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Abstract

With their small genomes, fast evolutionary rates, and clinical significance, viruses have long
been fodder for studies of whole genome evolution. One common need in these studies is the
analysis of viral evolution over time through longitudinal sampling. However, there exists no
simple tool to automate such analyses. We created a simple command-line visualization tool
called LAVA (Longitudinal Analysis of Viral Alleles). LAVA allows dynamic and interactive
visualization of viral evolution across the genome and over time. Results are easily shared via a
single HTML file that also allows interactive analysis based on read depth and allele frequency.
LAVA requires minimal input and runs in minutes for most use cases. LAVA is programmed
mainly in Python 3 and is compatible with Mac and Linux machines. LAVA is a user-friendly
command-line tool for generating, visualizing, and sharing the results of longitudinal viral
genome evolution analysis. Instructions for downloading, installing, and using LAVA can be

found at https://github.com/michellejlin/lava.

Keywords: LAVA, viral evolution, longitudinal, viral allele, antiviral resistance, bioinformatics,

visualization, NGS
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Introduction

With the rapid and significant advancements in sequencing technologies in recent years,
whole-genome sequencing has become more cost-effective, more efficient, and more accurate
than ever (1). A common area of bioinformatics research in virology is the comparison of viral
evolution in longitudinal samples. At a basic level, viral genome evolution may be examined
over routine passage in cell culture (2,3). Drug manufacturers routinely check for the
development of resistance mutations in response to in vitro antiviral pressure (4,5). Clinical
researchers want to know how viruses evolve longitudinally in normal or immunocompromised
patients, in response to a drug pressure, or in different areas of the body (3,6,7).

In order to facilitate these routine analyses of viral evolution, we developed a simple
command-line tool called Longitudinal Analysis of Viral Alleles (LAVA) for analyzing and
visualizing the evolution of minor variants in viral genomes over time. The basic tenor of these
analyses involves the calling of a consensus genome for the initial sample and then using that
genome as a reference for downstream samples. Viral sequence data is plotted both across the
genome to show where mutations cluster and over time to show allele frequency changes. The
metadata associated with the experiment may be minimal, consisting simply of sample names
and units of time. The units of time are arbitrary and may be minutes, hours, days, months,
years or even different categorical experimental conditions. LAVA also generates interactive
HTML files for sequence data analysis. The HTML files may be manipulated by users without
significant bioinformatic experience according to the nature of their biological question,
alleviating a significant conundrum for sequencing and bioinformatics groups as demand for

their services continues to increase.
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Methods
LAVA (Longitudinal Analysis of Viral Alleles) can be downloaded at

https://github.com/michellejlin/lava. Installation and usage instructions, a folder with example

inputs, and the full source code, are also available at this link. The general workflow is shown in
Figure 1. A brief explanation is also given here, but a more in depth look into the pipeline is
available at the GitHub link, including options and arguments passed to third party tools, the full
LAVA source code, as well as an informative readme document.

Installation of LAVA and all required dependencies is performed by an install script
which is included in the GitHub repository. The install script only requires Python, a Java
runtime environment, brew/apt-get for Mac/Linux systems, and an Internet connection. All third
party tools except for ANNOVAR (8), which must be manually registered for and downloaded,
are also automatically installed. The install script can also be run in ‘check mode’ and the script
will check for all required dependencies and print error messages with instructions for how to fix
any missing dependencies. The GitHub readme also contains a walkthrough for manually
installing all dependencies and LAVA.

Before execution, LAVA requires a reference genome for sequencing read alignment,
which can be provided as either an NCBI GenBank Accession number, or a local nucleotide
FASTA file along with a GFF file to provide gene and protein annotations (9). Sequencing reads
for all samples are input as adapter and quality-trimmed FASTQ files. LAVA currently does not
perform adapter or quality trimming so this needs to be done beforehand as required. A two-
column CSV metadata file is also required to match sample with its longitudinal temporal
information such as passage number or day number. Other available options include removing
PCR duplicates for metagenomic sequencing, manually specifying the name of the output
folder, analyzing variants by nucleotide changes instead of amino acid changes, saving all
intermediate files (which LAVA by default removes), automatically specifying an allele frequency

cutoff (which is by default set at 1%), and saving output as PNG files.
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97 There are two different methods of selecting annotations for the reference sequence:

98 automatic and manual. In automatic mode LAVA begins with searching GenBank for a user

99  provided accession number corresponding to the viral species to be analyzed (10). This record
100 is then downloaded both as a nucleotide FASTA file and the complete GenBank record. LAVA
101  aligns the first FASTQ file provided to the downloaded reference (11,12) and calls a majority
102  consensus sequence based off this alignment using samtools (13-15). Then coding sequence
103  annotations are pulled from the GenBank record and transferred to the new majority consensus
104  FASTA using a MAFFT alignment (16). In manual mode the user specifies a reference FASTA
105 and a GFF file containing protein annotations for this reference sequence. LAVA assumes that
106 the FASTA is the majority consensus for the first sample and the GFF is a correct annotation of
107 the reference nucleotide sequence. The result of both the automatic and manual processes is
108 an annotated majority consensus of the first sample.
109 LAVA then aligns each of the FASTQ files specified in the metadata CSV to this newly
110 generated file, using bwa-mem (17). By default, LAVA does not remove PCR duplicates given
111  the common use of AmpliSeq-like approaches for viral genome sequencing; however, this
112  option can be added in cases where removing PCR duplicates would give a more accurate
113  representation of the data, such as the analysis of metagenomic samples. Variants are called
114  for every position in the genome for every sample using VarScan and saved as standard VCF
115 files (18). These files are removed from the output folder during cleanup to keep disk usage low,
116  but can be saved using the --save option. Variants for all bases are annotated using Annovar
117 and GATK as nonsynonymous, synonymous, complex, stop-gain, or stop-loss, along with the
118 coverage and allele percentage at each base (8,19). The main text file generated by the pipeline
119 is atable called merged.csv containing all the samples, their metadata, and all the amino acid
120 changes. This file, along with reads.csv, the individual .bam files, and the individual
121  .genomecov files, is used for generating the interactive visualization but can also be manually

122  parsed and examined for more in-depth or non-standard analysis. Reads.csv provides read
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123  mapping information for each sample, such as total number of reads in sample and percentage
124  of reads mapping to reference. A .bam file is generated for each sample during the alignment
125  process, and these can be viewed for understanding the alignments and how the reads were
126  mapped. Genome coverage for each base in each sample is parsed and extracted into a file
127  with extension .genomecov, so genome-wide depth can be examined and analyzed.

128 LAVA then visualizes this information with the Bokeh Python module (20-22), allowing
129 for an easily readable and interactive data visualization. The output for this step is an HTML file
130 containing two interactive plots (Fig 2). The first plot depicts allele frequency changes for each
131 variant across the genome for each sample. Tabs at the top of the plot allow easy switching
132  between samples. Sliders to the right of the main plot allow the user to dynamically change the
133  visibility of variants by depth and by coverage. To the right side of the plot, a line graph shows
134  per-base coverage across the whole genome to help inform the user of reasonable coverage
135 thresholds. The second plot shows allele frequency across the samples over time. Given that
136 the samples will be representing different time points (passages, cultures, days past infection,
137  etc.) of a single virus, this plot shows the longitudinal evolution of amino acid changes,

138 separated by protein. Tabs at the top of the plot allow the user to specify which protein they
139 want to examine. Allele frequencies for all changes in the selected protein are plotted over time.
140 Here, variants can also be filtered by depth and coverage. Both plots support zooming and

141  panning and each mutational change has an associated tooltip which can be viewed by

142  hovering with the mouse over the associated data point to display locus-associated metadata.
143  Data can be filtered by type of mutation (synonymous, non-synonymous, stopgains/stoplosses,
144  and complex mutations), as well as if the same mutation occurs across multiple samples.

145  Another available option in the command line is to show nucleotide changes such as

146  transversions and transitions rather than amino acid changes, which may be relevant to cases
147  when examining nucleoside-analog antivirals directed against viral polymerases, base editors

148  such as APOBEC or ADAR proteins, or other aspects of viral epigenetics (23-25).
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149 LAVA outputs all these files in HTML format (Fig 2), which are readily interpretable in
150 any web browser by groups without significant bioinformatics experience. Once generated by
151 LAVA, all these graphs can be sent and shared as standalone files. Additionally, LAVA also has
152  an option to generate static PNG images of the results for situations where interactive

153 visualization is not appropriate such as publications or presentations.

154

155 Results and Discussion

156 To demonstrate the intended use cases of LAVA and demonstrate why it represents a
157 new and useful tool, we illustrate two real world examples from our own lab.

158

159 Case Study 1 — Evolution of human parainfluenza virus 3 in culture

160 The provided examples (https://github.com/michellejlin/lava/tree/master/example), which

161  are included with the software, illustrate the automation of a task which the authors first

162  performed manually. For case study 1, these example files are truncated versions of the real
163 data analyzed in Iketani et al. (26), and are named Example 1 in LAVA. Example 1 illustrates
164  how to use LAVA to rapidly perform whole genome analysis on matched samples to understand
165 how a unique selective pressure (i.e. culture exposure) affects viral evolution.

166 Briefly, paired human parainfluenza virus type 3 (HPIV3) samples were sequenced

167  directly from nasal sampling and after isolation in culture. The study aimed to examine how
168 HPIV3 adapts to brief exposure to culture. Sequencing reads were adapter and quality trimmed
169 using cutadapt, producing the FASTQ files available on the GitHub (27). A simple metadata
170 sheet called Examplel_metadata.csv was created containing file names and ‘passage

171 numbers'. In this case, because we only use two samples, we put the first sample (nasal swab
172  SC332) occurring at passage 0 and the second sample (cultured CUL 332) at passage 1. We
173  have also provided a manually generated GFF/FASTA reference pair containing the protein

174  locations for all HPIV3 proteins except C and D (which are created through RNA editing and
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175 thus do not automatically translate correctly). To reduce the file size, the example files

176  uploaded to GitHub contain only the first 20,000 original reads that correctly mapped to HPIV3 —
177  full sequencing read files are available from BioProject PRINA338014. Example 1 shows how
178 rapid adaptations to culture can be discovered using LAVA as two non-synonymous mutations
179  (S554G and P241L) appear in the sample after very brief growth in culture. This example also
180 shows off the utility of the depth and allele frequency sliders which can be used to quickly filter
181 low-level sequencing artifacts and mapping errors out of the data, allowing the user to focus on
182  the most relevant points of data.

183

184  Case Study 2

185 We have also included data for a case study which fully highlights the longitudinal

186  analysis nature of LAVA. In this study, norovirus samples were recovered from a >250 day

187 infection over 11 time points from a single patient (28). The fundamental question in this

188 analysis is what whole genome changes accrue as norovirus adapts to the

189 immunocompromised host over almost a yearlong period.

190 Samples were sequenced and reads were adapter and quality trimmed using cutadapt
191  as part of our routine metagenomics analysis pipeline (27). As in Example 1, we selected a few
192  samples: ST107, ST283, and ST709 (all available on BioProject PRINA338014). Reads were
193 trimmed to reduce file size to upload onto GitHub. A two-column metadata sheet called

194  Example2_metadata.csv was created mapping samples to collection day. The analysis was run
195  with the one-line command “lava.py - MH260507 ST107.fastq Example2_metadata.csv -0
196  norovirus_output” (MH260507 is the GenBank Accession number for the actual day O

197  consensus of these samples). This command showcases the alternative method of generating
198 reference files: using the -q flag to automatically download a GenBank reference and transfer
199 annotations. This example also highlights the utility of the protein plots, which show how the

200 allele frequency of all variants for each protein changes over time. Instead of using passages as
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201 in Example 1, these plots demonstrate the evolution over number of days of infection. Using
202 these plots, one can see how the entire norovirus genome accumulates fixed mutational

203  changes over a long-term infection with an increased rate of fixed mutational changes in VP1,
204  the capsid protein and main antigenic determinant of norovirus (29).

205

206  Comparisons

207 While there are many programs that process and visualize somatic mutations, LAVA is
208  unique in its focus on monitoring minor variant alleles in viruses (30-32). With both its

209 component parts of pipeline and visualizer, LAVA fills an important need in the viral

210  bioinformatics community. The Broad Institute, for example, has several well-documented

211  workflows for both germline and somatic variant discovery: HaplotypeCaller and MuTect2.

212  These tools are excellent for their intended use cases and LAVA uses a workflow inspired by
213 these tools. However, HaplotypeCaller is not well suited for whole genome analysis of viral
214  genomes, as the tool is focused on germline SNPs and does not handle the extreme allelic
215 variance found in viral genomes. MuTect2, the Broad Institute’s somatic SNP and indel caller,
216  performs well for its intended use but does not emit all bases of a genome, which is vital

217  information for viral whole genome analysis. Both of these tools are excellent for their intended
218  purposes but would have to be significantly modified to reproduce the analysis of LAVA.

219 The Broad Institute’s viral-ngs suite, pipelines designed specifically for the analysis of
220 viral genomics, takes paired-end reads and calls intrahost variants (iISNVs). Taxonomic read
221 identification is also visualized with Krona. For variant calling in viral genomes, viral-ngs is an
222  excellent tool and we recommend using it over LAVA. However, LAVA was created specifically
223  to automatically compare longitudinal data, which is not a built-in feature of viral-ngs. LAVA also
224 has a visualization tool to easily see and compare minor allele variants across the genome and

225 across time. In these use cases, LAVA adds functionality over other bioinformatics programs.
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Two other bioinformatics pipelines exist that perform similar tasks as LAVA. SMuPFi is a
pipeline that, like LAVA, analyzes NGS data to provide a graphical representation of SNPs and
works well for viral analysis (33). However, due to its nature as a tool designed to better
understand viral escape mechanisms, SMuPFi operates in the area of co-occurring mutations,
and works best with only two co-occurring mutations at the same time due to the complex
statistical analysis involved.

Another pipeline that serves to identify variant sites is ViVan (34). ViVan takes similar
input as LAVA and has a very easy to use, albeit size limit restricted, web interface. It also
detects more sensitive variant alleles than LAVA does—it claims to identify variant alleles with a
frequency of >0.1%, with a slightly higher rate of false positives, whereas LAVA by default both
filters out any minor allele variants below 1% frequency (though this can be adjusted using the -
af argument), and allows dynamic filtration in its visualization to suit the user’s purpose. ViVan
searches for variants within each sample individually and currently provides no built-in feature
for comparisons between samples.

LAVA combines many of the gold-standard bioinformatics tools into a single pipeline to
annotate minor allele variants in viruses and adds a truly unique functionality with its interactive
visualization. The plots that LAVA outputs present easily understandable comparisons between
longitudinal samples, illustrating complex relationships in a simple format that makes patterns
like evolution of minor allele variants across samples, nucleotide change frequency in different
proteins, and synonymous vs. honsynonymous mutations in the genome evident. By allowing
dynamic filtering of data by allele frequency and coverage depth, these plots can be adjusted to
suit the individual needs of the user.

Additionally, the inherently shareable nature of the HTML plots that LAVA creates as
output is an advantage. The small size, ability to be viewed on any web browser, and lack of
dependencies allow data to be shared quickly and extensively through email or any other

means, especially with collaborators who are not comfortable filtering BAM and VCF files.
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252

253  Limitations

254 LAVA is a powerful tool for analyzing a diverse variety of viral datasets, yet it is not

255  without its limitations. While stopgains and stoplosses are handled correctly and included in the
256  plots, LAVA is currently unable to handle complex mutations, wherein two neighboring

257  nucleotide variants occur within a single codon. Multiple nucleotide changes within the same
258  codon are each treated individually as separate amino acid changes. However, LAVA

259  automatically detects this situation, and both prints a warning to the console and colors points
260 corresponding to complex mutations distinctly. Sequence variations such as copy number

261 changes, recombination, or large deletions and insertions that escape the bwa-mem aligner

262 may also be missed (35). Due to the nature of its visualization, LAVA also does not display

263  overlapping genes properly and instead shows them side-by-side. However, LAVA does print a
264  warning message to the console if overlapping proteins are detected, directing users to the

265 README which contains directions for how to manually prepare a GFF file without overlapping
266  proteins. LAVA also does not correctly analyze proteins with RNA editing or ribosomal slippage.
267  Many of these limitations can be fixed by editing the GFF file accordingly.

268 Another limitation of LAVA is that web browsers can fail to render the output plots if there
269 are an extremely large number of variants (>5,000). This does not impact the actual analysis,
270  only the visualization, and the merged.csv output file will still contain all relevant data. This could
271  create problems if LAVA was used to analyze bacterial genomes or other extremely large

272  genomes. LAVA will print a warning message if there are greater than 5,000 variants. The

273  nature of the merged.csv output file is such that manual analysis could easily be performed in
274  an environment better suited to visualizing extremely large data sets such as R.

275

276 Conclusions
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277 LAVA allows users to go from sequencing data to dynamically interactive plots

278 illustrating longitudinal changes in their samples. The only required inputs are 1) FASTQ files
279  with sequences for analysis, 2) either a GFF file and reference FASTA or a Genbank accession
280 number, and 3) a simple metadata.csv file containing information about sample name and

281  passage number. LAVA cuts down the time and effort significantly for data analysis of

282 longitudinal samples, and provides an intuitive and interactive visualization that can be easily
283  shared among collaborators.

284

285  Web resources

286  LAVA can be found at https://github.com/michellejlin/lava and is programmed in Python.

287

288  Acknowledgements

289  The authors would like to acknowledge the Broad institute for Picard, as well as the developers
290 and maintainers of UCSC Genome Browser for gff3ToGenePred. We would also like to thank
291 the entire open source bioinformatics community for their commitment to producing freely

292  available and useful tools for everyone.

293


https://doi.org/10.1101/2019.12.17.879320
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.17.879320; this version posted December 18, 2019. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

294 References

295 1. Muir P, Li S, Lou S, Wang D, Spakowicz DJ, Salichos L, et al. The real cost of

296  sequencing: scaling computation to keep pace with data generation. Genome Biol [Internet].
297 2016 Dec [cited 2019 Mar 18];17(1). Available from:

298  http://[genomebiology.biomedcentral.com/articles/10.1186/s13059-016-0917-0

299 2. Iketani S, Shean RC, Ferren M, Makhous N, Aquino DB, Georges A, et al. Viral Entry
300 Properties Required for Fitness in Humans Are Lost Through Rapid Genomic Change during
301  Viral Isolation. mBio. 2018;9(4):e00898-18.

302 3. Xue KS, Stevens-Ayers T, Campbell AP, Englund JA, Pergam SA, Boeckh M, et al.
303 Parallel evolution of influenza across multiple spatiotemporal scales. eLife [Internet]. 2017 Jun
304 27 [cited 2019 Mar 18];6. Available from: https://elifesciences.org/articles/26875

305 4. Toots M, Yoon J-J, Cox RM, Hart M, Sticher ZM, Makhsous N, et al. Characterization of
306 orally efficacious influenza drug with high resistance barrier in ferrets and human airway

307  epithelia. Sci Transl Med. 2019 Oct 23;11(515).

308 5. Yoon J-J, Toots M, Lee S, Lee M-E, Ludeke B, Luczo JM, et al. Orally Efficacious Broad-
309  Spectrum Ribonucleoside Analog Inhibitor of Influenza and Respiratory Syncytial Viruses.

310  Antimicrob Agents Chemother. 2018 Aug;62(8).

311 6. Debbink K, McCrone JT, Petrie JG, Truscon R, Johnson E, Mantlo EK, et al. Vaccination
312  has minimal impact on the intrahost diversity of H3N2 influenza viruses. PLoS Pathog.

313 2017;13(1):e1006194.

314 7. McCrone JT, Woods RJ, Martin ET, Malosh RE, Monto AS, Lauring AS. Stochastic

315 processes constrain the within and between host evolution of influenza virus. eLife [Internet].
316 2018 May 3 [cited 2019 Mar 18];7. Available from: https://elifesciences.org/articles/35962

317 8. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from
318 high-throughput sequencing data. Nucleic Acids Res. 2010 Sep 1;38(16):e164—e164.
319 9. Clark K, Karsch-Mizrachi |, Lipman DJ, Ostell J, Sayers EW. GenBank. Nucleic Acids

320 Res. 2016 Jan 4;44(D1):D67-72.
321 10. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+:
322  architecture and applications. BMC Bioinformatics. 2009;10(1):421.

323 11. Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform.
324  Bioinforma Oxf Engl. 2010 Mar 1;26(5):589-95.
325 12 Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform.

326  Bioinformatics. 2009 Jul 15;25(14):1754-60.

327 13. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence
328  Alignment/Map format and SAMtools. Bioinforma Oxf Engl. 2009 Aug 15;25(16):2078-9.

329 14. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al. The variant
330 call format and VCFtools. Bioinforma Oxf Engl. 2011 Aug 1;27(15):2156-8.

331 15. Li H. A statistical framework for SNP calling, mutation discovery, association mapping
332 and population genetical parameter estimation from sequencing data. Bioinforma Oxf Engl.
333 2011 Nov 1;27(21):2987-93.

334 16. Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple
335 sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002 Jul

336  15;30(14):3059-66.


https://doi.org/10.1101/2019.12.17.879320
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.17.879320; this version posted December 18, 2019. The copyright holder for this preprint

(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378

available under aCC-BY 4.0 International license.

17. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.
ArXiv13033997 Q-Bio [Internet]. 2013 Mar 16 [cited 2019 Mar 18]; Available from:
http://arxiv.org/abs/1303.3997

18. Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L, et al. VarScan 2:
Somatic mutation and copy number alteration discovery in cancer by exome sequencing.
Genome Res. 2012 Mar 1;22(3):568-76.

19. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The
Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA
sequencing data. Genome Res. 2010 Sep 1;20(9):1297-303.

20. Bokeh Development Team. Bokeh: Python library for interactive visualization [Internet].
2014 [cited 2018 Oct 31]. Available from: http://www.bokeh.pydata.org

21. Cock PJA, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, et al. Biopython: freely
available Python tools for computational molecular biology and bioinformatics. Bioinformatics.
2009 Jun 1;25(11):1422-3.

22. Jones E, Oliphant E, Peterson P, et al. SciPy: Open Source Scientific Tools for Python
[Internet]. 2001 [cited 2018 Oct 31]. Available from: https://www.scipy.org/

23. Yoon J-J, Toots M, Lee S, Lee M-E, Ludeke B, Luczo JM, et al. Orally Efficacious Broad-
Spectrum Ribonucleoside Analog Inhibitor of Influenza and Respiratory Syncytial Viruses.
Antimicrob Agents Chemother [Internet]. 2018 Jun 11 [cited 2019 Mar 18];62(8). Available from:
http://aac.asm.org/lookup/doi/10.1128/AAC.00766-18

24. Smith HC, Bennett RP, Kizilyer A, McDougall WM, Prohaska KM. Functions and
regulation of the APOBEC family of proteins. Semin Cell Dev Biol. 2012 May;23(3):258—68.

25. Nishikura K. Functions and regulation of RNA editing by ADAR deaminases. Annu Rev
Biochem. 2010;79:321-49.

26. Iketani S, Shean RC, Ferren M, Makhsous N, Aquino DB, des Georges A, et al. Viral
Entry Properties Required for Fitness in Humans Are Lost through Rapid Genomic Change
during Viral Isolation. mBio. 2018 Jul 3;9(4).

27. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing
reads. EMBnet.journal. 2011 May 2;17(1):10.

28. Casto AM, Adler AL, Makhsous N, Crawford K, Qin X, Kuypers JM, et al. Prospective,
Real-time Metagenomic Sequencing During Norovirus Outbreak Reveals Discrete Transmission
Clusters. Clin Infect Dis Off Publ Infect Dis Soc Am. 2019 Aug 30;69(6):941-8.

29. Mahar JE, Donker NC, Bok K, Talbo GH, Green KY, Kirkwood CD. Identification and
Characterization of Antibody-Binding Epitopes on the Norovirus GI1.3 Capsid. J Virol. 2014 Feb
15;88(4):1942-52.

30. Ardin M, Cahais V, Castells X, Bouaoun L, Byrnes G, Herceg Z, et al. MutSpec: a
Galaxy toolbox for streamlined analyses of somatic mutation spectra in human and mouse
cancer genomes. BMC Bioinformatics [Internet]. 2016 Dec [cited 2019 Mar 18];17(1). Available
from: http://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-016-1011-z

31. Lee J, Lee AJ, Lee J-K, Park J, Kwon Y, Park S, et al. Mutalisk: a web-based somatic
MUTation AnaLylS toolKit for genomic, transcriptional and epigenomic signatures. Nucleic Acids
Res. 2018 Jul 2;46(W1):W102-8.


https://doi.org/10.1101/2019.12.17.879320
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.17.879320; this version posted December 18, 2019. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

379 32 Cario CL, Witte JS. Orchid: a novel management, annotation and machine learning
380 framework for analyzing cancer mutations. Hancock J, editor. Bioinformatics. 2018 Mar

381  15;34(6):936-42.

382 33. Leung P, Bull R, Lloyd A, Luciani F. A Bioinformatics Pipeline for the Analyses of Viral
383  Escape Dynamics and Host Immune Responses during an Infection. BioMed Res Int.

384  2014;2014:1-12.

385 34. Isakov O, Borderia AV, Golan D, Hamenahem A, Celniker G, Yoffe L, et al. Deep

386  sequencing analysis of viral infection and evolution allows rapid and detailed characterization of
387  viral mutant spectrum. Bioinformatics. 2015 Jul 1;31(13):2141-50.

388  35. Greninger AL, Roychoudhury P, Makhsous N, Hanson D, Chase J, Krueger G, et al.
389  Copy Number Heterogeneity, Large Origin Tandem Repeats, and Interspecies Recombination
390 in Human Herpesvirus 6A (HHV-6A) and HHV-6B Reference Strains. Longnecker RM, editor. J
391  Virol [Internet]. 2018 Feb 28 [cited 2019 Mar 18];92(10). Available from:

392  http://jvi.asm.org/lookup/doi/10.1128/JV1.00135-18

393


https://doi.org/10.1101/2019.12.17.879320
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.17.879320; this version posted December 18, 2019. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

394  Figure Legends
395

396 Figure 1 - General workflow of the LAVA pipeline is depicted to offer a high-level overview of
397  program execution. Dashed arrows represent optional steps. Input are shown boxed in green,
398 output in blue, and the main lava program is circled in pink. For input, either a GenBank
399  Accession number or a FASTA/GFF pair is required. If a GenBank Accession number is
400 provided, LAVA generates a FASTA/GFF pair following the outlined steps. The linked chain
401 symbol between the metadata.csv input and the FASTQ reads is meant to emphasize that the
402 metadata.csv must contain all the file names that you wish to include in your analysis. General
403  steps are given with tools used during that specific step listed to the side or underneath each
404  step in parentheses. The final output is given as HTML files that contain the interactive plots.
405  For exactly what is passed to each of the other programs and information about parameters and
406  optional arguments (such as mapping parameters), the source code is available on GitHub.

407

408  Figure 2 - Example LAVA output is shown, this figure shows the results from running Example 1
409  (Allfiles are available on GitHub and a more in-depth coverage of this data is provided in Case
410 study 1.) This example is a screenshot of a Chrome browser displaying the final HTML created
411 by LAVA. The plot on the top of the page shows all amino acid changes across the whole

412  genome for each sample. You can switch between the samples using the tabs highlighted in a
413  red box. The bottom plot shows changes in by-protein allele frequencies over time. You can use
414  tabs once again to switch between proteins. All changes meeting display requirements are

415  plotted over time (or whatever your numerical metadata was). For example, this example shows
416  the hemagglutinin-neuraminidase protein for HPIV3 undergoing changes during the culturing
417  process. All output can be filtered by depth, allele frequency and type of mutation using the

418  sliders boxed in red to the right of each main plot. A small plot is displayed next to the whole
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419 genome graph providing a visual representation of the per-base coverage of reads mapping to
420  the consensus.

421
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