole genome to help inform the user of reasonable coverage
135 thresholds. The second plot shows allele frequency across the samples over time. Given that
136 the samples will be representing different time points (passages, cultures, days past infection,
137 etc.) of a single virus, this plot shows the longitudinal evolution of amino acid changes,
138 separated by protein. Tabs at the top of the plot allow the user to specify which protein they
139 want to examine. Allele frequencies for all changes in the selected protein are plotted over time.
140 Here, variants can also be filtered by depth and coverage. Both plots support zooming and
141 panning and each mutational change has an associated tooltip which can be viewed by
142 hovering with the mouse over the associated data point to display locus-associated metadata.
143 Data can be filtered by type of mutation (synonymous, non-synonymous, stopgains/stoplosses,
144 and complex mutations), as well as if the same mutation occurs across multiple samples.
145 Another available option in the command line is to show nucleotide changes such as
146 transversions and transitions rather than amino acid changes, which may be relevant to cases
147 when examining nucleoside-analog antivirals directed against viral polymerases, base editors
148 such as APOBEC or ADAR proteins, or other aspects of viral epigenetics (23–25).

149 LAVA outputs all these files in HTML format (Fig 2), which are readily interpretable in
150 any web browser by groups without significant bioinformatics experience. Once generated by
151 LAVA, all these graphs can be sent and shared as standalone files. Additionally, LAVA also has
152 an option to generate static PNG images of the results for situations where interactive
153 visualization is not appropriate such as publications or presentations.

154

155 **Results and Discussion**

156 To demonstrate the intended use cases of LAVA and demonstrate why it represents a
157 new and useful tool, we illustrate two real world examples from our own lab.

158

159 *Case Study 1 – Evolution of human parainfluenza virus 3 in culture*

160 The provided examples (<https://github.com/michellejlin/lava/tree/master/example>), which
161 are included with the software, illustrate the automation of a task which the authors first
162 performed manually. For case study 1, these example files are truncated versions of the real
163 data analyzed in Iketani et al. (26), and are named Example 1 in LAVA. Example 1 illustrates
164 how to use LAVA to rapidly perform whole genome analysis on matched samples to understand
165 how a unique selective pressure (i.e. culture exposure) affects viral evolution.

166 Briefly, paired human parainfluenza virus type 3 (HPIV3) samples were sequenced
167 directly from nasal sampling and after isolation in culture. The study aimed to examine how
168 HPIV3 adapts to brief exposure to culture. Sequencing reads were adapter and quality trimmed
169 using cutadapt, producing the FASTQ files available on the GitHub (27). A simple metadata
170 sheet called Example1_metadata.csv was created containing file names and 'passage
171 numbers'. In this case, because we only use two samples, we put the first sample (nasal swab
172 SC332) occurring at passage 0 and the second sample (cultured CUL 332) at passage 1. We
173 have also provided a manually generated GFF/FASTA reference pair containing the protein
174 locations for all HPIV3 proteins except C and D (which are created through RNA editing and

175 thus do not automatically translate correctly). To reduce the file size, the example files
176 uploaded to GitHub contain only the first 20,000 original reads that correctly mapped to HPIV3 –
177 full sequencing read files are available from BioProject PRJNA338014. Example 1 shows how
178 rapid adaptations to culture can be discovered using LAVA as two non-synonymous mutations
179 (S554G and P241L) appear in the sample after very brief growth in culture. This example also
180 shows off the utility of the depth and allele frequency sliders which can be used to quickly filter
181 low-level sequencing artifacts and mapping errors out of the data, allowing the user to focus on
182 the most relevant points of data.

183

184 Case Study 2

185 We have also included data for a case study which fully highlights the longitudinal
186 analysis nature of LAVA. In this study, norovirus samples were recovered from a >250 day
187 infection over 11 time points from a single patient (28). The fundamental question in this
188 analysis is what whole genome changes accrue as norovirus adapts to the
189 immunocompromised host over almost a yearlong period.

190 Samples were sequenced and reads were adapter and quality trimmed using cutadapt
191 as part of our routine metagenomics analysis pipeline (27). As in Example 1, we selected a few
192 samples: ST107, ST283, and ST709 (all available on BioProject PRJNA338014). Reads were
193 trimmed to reduce file size to upload onto GitHub. A two-column metadata sheet called
194 Example2_metadata.csv was created mapping samples to collection day. The analysis was run
195 with the one-line command “lava.py -q MH260507 ST107.fastq Example2_metadata.csv -o
196 norovirus_output” (MH260507 is the GenBank Accession number for the actual day 0
197 consensus of these samples). This command showcases the alternative method of generating
198 reference files: using the -q flag to automatically download a GenBank reference and transfer
199 annotations. This example also highlights the utility of the protein plots, which show how the
200 allele frequency of all variants for each protein changes over time. Instead of using passages as

201 in Example 1, these plots demonstrate the evolution over number of days of infection. Using
202 these plots, one can see how the entire norovirus genome accumulates fixed mutational
203 changes over a long-term infection with an increased rate of fixed mutational changes in VP1,
204 the capsid protein and main antigenic determinant of norovirus (29).

205

206 *Comparisons*

207 While there are many programs that process and visualize somatic mutations, LAVA is
208 unique in its focus on monitoring minor variant alleles in viruses (30–32). With both its
209 component parts of pipeline and visualizer, LAVA fills an important need in the viral
210 bioinformatics community. The Broad Institute, for example, has several well-documented
211 workflows for both germline and somatic variant discovery: HaplotypeCaller and MuTect2.
212 These tools are excellent for their intended use cases and LAVA uses a workflow inspired by
213 these tools. However, HaplotypeCaller is not well suited for whole genome analysis of viral
214 genomes, as the tool is focused on germline SNPs and does not handle the extreme allelic
215 variance found in viral genomes. MuTect2, the Broad Institute’s somatic SNP and indel caller,
216 performs well for its intended use but does not emit all bases of a genome, which is vital
217 information for viral whole genome analysis. Both of these tools are excellent for their intended
218 purposes but would have to be significantly modified to reproduce the analysis of LAVA.

219 The Broad Institute’s viral-ngs suite, pipelines designed specifically for the analysis of
220 viral genomics, takes paired-end reads and calls intrahost variants (iSNVs). Taxonomic read
221 identification is also visualized with Krona. For variant calling in viral genomes, viral-ngs is an
222 excellent tool and we recommend using it over LAVA. However, LAVA was created specifically
223 to automatically compare longitudinal data, which is not a built-in feature of viral-ngs. LAVA also
224 has a visualization tool to easily see and compare minor allele variants across the genome and
225 across time. In these use cases, LAVA adds functionality over other bioinformatics programs.

226 Two other bioinformatics pipelines exist that perform similar tasks as LAVA. SMuPFI is a
227 pipeline that, like LAVA, analyzes NGS data to provide a graphical representation of SNPs and
228 works well for viral analysis (33). However, due to its nature as a tool designed to better
229 understand viral escape mechanisms, SMuPFI operates in the area of co-occurring mutations,
230 and works best with only two co-occurring mutations at the same time due to the complex
231 statistical analysis involved.

232 Another pipeline that serves to identify variant sites is ViVan (34). ViVan takes similar
233 input as LAVA and has a very easy to use, albeit size limit restricted, web interface. It also
234 detects more sensitive variant alleles than LAVA does—it claims to identify variant alleles with a
235 frequency of >0.1%, with a slightly higher rate of false positives, whereas LAVA by default both
236 filters out any minor allele variants below 1% frequency (though this can be adjusted using the -
237 af argument), and allows dynamic filtration in its visualization to suit the user's purpose. ViVan
238 searches for variants within each sample individually and currently provides no built-in feature
239 for comparisons between samples.

240 LAVA combines many of the gold-standard bioinformatics tools into a single pipeline to
241 annotate minor allele variants in viruses and adds a truly unique functionality with its interactive
242 visualization. The plots that LAVA outputs present easily understandable comparisons between
243 longitudinal samples, illustrating complex relationships in a simple format that makes patterns
244 like evolution of minor allele variants across samples, nucleotide change frequency in different
245 proteins, and synonymous vs. nonsynonymous mutations in the genome evident. By allowing
246 dynamic filtering of data by allele frequency and coverage depth, these plots can be adjusted to
247 suit the individual needs of the user.

248 Additionally, the inherently shareable nature of the HTML plots that LAVA creates as
249 output is an advantage. The small size, ability to be viewed on any web browser, and lack of
250 dependencies allow data to be shared quickly and extensively through email or any other
251 means, especially with collaborators who are not comfortable filtering BAM and VCF files.

252

253 *Limitations*

254 LAVA is a powerful tool for analyzing a diverse variety of viral datasets, yet it is not
255 without its limitations. While stopgains and stoplosses are handled correctly and included in the
256 plots, LAVA is currently unable to handle complex mutations, wherein two neighboring
257 nucleotide variants occur within a single codon. Multiple nucleotide changes within the same
258 codon are each treated individually as separate amino acid changes. However, LAVA
259 automatically detects this situation, and both prints a warning to the console and colors points
260 corresponding to complex mutations distinctly. Sequence variations such as copy number
261 changes, recombination, or large deletions and insertions that escape the bwa-mem aligner
262 may also be missed (35). Due to the nature of its visualization, LAVA also does not display
263 overlapping genes properly and instead shows them side-by-side. However, LAVA does print a
264 warning message to the console if overlapping proteins are detected, directing users to the
265 README which contains directions for how to manually prepare a GFF file without overlapping
266 proteins. LAVA also does not correctly analyze proteins with RNA editing or ribosomal slippage.
267 Many of these limitations can be fixed by editing the GFF file accordingly.

268 Another limitation of LAVA is that web browsers can fail to render the output plots if there
269 are an extremely large number of variants (>5,000). This does not impact the actual analysis,
270 only the visualization, and the merged.csv output file will still contain all relevant data. This could
271 create problems if LAVA was used to analyze bacterial genomes or other extremely large
272 genomes. LAVA will print a warning message if there are greater than 5,000 variants. The
273 nature of the merged.csv output file is such that manual analysis could easily be performed in
274 an environment better suited to visualizing extremely large data sets such as R.

275

276 **Conclusions**

277 LAVA allows users to go from sequencing data to dynamically interactive plots
278 illustrating longitudinal changes in their samples. The only required inputs are 1) FASTQ files
279 with sequences for analysis, 2) either a GFF file and reference FASTA or a Genbank accession
280 number, and 3) a simple metadata.csv file containing information about sample name and
281 passage number. LAVA cuts down the time and effort significantly for data analysis of
282 longitudinal samples, and provides an intuitive and interactive visualization that can be easily
283 shared among collaborators.

284

285 *Web resources*

286 LAVA can be found at <https://github.com/michellejin/lava> and is programmed in Python.

287

288 *Acknowledgements*

289 The authors would like to acknowledge the Broad institute for Picard, as well as the developers
290 and maintainers of UCSC Genome Browser for gff3ToGenePred. We would also like to thank
291 the entire open source bioinformatics community for their commitment to producing freely
292 available and useful tools for everyone.

293

294 **References**

295 1. Muir P, Li S, Lou S, Wang D, Spakowicz DJ, Salichos L, et al. The real cost of
296 sequencing: scaling computation to keep pace with data generation. *Genome Biol* [Internet].
297 2016 Dec [cited 2019 Mar 18];17(1). Available from:
298 <http://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-0917-0>

299 2. Iketani S, Shean RC, Ferren M, Makhous N, Aquino DB, Georges A, et al. Viral Entry
300 Properties Required for Fitness in Humans Are Lost Through Rapid Genomic Change during
301 Viral Isolation. *mBio*. 2018;9(4):e00898-18.

302 3. Xue KS, Stevens-Ayers T, Campbell AP, Englund JA, Pergam SA, Boeckh M, et al.
303 Parallel evolution of influenza across multiple spatiotemporal scales. *eLife* [Internet]. 2017 Jun
304 27 [cited 2019 Mar 18];6. Available from: <https://elifesciences.org/articles/26875>

305 4. Toots M, Yoon J-J, Cox RM, Hart M, Sticher ZM, Makhous N, et al. Characterization of
306 orally efficacious influenza drug with high resistance barrier in ferrets and human airway
307 epithelia. *Sci Transl Med*. 2019 Oct 23;11(515).

308 5. Yoon J-J, Toots M, Lee S, Lee M-E, Ludeke B, Luczo JM, et al. Orally Efficacious Broad-
309 Spectrum Ribonucleoside Analog Inhibitor of Influenza and Respiratory Syncytial Viruses.
310 *Antimicrob Agents Chemother*. 2018 Aug;62(8).

311 6. Debbink K, McCrone JT, Petrie JG, Truscon R, Johnson E, Mantlo EK, et al. Vaccination
312 has minimal impact on the intrahost diversity of H3N2 influenza viruses. *PLoS Pathog*.
313 2017;13(1):e1006194.

314 7. McCrone JT, Woods RJ, Martin ET, Malosh RE, Monto AS, Lauring AS. Stochastic
315 processes constrain the within and between host evolution of influenza virus. *eLife* [Internet].
316 2018 May 3 [cited 2019 Mar 18];7. Available from: <https://elifesciences.org/articles/35962>

317 8. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from
318 high-throughput sequencing data. *Nucleic Acids Res*. 2010 Sep 1;38(16):e164–e164.

319 9. Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW. GenBank. *Nucleic Acids*
320 *Res*. 2016 Jan 4;44(D1):D67–72.

321 10. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+:
322 architecture and applications. *BMC Bioinformatics*. 2009;10(1):421.

323 11. Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform.
324 *Bioinforma Oxf Engl*. 2010 Mar 1;26(5):589–95.

325 12. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform.
326 *Bioinformatics*. 2009 Jul 15;25(14):1754–60.

327 13. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence
328 Alignment/Map format and SAMtools. *Bioinforma Oxf Engl*. 2009 Aug 15;25(16):2078–9.

329 14. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al. The variant
330 call format and VCFtools. *Bioinforma Oxf Engl*. 2011 Aug 1;27(15):2156–8.

331 15. Li H. A statistical framework for SNP calling, mutation discovery, association mapping
332 and population genetical parameter estimation from sequencing data. *Bioinforma Oxf Engl*.
333 2011 Nov 1;27(21):2987–93.

334 16. Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple
335 sequence alignment based on fast Fourier transform. *Nucleic Acids Res*. 2002 Jul
336 15;30(14):3059–66.

337 17. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.
338 ArXiv13033997 Q-Bio [Internet]. 2013 Mar 16 [cited 2019 Mar 18]; Available from:
339 <http://arxiv.org/abs/1303.3997>

340 18. Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L, et al. VarScan 2:
341 Somatic mutation and copy number alteration discovery in cancer by exome sequencing.
342 Genome Res. 2012 Mar 1;22(3):568–76.

343 19. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The
344 Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA
345 sequencing data. Genome Res. 2010 Sep 1;20(9):1297–303.

346 20. Bokeh Development Team. Bokeh: Python library for interactive visualization [Internet].
347 2014 [cited 2018 Oct 31]. Available from: <http://www.bokeh.pydata.org>

348 21. Cock PJA, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, et al. Biopython: freely
349 available Python tools for computational molecular biology and bioinformatics. Bioinformatics.
350 2009 Jun 1;25(11):1422–3.

351 22. Jones E, Oliphant E, Peterson P, et al. SciPy: Open Source Scientific Tools for Python
352 [Internet]. 2001 [cited 2018 Oct 31]. Available from: <https://www.scipy.org/>

353 23. Yoon J-J, Toots M, Lee S, Lee M-E, Ludeke B, Luczo JM, et al. Orally Efficacious Broad-
354 Spectrum Ribonucleoside Analog Inhibitor of Influenza and Respiratory Syncytial Viruses.
355 Antimicrob Agents Chemother [Internet]. 2018 Jun 11 [cited 2019 Mar 18];62(8). Available from:
356 <http://aac.asm.org/lookup/doi/10.1128/AAC.00766-18>

357 24. Smith HC, Bennett RP, Kizilyer A, McDougall WM, Prohaska KM. Functions and
358 regulation of the APOBEC family of proteins. Semin Cell Dev Biol. 2012 May;23(3):258–68.

359 25. Nishikura K. Functions and regulation of RNA editing by ADAR deaminases. Annu Rev
360 Biochem. 2010;79:321–49.

361 26. Iketani S, Shean RC, Ferren M, Makhsoos N, Aquino DB, des Georges A, et al. Viral
362 Entry Properties Required for Fitness in Humans Are Lost through Rapid Genomic Change
363 during Viral Isolation. mBio. 2018 Jul 3;9(4).

364 27. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing
365 reads. EMBnet.journal. 2011 May 2;17(1):10.

366 28. Casto AM, Adler AL, Makhsoos N, Crawford K, Qin X, Kuypers JM, et al. Prospective,
367 Real-time Metagenomic Sequencing During Norovirus Outbreak Reveals Discrete Transmission
368 Clusters. Clin Infect Dis Off Publ Infect Dis Soc Am. 2019 Aug 30;69(6):941–8.

369 29. Mahar JE, Donker NC, Bok K, Talbo GH, Green KY, Kirkwood CD. Identification and
370 Characterization of Antibody-Binding Epitopes on the Norovirus GII.3 Capsid. J Virol. 2014 Feb
371 15;88(4):1942–52.

372 30. Ardin M, Cahais V, Castells X, Bouaoun L, Byrnes G, Herceg Z, et al. MutSpec: a
373 Galaxy toolbox for streamlined analyses of somatic mutation spectra in human and mouse
374 cancer genomes. BMC Bioinformatics [Internet]. 2016 Dec [cited 2019 Mar 18];17(1). Available
375 from: <http://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-016-1011-z>

376 31. Lee J, Lee AJ, Lee J-K, Park J, Kwon Y, Park S, et al. Mutualisk: a web-based somatic
377 MUTation AnaLyIS toolKit for genomic, transcriptional and epigenomic signatures. Nucleic Acids
378 Res. 2018 Jul 2;46(W1):W102–8.

379 32. Cario CL, Witte JS. Orchid: a novel management, annotation and machine learning
380 framework for analyzing cancer mutations. Hancock J, editor. *Bioinformatics*. 2018 Mar
381 15;34(6):936–42.

382 33. Leung P, Bull R, Lloyd A, Luciani F. A Bioinformatics Pipeline for the Analyses of Viral
383 Escape Dynamics and Host Immune Responses during an Infection. *BioMed Res Int.*
384 2014;2014:1–12.

385 34. Isakov O, Bordería AV, Golan D, Hamenahem A, Celniker G, Yoffe L, et al. Deep
386 sequencing analysis of viral infection and evolution allows rapid and detailed characterization of
387 viral mutant spectrum. *Bioinformatics*. 2015 Jul 1;31(13):2141–50.

388 35. Greninger AL, Roychoudhury P, Makhsoos N, Hanson D, Chase J, Krueger G, et al.
389 Copy Number Heterogeneity, Large Origin Tandem Repeats, and Interspecies Recombination
390 in Human Herpesvirus 6A (HHV-6A) and HHV-6B Reference Strains. Longnecker RM, editor. *J
391 Virol* [Internet]. 2018 Feb 28 [cited 2019 Mar 18];92(10). Available from:
392 <http://jvi.asm.org/lookup/doi/10.1128/JVI.00135-18>

393

394 **Figure Legends**

395

396 **Figure 1** - General workflow of the LAVA pipeline is depicted to offer a high-level overview of
397 program execution. Dashed arrows represent optional steps. Input are shown boxed in green,
398 output in blue, and the main lava program is circled in pink. For input, either a GenBank
399 Accession number or a FASTA/GFF pair is required. If a GenBank Accession number is
400 provided, LAVA generates a FASTA/GFF pair following the outlined steps. The linked chain
401 symbol between the metadata.csv input and the FASTQ reads is meant to emphasize that the
402 metadata.csv must contain all the file names that you wish to include in your analysis. General
403 steps are given with tools used during that specific step listed to the side or underneath each
404 step in parentheses. The final output is given as HTML files that contain the interactive plots.
405 For exactly what is passed to each of the other programs and information about parameters and
406 optional arguments (such as mapping parameters), the source code is available on GitHub.

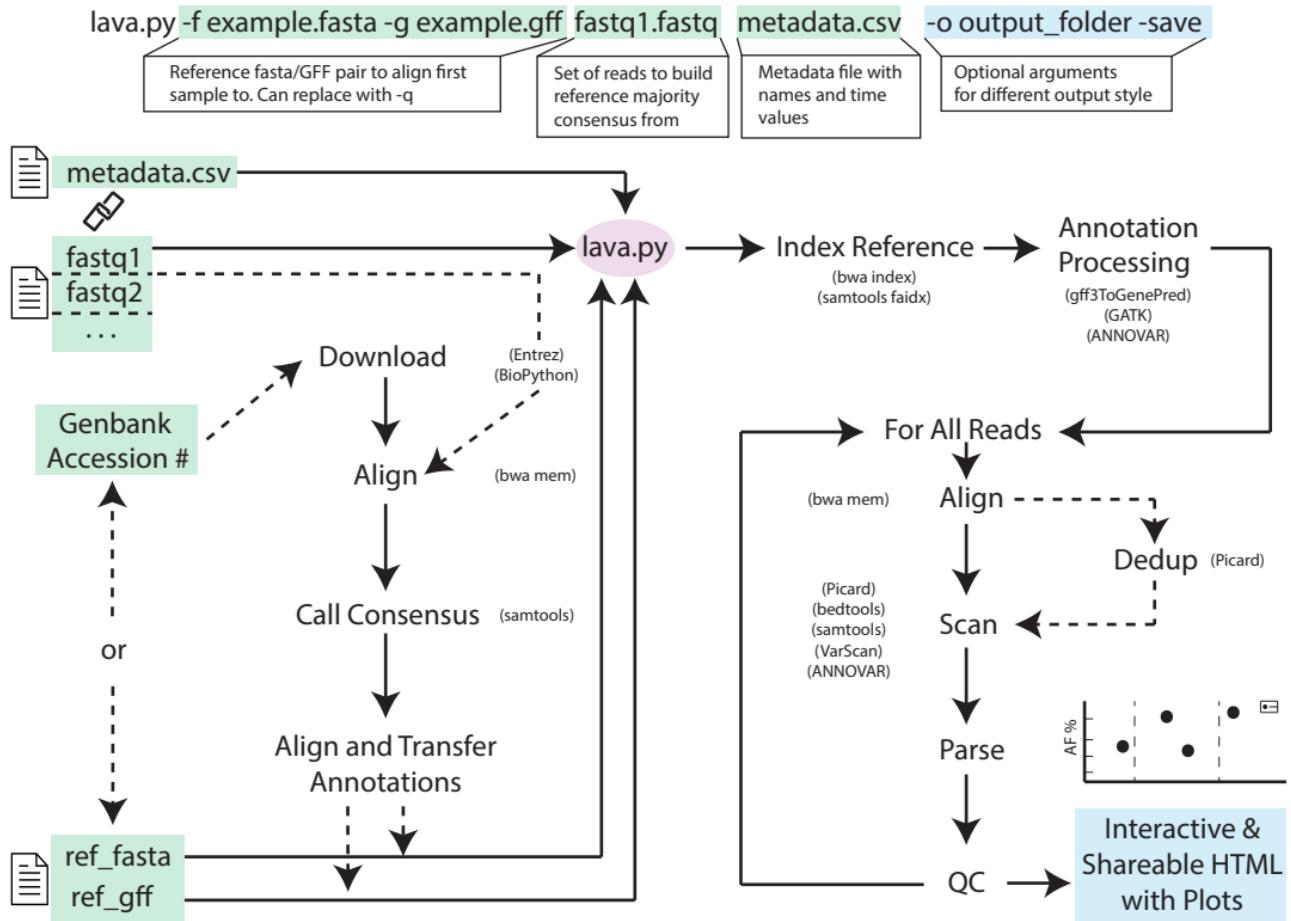
407

408 **Figure 2** - Example LAVA output is shown, this figure shows the results from running Example 1
409 (All files are available on GitHub and a more in-depth coverage of this data is provided in *Case*
410 *study 1*.) This example is a screenshot of a Chrome browser displaying the final HTML created
411 by LAVA. The plot on the top of the page shows all amino acid changes across the whole
412 genome for each sample. You can switch between the samples using the tabs highlighted in a
413 red box. The bottom plot shows changes in by-protein allele frequencies over time. You can use
414 tabs once again to switch between proteins. All changes meeting display requirements are
415 plotted over time (or whatever your numerical metadata was). For example, this example shows
416 the hemagglutinin-neuraminidase protein for HPIV3 undergoing changes during the culturing
417 process. All output can be filtered by depth, allele frequency and type of mutation using the
418 sliders boxed in red to the right of each main plot. A small plot is displayed next to the whole

419 genome graph providing a visual representation of the per-base coverage of reads mapping to

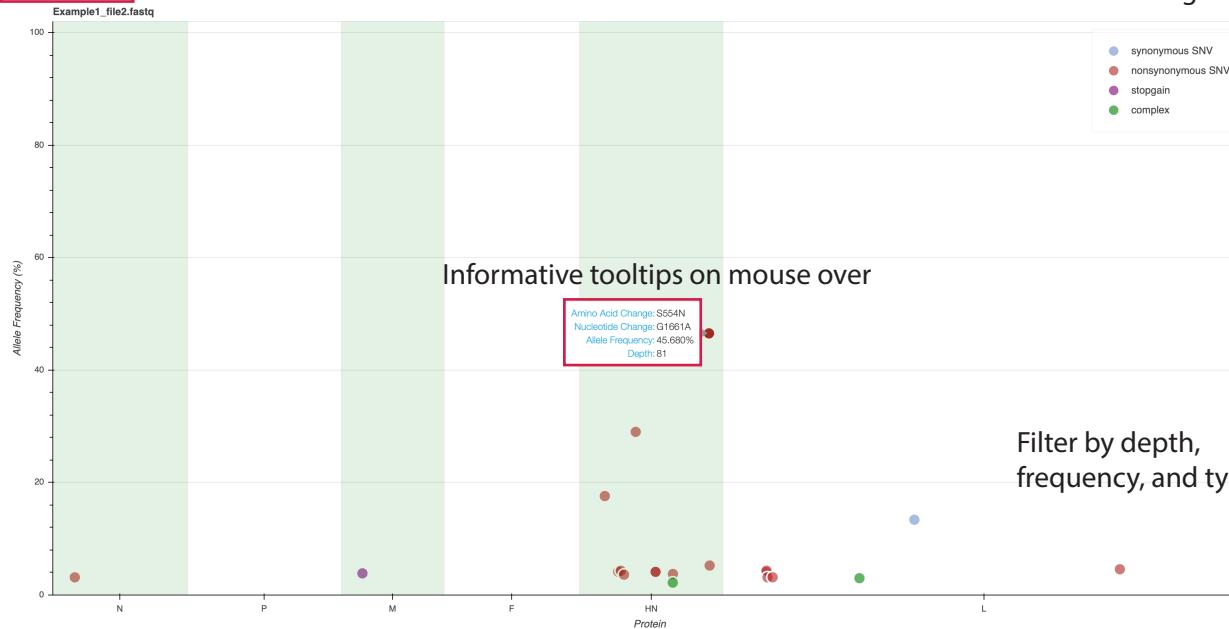
420 the consensus.

421



Example1_file1.fastq
Example1_file2.fastq

Switch between samples



Select proteins

N P M F HN L

