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Abstract

Cell size is believed to influence cell growth and metabolism. Consistently, several studies have
revealed that large cells have lower mass accumulation rates per unit mass (i.e. growth efficiency)
than intermediate sized cells in the same population. Size-dependent growth is commonly attributed
to transport limitations, such as increased diffusion timescales and decreased surface-to-volume ratio.
However, separating cell size and cell cycle dependent growth is challenging. To decouple and
quantify cell size and cell cycle dependent growth effects we monitor growth efficiency of freely
proliferating and cycling polyploid mouse lymphocytes with high resolution. To achieve this, we
develop large-channel suspended microchannel resonators that allow us to monitor mass of single
cells ranging from 40 pg (small diploid lymphocyte) to over 4000 pg, with a resolution ranging from
~1% to ~0.05%. We find that mass increases exponentially with respect to time in early cell cycle but
transitions to linear dependence during late S and G2 stages. This growth behavior repeats with every
endomitotic cycle as cells grow in to polyploidy. Overall, growth efficiency changes 29% due to cell
cycle. In contrast, growth efficiency did not change due to cell size over a 100-fold increase in cell
mass during polyploidization. Consistently, growth efficiency remained constant when cell cycle was
arrested in G2. Thus, cell cycle is a primary determinant of growth efficiency and increasing cell size

does not impose transport limitations that decrease growth efficiency in cultured mammalian cells.

Significance statement

Cell size is believed to influence cell behavior through limited transport efficiency in larger cells,
which could decrease the growth rate of large cells. However, this has not been experimentally
investigated due to a lack of non-invasive, high-precision growth quantification methods suitable for
measuring large cells. Here, we have engineered large versions of microfluidic mass sensors called
suspended microchannel resonators in order to study the growth of single mammalian cells that range
100-fold in mass. This revealed that the absolute size of a cell does not impose strict transport or other
limitations that would inhibit growth. In contrast to cell size, however, cell cycle has a relatively large
influence on growth and our measurements allow us to decouple and quantify the growth effects

caused by cell cycle and cell size.
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Introduction

The extent to which cell cycle and cell size affect cell growth efficiency (growth rate
per unit mass) is not known. In cultured and proliferating animal cells, mass increases exponentially
with time, except in the largest cells which display decreased growth efficiency and proliferation rates
(1-4). One explanation for the decreased growth in largest cells is that when cells grow beyond a
certain size their growth becomes constrained by transport limitations (5-14). Most notably, larger
cells have longer diffusion distances and lower surface-to-volume ratios, both of which could reduce
the maximal rate at which large cells can transfer metabolites and information. Importantly, such
transport limitations can exist even when cellular components scale isometrically with cell size. In a
developmental setting, growth-influencing transport limitations could have a major impact on cell
physiology, possibly explaining why most fast growing and proliferating cell types are small (<20
pum in diameter) (5, 6, 8). Transport limitations are also considered to result in allometric scaling of
metabolism, a phenomenon where larger animals display lower metabolic and growth rates (10, 11).
However, whether increasing cell size fundamentally imposes transport limitations that result in
decreased growth efficiency is not known.

Alternatively, the non-linear correlation between cell mass and growth efficiency could
reflect cell cycle dependent growth, where each specific cell cycle stage has differential growth
signaling and metabolism. This growth regulation can be entirely independent of cell size or can be
coupled to size-dependent titration/dilution effects, where the concentration of cellular components
is lowered as cells grow larger. Such dilution effects often depend on DNA content and, consequently,
the dilution effects should be most prominent when cells grow during a cell cycle arrest (14-18). In
support of cell cycle dependent growth, cell cycle regulators are known to influence protein synthesis
machinery (19-22), and growth rates in G1 have been shown to depend on cell size (23, 24),
presumably due to dilution effects. However, as cell cycle stage changes with cell size in most
proliferating cell types, cell size and cell cycle effects must be decoupled to understand their
individual contributions to cell growth.

To quantify the extent of cell size dependent growth, one would need to examine cells
of vastly different sizes. Cultured cells maintain size homeostasis and display little size variability.
Yet, cell size can increase significantly when cells undergo repeated cell cycles in the absence of cell
division (polyploidization). Polyploidization and the associated cellular hypertrophy is normal and
critical in many tissues during development (5, 12, 25, 26), and also commonly observed in cancers
(25, 27). Although the physiological importance of polyploidy is well established, method limitations
have prevented high-resolution single-cell measurements of growth in large polyploid cells. Several

methods, including quantitative phase microscopy (3, 28), fluorescence exclusion microscopy (23,
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29) and suspended microchannel resonators (SMRs) reported thus far (2, 30), are capable of non-
invasively quantifying single-cell growth rates of small cells (diameter range from <5 pm to 15 pm
in spherical cells). However, for the large cell sizes observed in polyploid cells, these techniques
become imprecise or even infeasible, depending on the method. Here, we expand the analytical range
of SMRs by engineering large-channel versions of the devices. We then use the large-channel SMRs
together with previously published small-channel SMRs to monitor the growth of vastly different
sized single cells (ranging from ~7 to ~32 um in diameter) and to quantify the extent to which cell

size and cell cycle influence growth.

Results and discussion

The SMR is a microfluidic mass measurement device where a cell is flown through a
vibrating cantilever and the change in the cantilever’s vibration frequency is used to quantify the
buoyant mass of the cell. To overcome previous size-range limitations, we developed large-channel
SMRs, which have 60 x 60 pm microfluidic channel inside the vibrating cantilever (Fig. 1A). These
large-channel devices operate in the first vibration mode and utilize a new image-based
hydrodynamic trapping approach to repeatedly measure the buoyant mass of a single particle/cell (S
Appendix, Fig. S1, Materials and Methods). The image-based hydrodynamic trapping provided
additional stability for long-term mass monitoring by allowing us to maintain a cell or a bead in a
specified region within the microfluidic channels between measurements. Using polystyrene beads,
we quantified each large-channel SMR mass measurement to have a resolution (standard deviation)
ranging between 0.24 and 1.25 pg for particles ranging from 10 to 50 um in diameter, respectively
(Fig. 1B; see SI Appendix, Fig. S1 & Materials and Methods for full details). This corresponds to a
measurement coefficient of variation range from 1.1 % to 0.05 %, respectively. When monitoring
single-cell growth, we were able to carry out mass measurement every ~30 s without affecting cell
viability, allowing us to average multiple mass measurements when monitoring mass changes that
take place over longer time periods (Fig. 1C).

To validate that the large-channel SMRs provide data comparable to previous 15 x 20
um SMRs (from here on referred to as small-channel SMRs), we measured single-cell buoyant mass
accumulation rate (from here on referred to as growth rate) of mouse lymphocyte L1210 cells
expressing the mAG-hGeminin cell cycle reporter (FUCCI). The interphase L1210 cell growth rates
obtained from small and large-channel SMRs were similar (Fig. 1D and E). It is known that growth
rate, cell density and cell stiffness display dynamic changes in mitosis (19, 31, 32). As these changes
are unlikely to reflect cell size-dependent effects, we have excluded mitosis from all future analyses.

While the small-channel SMR has better measurement resolution than the large-channel SMR when
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measuring normal sized L1210 cells (stdev of 0.026 pg and 0.24 pg for a 10 um diameter bead,
respectively) (19), the large-channel SMR increases the maximum spherical cell volume that can be
measured 64-fold. Importantly, the large-channel SMR is also able to monitor growth of a single cell
over multiple cell cycles (randomly following one of the daughter cells following each division, Fig.
1E), which is previously achieved by only a few cell size measurement methods (33).

We first studied the size-dependency of cell growth by monitoring unperturbed L1210
cells using the small-channel SMRs. Our data revealed that when cells are small (G1 and early S-
stage cells), growth rate increases linearly with size (as cell cycle proceeds), indicative of exponential
growth (Fig. 2A). However, growth rate plateaus in larger cells (late S-stage and G2 cells), indicating
a transition to linear growth. Consequently, the intermediate sized cells (S-stage cells) displayed the
highest growth efficiency (Fig. 2B). Large-channel SMRs provided similar data. These results are
consistent with previous findings (1-3, 23) that cell size and/or cell cycle have a major effect on cell
growth efficiency.

Next, to examine cell cycle stage independent growth effects, we measured growth
efficiency specifically in newborn G1 cells, in cells at G1/S transition and in cells at late G2. This
revealed little to no correlation between growth efficiency and cell mass (Fig. 2C). Considering our
measurement resolution (19), the lack of correlation is unlikely to be caused by noise in our
measurement. Thus, these results suggest that cell size does not have a major influence on L1210 cell
growth efficiency when examining changes over small size ranges.

To examine size-dependent growth independently of cell cycle effects and over a large
size range, we turned to polyploid model systems. If the declining growth efficiency observed in the
largest unperturbed cells (Fig. 2B) is due to transport limitations caused by increases in cell size, then
increasing size further by induction of polyploidy should result in further declining growth rates (Fig.
3A). However, if the non-linear correlation between cell size and growth efficiency observed in
control cells reflects cell cycle dependent growth, then the oscillating growth efficiency should repeat
with every successive cell cycle in the polyploid cells independently of cell size. To test our
hypothesis, we induced polyploidy in L1210 cells using 50 nM Barasertib (also known as AZD1152-
HQPA), a selective inhibitor of Aurora B, which is critical for cytokinesis (34, 35). This resulted in
several endomitotic cycles where ploidy increased from 2N up to 128N (Fig. 3B) with corresponding
increases in cellular hypertrophy (Fig. 3C and D), suggesting that DN A-to-cell size ratio remained
comparable to control cells. Importantly, the cells remained spherical with a single, multilobed
nucleus (Fig. 3C). Prolonged drug treatments also resulted in cell death, which manifested in mass
measurements as sudden transition to zero or negative growth (SI Appendix, Fig. S2A-C). These data

were excluded from our analysis (Materials and Methods).
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When examining growth over larger size scales using the polyploid cells, mass
increased exponentially over time (Fig. 3D and SI Appendix, Fig. S2D). Remarkably, the non-linear
growth efficiency behavior that was observed in control cells (Fig. 2B) repeated in every successive
cell cycle during polyploidization independently of cell size (Fig. 3E). This non-linear growth
behavior cannot be explained by the DNA-to-cell size ratio alone, as growth efficiency decreased
towards the end of each cell cycle, but started to increase immediately following endomitosis before
the subsequent S-stage. Furthermore, the low growth efficiency in newborn G1 cells (Fig. 2B and C),
cannot reflect too small absolute size, as polyploid G1 cells display similarly low growth efficiency.
To validate that the observed growth behavior cannot be attributed to drug specific effects, we
induced polyploidy using an alternative cytokinesis inhibitor, 10 uM H-1152, which targets the Rho-
kinase (ROCK) (36). This resulted in similar growth behavior as Aurora B inhibition (SI Appendix,
Fig. S2E).

Overall, we quantified growth efficiency for L1210 lymphocytes over an approximately
100-fold mass range spanning from 40 pg to 4000 pg. In spherical L1210 cells this corresponds to a
diameter range from <7 um to >32 um resulting in estimated 4.5-fold reduction in surface-to-volume
scaling. This size range covers most proliferating cell types in the human body. Unlike cells in vivo,
cultured cells are constantly selected for the highest growth rate, allowing us to assume that the
measured growth rates reflect maximal growth rates possible for the cells. Size scaling typically
follows a power law Y = aMP?, where Y is the observable biological feature, a is a normalization
constant, M is the mass of the organisms (or a cell), and b is the scaling exponent which typically has
values close to ¥ when studying metabolic rate (10, 11). We observed a minor decrease in growth
efficiency in largest cells when plotting data obtained across multiple measurement systems and
conditions (Fig. 3E). We therefore quantified size-dependent growth and the allometric scaling
exponent from our growth rate data using only Barasertib-treated cells monitored with the large-
channel SMR (81 Appendix, Fig. S2F). After accounting for the oscillating cell cycle dependent
growth (Materials and Methods), the L1210 cell growth rates display an isometric scaling exponent
0f 0.99 £ 0.02 (mean + s.e.m.) (Fig. 3F), consistent with previous predictions for cells in vitro (37).
This corresponds to each doubling of cell mass changing growth efficiency by -0.1 £ 1.1% (mean +
s.e.m.).

In contrast to cell size, cell cycle displays a strong influence over cell growth efficiency.
To validate that cell cycle progression causes the oscillating growth behavior within each cell cycle,
we arrested L1210 cells to G2 stage with 2 pM RO-3306, an inhibitor of cyclin-dependent kinase 1
(CDK1) (38) (SI Appendix, Fig. S3A and B). Prolonged RO-3306 treatment resulted in cell death,

and to avoid this toxicity, we only analyzed growth for the first 40 pg increase (corresponding to a
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typical mass increase in a cell cycle) from the normal mitotic size. This revealed that the decrease in
growth efficiency that was observed in large control cells stopped as cells were arrested in G2 and
the growth efficiency remained constant for G2 arrested cells even as their sizes increased (S/
Appendix, Fig. S3C and D). Thus, as suggested by previous work in budding yeast (39), our results
show that cell cycle has a major influence on mammalian cell growth efficiency. We quantified this
cell cycle dependent growth to be 29 + 3% (mean + s.e.m.) of the average growth efficiency in
untreated L1210 cells. In addition, the steady growth efficiency observed in G2 arrested cells
validates that increasing cell size does not automatically result in decreasing growth efficiency even
in a model where DNA content does not scale with cell size. Furthermore, these results suggest that
G2 growth efficiency is not regulated by dilution of components produced in earlier cell cycle stages.

Finally, using the polyploidy cell data collected using the large-channel SMR, we also
analyzed how cell size increase and cell cycle duration scale with cellular hypertrophy and the
associated polyploidy. This revealed that with each successive endomitotic cycle the L1210 cells
approximately doubled their size independently of the cell size at the start of that cell cycle (Fig. 3G,
top). Cell cycle duration also remained constant regardless of cell size (Fig. 3G, bottom). This
suggests that massive cellular hypertrophy and the associated polyploidy do not interfere with the
mechanism(s) ensuring that cells double their size during each cell cycle.

In conclusion, increasing cell size does not impose strict transport limitations that would
lower growth efficiency in cultured mammalian cells. This conclusion was reached when observing
freely proliferating lymphocytes in specific cell cycle stages (Fig. 2C), when examining cells across
a vast size range following chemically induced polyploidy (Fig. 3E) and when examining G2 arrested
cells (SI Appendix, Fig. S3D). Cells may be able to compensate for the increased intracellular
distances and decreased surface-to-volume ratio, for example by upregulating the expression of active
transporters. Alternatively, the transport limitations may only influence growth under very specific
conditions, for example when specific nutrients are in low abundance or when cell size increases
above the range normally observed in proliferating mammalian cells.

Our results also show that the previously observed correlation between cell size and
growth efficiency in proliferating cultures (1-3) can be explained by cell cycle effects, which have a
large influence over cell growth efficiency. While our conclusions rely on data from a single cell line,
L1210, the growth profiles of L1210s and adherent cells have been shown to be similar (3), suggesting
similar cell cycle dependent growth regulation across multiple cell types. Notably, our results do not
exclude growth regulation by dilution effects in G1 stage of cell cycle, nor do our results exclude
dilution/concentration effects regulating cell cycle progression or cell metabolism (4, 14-18, 40). In

fact, size-dependent dilution effects are likely to be responsible for cell size homeostasis, as our data
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show that cell size homeostasis is not achieved simply by coupling cell growth efficiency to the
absolute size of cells.

Methodologically, we anticipate that the large channel SMRs will have important uses
outside this study. The ability to monitor the mass of unlabeled large samples will enable growth (2,
19), drug-response (41) and nutrient uptake (42) studies in various models. These include extremely
large single-cells such as adipocytes or megakaryocytes, as well as individual organoids or tumor
spheroids, where adherent cell mass accumulation can now be monitored in a preserved 3D

microenvironment.

Materials and Methods
Please see SI Appendix, Materials and Methods.
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Fig. 1. Large-channel SMR enables buoyant mass monitoring across large size ranges with high
resolution.

(A) In scale schematic of the small and large-channel SMR cantilevers. The measurement principle
of SMRs is to flow a cell through a vibrating cantilever while monitoring changes in the vibration
frequency, which are directly proportional to the buoyant mass of the cell. Note that small-channel
SMRs are equipped with fluorescence detection system, whereas large-channel SMRs use image-
based cell trapping. The scale bars on the right are in um. (B) Quantification of large-channel SMR
resolution based on repeated mass measurements of single polystyrene beads of different sizes
(diameters). Insets display zoom-in views of the 10.12 and 49.30 um bead data along with
measurement mean, standard deviation (stdev) and coefficient of variation (CV). (C) Large-channel
SMR mass measurement resolution as a function of averaging time (moving average filter length
reflecting temporal resolution) over multiple measurements for different sized polystyrene beads.
Color coding is the same as in panel (B). The measurement interval is ~30 s, and the first data point
under a grey background reflects individual measurements without any averaging. Inset displays the
resolution as CV. (D,E) Example mass trace of control L1210 FUCCI cell growing through multiple
divisions in (D) small-channel SMR (N=9 independent experiments) and in (E) large-channel SMR.
Data represents individual mass measurements without any averaging. At each division, one daughter
cell is discarded. The mAG-Geminin signal (green) detection was only carried out in small-channel
devices, and its increase indicates G1/S transition and loss indicates metaphase/anaphase transition
(blue arrows).
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Fig. 2. Growth efficiency of unperturbed lymphocytes does not correlate with cell size when
examining specific cell cycle stages.

(A,B) The growth rate (A) and growth efficiency (B) of L1210 FUCCI cells as a function of mass as
obtained using small-channel SMR (red trace, number of cells for each size analyzed is indicated with
a color gradient at the bottom, N=9 independent experiments) and large-channel SMR (blue trace,
n=3). The line and shaded area indicate mean + stdev. Average newborn size (B), G1/S transition
size, mitotic entry size (G2/M) and division size (D) are indicated with dashed vertical lines. (C)
Correlations between mass and growth efficiency at the beginning of G1, at G1/S transition and at
the end of G2 (n=72 cells from 9 independent experiments for newborn and late G2 cells; n=41 cells
from 5 independent experiments for G1/S cells). Data from each experiment is represented in its own
color. Each cell (dot) is plotted with error bars (measurement error as stdev; error bars for cell mass
are smaller than the dots). Linear fits, Pearson correlations (R?) and p-values for the correlations (2-
tailed test of significance) are shown in orange.

12


https://doi.org/10.1101/2019.12.17.879080
http://creativecommons.org/licenses/by/4.0/

360

365

370

375

380

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.17.879080; this version posted December 17, 2019. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in
perpetuity. It is made available under aCC-BY 4.0 International license.

Mu, Kang, et al. unpublished manuscript, main text

A C D

i Orthogonal views

7000+
R2 =0.984
Nuclear
envelope 6000

Increased size 3D projections
due to polyploidy o

C

Plasma
membrane

Control
n
3
o

4000

Cell size (logy)

Growth efficiency
(growth rate / mass)

30004

Buoyant mass (pg)

)
N2 . £ ]
» Barasertib o 2000
D Ne4 & Cell #2
o N4
S 5 1000
o N32 N128 m Cell #1
R N N16 o
P I 0 10 20 30 40 50 60 70 80
2 EN Azcorftenf (@ j : 2 1 I Treatment time (h)
E F — Mean G 0 T 2N 8N 3N 13N
—— Mean Number of cells +stdev 8 -
= 01 xstdev T T T ) 1025 . o 225y o .
< scaling exponent c 3 L
& Zo0.08f £ [b=099:002 £ T 1001-- g
cw D) 1020} 2@ 75
o N Q 2t 2
3 @ = o R2 = 0.049
2 £ 006 o) = £ 50
D B © 1015 20—
- —
= g 0.04F £ o < 15 ° g, v .
% = 2 T c . e
o C O 4010 = o 104 e 8
S Q10
O Eoo2f ) =
S 35
2 - " 2 2 . 1005k, . . o3 RZ =0.037
26 o7 28 29 510 o1 1015 1020 1025 130 1035 055 o7 59 ol
Cell mass (pg) Cell mass (pg) Cell mass (pg)

Fig. 3. Monitoring polyploid cell growth over a 100-fold size range reveals that growth is not
size limited.

(A) Hypothesis of cell growth regulation as cells increase size through endomitotic cycles. In the size
range observed during a normal cell cycle (orange) cells display non-linear size scaling of growth
efficiency. When cells grow in to polyploidy, cell size dependent (S, dashed blue line) and cell cycle
dependent (C, solid blue line) growth should result in different growth behaviors. (B) DNA histogram
of untreated (orange) and 80h 50 nM Barasertib treated (blue) L1210 FUCCI cells (n=3 independent
cultures). (C) Examples of control (top) and 50 nM Barasertib treated (bottom) L1210 FUCCI cell
morphologies based on nuclear envelope (cyan), plasma membrane (yellow) and DNA (magenta)
imaging (N=2 independent experiments each with >10 fields of view). Left side displays 3D
projections and right side displays a single z-slice with orthogonal views. Scale bars denote 5 um.
(D) Three example buoyant mass traces from Barasertib treated L1210 FUCCI cells obtained using
the large-channel SMR (N=31 independent experiments). Exponential fit to the three examples and
Pearson correlation (R?) are displayed in orange. (E) The combined growth efficiency of control,
Barasertib and H-1152 treated L1210 FUCCI cells across a large mass range as measured with both
small and large-channel SMRs. Number of cells at each mass is indicated with a color gradient at the
bottom (N=76 independent experiments). Estimated ploidy level is displayed on bottom in blue. See
also SI Appendix, Fig. S2E and F. (F) Growth rate as a function of mass on a logio-logio plot when
utilizing only Barasertib treated L1210 data collected using the large-channel SMR. Linear fit and
scaling exponent b (mean + s.e.m.) are displayed in orange. Perfect isometric scaling (b = 1) is
illustrated with dashed black line. (G) Correlation between % mass increase during a cell cycle (fop)
or cell cycle duration (bottom) and cell mass at the beginning of the cell cycle. Data represents
Barasertib treated L1210 cells analyzed using the large-channel SMR (N=I11 independent
experiments with 16 cell cycles). Dashed black line in top panel represents a perfect mass doubling
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in each endomitotic cycle. Approximate ploidy level at the start of each cell cycle is displayed on top
in blue. Linear fits and Pearson correlations (R?) are displayed in orange.
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