

1 The Tung Tree (*Vernicia Fordii*) Genome Provides A Resource 2 for Understanding Genome Evolution and Oil Improvement

3

4 Lin Zhang^{1,2,3,*,a}, Meilan Liu^{1,2,*,b}, Hongxu Long^{1,2,*,c}, Wei Dong^{4,*,d}, Asher Pasha^{3,e},
5 Eddi Esteban^{3,f}, Wenying Li^{1,2,g}, Xiaoming Yang^{5,h}, Ze Li^{1,i}, Aixia Song^{4,j}, Duo
6 Ran^{1,2,k}, Guang Zhao^{1,2,l}, Yanling Zeng^{1,2,m}, Hao Chen^{1,2,n}, Ming Zou^{6,o}, Jingjing Li^{6,p},
7 Fan Liang^{6,q}, Meili Xie^{6,7,r}, Jiang Hu^{6,s}, Depeng Wang^{6,t}, Heping Cao^{8,*,u}, Nicholas J.
8 Provart^{3,*,v}, Liangsheng Zhang^{4,*,w}, Xiaofeng Tan^{1,2,*,x}

9

10 ¹*Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education,
11 Central South University of Forestry and Technology, Changsha 410004, China*

12 ²*Key Lab of Non-wood Forest Products of State Forestry Administration, College of Forestry,
13 Central South University of Forestry and Technology, Changsha 410004, China*

14 ³*Department of Cell and Systems Biology / Centre for the Analysis of Genome Evolution and
15 Function, University of Toronto, Toronto, Ontario M5S 3B2, Canada*

16 ⁴*State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Provincial
17 Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry
18 University, Fuzhou 350002, China*

19 ⁵*College of Forestry, Nanjing Forestry University, Nanjing 210037, China*

20 ⁶*Nextomics Biosciences Co., Wuhan 430073, China*

21 ⁷*Oil Crop Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China*

22 ⁸*U.S. Department of Agriculture, Agricultural Research Service, Southern Regional Research
23 Center, New Orleans, LA 70122, USA*

24

25 # Equal contribution.

26 * Corresponding authors.

27 E-mail: t20071128@csuft.edu.cn (Zhang L), heping.Cao@ars.usda.gov (Cao H),
28 nicholas.provart@utoronto.ca (Provart NJ), zls@fafu.edu.cn (Zhang L),
29 t19781103@csuft.edu.cn (Tan X).

30

31 Running title: *Zhang L et al / Tung Tree (*Vernicia fordii*) Genome*

32

33 ^aORCID: 0000-0002-7412-5784.

34 ^bORCID: 0000-0003-3837-2398.

35 ^cORCID: 0000-0002-6145-0385.

36 ^dORCID: 0000-0003-2201-7164.
37 ^eORCID: 0000-0002-9315-0520.
38 ^fORCID: 0000-0001-9016-9202.
39 ^gORCID: 0000-0001-8488-1578.
40 ^hORCID: 0000-0002-6751-1732.
41 ⁱORCID: 0000-0002-2759-123X.
42 ^jORCID: 0000-0003-2300-9238.
43 ^kORCID: 0000-0003-3660-8838.
44 ^lORCID: 0000-0002-0344-0760.
45 ^mORCID: 0000-0003-2140-9510.
46 ⁿORCID: 0000-0001-5739-2330.
47 ^oORCID: 0000-0003-0352-2851.
48 ^pORCID: 0000-0002-0142-5495.
49 ^qORCID: 0000-0003-1556-1436.
50 ^rORCID: 0000-0003-1679-4012.
51 ^sORCID: 0000-0002-8521-9161.
52 ^tORCID: 0000-0001-9014-710X.
53 ^uORCID: 0000-0002-0958-1468.
54 ^vORCID: 0000-0001-5551-7232.
55 ^wORCID: 0000-0003-1919-3677.
56 ^xORCID: 0000-0001-5508-2224.

57

58 The manuscript has 6,547 words, 1 table and 8 figures, 13 supplementary files, 33
59 supplementary figures, and 59 supplementary tables.

60

61 **Abstract**

62 Tung tree (*Vernicia fordii*) is an economically important woody oil plant that produces
63 tung oil containing a high proportion of eleostearic acid (~80%). Here we report a
64 high-quality, chromosome-scale tung tree genome sequence of 1.12 Gb with 28,422
65 predicted genes and over 73% repeat sequences. Tung tree genome was assembled by
66 combining Illumina short reads, PacBio single-molecule real-time long reads and
67 Hi-C sequencing data. Insertion time analysis revealed that the repeat-driven tung tree
68 genome expansion might be due to long standing long terminal repeat (LTR)
69 retrotransposon bursts and lack of efficient DNA deletion mechanisms. An electronic
70 fluorescent pictographic (eFP) browser was generated based on genomic and
71 RNA-seq data from 17 various tissues and developmental stages. We identified 88
72 nucleotide-binding site (NBS)-encoding resistance genes, of which 17 genes may help
73 the tung tree resist the *Fusarium* wilt shortly after infection. A total of 651 oil-related
74 genes were identified and 88 of them were predicted to be directly involved in tung
75 oil biosynthesis. The fewer phosphoenolpyruvate carboxykinase (PEPC) genes, and
76 synergistic effects between transcription factors and oil biosynthesis-related genes
77 may contribute to high oil content in tung seeds. The tung tree genome should provide
78 valuable resources for molecular breeding and genetic improvement.

79

80 **KEYWORDS:** Tung tree genome; Tung oil; Genome evolution; Electronic
81 fluorescent pictographic browser; Oil biosynthesis

82

83

84 **Introduction**

85 Tung tree (*Vernicia fordii*), a woody oil plant native to China, is widely distributed in
86 the subtropical area. Tung tree taxonomically belongs to the Euphorbiaceae family,
87 along with several other economically important species including cassava (*Manihot*
88 *esculenta*), castor oil plant (*Ricinus communis*), rubber tree (*Hevea brasiliensis*) and
89 physic nut (*Jatropha curcas*). Species commonly referred to as tung trees include
90 three major subspecies (*V. fordii*, *V. montana*, and *V. cordata*), of which *V. fordii* is the
91 most widely cultivated species due to wide geographic distribution, medium stature

92 for easy plantation management, and high-quality oil production. Tung trees have
93 been planted for tung oil production or ornamental purpose for more than 1000 years
94 in China [1]. Tung trees have been widely distributed in 16 Chinese provinces and
95 many countries after they were introduced into America, Argentina, Paraguay and
96 other countries for plantation and tung oil production at the beginning of the
97 20th century [1] (Figure S1).

98 Tung seeds contain 50%–60% tung oil, which is composed of approximately 80%
99 α -eleostearic acid (α -ESA), a type of unusual fatty acid. As the major component in
100 tung oil, α -ESA has three conjugated double bonds (9 cis, 11 trans, 13 trans), and thus
101 is easily oxidized. Due to its excellent characteristics, tung oil has been widely used as
102 a drying ingredient in paints, varnishes, coating and finishes since ancient times [2].
103 Tung oil also can be used for synthesizing thermosetting polymers and resins with
104 superior properties [3,4], and has been proposed as a potential source of biodiesel
105 [5–7]. Tung oil was one of the chief exports until 1980s, and then declined due to the
106 development of chemical coatings. Interestingly, tung oil has been attracted
107 world-wide attention in recent years due to production security, environmental
108 concerns, and negative effect of synthetic chemical coatings on human health [8–10].
109 New technologies have been developed to improve the performance of tung oil-based
110 coatings [3,11,12].

111 As an oil crop, economic traits involved in fatty acid biosynthesis and oil
112 accumulation are the targets of improved breeding efficiency for tung tree. However,
113 identification of important genes, gene families and marker loci associated with oil
114 content, fatty acid composition, and fruit yield has been hampered due to a lack of
115 genetic and genomic information. Only a few functional genes, mainly involved in the
116 formation and regulation of fatty acids such as *fatty acid desaturase* (*FAD2*, *FAD3*,
117 *FADx*) and *diacylglycerol acyltransferase* (*DGAT*), have been investigated to date
118 [13–17].

119 In the present study, we report the sequencing and assembly of *V. fordii* genome,
120 which was achieved by combining whole-genome shotgun sequencing of Illumina
121 short reads and real-time (SMRT) long reads on a Pacific Biosciences (PacBio)
122 platform. We also used a Hi-C map to cluster the majority of the assembled contigs
123 onto 11 pseudochromosomes. We conducted evolutionary comparisons and
124 comprehensive transcriptome analysis of genes involved in oil biosynthesis to
125 elucidate the genetic characteristics of oil synthesis and genetic difference as

126 compared to other plant species.

127

128 **Results**

129 **Genome sequencing, assembly and validation**

130 The self-bred progeny ‘VF1-12’ of *V. fordii* cv. Putaotong was used for genome
131 sequencing (File S1). The genome of *V. fordii* was estimated to be 1.31 Gb in size
132 with a low heterozygous rate of 0.0976% (Tables S2 and S3; File S2; Figure S4).
133 After removing low-quality reads, we obtained a total of 177.68 Gb of high quality
134 data, including 160.21 Gb of Illumina sequencing data and 187.47 Gb of SMART data,
135 corresponding 135.73 × coverage of the tung tree genome (Table S4; Figure S5). The
136 assembled tung tree genome was 1.12 Gb covering 85% of the estimated genome size,
137 and contained 34,773 contigs with a maximum length of 544.11 Kb and 4,577
138 scaffolds with a maximum length of 5.09 Mb (Table 1; Table S5). Among them, 3,333
139 contigs and 29,721 scaffolds were more than 2 Kb in length (Table S5). After Hi-C
140 data assessment and assembly, 1.06 Gb (95.15%) of the genome sequences were
141 anchored onto 11 pseudochromosomes, with maximum clustered sequence lengths,
142 minimum clustered sequence lengths and scaffold N50 of 120.57 Mb, 63.43 Mb and
143 87.15 Mb, respectively (Table 1; Tables S6–S11; Figure 1; Figures S6 and S7).

144 The CEGMA prediction indicated that 87.9% complete elements and 95.97%
145 partial elements in tung tree genome could be hit for the 248 most conserved genes
146 (Table S12). The BUSCO analysis showed that 1,379 (95.7%) of BUSCO genes were
147 complete, of which 1338 (92.9%) and 41 (2.8%) were single-copy and duplicated,
148 respectively (Table S13). RNA-seq data showed that 90.36%, 96.83% of flower
149 samples 1 and 2 unigenes, 95.35%, 95.50%, and 96.48% of seed samples 1–3
150 unigenes showed good alignments to the assembled tung tree genome with mapping
151 rate > 90%, respectively (Tables S14–S19). Furthermore, 88.3% to 95.6% of the reads
152 from the five samples could be mapped to our genome assembly (Table S20). The
153 validation results suggested that our tung tree genome assembly was of high quality in
154 this study.

155

156 **Genome annotations**

157 In total, 28,422 genes were predicted with an average transcript length of 3,785 bp,
158 average CDS length of 1,034 bp, average exon number of 4.85 per gene, average exon

159 length of 213 bp, and average intron length of 714 bp (Table 1; Table S21; Figure S8).
160 The GC content was 31.93% across the genome, 41.91% in coding sequences and
161 31.16% in intron regions (Table 1; Tables S22–S24). BUSCO analysis showed that
162 1290 complete BUSCOs (89.6%) could be searched of all BUSCO groups, indicating
163 that most of the gene models were complete (Table S25).

164 Among the total 28,422 genes, 23,143 genes (81.4%) were functionally annotated.
165 Tremble, Swissprot and NR allowed the annotation of 79.6%, 63.8%, and 81.1% of all
166 genes, respectively (Table S26). Gene ontology (GO) annotation revealed that 12,581
167 genes could be grouped into three categories with 65.97% in molecular function
168 (GO:0003674), 20.1% in cellular component (GO:0005575), and 58.52% in
169 biological process (GO:0008150) (Figure S9). We were able to use kyoto
170 encyclopedia of genes and genomes (KEGG) to annotate 6835 genes to 235 pathways,
171 of which oil biosynthesis and metabolism-related glycerolipid metabolism (ko00561),
172 fatty acid biosynthesis (ko00061), fatty acid elongation (ko00062), and fatty acid
173 degradation (ko00071) were of particular interest in this paper (Table S27).

174 In addition, we identified several types of non-coding RNAs in tung tree genome,
175 including 465 microRNA (miRNA) genes, 740 transfer RNA (tRNA) genes, 116
176 ribosomal RNA (rRNA) genes, and 1414 small nuclear RNA (snRNA) genes (Table
177 S28).

178

179 **Gene family evolution and phylogeny**

180 A total of 22,991 tung tree genes clustered into 15,038 gene families including 8,865
181 gene families shared by all eight species, and 635 tung tree-unique families and 5,431
182 tung tree-specific unclustered genes (Table S29). GO annotation of the tung
183 tree-specific families showed that the genes involved in macromolecule metabolic
184 processes (GO:0043170), cellular macromolecule metabolic processes (GO:0044260)
185 and protein metabolic processes (GO:0019538) were highly enriched (Table S30;
186 Figure S10). A total of 933 genes could be annotated using KEGG database, of which
187 586 genes were mapped to KEGG pathways. We observed KEGG enrichment in
188 translation (110), carbohydrate metabolism (61), biosynthesis of other secondary
189 metabolites (42), amino acid metabolism (44), folding, sorting and degradation (44),
190 signal transduction (43), biosynthesis of other secondary metabolites (42), and
191 environmental adaptation (36) (Table S31). We identified 11,985 gene families that
192 were shared among the five Euphorbiaceae species (Figure S11A). The tung tree

193 shared 13,408, 13,387, 13,519, and 13,216 gene families with *J. curcas*, *H.*
194 *brasiliensis*, *M. esculenta*, and *R. communis*, respectively, of which 9,778, 6,643,
195 7,980, and 10,675 gene families had a one-to-one orthologous relationship (Figure
196 S11A). Additionally, compared with *A. thaliana*, *P. trichocarpa*, and *V. vinifera*, 3,421
197 gene families were found to be specific to Euphorbiaceae (Figure S11B).

198 A phylogenetic tree was generated based on a total of 2,085 single gene families
199 among the eight species (Figure 2A; Figure S12). We estimated that *V. fordii* and *J.*
200 *curcas* diverged around 34.55 million years ago (Mya) (Figure 2A). These data
201 indicate that *V. fordii* is more closely related to *J. curcas* than *M. esculenta*, *R.*
202 *communis*, and *H. brasiliensis* in Euphorbiaceae family, which is consistent with their
203 phylogenetic classification based on morphological characteristics.

204 The expansion and contraction of gene families occur since plants are subjected to
205 selection pressure during their evolution, thereby playing significant roles in plant
206 phenotypic diversification [18]. Expansion and contraction analysis on 15,662 shared
207 gene families based on the phylogenetic tree produced 475 expanded gene families
208 encompassing 1,612 genes, and 1,815 contracted families in tung tree as compared to
209 other plant species (Figure 2A). Of the 1,612 expanded genes, 839 could be annotated
210 using the GO database. GO annotation revealed highly enriched genes related to
211 macromolecule metabolic processes (GO:0043170), cellular macromolecule
212 metabolic processes (GO:0044260), and nucleotide binding (GO:0000166) (Table S32;
213 Figure S13).

214 The Ka/Ks ratio, also called ω or dN/dS, represents the number of
215 non-synonymous substitutions per non-synonymous site (Ka) to the number of
216 synonymous substitutions per synonymous site (Ks), indicating selective pressure
217 acting on a protein-coding gene in genetics. The values of Ks and Ka substitution
218 rates and the Ka/Ks ratio were estimated in each homologous cluster. A total of 586
219 positively selected genes (PSGs) in tung tree genome were identified, of which 475
220 were annotated using Swissprot functions (Table S33). GO annotation revealed that
221 the PSGs related to pigment metabolic processes (GO:0042440), mitochondrial
222 membrane (GO:0031966) and nuclear part (GO:0044428) are highly enriched (Table
223 S34; Figure S14).

224

225 **Whole genome duplication and collinearity**

226 All of the seven species showed peak 2 with the values ranging from 1.08 to 1.48 for

227 4DTV analysis, and 0.42 to 0.59 for Ks analysis (**Figure 3**). However, peak 1 was
228 only observed in *V. fordii*, *J. curcas* and *R. communis* (Figure 2B). The results suggest
229 that only an ancient genome triplication event (*i.e.*, γ event shared by core eudicots)
230 and no recent independent whole-genome duplication (WGD) events occurred in the
231 subsequent ~ 34.55 Mya evolutionary history in the tung tree lineage.

232 Plotting collinear regions of tung tree with itself showed that only 122 syntenic
233 blocks containing 2,010 collinear gene pairs were identified in the tung tree genome
234 (Figure 1; Table S35). A total of 3,559 genes comprised the collinear gene pairs,
235 accounted for only 12.52% of tung tree genes, which is similar with *V. vinifera*
236 (13.91%) and much lower than *M. esculenta* (33.86%) (Tables S36 and S37). The low
237 collinear rate of tung tree genome suggests that a minority of the tung tree genome
238 was duplicated during its evolution, which is consistent with the finding that the tung
239 tree did not undergo a recent WGD event.

240 The tung tree genome generally showed a one-to-one and one-to-two syntenic
241 relationships with *V. vinifera* (one duplication) and *M. esculenta* (two duplications),
242 respectively (Figure 2C). Tung tree genome shared a total of 694 syntenic blocks,
243 containing 22,133 collinear gene pairs with *M. esculenta*, and 589 syntenic blocks
244 containing 14,570 collinear gene pairs with *V. vinifera* (Figure 2C; Figures S15 and
245 S16). Most collinear regions between tung tree and *M. esculenta* revealed that one
246 chromosome in tung tree corresponded to two chromosomes in *M. esculenta* (Figure
247 2C; Figure S17). For instance, VfChr1 in tung tree corresponded to MeChr12 and
248 MeChr13 in cassava, and, similarly, VfChr2 to MeChr4 and MeChr11, VfChr3 to
249 MeChr7 and MeChr10, VfChr5 to MeChr1 and MeChr2, as well as VfChr6 to
250 MeChr1 and MeChr5, respectively. These results indicate that that VfChr1, VfChr2,
251 VfChr3, and VfChr5 of tung tree might be formed by fragmentation and
252 recombination of ancestral chromosomes. The collinear regions between tung tree and
253 *V. vinifera* did not exhibit the remarkable corresponding chromosome relationships, in
254 contrast to those between tung tree and *M. esculenta*.

255

256 **Repeat-driven genome expansion**

257 Tung tree had larger genome size than physic nut and castor bean, which was mainly
258 attributed to repeat expansion in tung tree genome. Repetitive element analysis
259 showed that tung tree genome harbored the greatest repeat content (73.34%) among
260 the five sequenced Euphorbiaceae species (Table S40), which was slightly higher than

261 the rubber tree (71%) [19], and much higher than the castor oil plant (50.33%) [20],
262 Physic nut (49.8%) [21], and cassava (less than 40%) [22]. The repeat sequences were
263 distributed at both ends of each tung tree chromosome (Figure 1). We identified
264 66,3931 simple sequence repeats (SSRs) in the tung tree genome. The annotated SSRs
265 were mostly mononucleotide (39.62%) and dinucleotide (13.38%) (File S3).
266 Retroelements comprised the majority (51.89%) of the tung tree genome, of which
267 50.77% belonged to long terminal repeat (LTR) retrotransposons (Table S41). Of the
268 repeat sequences, two types of LTR retrotransposons, *Ty1/Copia* (84,180 in number)
269 and *Ty3/Gypsy* (284,597 in number) were most abundant, accounting for 15.13% and
270 53.46%, respectively (Figure 3A and B; File S3; Table S41). The *Ty1/Copia* and
271 *Ty3/Gypsy* were ~ 0.53 Gb of total length, occupying 50.31% of the assembled tung
272 tree genome.

273 Kimura analysis showed that two LTR retrotransposons (*Ty1/Copia* and
274 *Ty3/Gypsy*) and DNA transposons were almost simultaneously amplified, with similar
275 peaks for amplification bursts (Figure S18). Insertion time analysis of intact LTR
276 retrotransposons indicated that both of *Ty1/Copia* and *Ty3/Gypsy* experienced multiple
277 bursts over the last 3-4 Mya and they were younger than other unclassified
278 transposable elements (File S3; Figures S19 and S20). In addition, median-copy
279 families and high-copy families were younger than single-copy families (Figure S21).
280 In light of our analysis, the dramatic expansion in tung tree genome size might be due
281 to long standing LTR retrotransposon bursts and lack of efficient DNA deletion
282 mechanisms. VL0001 was the largest *Ty3/Gypsy* family with 130 copies, accounting
283 for 7.54% of the high-copy families and 4.35% of LTR retrotransposons (Figure 3C;
284 Table S42).

285 Based on our RNA-seq data, 1,738 out of the total 2,991 LTR retrotransposons
286 were expressed across six tissues. *Ty3/gypsy* LTR retrotransposons generally exhibited
287 higher expression levels than *Ty1/Copia* retrotransposons, ranging from 0.71-fold in
288 seed to 4.09-fold in leaf with approximately two-fold higher on average (File S3;
289 Table S44). Among the 1,738 LTR retrotransposons, 701 showed the highest
290 expression level in seeds, of which 60.77% belonged to high-copy families (Figure
291 3D; File S3). This suggests that abundant high-copy LTR retrotransposons may be
292 more active than other LTR retrotransposons families in developing tung seeds. In
293 addition, 184, 204, 244, 148, and 257 LTR retrotransposons exhibited the highest
294 expression levels in root, stem, leaf, female flower, and male flower, respectively (File

295 S3; Figure S22). Among these LTRs, high-copy LTR families also accounted for the
296 highest proportion in the other five tissues.

297

298 **The tung tree eFP browser**

299 A total of 28,422 genes were identified from the tung tree genome, of which 23,143
300 genes were annotated. The genome-wide gene identification allowed us to investigate
301 gene expression on a large-scale in tung tree. To provide easy access and enable
302 visualization of the expression levels of tung tree genes, flowers and seeds at different
303 developmental stages were sampled for RNA-seq analysis (File S4). Based on
304 RNA-seq data from 17 tung samples, a “Tung Tree eFP Browser” (at
305 http://bar.utoronto.ca/efp_tung_tree/cgi-bin/efpWeb.cgi) was implemented to permit
306 visualization of gene expression patterns with “absolute”, “relative” and “compare”
307 modes in these tissues using the annotated gene IDs (File S4). The search interface
308 generated an “electronic fluorescent pictograph” colored according to transcript
309 abundance data for individual tung tree gene in various tissues/organs. As exemplified
310 (Figure S23), the *VfFADx-1* (Vf11G0298) using linoleic acid (C18:2Δ9,12) as
311 substrates to produce α-ESA (18:3Δ9,11,13) exhibited expression patterns consistent
312 with its role in oil biosynthesis. In addition, the Tung Tree eFP Browser could be used
313 for functional characterization of tung tree gene copies with different expression
314 patterns. For instance, three feruloyl CoA ortho-hydroxylase homologues
315 (Vf03G0652, Vf00G0634 and Vf03G0623) exhibited conservation of function as
316 revealed by similar expression patterns in various tissues/organs (Figure 4; Table
317 S51). Among three purple acid phosphatase homologues, the Vf11G0977 displayed
318 neofunctionalization, *i.e.*, functional diversification due to its expression in roots
319 compared to the other homologues (Figure 4; Table S51).

320

321 **NBS-encoding resistance genes**

322 Disease resistance is one of the most important traits in tung tree breeding programs.
323 The *V. fordii* is susceptible to wilt (*Fusarium oxysporum*), black spot (*Mycsphaerella*
324 *aleuritidis*) and twig dieback (*Nectria aleuriidiae*). Information on disease
325 resistance-related genes will be helpful for understanding plant resistance mechanisms.
326 Identification and characterization of these genes on a genome-wide scale will
327 provide a basis for improvement of disease resistance in tung tree. Genes encoding
328 nucleotide-binding sites (NBSs) are the largest class of plant disease resistance genes.

329 Based on whether they contain a Toll/interleukin-1 receptor (TIR) domain, NBS
330 resistance genes can be further categorized into two subclasses (TIR and non-TIR)
331 (File S5).

332 A total of 88 genes with an NBS domain were identified in tung tree, of which 28
333 (31.82%) were organized in tandem arrays (Table S52; **Figure 5A**; Figure S25). The
334 number of NBS-encoding genes in *V. fordii* was similar to *Z. mays* (107), but
335 remarkably lower than *R. communis* (232), *M. esculenta* (312), *J. curcas* (275), and *H.*
336 *brasiliensis* (483) (Table S52). The 88 NBS-encoding genes were classified into four
337 subfamilies, including 23 coiled-coil (CC)-NBS, 16 NBS-leucine-rich repeat (LRR), 7
338 CC-NBS-LRR, and 42 NBS, however they did not form four independent classes in
339 the phylogenetic tree (Figure 5A). Intriguingly, all of the tung tree NBS-encoding
340 resistance genes do not belong to the TIR type (Table S52).

341 The NBS genes were distributed nonrandomly across all 11 chromosomes (Figure
342 S24). More than 85% *NBS* genes were clustered in groups, and clusters were most
343 abundant on chromosomes 2, 9, and 3 (Figure S24). Enrichment of *NBS* genes in
344 these corresponding genomic regions indicated that resistance gene evolution might
345 involve tandem duplication and divergence of linked gene families, as described in
346 other plant genomes such as rubber tree [23] and pear [24]. RNA-seq data showed
347 that the 88 tung tree NBS genes displayed differential expression patterns in roots
348 after *F. oxysporum* infection (Figure 5B; File S5). The expression level of 17 genes
349 including 8 *NBSs*, 3 *NBS-LRRs*, 2 *CC-NBSs*, and 4 *CC-NBS-LRRs* increased at early
350 stage after infection (FOE) and decreased at late stage after infection (FOL) (Figure
351 5B). These results suggest that these genes may help the tree resist the pathogen
352 shortly after infection.

353

354 **Evolution of genes involved in oil biosynthesis**

355 Tung oil is the most important product from tung tree. Tung oil biosynthesis starting
356 from acetyl-CoA involves 18 enzymatic steps with multiple isozymes in each step
357 (**Figure 6A**). The oil is packed in subcellular structures called oil bodies or lipid
358 droplets (Figure 6B; File S6). Tung seed oil droplets formed following the pattern of
359 α -ESA accumulation in the seeds (Figure 6B and C). No visible oil droplet was
360 observed in 10 weeks after flowering (WAF) seeds and small oil droplets were
361 observed in 15 WAF seeds. The number and sizes of oil droplets were dramatically
362 increased in more mature seeds (20, 25, and 30 WAF).

363 Tung oil biosynthesis in the seeds started in mid-June (10 WAF), increased rapidly
364 until 25 WAF with the oil content of 55.42% (Figure 6C), and ended by 30 WAF.
365 Oleic acid (C18:1Δ9) accounted for minor percentage, whereas linoleic acid
366 (C18:2Δ9,12) accounted for the major content (43%) in young seeds (10 and 15
367 WAF). Both gradually decreased in more mature seeds. Accumulation of linoleic acid
368 and α -ESA (α -C18:3Δ9,11,13) showed opposite patterns in the developing tung seeds
369 (Figure 6C) because linoleic acid is the same substrate for synthesizing α -ESA and
370 α -ALA (α -linolenic acid, C18:3Δ9,12,15). The α -ESA synthesis started after 15 WAF
371 and then increased rapidly up to 72.35% of seed oil following seed ripening (Figure
372 6C). The α -ALA accumulation was observed in 10 WAF seeds and accounted for
373 minor percentage during the whole developmental stages, although it shares the same
374 substrate with α -ESA. These developmental patterns of α -ESA biosynthesis and oil
375 droplet formation were used as the criteria for selecting seed stages for our
376 transcriptomic analysis.

377 We annotated 22,419 genes in the tung tree genome and identified 651 genes
378 related to oil biosynthesis (Table S53). Among them, 88 genes were predicted more
379 directly involved in oil biosynthesis (Figure 6A; File S7; Table S54). This study
380 provided far more tung oil-related genes than those deposited in the GenBank
381 databases (29 genes). These genes belonged to 18 families whose expression profiles
382 were described in Figure 6A. The number of tung oil-related genes (88) was within
383 the range of other plant species including 91 genes in *J. curcas*, 84 genes in *R. communis*,
384 87 genes in *A. thaliana*, 105 genes in *S. indicum*, and 210 genes in *G. Max*
385 (Table S54).

386 Several key genes important in oil biosynthesis have been studied extensively,
387 including acetyl CoA carboxylase (*ACCase*), *FADs*, *DGATs* and *oleosins* (*OLEs*)
388 (Figure 6A). The current study identified one additional *DGAT3* and two additional
389 *FADs* besides those reported previously. We also reported for the first time that tung
390 tree genome had six *phospholipid:diacylglycerol acyltransferase* genes (*PDAT*)
391 (Figure 6A).

392 *ACCase* and phosphoenolpyruvate carboxykinase (PEPC) are probably the key
393 enzymes determining the metabolic pathways towards oil or protein biosynthesis in
394 the seeds (Figure 6A) [25]. We identified nine *ACCase* genes in tung tree genome
395 with high expression levels in the mid-late developing stages of tung seeds (Figure
396 6A). There are 10 *ACCase* genes in soybean, and 6-7 genes in other species (Table

397 S54). We also identified three *PEPC* genes in tung tree genome which were expressed
398 in the early developing stages of tung seeds (Figure 6A; Table S54). There are 16
399 *PEPC* genes in soybean and more *PEPC* genes in other species than tung tree.
400 Comparison of soybean whose seed has high protein content (~ 40%) and low oil
401 content (~ 20%), the fewer *PEPC* genes in tung tree genome might be the reason of
402 high oil (~ 55%) and low protein content (~ 5%) in tung seeds, probably contributing
403 to carbon flow towards fatty acid biosynthesis in tung seeds.

404 FAD protein family catalyzes the desaturation of fatty acids [5] and therefore is
405 responsible for polyunsaturated lipid synthesis in developing seeds of oil crops. FAD2
406 and FAD3 are the main enzymes responsible for the Δ 12 linoleic acid and Δ 15
407 linolenic acid desaturation, respectively. We identified one *FAD2*, two *FAD3* and two
408 *FADx* genes in tung tree (Table S54). *FAD2* and *FADx-1* were highly expressed in
409 mid-late stages of developing seeds; whereas *FAD3* was expressed higher in early
410 stages of seeds (Figure 6A). FADx, a divergent FAD2, converts linoleic acid to α -ESA,
411 the major component of tung oil [14], but the evolutionary relationship between
412 FADx and FAD2 is still uncertain. According to the newly generated phylogenetic tree
413 in this study (**Figure 7**), we found FAD2/x clade could be divided into two clades
414 (FAD2 and FADx) in eudicot plants, suggesting that the two clades were due to gene
415 duplication in eudicot ancestors. The eudicot ancestors have γ WGD event, and gene
416 duplication is likely to be retained by the WGD event. Further synteny analysis
417 revealed that FAD2s and FADxs were likely to be generated by WGDs event (Table
418 S56), which corresponded to the γ WGD event shared by core eudicots. Notably, the
419 FADx clade lost many genes in species like the members of Brassicaceae.

420 DGAT protein family catalyzes the last step of triacylglycerol (TAG) biosynthesis
421 and is regarded as the rate-limiting step for TAG accumulation. Three DGATs were
422 reported in tung tree in previous studies. *DGAT2* was proposed to be the most
423 important *DGAT* for TAG biosynthesis in tung tree seeds. Our transcriptomics study
424 found four *DGATs* (*DGAT1*, *DGAT2*, and two *DGAT3*) expressed in tung seeds
425 (Figure 6A; Table S55). *DGAT2* was confirmed to be the most abundantly expressed
426 *DGAT* in tung seeds which corresponded to oil accumulation (20–30 WAF), but
427 *DGAT3-1* was the dominant form of *DGAT* in immature seeds (10–15 WAF) and other
428 tissues including stem, root, leaf and female flower (Figure 6A; Table S55).

429 Recently, it has become obvious that TAG synthesis also can be catalyzed by
430 PDAT. We reported for the first time that there were five PDATs in tung tree genome.

431 *PDAT1-1* and *1-4* were expressed more in mid-late stages of developing seeds but the
432 other three *PDAT* genes were expressed more in the early stages of developing seeds
433 (Figure 6A).

434 OLEs are the major proteins in plant oil bodies. Genome-wide phylogenetic
435 analysis and multiple sequence alignment demonstrated that the five tung *OLE* genes
436 represented the five OLE subfamilies and all contained the “proline knot” motif
437 (PX5SPX3P) shared among 65 OLE from 19 tree species [26]. We confirmed the five
438 tung tree *OLE* genes coding for small hydrophobic proteins. These five *OLEs* were
439 highly expressed in mid-late stage of developing tung seeds (Figure 6A; Table S55).

440 A total of eight *long chain fatty acyl-CoA synthetases* (*LACS*) genes were
441 identified in tung tree genome, of which *LACS1* and 2 were more highly expressed in
442 early stage but *LACS7*, 8 and 9 were highly expressed in mid-late stages of
443 developing seeds (Figure 6A). Additionally, 9 *glycerol-3-phosphateacyltransferases*
444 (*GPATs*), 7 *lysophosphatidic acid acyltransferases* (*LPATs*), and 6 *phosphatidate*
445 *phosphatases* (*PPs*) genes were identified in tung tree genome whose expression
446 levels of some genes were higher in early stage rather than late stages of developing
447 seeds and verse visa (Figure 6A; Table S55).

448 To explore possible synergistic effects among genes in oil accumulation, we
449 performed a weighted correlation network analysis of transcript expression in
450 developing seeds at five stages (FPKM values ≥ 1) (File S8). We identified 10
451 co-expression modules for each stage sample, among which oil biosynthesis-related
452 genes at 20 WAF were highly enriched in two significant modules (PCC values ≥ 0.8 ,
453 P value ≤ 0.1): MEbrown and MEyellow containing 1,156 and 908 genes,
454 respectively (Tables S57 and S58; Figures S31 and S32). We did not find oil
455 biosynthesis-related genes in other significant modules. In MEyellow and MEbrown
456 modules, 18 and 13 genes were respectively identified to play pivotal roles in fatty
457 acid synthesis and oil accumulation, such as fatty acid synthases (FASs), the upstream
458 rate-limiting enzyme *ACCase* subunits (α -*CT*, *BCCP-1*, *BCCP-2*, *BCCP-2*, and *BC-1*),
459 and genes related to TAG assembly like *GPDH*, *LPAT*, etc (Figure 8). A number of
460 transcription factors were also identified in the two modules and co-expression
461 networks (Figure 8) including *WRINKLED1* (*WRI1*), *FUSCA3* (*FUS3*), *LEAFY*

462 *COTYLEDON1 (LECI)*, and *ABSCISIC Acid INSENSITIVE3 (ABI3)*, which has been
463 reported to facilitate oil accumulation by interacting each other or with oil
464 biosynthesis-related genes [27–31]. We selected four tung tree transcription factors
465 (*FUS3*, *ABI3*, *LECI-1* and *LECI-2*) to conduct yeast two-hybrid assay (File S9) and
466 observed that *FUS3* and *LECI-2* were interacted (Figure S33). The gene
467 co-expression networks indicate that transcription factors and oil biosynthesis-related
468 genes have synergistic effects in oil biosynthesis, which may contribute to high oil
469 content in tung seeds.

470

471 **Discussion**

472 The whole genomes of an increasing number of plant species have been sequenced
473 due to rapid development of new sequencing technologies in recent years. The
474 genome information provides researchers a useful resource for better understanding
475 plant evolutionary history and exploring important genes to uncover the mechanisms
476 controlling various traits during long-term evolution process. As an economically
477 important tree species, tung tree has been cultivated and utilized for thousands of
478 years. Presently its oil has a great potential for producing environmentally-friendly
479 coatings with low VOCs. However, producing tung oil on an industrial scale is
480 hampered by low yield. Our genome sequencing effort will facilitate the breeding of
481 elite cultivars with yield-related traits including fruit setting rate and seed oil content.
482 In this study, the large amount of repeat sequences and low GC content made the tung
483 tree genome a challenge for WGS strategies using NGS technology even though the
484 tung tree genome was estimated to be extremely low heterozygosity. To overcome the
485 challenge of high repeat content, we generated long reads from 10 kb and 20 kb
486 libraries via PacBio sequencing. Finally, we used the Hi-C map to generate a
487 chromosome-scale assembly of the tung tree genome. The genome sequence covered
488 ~ 85.50% of the estimated genome size and harbored 28,422 genes. Among the
489 Euphorbiaceae family, rubber tree and cassava instead of tung tree, physic nut and
490 castor bean were found to have undergone a recent WGD event, although they all

491 shared an ancient WGD event. Interestingly, rubber tree and cassava have more genes
492 than the other three species (Figure 2A). The recent WGD event could cause
493 chromosomal rearrangements, fissions or fusions and is one of the reasons resulting in
494 expansion of gene families [18], which may contribute to more gene expansions in
495 rubber tree and cassava than those in tung tree, physic nut and castor bean. The
496 genome sequence of tung tree opens a window to functional and molecular breeding
497 of economically important woody oil plants within the Euphorbiaceae family.

498 Tung tree had a larger genome size than physic nut and castor bean. In most
499 cases, genome expansions are caused by repeated sequence insertion, like those
500 occurred in tea tree, rubber tree, and Ginkgo (*G. biloba*) [32]. Similar to the three
501 species, *Ty3/Gypsy* families contributed the most to the tung tree genome expansion.
502 Based on our insertion time analysis, we proposed that lack of efficient deleting
503 mechanisms of repeated DNA sequences might have resulted in long-term and
504 continuous LTR retrotransposon bursts and growth, eventually leading to the whole
505 genome size expansion. This is also consistent with the findings in tea tree and *P.*
506 *abies* [33]. We also found that different LTR retrotransposon families were
507 differentially expressed in various tissues, confirming the retrotransposon activity in
508 the tung tree genome. The eFP Browser has proved to be a useful tool to display gene
509 expression levels visually in several plant species including *A. thaliana*, *P.*
510 *trichocarpa*, *G. Max*, *S. tuberosum*, *S. lycopersicum*, *C. sativa*, *F. vesca* and other
511 species [34–37]. Based on tung tree genome sequences generated in this study, we
512 created a Tung Tree eFP Browser to display tung tree RNA-seq data from 17 different
513 tissues and stages. This eFP Browser work should facilitate further research in tung
514 tree and other Euphorbiaceae plants.

515 Plant disease resistance has always been a research hotspot. NBS genes are the
516 largest class of plant disease resistance genes. They confer the capacity for the plant to
517 resist the intrusion of outside pathogens, including bacteria, fungi and virus [38]. The
518 present studies suggested that the TIR domain-containing NBS genes are widely
519 distributed in dicots but not monocots, whereas they are lost in tung tree genome. To
520 date only tung tree and sesame [22] out of dicots have been reported for TIR
521 domain-containing NBS gene loss. This finding provides a new paradigm to

522 investigate the evolution of disease resistance genes. CC is the functional domain of
523 many proteins and CC structure plays an important role in protein-protein interaction
524 [39]. LRR is the signal region in transmembrane domain and loss of it can result in
525 loss of function [40]. In this study, the highest proportion of *CC-NBS-LRR* genes (4/7,
526 57.14%) responded to *F. oxysporum* infection at early stage, suggesting that CC and
527 LRR domains play more important roles than other domains.

528 Tung tree is a high-efficient photosynthetic tree with strong photosynthesis rate.
529 Sucrose, the major photosynthesis product, is synthesized in the chloroplast and
530 exported to the sink tissues such as seeds for seed development and metabolite
531 accumulation. Sucrose is converted into hexose phosphate, triose phosphate,
532 phosphoenolpyruvate (PEP), and pyruvate. PEP is a key intermediate metabolite for
533 synthesizing both fatty acids and proteins. PEP is converted into pyruate by pyruate
534 kinase (PK), which is subsequently converted into acyl-CoA and enters fatty acid
535 biosynthesis pathway after ACCase action. On the other hand, PEP is catalyzed by
536 PEPC to produce oxaloacetic acid, which is subsequently used for protein synthesis.
537 Therefore, ACCase and PEPC are probably the keys enzymes determining the
538 metabolic pathway towards oil or protein biosynthesis in the seeds [25]. We identified
539 nine *ACCase* genes in tung tree genome with high expression levels in the mid-late
540 developing stages of tung seeds, which are indicative of their importance in tung oil
541 biosynthesis. There are 10 *ACCase* genes in soybean, and 6-7 genes in other species.
542 We also identified three *PEPC* genes in tung tree genome with high expression levels
543 in the early developing stages of tung seeds. By contrast, there are 16 *PEPC* genes in
544 soybean and more *PEPC* genes in other species than tung tree. Because soybean has
545 more *PEPC* genes and higher protein/ lower oil content in the seed, it is possible that
546 the fewer *PEPC* genes in tung tree diverted less carbon flow towards protein
547 biosynthesis and resulted in high oil/low protein content in tung seeds.

548 Tung oil is the major economically important product from tung tree.
549 Identification and characterization of all genes involved in tung oil biosynthesis is
550 essential for improving tung oil production and economic value. Many tung oil
551 biosynthetic genes have been identified in our laboratories, including those coding for

552 *diacylglycerol acyltransferases (DGAT)* [13,17], *delta-12 oleic acid desaturase*
553 (*FAD2*) and *delta-12 fatty acid conjugase (FADx)* [14], *omega-3 fatty acid desaturase*
554 (*FAD3*) [41], *acyl-CoA binding proteins* [42], *cytochrome b5* [43], *cytochrome b5*
555 *reductase* [15], *glycerol-3-phosphate acyltransferase (GPAT)* [44], *plastid-type*
556 *omega-3 fatty acid desaturase (TnDES2)* [45], *aquaporin* and *glutaredoxin* [46], and
557 *β-ketoacyl-ACP synthase (KAS)* [47]. Interestingly, we identified an additional *FADx*
558 gene, *FADx-2*, which was probably generated by gene duplication and
559 sub-functionalization based on the different expression patterns of *FADx-1* and
560 *FADx-2* genes. In comparison with *FADx-2*, *FADx-1* was the dominant form
561 responsible for α-ESA synthesis in developing seeds of tung tree. We also identified 9
562 *ACCases*, 4 *DGATs*, 7 *FADs*, 6 *PDATs*, 5 *OLEs*, 8 *LACSSs*, 9 *GPATs*, 7 *LPATs*, and 6
563 *PPs* genes in the tung tree genome. This study provided a more complete picture for
564 genes involved in tung oil biosynthesis. The numbers of tung oil-synthesizing genes
565 are within the range of other species. These suggest that there is no gene expansion in
566 tung tree and the amount and types of oils in various species may not be directly
567 related to the number of genes in oil biosynthesis.

568 Transcriptomic analysis evaluated the expression profiles of all these genes. Our
569 results indicated that the expression patterns of some of the most important genes
570 were well-coordinated with oil biosynthesis and accumulation in tung tree seeds.
571 Specifically, *DGAT2* was shown to be the most abundantly expressed *DGAT* in tung
572 seeds but *DGAT3-1* was the dominant form of *DGAT* in immature seeds and other
573 tissues including stem, root, leaf and female flower, in agreement with our previous
574 results [13,17]. *FAD2* and *FADx* were highly expressed in mid-late stages of
575 developing seeds; whereas *FAD3* was expressed higher in early stages of seed, also in
576 agreement with published results [14]. All five *OLEs* were highly expressed in
577 mid-late stage of developing tung seeds, similar results to what we reported
578 previously [26]. Our expression analysis provided novel insights into the potential
579 role of *PDATs* in tung oil biosynthesis by showing that *PDAT1-1*, 1-4, and 2-2 were
580 expressed more in mid-late stages of developing seeds but the other three *PDAT* genes
581 were expressed more in the early stages of developing seeds, which were not reported

582 previously. Our gene co-expression analysis revealed that oil biosynthesis-related
583 genes were enriched in two significant modules only at 20 WAF when the seed oil
584 started to accumulate rapidly. The enriched oil biosynthesis-related genes included
585 most of FAS genes, part of TAG biosynthesis genes and some transcription factors.
586 The complete gene co-expression networks provide insights into oil biosynthesis by
587 gene-gene synergistic function.

588 In conclusion, this study provides whole-genome sequence information, eFP
589 browser, and extensive RNA-seq data. These critical lines of information should be
590 used as valuable resources for functional genomics studies and tree improvement of
591 economically important traits such as oil content and disease resistance in the tung
592 tree.

593

594 **Materials and methods**

595 **Plant materials**

596 The self-bred progeny ‘VF1-12’ of the elite *V. fordii* cv. Putaotong was used for whole
597 genome sequencing in this study (File S1). Young leaves were collected from ‘VF1-12’
598 in the spring for genome sequencing. Young plantlets were used for Hi-C library
599 construction and sequencing. A total of 17 fresh tissues including stems, roots, male
600 flowers, female flowers, and seeds at different developmental stages were collected
601 for RNA-seq. The developing seeds were also used for oil content measurement and
602 fatty acid analysis.

603

604 **Whole-genome sequencing, assembly and assessment**

605 The tung tree genome size was estimated by a modified Lander-Waterman algorithm
606 *i.e.*, a formula $G = B_{\text{num}}/B_{\text{depth}} = K_{\text{num}}/K_{\text{depth}}$ [48]. Heterozygosity was estimated
607 by the k-mer distribution and GenomeScope [49]. Nuclear DNA was isolated from
608 fresh leaf tissues by using a DNeasy Plant Mini Kit (Qiagen, CA, USA). A series of
609 DNA libraries were constructed and sequenced with an Illumina HiSeq 2000
610 sequencing platform (Illumina, CA, USA) (File S10). In addition,
611 SMRTbell template libraries of 20 kb were constructed and sequenced on the PacBio
612 RSII. After removing low-quality reads, the whole genome assembly of tung tree was
613 performed with a hierarchical assembly strategy due to its homozygous genome with

614 highly repetitive sequences (File S11). The genome completeness was assessed by
615 Core Eukaryotic Genes Mapping Approach (CEGMA) [50], Benchmarking Universal
616 Single-Copy Orthologs (BUSCO) analysis [51] and RNA-seq reads mapping [52].

617

618 **Hi-C data preparation and contig clustering**

619 The Hi-C library was prepared with the standard procedure described [53]. Raw Hi-C
620 data were generated using HiSeq2500 sequencing platform and then were processed
621 to filter low-quality reads and trim adapters. Clean reads were mapped to the
622 assembled scaffolds by BWA-aln after truncating the putative Hi-C junctions in
623 sequence reads. HiC-Pro software (version 2.7.1) was used to filter the invalid
624 ligation read pairs, including dangling-end and self-ligation, re-ligation and dumped
625 products. Finally the scaffolds were clustered, ordered and orientated onto
626 chromosomes using the valid read pairs by LACHESIS
627 (<http://shendurelab.github.io/LACHESIS/>).

628

629 **Genome annotation**

630 Gene prediction was conducted using *de novo* prediction, homology information and
631 RNA-seq data (File S12). Gene functions were assigned according to the best match
632 derived from the alignments to proteins annotated in SwissProt and TrEMBL
633 databases using Blastp, and the pathway in which the gene might be involved was
634 annotated by KAAS [54]. Motifs and domains were annotated using Inter ProScan
635 (Version 5.2-45.0) [55] by searching against publicly available databases in InterPro
636 [56]. The rRNA, snRNA and miRNA genes were predicted by INFERNAL software
637 using the Rfam database. The rRNA subunits were identified by RNAmmer [57]
638 based on hidden Markov models (HMMs). The tRNA genes were predicted by
639 tRNAscan-SE [58] with eukaryote parameters. A *de novo* and homology-based
640 approach was used to identify
641 repetitive sequence and transposable elements (TEs) in the tung tree genome.

642

643 **Evolutionary analysis**

644 Phylogeny of a total of eight species was constructed based on single-copy gene
645 families by the maximum likelihood (ML) method (File S13). The divergence times
646 were estimated based on all single-copy genes and 4-fold degenerate sites with the
647 program MCMCTree of the PAML package [59]. The neutral evolutionary rate was

648 calculated via Bayes estimation with Markov Chain Monte Carlo algorithm. Gene
649 families which underwent expansions or contractions were identified using the CAFE
650 (Computational Analysis of gene Family Evolution) program [60]. The selection
651 pressure of tung tree in the phylogenetic tree was calculated by Codeml. The
652 significance of the identified PSGs was verified using a Chi-square test. WGD events
653 were identified by 4DTv (four-fold synonymous third-codon transversion) and
654 synonymous Ks analysis.

655

656 **Data access**

657 The project of tung tree genome sequencing, Hi-C and transcriptome sequencing is
658 registered at NCBI under BioProject accession PRJNA503685
659 (<http://www.ncbi.nlm.nih.gov/bioproject/503685>), PRJNA445350
660 (<http://www.ncbi.nlm.nih.gov/bioproject/445350>) and PRJNA483508
661 (<http://www.ncbi.nlm.nih.gov/bioproject/483508>). The data are publicly available at
662 NCBI under accession number SUB4731026, SRP136294 and SRP155790,
663 respectively.

664

665 **Author contributions**

666 XFT and LZ conceived and initiated the study. XFT, LZ, and HPC designed
667 experiments and coordinated the project. XFT, LZ, HXL, MLL, ZL, YLZ, and HC
668 performed the field controlled pollination and managing and sampling experimental
669 materials for genome and transcriptome sequencing. JH and DPW supervised the data
670 generation and analysis. MZ, JJL, FL, JH, and DPW conducted the genome assembly
671 and annotation. MZ and MLX were involved in the WGD event determination. XMY,
672 MZ, and LSZ performed repeat annotation, phylogenetic analysis and expression
673 analysis. AP, EE, WYL, and NJP performed tung tree eFP browser construction. WD,
674 AXS, and LSZ coordinated collinear analysis and phylogenetic analysis. MLL, DR,
675 and GZ performed NBS gene family analysis. HXL, MLL, LZ, and HPC contributed to
676 identification, expression and phylogenetic analysis of oil-related gene families. WD
677 and MLL conducted gene co-expression analysis. MLL performed Yeast two-hybrid

678 assay. WYL and MLL drew all figures of the manuscript. LZ and HPC wrote the
679 manuscript. LZ, HPC, NJP, LSZ, and XFT revised the manuscript. All authors
680 discussed results and commented on the manuscript.

681

682 **Competing interests**

683 The authors have declared no competing interests.

684

685 **Acknowledgments**

686 This work was supported by the National Key R&D Program of China (Grant No.
687 2017YFD0600703), the National Natural Science Foundation of China (Grant No.
688 31770720), the outstanding youth of the Education Department of Hunan Province
689 (Grant No. 17B279), and the USDA-ARS Quality and Utilization of Agricultural
690 Products National Program 306 through CRIS 6054-41000-103-00-D. Mention of trade
691 names or commercial products in this publication is solely for the purpose of providing
692 specific information and does not imply recommendation or endorsement by the U.S.
693 Department of Agriculture. USDA is an equal opportunity provider and employer.

694

695 **References**

696 [1] Tan XF, Jiang GX, Tan FY, Zhou WG, Lv PH, Luo KM, et al. Research report on
697 industrialization development strategy of *Vernicia fordii* in China. Nonwood
698 Forest Res 2011;29:1–7.

699 [2] Zhang L, Jia B, Tan X, Thammina CS, Long H, Liu M, et al. Fatty acid profile and
700 unigene-derived simple sequence repeat markers in tung tree (*Vernicia fordii*).
701 PLoS One 2014;9:e105298.

702 [3] Huang Y, Pang L, Wang H, Zhong R, Zeng Z, Yang J. Synthesis and properties of
703 UV-curable tung oil based resins via modification of Diels–Alder reaction,
704 nonisocyanate polyurethane and acrylates. Prog Org Coat 2013;76:654–61.

705 [4] Liu CG, Shang QQ, Jia PY, Dai Y, Zhou YH, Liu ZS. Tung oil-based unsaturated
706 co-ester macromonomer for thermosetting polymers: Synergetic synthesis and

707 copolymerization with styrene. *ACS Sustain Chem Eng* 2016;4:3437–49.

708 [5] Park JY, Kim DK, Wang ZM, Lu P, Park SC, Lee JS. Production and
709 characterization of biodiesel from tung oil. *Appl Biochem Biotechnol*
710 2008;148:109–17.

711 [6] Shang Q, Lei J, Jiang W, Lu H, Liang B. Production of tung oil biodiesel and
712 variation of fuel properties during storage. *Appl Biochem Biotechnol*
713 2012;168:106–15.

714 [7] Chen YH, Chen JH, Luo YM. Complementary biodiesel combination from tung
715 and medium-chain fatty acid oils. *Renew Energy* 2012;44:305–10.

716 [8] Meininghaus R, Gunnarsen L, Knudsen HN. Diffusion and sorption of volatile
717 organic compounds in building materials-impact on indoor air quality. *Environ
718 Sci Technol* 2000;34:3101–8.

719 [9] Tsakas MP, Siskos AP, Siskos PA. Indoor air pollutants and the impact on human
720 health, chemistry, emission control, radioactive pollution and indoor air quality.
721 InTech, 2011: 447-484.

722 [10] Wei WJ, Zhang YP, Xiong JY, Li M. A standard reference for chamber testing of
723 material VOC emissions: Design principle and performance. *Atmos Environ*
724 2012;47:381–8.

725 [11] Yang XH, Zhang SX, Li WY. The performance of biodegradable tung oil coatings.
726 *Prog Org Coat* 2015;85:216–20.

727 [12] Yoo Y, Youngblood JP. Tung oil wood finishes with improved weathering,
728 durability, and scratch performance by addition of cellulose nanocrystals. *ACS
729 Appl Mater Inter* 2017;9:24936–46.

730 [13] Shockey JM, Gidda SK, Chapital DC, Kuan J-C, Dhanoa PK, Bland JM, et al.
731 Tung tree DGAT1 and DGAT2 have nonredundant functions in triacylglycerol
732 biosynthesis and are localized to different subdomains of the endoplasmic
733 reticulum. *Plant Cell* 2006;18:2294–313.

734 [14] Dyer JM, Chapital DC, Kuan JC, Mullen RT, Turner C, McKeon TA, et al.
735 Molecular analysis of a bifunctional fatty acid conjugase/desaturase from tung.
736 Implications for the evolution of plant fatty acid diversity. *Plant Physiol*

737 2002;130:2027–38.

738 [15] Shockey JM, Dhanoa PK, Dupuy T, Chapital DC, Mullen RT, Dyer JM. Cloning,
739 functional analysis, and subcellular localization of two isoforms of
740 NADH:cytochrome b5 reductase from developing seeds of tung (*Vernicia fordii*).
741 Plant Sci 2005;169:375–85.

742 [16] Cao HP, Chapital DC, Howard OD, Deterding LJ, Mason CB, Shockey JM, et al.
743 Expression and purification of recombinant tung tree diacylglycerol
744 acyltransferase 2. Appl Microbiol Biot 2012;96:711–27.

745 [17] Cao HP, Shockey JM, Klasson KT, Chapital DC, Mason CB, Scheffler BE.
746 Developmental regulation of diacylglycerol acyltransferase family gene
747 expression in tung tree tissues. PloS One 2013;8:e76946.

748 [18] Zhang L, Li X, Ma B, Gao Q, Du H, Han Y, et al. The tartary buckwheat genome
749 provides insights into rutin biosynthesis and abiotic stress tolerance. Mol Plant
750 2017;10:1224–37.

751 [19] C T, M Y, Y F, Y L, S G, X X, et al. The rubber tree genome reveals new insights
752 into rubber production and species adaptation. Nat Plants 2016;2:16073.

753 [20] Chan AP, Crabtree J, Zhao Q, Lorenzi H, Orvis J, Puiu D, et al. Draft genome
754 sequence of the oilseed species *Ricinus communis*. Nat Biotechnol
755 2010;28:951–U3.

756 [21] Wu PZ, Zhou CP, Cheng SF, Wu ZY, Lu WJ, Han JL, et al. Integrated genome
757 sequence and linkage map of physic nut (*Jatropha curcas* L.), a biodiesel plant.
758 Plant J 2015;81:810–21.

759 [22] Wang LH, Yu S, Tong CB, Zhao YZ, Liu Y, Song C, et al. Genome sequencing of
760 the high oil crop sesame provides insight into oil biosynthesis. Genome Biol
761 2014;15: R39.

762 [23] Pootakham W, Sonthirod C, Naktang C, Ruang-Areerate P, Yoocha T, Sangsrakru
763 D, et al. *De novo* hybrid assembly of the rubber tree genome reveals evidence of
764 paleotetraploidy in Hevea species. Sci Rep 2017;7: 41457.

765 [24] Wu J, Wang ZW, Shi ZB, Zhang S, Ming R, Zhu SL, et al. The genome of the
766 pear (*Pyrus bretschneideri* Rehd.). Genome Res 2013;23:396–408.

767 [25] Chen JQ, Lang CX, Hu ZH, Liu ZH, Huang RZ. Antisense PEP gene regulates to
768 ratio of and protein and lipid content in *Brassica Napus* seeds. *J Agr Biotechnol*
769 1999;7(7591):316-320.

770 [26] Cao H, Zhang L, Tan X, Long H, Shockley JM. Identification, classification and
771 differential expression of oleosin genes in tung tree (*Vernicia fordii*). *PLoS One*
772 2014;9:e88409.

773 [27] Baud S, Wuilleme S, To A, Rochat C, Lepiniec L. Role of WRINKLED1 in the
774 transcriptional regulation of glycolytic and fatty acid biosynthetic genes in
775 *Arabidopsis*. *Plant J* 2009;60:933–47.

776 [28] Sugliani M, Rajjou L, Clerkx EJM, Koornneef M, Soppe WJJ. Natural modifiers
777 of seed longevity in the *Arabidopsis* mutants abscisic acid insensitive3-5 (abi3-5)
778 and leafy cotyledon1-3 (lec1-3). *New Phytol* 2009;184:898–908.

779 [29] Kirkbride RC, Fischer RL, Harada JJ. LEAFY COTYLEDON1, a key regulator
780 of seed development, is expressed in vegetative and sexual propagules of
781 *selaginella moellendorffii*. *PloS One* 2013;8:e67971.

782 [30] Rikiishi K, Maekawa M. seed maturation regulators are related to the control of
783 seed dormancy in Wheat (*Triticum aestivum* L.). *PloS One* 2014;9:e107618.

784 [31] Huang MK, Hu YL, Liu X, Li YG, Hou XL. *Arabidopsis* LEAFY
785 COTYLEDON1 controls cell fate determination during post-embryonic
786 development. *Front Plant Sci* 2015;6:955.

787 [32] Guan R, Zhao Y, Zhang H, Fan G, Liu X, Zhou W, et al. Draft genome of the
788 living fossil *Ginkgo biloba*. *Gigascience* 2016;5:49.

789 [33] Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin YC, Scofield DG, et al. The
790 Norway spruce genome sequence and conifer genome evolution. *Nature*
791 2013;497:579–84.

792 [34] Patel RV, Nahal HK, Breit R, Provart NJ. BAR expressolog identification:
793 expression profile similarity ranking of homologous genes in plant species. *Plant*
794 *J* 2012;71:1038–50.

795 [35] Winter D, Baxter I, Vinegar B, Nahal H, Ammar R, Wilson GV, et al. An
796 “Electronic fluorescent pictograph” browser for exploring and analyzing

797 large-scale biological data sets. *PLoS One* 2007;2:e718.

798 [36] Kagale S, Nixon J, Khedikar Y, Pasha A, Provart NJ, Clarke WE, et al. The
799 developmental transcriptome atlas of the biofuel crop *Camelina sativa*. *Plant J*
800 2016;88:879–94.

801 [37] Hawkins C, Caruana J, Li JM, Zawora C, Darwish O, Wu J, et al. An eFP
802 browser for visualizing strawberry fruit and flower transcriptomes. *Hortic Res*
803 2017;4:17029.

804 [38] Meyers BC. Genome-wide analysis of NBS-LRR-encoding genes in *Arabidopsis*.
805 *Plant Cell* 2003;15:809–34.

806 [39] Liu J, Liu X, Dai L, Wang G. Recent progress in elucidating the structure,
807 function and evolution of disease resistance genes in plants. *J Genet Genomics*
808 2007;34:765–76.

809 [40] Gassmann W, Hinsch ME, Staskawicz BJ. The *Arabidopsis* RPS4
810 bacterial-resistance gene is a member of the TIR-NBS-LRR family of
811 disease-resistance genes. *Plant J* 1999;20:265–77.

812 [41] Dyer JM, Chapital DC, Kuan JCW, Shepherd HS, Tang FQ, Pepperman AB.
813 Production of linolenic acid in yeast cells expressing an omega-3 desaturase
814 from tung (*Aleurites fordii*). *J American Oil Chemists' Society* 2004;81:647–51.

815 [42] Pastor S, Sethumadhavan K, Ullah AH, Gidda S, Cao H, Mason C, et al.
816 Molecular properties of the class III subfamily of acyl-coenzyme A binding
817 proteins from tung tree (*Vernicia fordii*). *Plant Sci* 2013;203-204:79–88.

818 [43] Hwang YT, Pelitire SM, Henderson MP, Andrews DW, Dyer JM, Mullen RT.
819 Novel targeting signals mediate the sorting of different isoforms of the
820 tail-anchored membrane protein cytochrome b5 to either endoplasmic reticulum
821 or mitochondria. *Plant Cell* 2004;16:3002–19.

822 [44] Gidda SK, Shockley JM, Rothstein SJ, Dyer JM, Mullen RT. *Arabidopsis*
823 *thaliana* GPAT8 and GPAT9 are localized to the ER and possess distinct ER
824 retrieval signals: functional divergence of the dilysine ER retrieval motif in plant
825 cells. *Plant Physiol Biochem* 2009;47:867–79.

826 [45] Shepherd HS, Dyer JM, Tang F, Shih DS, Pepperman AB. Nucleotide sequence

827 of a cDNA clone of a plastid-type omega-3 fatty acid desaturase (accession No.
828 AF200717) from tung (*Aleurites fordii*) seeds (PGR 00-009). *Plant Physiol*
829 2000;122:292.

830 [46] Tang F, Dyer JM, Lax AR, Shih DS, Chapital DC, Pepperman AB. cDNA cloning
831 of aquaporin (accession No. AF047173) and glutaredoxin (accession No.
832 AF047694) from *Aleurites fordii* seeds. *Plant Physiol* 1998;177:717–20.

833 [47] Long H, Tan XF, Yan F, Zhang L, Li Z, Cao HP. Molecular cloning and
834 expression profile of β -ketoacyl-acp synthase gene from tung tree (*Vernicia*
835 *fordii* Hemsl.). *Genetika* 2015;47:143–59.

836 [48] Wendl MC, Barbazuk WB. Extension of Lander-Waterman theory for sequencing
837 filtered DNA libraries. *BMC Bioinformatics* 2005;6:245.

838 [49] GW V, FJ S, M N, CJ U, H F, J G, et al. GenomeScope: fast reference-free
839 genome profiling from short reads. *Bioinformatics* 2017;33:2202–4.

840 [50] Parra G, Bradnam K, Korf I. CEGMA: a pipeline to accurately annotate core
841 genes in eukaryotic genomes. *Bioinformatics* 2007;23:1061–7.

842 [51] Simao FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. BUSCO:
843 assessing genome assembly and annotation completeness with single-copy
844 orthologs. *Bioinformatics* 2015;31:3210–2.

845 [52] Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with
846 RNA-Seq. *Bioinformatics* 2009;25:1105–11.

847 [53] Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T,
848 Telling A, et al. Comprehensive mapping of long-range interactions reveals
849 folding principles of the human genome. *Science* 2009;326:289–93.

850 [54] Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS: an automatic
851 genome annotation and pathway reconstruction server. *Nucleic Acids Res*
852 2007;35:W182–5.

853 [55] Zdobnov EM, Apweiler R. InterProScan--an integration platform for the
854 signature-recognition methods in InterPro. *Bioinformatics* 2001;17:847–8.

855 [56] Hunter S, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D, et al.
856 InterPro: the integrative protein signature database. *Nucleic Acids Res*

857 2009;37:D211–5.

858 [57] Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW.

859 RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic

860 Acids Res 2007;35:3100–8.

861 [58] Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer

862 RNA genes in genomic sequence. Nucleic Acids Res 1997;25:955–64.

863 [59] Yang Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol

864 2007;24:1586–91.

865 [60] De Bie T, Cristianini N, Demuth JP, Hahn MW. CAFE: a computational tool for

866 the study of gene family evolution. Bioinformatics 2006;22:1269–71.

867

868 **Figure legends**

869 **Figure 1 The genomic landscape of tung tree**

870 The features from outside to inside are pseudochromosomes (**a**), gene density (0–1)

871 (**b**), repeat density (0–1) (**c**), GC content (0%–50%) (**d**), expression (0–1) (**e**),

872 retroelement (0–0.70) (**f**), DNA transposon (0–0.09) (**g**), tandem repeat (0–0.40) (**h**),

873 genome synteny (**i**); Intra-genome collinear blocks with gene pairs numbering more

874 than 20 are highlighted with arcs in the middle of the diagram. Circos was used to

875 construct the diagram. All distributions were drawn using a window size of 1 Mb with

876 the exception of expression, which was drawn using a window of 50 Kb. Chr,

877 chromosome.

878

879 **Figure 2 Evolution of tung tree genome**

880 A. Phylogenetic tree of tung tree and 7 other plant species based on orthologues of

881 single-copy gene families. The number in parentheses at each branch point represents

882 the divergence time (Mya). The number at the root (15,662) represents the number of

883 gene families in the common ancestor. The value above each branch indicates the

884 number of gene family expansion/contraction at each round of genome duplication

885 after divergence from the common ancestor. Bootstrap value for each node is 100. B.

886 Density distribution of 4DTv and Ks for paralogous genes. The peak value is shown

887 in the inset. “non” means no peak value. C. Collinear relationship of *V. fordii*, *M.*

888 *esculenta* and *V. vinifera*. Gray line connects matched gene pairs. The chromosomes

889 of tung tree, cassava and grapevine were assigned with green, blue and purple,
890 respectively. The annotated genes were clustered into gene families among eight
891 sequenced whole genomes including *A. thaliana*, *P. trichocarpa*, *V. vinifera* and five
892 Euphorbiaceae species *i.e.* *V. fordii*, *R. communis*, *M. esculenta*, *H. brasiliensis*, and *J.*
893 *curcas*.

894

895 **Figure 3 Analysis of the LTR Retrotransposons in the tung tree genome**

896 **A.** The neighbor-joining tree based on 347 *Ty1/copia* sequences; **B.** The
897 neighbor-joining tree based non 622 *Ty3/gypsy* sequences. **C.** Proportions of LTR
898 Retrotransposon families by copy number in the tung tree genome. **D.** Heat map of
899 expression patterns of 701 LTR Retrotransposons. All aligned sequences correspond
900 to the RT domains without premature termination codon. LTR family names and their
901 proportion are indicated. I, II, and III indicate high-copy families (≥ 5 intact
902 members), median-copy families (2–4 intact members) and single-copy families,
903 respectively.

904

905 **Figure 4 Functional conservation and diversification of tung tree homologs as**
906 **visualized with the Tung Tree eFP Browser**

907 eFP browser images showing conservation, sub-functionalization,
908 neo-functionalization and non-functionalization of tung tree homologs. In each panel,
909 the expression patterns of three homologs of each gene is shown. In all cases, red
910 represents higher levels of transcript accumulation and yellow represents a lower level
911 of transcript accumulation. From top to bottom, the genes are involved in feruloyl
912 CoA ortho-hydroxylase (from left to right Vf03G0652, Vf00G0634, and Vf03G0623),
913 Protein ECERIFERUM (from left to right Vf04G0546, Vf06G2858, and Vf06G2857),
914 Purple acid phosphatase (from left to right Vf04G0305, Vf04G0306, and Vf11G0977),
915 and Protein LYK5 (from left to right Vf09G1183, Vf03G0089, and Vf09G0959).WAF,
916 week after flowering.

917

918 **Figure 5 The NBS-encoding genes in tung tree genome**

919 **A.** The maximum-likelihood phylogenetic tree based on 88 tung tree NBS encoding
920 genes; dots in green, blue, pink, and orange indicate NBS subfamily, NBS-LRR
921 subfamily, CC-NBS subfamily, and CC-NBS-LRR subfamily, respectively. Gene IDs

922 in red indicate tandem repeats. **B.** Heat map of expression patterns of tung tree
923 NBS-encoding genes. FOE, FOM, and FOL represents early, middle, and late stage
924 after *F. oxysporum* infection. Different colored arrows indicate NBS genes responding
925 to Fusarium wilt.

926

927 **Figure 6 Network of genes involved in tung oil biosynthesis**

928 **A.** Tung oil biosynthesis pathway. Tung oil biosynthesis is catalyzed by 18 enzymatic
929 steps with multiple isozymes in each step. Acetyl-CoA is converted into C16 and C18
930 fatty acids in the plastid. TAG is synthesized in the endoplasmic reticulum and packed
931 in the oil bodies. The metabolites are described in the black box. The enzymes are
932 circled between two metabolite boxes. The expression levels of oil-biosynthesis genes
933 are presented with the heat map. The scale bar of relative expression levels are shown
934 at the top left. **B.** Oil droplet development in tung tree seeds. **C.** Tung oil and fatty
935 acid accumulation profiles. PEPC, phosphoenolpyruvate carboxylase. PK, pyruvate
936 kinase. ACCase, acetyl CoA carboxylase. α/β -CT, acetyl-coenzyme A carboxylase
937 carboxyl transferase subunit alpha/ beta. BCCP, biotin carboxyl carrier protein. BC,
938 biotin carboxylase. MAT, malonyl-CoA transacylases. KAS, ketoacyl-ACP synthase.
939 KAR, ketoacyl-ACP reductase. HAD, hydroxyacyl-ACP dehydrase. EAR, enoyl-ACP
940 reductase. FAT, fatty-acyl carrier protein thioesterase. SAD, stearoyl-ACP desaturase.
941 FA, fatty acid. LACS, long-chain acyl-CoA synthetase. G3P, glycerol-3-phosphate.
942 GPAT, glycerol-3-phosphate acyltransferase. LPA, lysophosphatidic acid. LPAT,
943 lysophosphatidic acid acyltransferase. PA, phosphatidic acid. PP, phosphatidate
944 Phosphatase DAG, diacylglycerol. PDCT, phosphatidylcholine. DAG-CPT,
945 CDP-choline-diacylglycerol cholinephosphotransferase. PC, phosphatidylcholine.
946 FAD, fatty-acid desaturase. DAGT, diacylglycerol O-acyltransferase. PDAT,
947 phospholipid-DAG acyltransferase. LPC, lyso-phosphatidylcholine. TAG,
948 triacylglycerol. Ole, oleosin. WAF, week after flowering.

949

950 **Figure 7 Phylogeny of FAD2 and FADx proteins**

951 A maximum-likelihood phylogenetic tree constructed from protein sequences. The
952 taxon names in the phylogenetic tree are indicated after gene ID. The clades are
953 marked by four different block colors in the tree. The last one (yellow), a basal
954 angiosperm, *A. trichopoda*, used as an outgroup; the monocot FAD2, eudicot FAD2

955 and eudicot FADx clades are marked in red, blue and green, respectively.

956

957 **Figure 8 Co-expression networks of tung tree oil biosynthesis-related genes and**
958 **transcription factors at the transcriptome level**

959 Oil biosynthesis-related genes are colored in red, and their adjacent transcription
960 factors are colored in black.

961

962 **Tables**

963 **Table 1 Statistics of tung tree genome assembly and annotation**

964

965 **Supplementary material**

966 **File S1 Self-pollination and heterozygosity estimation**

967 **File S2 Estimation of genome size and heterozygosity**

968 **File S3 Repeat sequence analysis**

969 **File S4 Transcriptome sequencing, assembly and eFP browser**

970 **File S5 Identification and expression of NBS-encoding gene families**

971 **File S6 Lipid analysis and electron microscopy observation**

972 **File S7 Oil biosynthesis-related gene family identification and phyleogenetic**
973 **analysis**

974 **File S8 Gene co-expression analysis**

975 **File S9 Yeast two-hybrid assay of transcription factors**

976 **File S10 Whole-genome shotgun sequencing**

977 **File S11 Genome assembly and assessment**

978 **File S12 Gene prediction and functional annotation**

979 **File S13 Evolutionary analysis**

980

981

982 **Figure S4 The k-mer analysis to estimate the tung tree genome size**

983 **Figure S5 Distribution of length (A) and quality (B) of Pacbio raw reads**

984 **Figure S6 Distribution of inserted fragment length for Hi-C library**

985 **Figure S7 Hi-C linkage density heat map of assembled contigs**

986 **Figure S8 Cross-species comparison of gene elements between tung tree and**

987 **other five species**

988 **Figure S9 Gene GO classification of tung tree genome**

989 **Figure S10 GO classification of tung tree-specific gene families**

990 **Figure S11 Venn diagrams of cross-species gene family comparisons**

991 **Figure S12 Phylogenetic tree of tung tree and seven other plant species**

992 **Figure S13 GO classification of tung tree expanded gene families**

993 **Figure S14 GO classification of tung tree PSGs**

994 **Figure S15 Synteny analysis between *V. fordii* and *M. esculenta***

995 **Figure S16 Synteny analysis between *V. fordii* and *V. vinifera***

996 **Figure S17 Collinear relationship of *V. fordii*, *M. esculenta* and *V. vinifera***

997 **Figure S18 Evolutionary history of TE super-families in tung tree genome**

998 **Figure S19 The insertion times for intact LTR retrotransposons in tung tree**

999 **genome**

1000 **Figure S20 Insertion times of *Ty1/Copia*, *Ty3/Gypsy* and other LTR**

1001 **retrotransposon families in tung tree genome**

1002 **Figure S21 Insertion times of various copy number of retrotransposon families**

1003 **in tung tree genome**

1004 **Figure S23 eFP browser view of gene expression pattern in tung tree**

1005 **Figure S24 Chromosomal locations and region duplication for tung tree NBS**

1006 **genes**

1007 **Figure S25 Phylogenetic analysis of NBS-encoding genes**

1008 **Figure S31 The relationship between co-expression module and trait in tung**

1009 **tree**

1010 **Figure S32 Co-expression network analysis of genes in developing seeds in tung**

1011 **tree**

1012 **Figure S33 Yeast two-hybrid assay of transcription factors**

1013

1014 **Table S2** Sequencing data for 500 kb-library used in genome survey

1015 **Table S3** Sequencing data for 17-mer analysis

1016 **Table S4** Statistics of sequencing data for tung tree genome

1017 **Table S5** Statistics of the tung tree genome assembly

1018 **Table S6** Sequencing data for Hi-C library

1019 **Table S7** Mapped reads of Hi-C library to tung tree genome

1020 **Table S8** Statistics of Hi-C sequencing data

1021 **Table S9** Efficient coverage of Hi-C data to tung tree genome assembly

1022 **Table S10** Data of tung tree genome after Hi-C assembly

1023 **Table S11** Scaffold information after Hi-C assembly

1024 **Table S12** Assessment for completeness of tung tree genome by CEGMA

1025 **Table S13** Assessment for completeness of tung tree genome by BUSCO

1026 **Table S14** Coverage of tung tree genome from male flower unigenes

1027 **Table S15** Coverage of tung tree genome from female flower unigenes

1028 **Table S16** Coverage of tung tree genome from seed 1 unigenes

1029 **Table S17** Coverage of tung tree genome from seed 2 unigenes

1030 **Table S18** Coverage of tung tree genome from seed 3 unigenes

1031 **Table S19** Coverage of tung tree genome assembly from merged seed unigenes

1032 **Table S20** Transcriptomic reads mapped to tung tree genome

1033 **Table S21** Comparison of gene modules between tung tree and other species

1034 **Table S22** The GC content across the tung tree genome

1035 **Table S23** The GC content in coding sequences in the tung tree genome

1036 **Table S24** The GC content in intron regions in the tung tree genome

1037 **Table S25** Assessment for completeness of predicted tung tree genes by BUSCO

1038 **Table S26** Gene functional annotation of tung tree genome

1039 **Table S27** Pathways based on KEGG annotation in tung tree genome

1040 **Table S28** Non-coding RNAs in tung tree genome

1041 **Table S29** Statistics of gene families of *V. forrdi* and other 7 species

1042 **Table S30** GO analysis of unique gene families in the tung tree genome

1043 **Table S31** KEGG analysis of unique gene families in the tung tree genome.

1044 **Table S32** GO analysis of expanded gene families in tung tree genome

1045 **Table S33** Swissprot annotation of PSGs in tung tree genome

1046 **Table S34** GO analysis of PSGs in tung tree genome

1047 **Table S35** Collinearity analysis in tung tree genome

1048 **Table S36** Collinearity analysis in the *M.esculenta* genome

1049 **Table S37** Collinearity analysis in the *V.vinifera* genome

1050 **Table S40** Summary of repeat sequences in tung tree genome

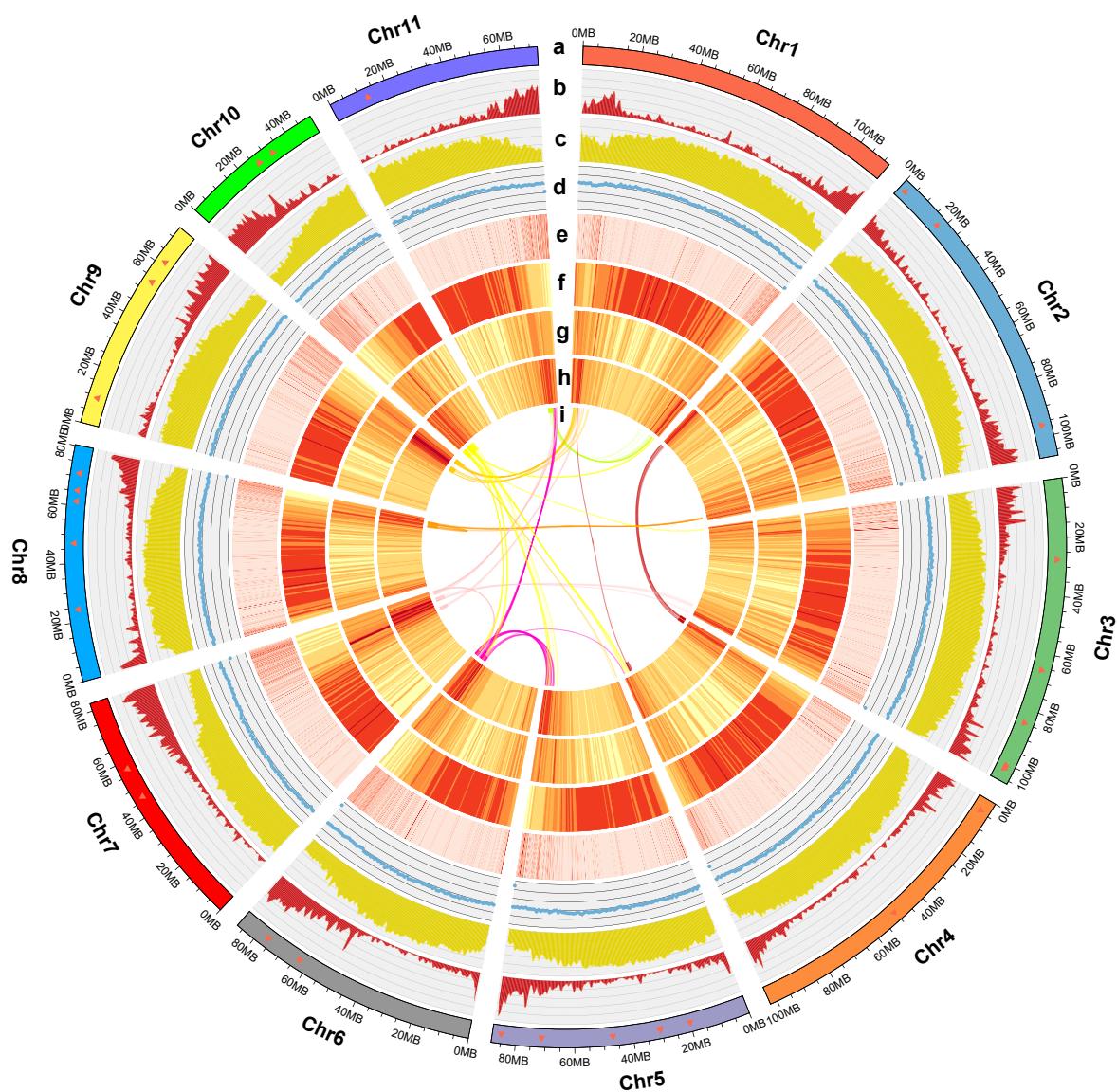
1051 **Table S41** Annotation of repeat sequences in tung tree genome

1052 **Table S51** Four types of functional conservation and diversification of tung tree homologs

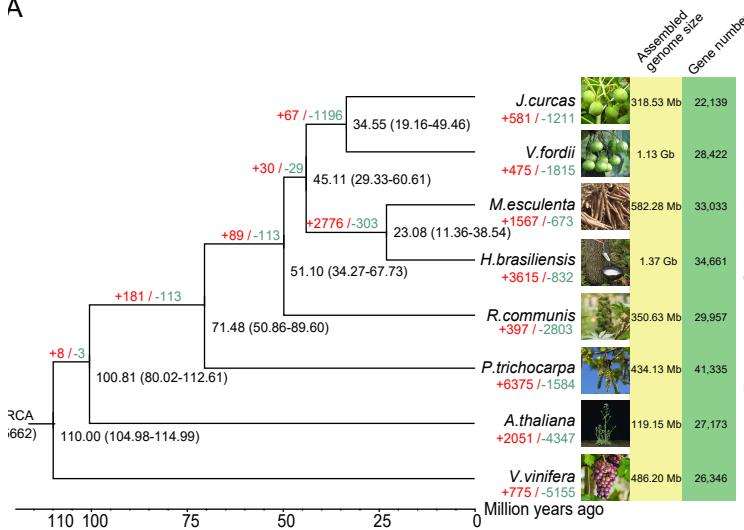
1053 **Table S52** Cross-species comparison of NBS-encoding gene family number

1055 **Table S53** Total oil-related gene families in tung tree genome

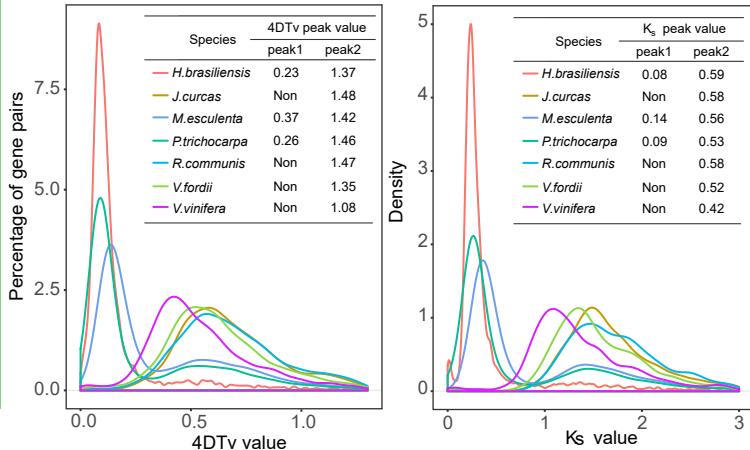
1056 **Table S54** Cross-species comparison of oil-related gene family number

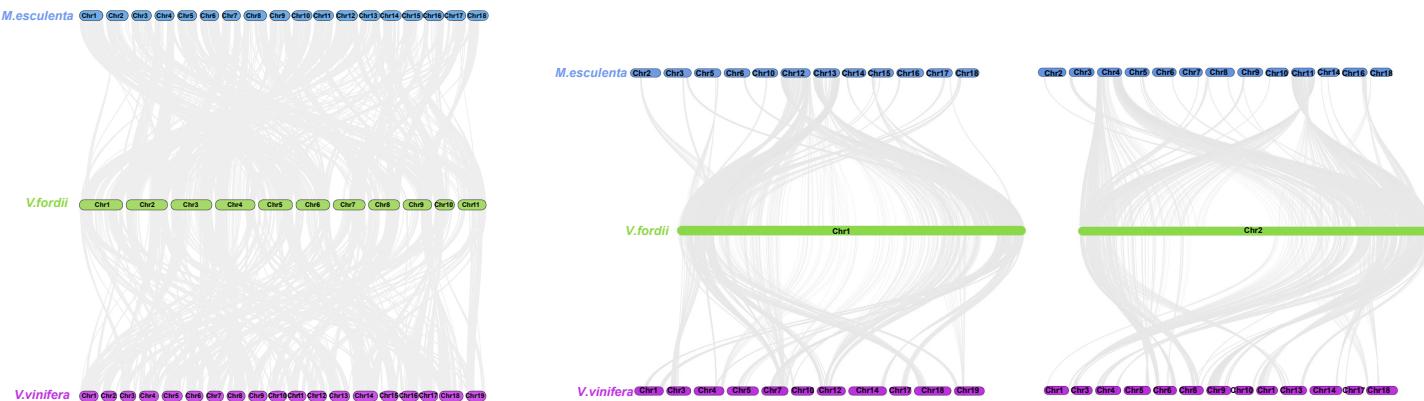

1057 **Table S55** Expression quantity (FPKM value) and duplication type of 88 important oil genes in tung tree genome

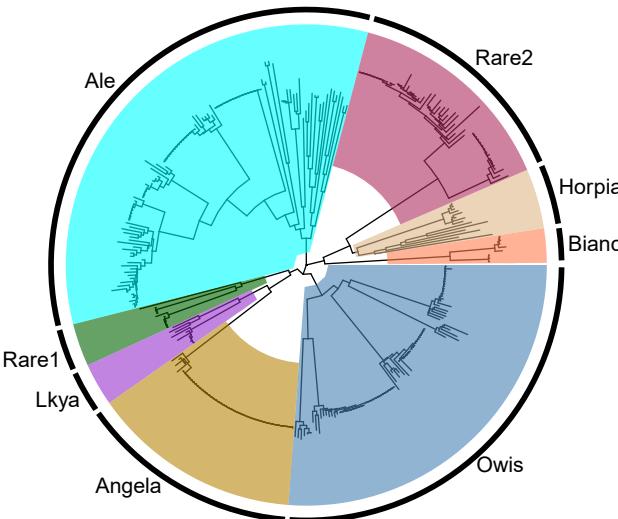
1059 **Table S56** Colinear gene pairs in poplar (*P. trichocarpa*)

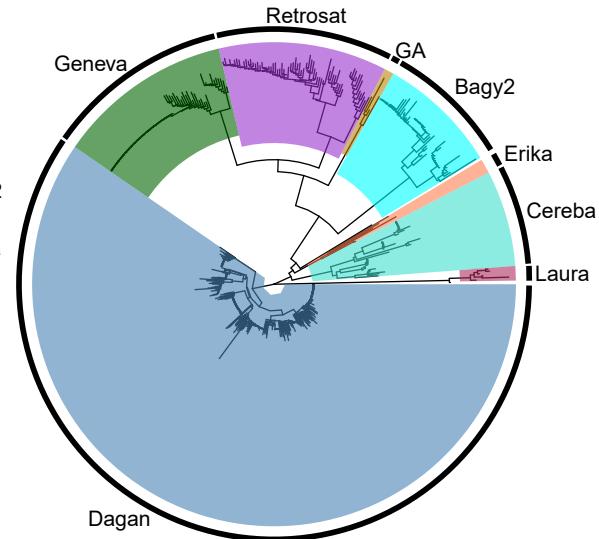

1060 **Table S57** Co-expression relationship among oil-related genes and transcription factors in yellow module

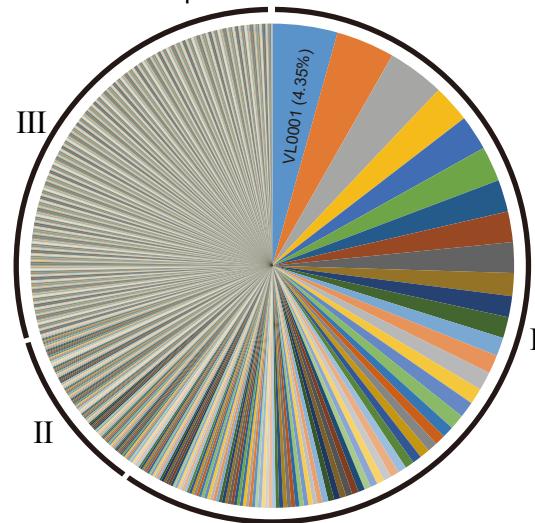
1062 **Table S58** Co-expression relationship among oil-related genes and transcription factors in brown module

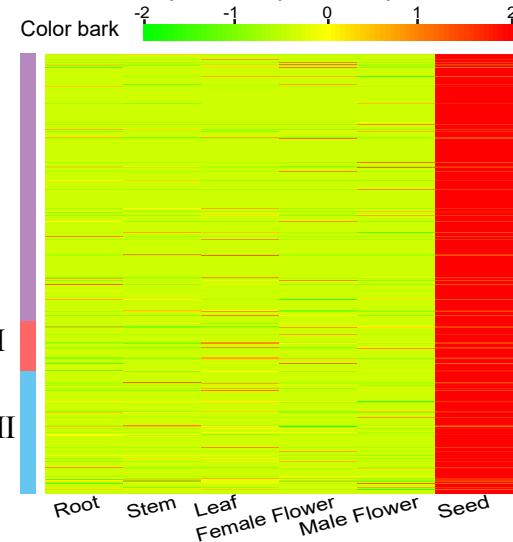

1064

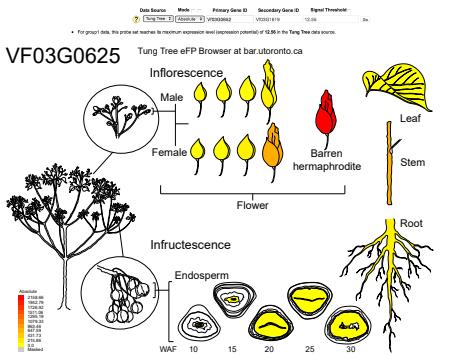

A

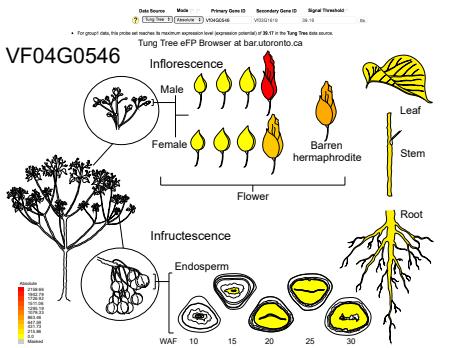

B

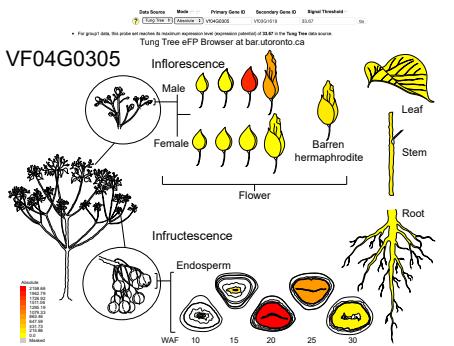

C

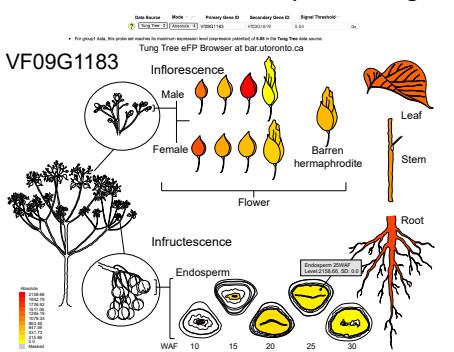

A Ty1/copia family

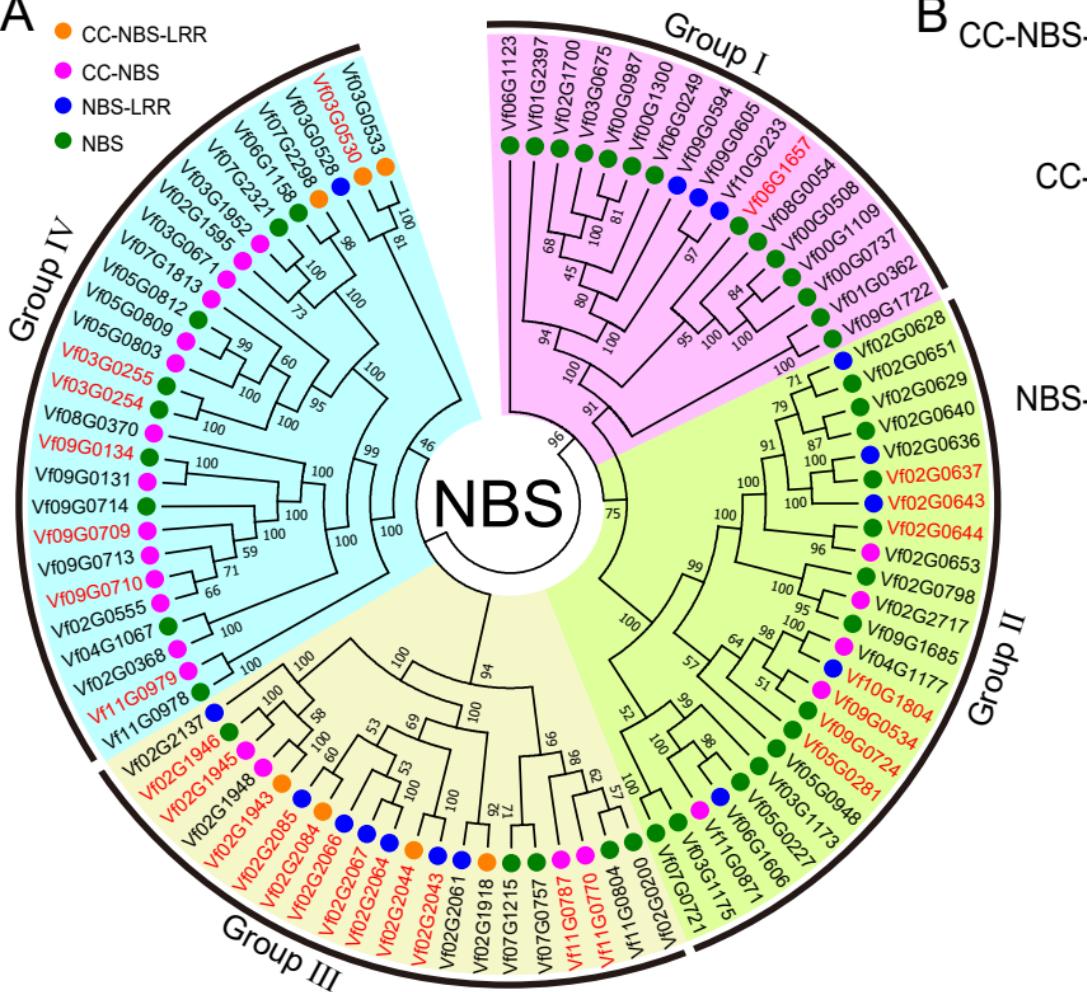

B Ty3/Gypsy family

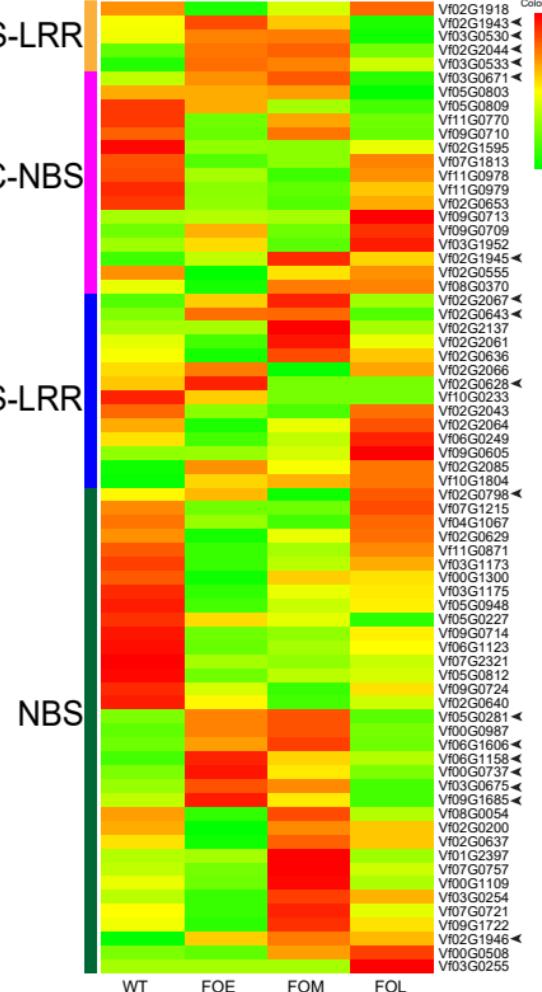

C LTR Retrotransposon families

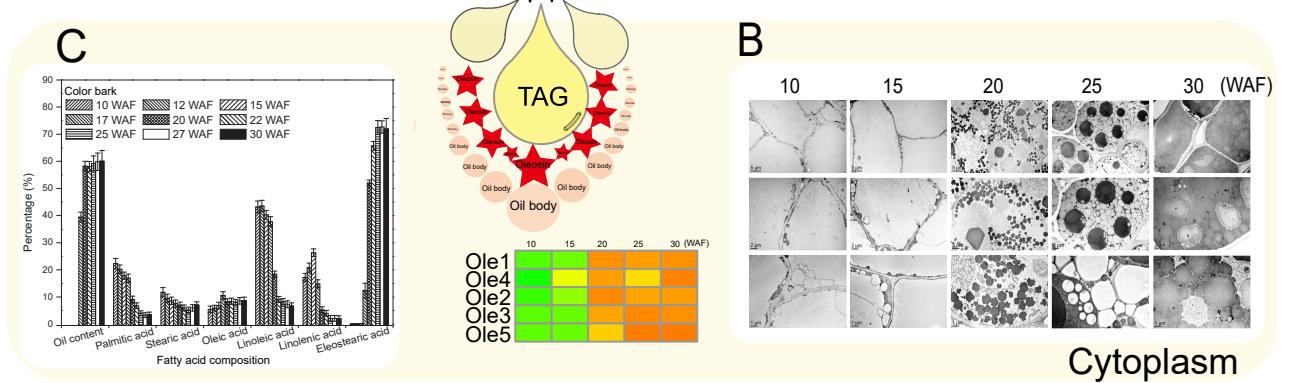
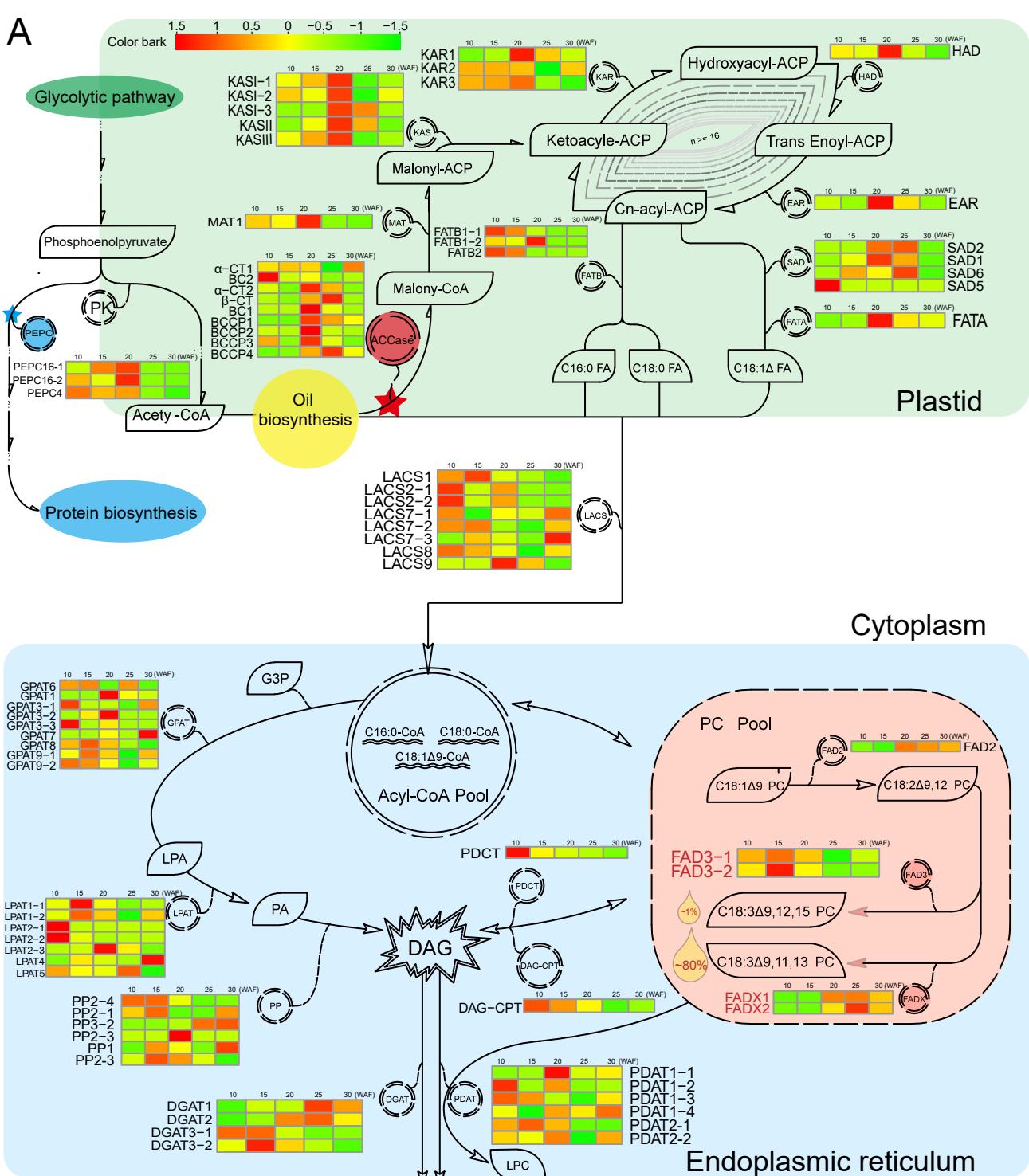

D LTR Retrotransposon expression patterns


A Conservation of function

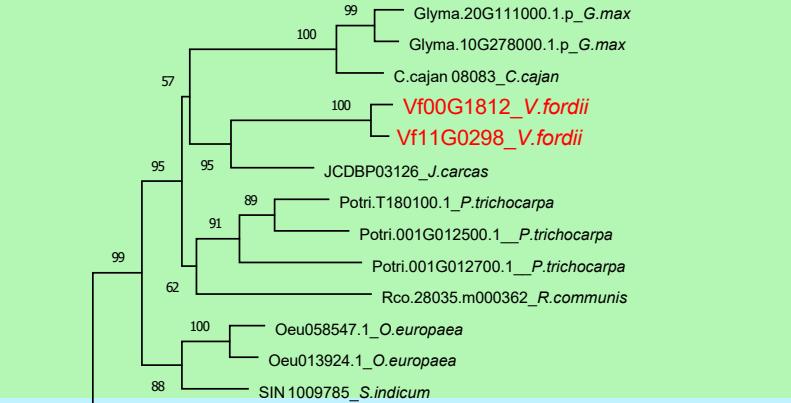

B Sub-functionalization


C Sub/neo-functionalization

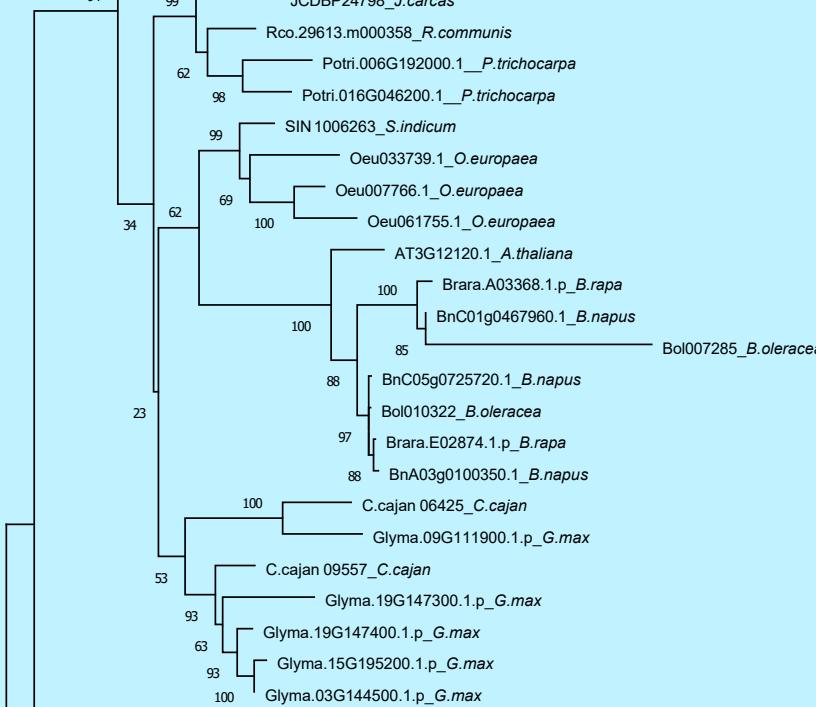

D No-functionalization(silencing of a homologue)

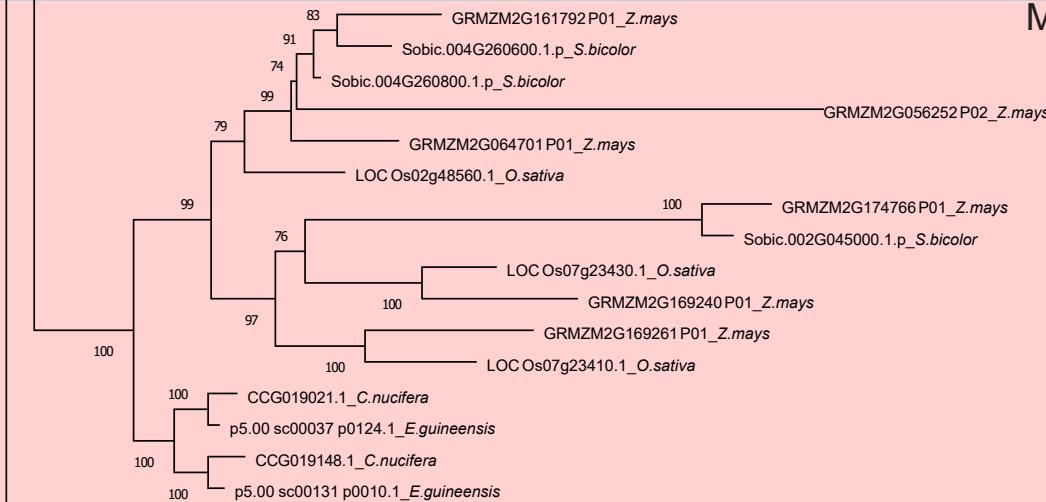



A

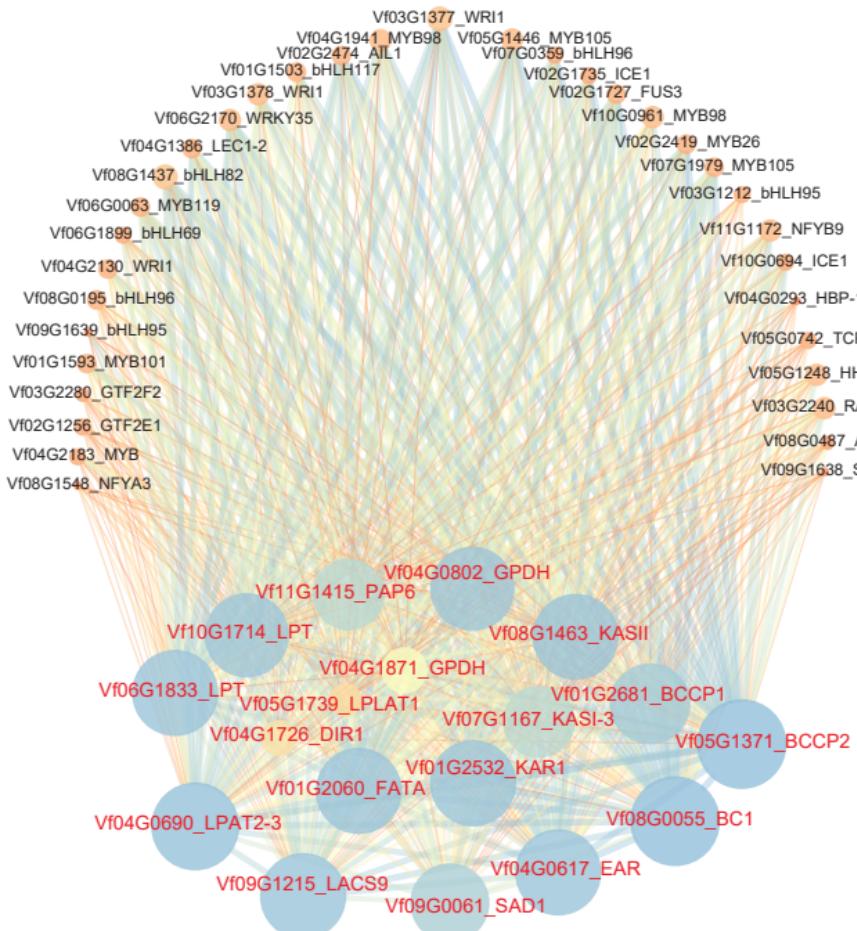


CC-NBS-LRR

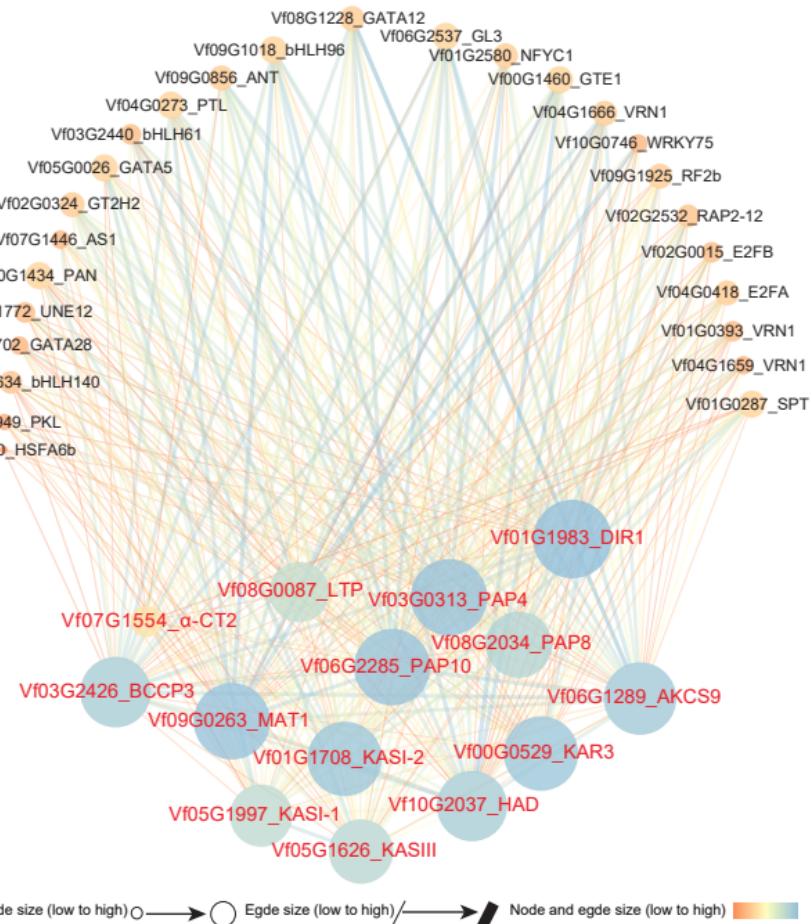



Eudicot FADX

Eudicot FAD2



Monocot FAD2



Basal angiosperm FAD2

A MEyellow module

B MEbrown module

