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Abstract 61 

Tung tree (Vernicia fordii) is an economically important woody oil plant that produces 62 

tung oil containing a high proportion of eleostearic acid (~80%). Here we report a 63 

high-quality, chromosome-scale tung tree genome sequence of 1.12 Gb with 28,422 64 

predicted genes and over 73% repeat sequences. Tung tree genome was assembled by 65 

combining Illumina short reads, PacBio single-molecule real-time long reads and 66 

Hi-C sequencing data. Insertion time analysis revealed that the repeat-driven tung tree 67 

genome expansion might be due to long standing long terminal repeat (LTR) 68 

retrotransposon bursts and lack of efficient DNA deletion mechanisms. An electronic 69 

fluorescent pictographic (eFP) browser was generated based on genomic and 70 

RNA-seq data from 17 various tissues and developmental stages. We identified 88 71 

nucleotide-binding site (NBS)-encoding resistance genes, of which 17 genes may help 72 

the tung tree resist the Fusarium wilt shortly after infection. A total of 651 oil-related 73 

genes were identified and 88 of them were predicted to be directly involved in tung 74 

oil biosynthesis. The fewer phosphoenolpyruvate carboxykinase (PEPC) genes, and 75 

synergistic effects between transcription factors and oil biosynthesis-related genes 76 

may contribute to high oil content in tung seeds. The tung tree genome should provide 77 

valuable resources for molecular breeding and genetic improvement. 78 

 79 

KEYWORDS: Tung tree genome; Tung oil; Genome evolution; Electronic 80 

fluorescent pictographic browser; Oil biosynthesis  81 

 82 

 83 

Introduction 84 

Tung tree (Vernicia fordii), a woody oil plant native to China, is widely distributed in 85 

the subtropical area. Tung tree taxonomically belongs to the Euphorbiaceae family, 86 

along with several other economically important species including cassava (Manihot 87 

esculenta), castor oil plant (Ricinus communis), rubber tree (Hevea brasiliensis) and 88 

physic nut (Jatropha curcas). Species commonly referred to as tung trees include 89 

three major subspecies (V. fordii, V. montana, and V. cordata), of which V. fordii is the 90 

most widely cultivated species due to wide geographic distribution, medium stature 91 
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for easy plantation management, and high-quality oil production. Tung trees have 92 

been planted for tung oil production or ornamental purpose for more than 1000 years 93 

in China [1]. Tung trees have been widely distributed in 16 Chinese provinces and 94 

many countries after they were introduced into America, Argentina, Paraguay and 95 

other countries for plantation and tung oil production at the beginning of the 96 

20th century [1] (Figure S1).  97 

   Tung seeds contain 50%−60% tung oil, which is composed of approximately 80% 98 

α-eleostearic acid (α-ESA), a type of unusual fatty acid. As the major component in 99 

tung oil, α-ESA has three conjugated double bonds (9 cis, 11 trans, 13 trans), and thus 100 

is easily oxidized. Due to its excellent characteristics, tung oil has been widely used as 101 

a drying ingredient in paints, varnishes, coating and finishes since ancient times [2]. 102 

Tung oil also can be used for synthesizing thermosetting polymers and resins with 103 

superior properties [3,4], and has been proposed as a potential source of biodiesel 104 

[5−7]. Tung oil was one of the chief exports until 1980s, and then declined due to the 105 

development of chemical coatings. Interestingly, tung oil has been attracted 106 

world-wide attention in recent years due to production security, environmental 107 

concerns, and negative effect of synthetic chemical coatings on human health [8−10]. 108 

New technologies have been developed to improve the performance of tung oil-based 109 

coatings [3,11,12].  110 

   As an oil crop, economic traits involved in fatty acid biosynthesis and oil 111 

accumulation are the targets of improved breeding efficiency for tung tree. However, 112 

identification of important genes, gene families and marker loci associated with oil 113 

content, fatty acid composition, and fruit yield has been hampered due to a lack of 114 

genetic and genomic information. Only a few functional genes, mainly involved in the 115 

formation and regulation of fatty acids such as fatty acid desaturase (FAD2, FAD3, 116 

FADx) and diacylglycerol acyltransferase (DGAT), have been investigated to date 117 

[13−17].  118 

   In the present study, we report the sequencing and assembly of V. fordii genome, 119 

which was achieved by combining whole-genome shotgun sequencing of Illumina 120 

short reads and real-time (SMRT) long reads on a Pacific Biosciences (PacBio) 121 

platform. We also used a Hi-C map to cluster the majority of the assembled contigs 122 

onto 11 pseudochromosomes. We conducted evolutionary comparisons and 123 

comprehensive transcriptome analysis of genes involved in oil biosynthesis to 124 

elucidate the genetic characteristics of oil synthesis and genetic difference as 125 
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compared to other plant species.  126 

 127 

Results 128 

Genome sequencing, assembly and validation 129 

The self-bred progeny ‘VF1-12’ of V. fordii cv. Putaotong was used for genome 130 

sequencing (File S1). The genome of V. fordii was estimated to be 1.31 Gb in size 131 

with a low heterozygous rate of 0.0976% (Tables S2 and S3; File S2; Figure S4). 132 

After removing low-quality reads, we obtained a total of 177.68 Gb of high quality 133 

data, including 160.21 Gb of Illumina sequencing data and 187.47 Gb of SMART data, 134 

corresponding 135.73 × coverage of the tung tree genome (Table S4; Figure S5). The 135 

assembled tung tree genome was 1.12 Gb covering 85% of the estimated genome size, 136 

and contained 34,773 contigs with a maximum length of 544.11 Kb and 4,577 137 

scaffolds with a maximum length of 5.09 Mb (Table 1; Table S5). Among them, 3,333 138 

contigs and 29,721 scaffolds were more than 2 Kb in length (Table S5). After Hi-C 139 

data assessment and assembly, 1.06 Gb (95.15%) of the genome sequences were 140 

anchored onto 11 pseudochromosomes, with maximum clustered sequence lengths, 141 

minimum clustered sequence lengths and scaffold N50 of 120.57 Mb, 63.43 Mb and 142 

87.15 Mb, respectively (Table 1; Tables S6−S11; Figure 1; Figures S6 and S7).  143 

   The CEGMA prediction indicated that 87.9% complete elements and 95.97% 144 

partial elements in tung tree genome could be hit for the 248 most conserved genes 145 

(Table S12). The BUSCO analysis showed that 1,379 (95.7%) of BUSCO genes were 146 

complete, of which 1338 (92.9%) and 41 (2.8%) were single-copy and duplicated, 147 

respectively (Table S13). RNA-seq data showed that 90.36%, 96.83% of flower 148 

samples 1 and 2 unigenes, 95.35%, 95.50%, and 96.48% of seed samples 1–3 149 

unigenes showed good alignments to the assembled tung tree genome with mapping 150 

rate > 90%, respectively (Tables S14−S19). Furthermore, 88.3% to 95.6% of the reads 151 

from the five samples could be mapped to our genome assembly (Table S20). The 152 

validation results suggested that our tung tree genome assembly was of high quality in 153 

this study.  154 

 155 

Genome annotations 156 

In total, 28,422 genes were predicted with an average transcript length of 3,785 bp, 157 

average CDS length of 1,034 bp, average exon number of 4.85 per gene, average exon 158 
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length of 213 bp, and average intron length of 714 bp (Table 1; Table S21; Figure S8). 159 

The GC content was 31.93% across the genome, 41.91% in coding sequences and 160 

31.16% in intron regions (Table 1; Tables S22−S24). BUSCO analysis showed that 161 

1290 complete BUSCOs (89.6%) could be searched of all BUSCO groups, indicating 162 

that most of the gene models were complete (Table S25).   163 

   Among the total 28,422 genes, 23,143 genes (81.4%) were functionally annotated. 164 

Tremble, Swissprot and NR allowed the annotation of 79.6%, 63.8%, and 81.1% of all 165 

genes, respectively (Table S26). Gene ontology (GO) annotation revealed that 12,581 166 

genes could be grouped into three categories with 65.97% in molecular function 167 

(GO:0003674), 20.1% in cellular component (GO:0005575), and 58.52% in 168 

biological process (GO:0008150) (Figure S9). We were able to use kyoto 169 

encyclopedia of genes and genomes (KEGG) to annotate 6835 genes to 235 pathways, 170 

of which oil biosynthesis and metabolism-related glycerolipid metabolism (ko00561), 171 

fatty acid biosynthesis (ko00061), fatty acid elongation (ko00062), and fatty acid 172 

degradation (ko00071) were of particular interest in this paper (Table S27).  173 

   In addition, we identified several types of non-coding RNAs in tung tree genome, 174 

including 465 microRNA (miRNA) genes, 740 transfer RNA (tRNA) genes, 116 175 

ribosomal RNA (rRNA) genes, and 1414 small nuclear RNA (snRNA) genes (Table 176 

S28). 177 

 178 

Gene family evolution and phylogeny  179 

A total of 22,991 tung tree genes clustered into 15,038 gene families including 8,865 180 

gene families shared by all eight species, and 635 tung tree-unique families and 5,431 181 

tung tree-specific unclustered genes (Table S29). GO annotation of the tung 182 

tree-specific families showed that the genes involved in macromolecule metabolic 183 

processes (GO:0043170), cellular macromolecule metabolic processes (GO:0044260) 184 

and protein metabolic processes (GO:0019538) were highly enriched (Table S30; 185 

Figure S10). A total of 933 genes could be annotated using KEGG database, of which 186 

586 genes were mapped to KEGG pathways. We observed KEGG enrichment in 187 

translation (110), carbohydrate metabolism (61), biosynthesis of other secondary 188 

metabolites (42), amino acid metabolism (44), folding, sorting and degradation (44), 189 

signal transduction (43), biosynthesis of other secondary metabolites (42), and 190 

environmental adaptation (36) (Table S31). We identified 11,985 gene families that 191 

were shared among the five Euphorbiaceae species (Figure S11A). The tung tree 192 
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shared 13,408, 13,387, 13,519, and 13,216 gene families with J. curcas, H. 193 

brasiliensis, M. esculenta, and R. communis, respectively, of which 9,778, 6,643, 194 

7,980, and 10,675 gene families had a one-to-one orthologous relationship (Figure 195 

S11A). Additionally, compared with A. thaliana, P. trichocarpa, and V. vinifera, 3,421 196 

gene families were found to be specific to Euphorbiaceae (Figure S11B). 197 

   A phylogenetic tree was generated based on a total of 2,085 single gene families 198 

among the eight species (Figure 2A; Figure S12). We estimated that V. fordii and J. 199 

curcas diverged around 34.55 million years ago (Mya) (Figure 2A). These data 200 

indicate that V. fordii is more closely related to J. curcas than M. esculenta, R. 201 

communis, and H. brasiliensis in Euphorbiaceae family, which is consistent with their 202 

phylogenetic classification based on morphological characteristics. 203 

   The expansion and contraction of gene families occur since plants are subjected to 204 

selection pressure during their evolution, thereby playing significant roles in plant 205 

phenotypic diversification [18]. Expansion and contraction analysis on 15,662 shared 206 

gene families based on the phylogenetic tree produced 475 expanded gene families 207 

encompassing 1,612 genes, and 1,815 contracted families in tung tree as compared to 208 

other plant species (Figure 2A). Of the 1,612 expanded genes, 839 could be annotated 209 

using the GO database. GO annotation revealed highly enriched genes related to 210 

macromolecule metabolic processes (GO:0043170), cellular macromolecule 211 

metabolic processes (GO:0044260), and nucleotide binding (GO:0000166) (Table S32; 212 

Figure S13).  213 

   The Ka/Ks ratio, also called ω or dN/dS, represents the number of 214 

non-synonymous substitutions per non-synonymous site (Ka) to the number of 215 

synonymous substitutions per synonymous site (Ks), indicating selective pressure 216 

acting on a protein-coding gene in genetics. The values of Ks and Ka substitution 217 

rates and the Ka/Ks ratio were estimated in each homologous cluster. A total of 586 218 

positively selected genes (PSGs) in tung tree genome were identified, of which 475 219 

were annotated using Swissprot functions (Table S33). GO annotation revealed that 220 

the PSGs related to pigment metabolic processes (GO:0042440), mitochondrial 221 

membrane (GO:0031966) and nuclear part (GO:0044428) are highly enriched (Table 222 

S34; Figure S14).  223 

 224 

Whole genome duplication and collinearity 225 

All of the seven species showed peak 2 with the values ranging from 1.08 to 1.48 for 226 
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4DTV analysis, and 0.42 to 0.59 for Ks analysis (Figure 3). However, peak 1 was 227 

only observed in V. fordii, J. curcas and R. communis (Figure 2B). The results suggest 228 

that only an ancient genome triplication event (i.e., γ event shared by core eudicots) 229 

and no recent independent whole-genome duplication (WGD) events occurred in the 230 

subsequent ~ 34.55 Mya evolutionary history in the tung tree lineage. 231 

   Plotting collinear regions of tung tree with itself showed that only 122 syntenic 232 

blocks containing 2,010 collinear gene pairs were identified in the tung tree genome 233 

(Figure 1; Table S35). A total of 3,559 genes comprised the collinear gene pairs, 234 

accounted for only 12.52% of tung tree genes, which is similar with V. vinifera 235 

(13.91%) and much lower than M. esculenta (33.86%) (Tables S36 and S37). The low 236 

collinear rate of tung tree genome suggests that a minority of the tung tree genome 237 

was duplicated during its evolution, which is consistent with the finding that the tung 238 

tree did not undergo a recent WGD event. 239 

   The tung tree genome generally showed a one-to-one and one-to-two syntenic 240 

relationships with V. vinifera (one duplication) and M. esculenta (two duplications), 241 

respectively (Figure 2C). Tung tree genome shared a total of 694 syntenic blocks, 242 

containing 22,133 collinear gene pairs with M. esculenta, and 589 syntenic blocks 243 

containing 14,570 collinear gene pairs with V. vinifera (Figure 2C; Figures S15 and 244 

S16). Most collinear regions between tung tree and M. esculenta revealed that one 245 

chromosome in tung tree corresponded to two chromosomes in M. esculenta (Figure 246 

2C; Figure S17). For instance, VfChr1 in tung tree corresponded to MeChr12 and 247 

MeChr13 in cassava, and, similarly, VfChr2 to MeChr4 and MeChr11, VfChr3 to 248 

MeChr7 and MeChr10, VfChr5 to MeChr1 and MeChr2, as well as VfChr6 to 249 

MeChr1 and MeChr5, respectively. These results indicate that that VfChr1, VfChr2, 250 

VfChr3, and VfChr5 of tung tree might be formed by fragmentation and 251 

recombination of ancestral chromosomes. The collinear regions between tung tree and 252 

V. vinifera did not exhibit the remarkable corresponding chromosome relationships, in 253 

contrast to those between tung tree and M. esculenta. 254 

 255 

Repeat-driven genome expansion 256 

Tung tree had larger genome size than physic nut and castor bean, which was mainly 257 

attributed to repeat expansion in tung tree genome. Repetitive element analysis 258 

showed that tung tree genome harbored the greatest repeat content (73.34%) among 259 

the five sequenced Euphorbiaceae species (Table S40), which was slightly higher than 260 
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the rubber tree (71%) [19], and much higher than the castor oil plant (50.33%) [20], 261 

Physic nut (49.8%) [21], and cassava (less than 40%) [22]. The repeat sequences were 262 

distributed at both ends of each tung tree chromosome (Figure 1). We identified 263 

66,3931 simple sequence repeats (SSRs) in the tung tree genome. The annotated SSRs 264 

were mostly mononucleotide (39.62%) and dinucleotide (13.38%) (File S3). 265 

Retroelements comprised the majority (51.89%) of the tung tree genome, of which 266 

50.77% belonged to long terminal repeat (LTR) retrotransposons (Table S41). Of the 267 

repeat sequences, two types of LTR retrotransposons, Ty1/Copia (84,180 in number) 268 

and Ty3/Gypsy (284,597 in number) were most abundant, accounting for 15.13% and 269 

53.46%, respectively (Figure 3A and B; File S3; Table S41). The Ty1/Copia and 270 

Ty3/Gypsy were ~ 0.53 Gb of total length, occupying 50.31% of the assembled tung 271 

tree genome.  272 

   Kimura analysis showed that two LTR retrotransposons (Ty1/Copia and 273 

Ty3/Gypsy) and DNA transposons were almost simultaneously amplified, with similar 274 

peaks for amplification bursts (Figure S18). Insertion time analysis of intact LTR 275 

retrotransposons indicated that both of Ty1/Copia and Ty3/Gypsy experienced multiple 276 

bursts over the last 3-4 Mya and they were younger than other unclassified 277 

transposable elements (File S3; Figures S19 and S20). In addition, median-copy 278 

families and high-copy families were younger than single-copy families (Figure S21). 279 

In light of our analysis, the dramatic expansion in tung tree genome size might be due 280 

to long standing LTR retrotransposon bursts and lack of efficient DNA deletion 281 

mechanisms. VL0001 was the largest Ty3/Gypsy family with 130 copies, accounting 282 

for 7.54% of the high-copy families and 4.35% of LTR retrotransposons (Figure 3C; 283 

Table S42). 284 

   Based on our RNA-seq data, 1,738 out of the total 2,991 LTR retrotransposons 285 

were expressed across six tissues. Ty3/gypsy LTR retrotransposons generally exhibited 286 

higher expression levels than Ty1/Copia retrotransposons, ranging from 0.71-fold in 287 

seed to 4.09-fold in leaf with approximately two-fold higher on average (File S3; 288 

Table S44). Among the 1,738 LTR retrotransposons, 701 showed the highest 289 

expression level in seeds, of which 60.77% belonged to high-copy families (Figure 290 

3D; File S3). This suggests that abundant high-copy LTR retrotransposons may be 291 

more active than other LTR retrotransposons families in developing tung seeds. In 292 

addition, 184, 204, 244, 148, and 257 LTR retrotransposons exhibited the highest 293 

expression levels in root, stem, leaf, female flower, and male flower, respectively (File 294 
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S3; Figure S22). Among these LTRs, high-copy LTR families also accounted for the 295 

highest proportion in the other five tissues. 296 

 297 

The tung tree eFP browser  298 

A total of 28,422 genes were identified from the tung tree genome, of which 23,143 299 

genes were annotated. The genome-wide gene identification allowed us to investigate 300 

gene expression on a large-scale in tung tree. To provide easy access and enable 301 

visualization of the expression levels of tung tree genes, flowers and seeds at different 302 

developmental stages were sampled for RNA-seq analysis (File S4). Based on 303 

RNA-seq data from 17 tung samples, a “Tung Tree eFP Browser” (at 304 

http://bar.utoronto.ca/efp_tung_tree/cgi-bin/efpWeb.cgi) was implemented to permit 305 

visualization of gene expression patterns with “absolute”, “relative” and “compare” 306 

modes in these tissues using the annotated gene IDs (File S4). The search interface 307 

generated an “electronic fluorescent pictograph” colored according to transcript 308 

abundance data for individual tung tree gene in various tissues/organs. As exemplified 309 

(Figure S23), the VfFADx-1 (Vf11G0298) using linoleic acid (C18:2Δ9,12) as 310 

substrates to produce α-ESA (18:3Δ9,11,13) exhibited expression patterns consistent 311 

with its role in oil biosynthesis. In addition, the Tung Tree eFP Browser could be used 312 

for functional characterization of tung tree gene copies with different expression 313 

patterns. For instance, three feruloyl CoA ortho-hydroxylase homologues 314 

(Vf03G0652, Vf00G0634 and Vf03G0623) exhibited conservation of function as 315 

revealed by similar expression patterns in various tissues/organs (Figure 4; Table 316 

S51). Among three purple acid phosphatase homologues, the Vf11G0977 displayed 317 

neofunctionalization, i.e., functional diversification due to its expression in roots 318 

compared to the other homologues (Figure 4; Table S51).   319 

 320 

NBS-encoding resistance genes 321 

Disease resistance is one of the most important traits in tung tree breeding programs. 322 

The V. fordii is susceptible to wilt (Fusarium oxysporum), black spot (Mycsphaqrella 323 

aleuritids) and twig dieback (Nectria aleuriidia). Information on disease 324 

resistance-related genes will be helpful for understanding plant resistance mechanisms. 325 

Identification and characterization of these genes on a genome-wide scale will 326 

provide a basis for improvement of disease resistance in tung tree. Genes encoding 327 

nucleotide-binding sites (NBSs) are the largest class of plant disease resistance genes. 328 
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Based on whether they contain a Toll/interleukin-1 receptor (TIR) domain, NBS 329 

resistance genes can be further categorized into two subclasses (TIR and non-TIR) 330 

(File S5).  331 

   A total of 88 genes with an NBS domain were identified in tung tree, of which 28 332 

(31.82%) were organized in tandem arrays (Table S52; Figure 5A; Figure S25). The 333 

number of NBS-encoding genes in V. fordii was similar to Z. mays (107), but 334 

remarkably lower than R. communis (232), M. esculenta (312), J. curcas (275), and H. 335 

brasiliensis (483) (Table S52). The 88 NBS-encoding genes were classified into four 336 

subfamilies, including 23 coiled-coil (CC)-NBS, 16 NBS-leucine-rich repeat (LRR), 7 337 

CC-NBS-LRR, and 42 NBS, however they did not form four independent classes in 338 

the phylogenetic tree (Figure 5A). Intriguingly, all of the tung tree NBS-encoding 339 

resistance genes do not belong to the TIR type (Table S52).  340 

   The NBS genes were distributed nonrandomly across all 11 chromosomes (Figure 341 

S24). More than 85% NBS genes were clustered in groups, and clusters were most 342 

abundant on chromosomes 2, 9, and 3 (Figure S24). Enrichment of NBS genes in 343 

these corresponding genomic regions indicated that resistance gene evolution might 344 

involve tandem duplication and divergence of linked gene families, as described in 345 

other plant genomes such as rubber tree [23] and pear [24]. RNA-seq data showed 346 

that the 88 tung tree NBS genes displayed differential expression patterns in roots 347 

after F. oxysporum infection (Figure 5B; File S5). The expression level of 17 genes 348 

including 8 NBSs, 3 NBS-LRRs, 2 CC-NBSs, and 4 CC-NBS-LRRs increased at early 349 

stage after infection (FOE) and decreased at late stage after infection (FOL) (Figure 350 

5B). These results suggest that these genes may help the tree resist the pathogen 351 

shortly after infection. 352 

 353 

Evolution of genes involved in oil biosynthesis 354 

Tung oil is the most important product from tung tree. Tung oil biosynthesis starting 355 

from acetyl-CoA involves 18 enzymatic steps with multiple isozymes in each step 356 

(Figure 6A). The oil is packed in subcellular structures called oil bodies or lipid 357 

droplets (Figure 6B; File S6). Tung seed oil droplets formed following the pattern of 358 

α-ESA accumulation in the seeds (Figure 6B and C). No visible oil droplet was 359 

observed in 10 weeks after flowering (WAF) seeds and small oil droplets were 360 

observed in 15 WAF seeds. The number and sizes of oil droplets were dramatically 361 

increased in more mature seeds (20, 25, and 30 WAF).  362 
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   Tung oil biosynthesis in the seeds started in mid-June (10 WAF), increased rapidly 363 

until 25 WAF with the oil content of 55.42% (Figure 6C), and ended by 30 WAF. 364 

Oleic acid (C18:1Δ9) accounted for minor percentage, whereas linoleic acid 365 

(C18:2Δ9,12) accounted for the major content (43%) in young seeds (10 and 15 366 

WAF). Both gradually decreased in more mature seeds. Accumulation of linoleic acid 367 

and α-ESA (α-C18:3Δ9,11,13) showed opposite patterns in the developing tung seeds 368 

(Figure 6C)  because linoleic acid is the same substrate for synthesizing α-ESA and 369 

α-ALA (α-linolenic acid, C18:3Δ9,12,15). The α-ESA synthesis started after 15 WAF 370 

and then increased rapidly up to 72.35% of seed oil following seed ripening (Figure 371 

6C). The α-ALA accumulation was observed in 10 WAF seeds and accounted for 372 

minor percentage during the whole developmental stages, although it shares the same 373 

substrate with α-ESA. These developmental patterns of α-ESA biosynthesis and oil 374 

droplet formation were used as the criteria for selecting seed stages for our 375 

transcriptomic analysis. 376 

   We annotated 22,419 genes in the tung tree genome and identified 651 genes 377 

related to oil biosynthesis (Table S53). Among them, 88 genes were predicted more 378 

directly involved in oil biosynthesis (Figure 6A; File S7; Table S54). This study 379 

provided far more tung oil-related genes than those deposited in the GenBank 380 

databases (29 genes). These genes belonged to 18 families whose expression profiles 381 

were described in Figure 6A. The number of tung oil-related genes (88) was within 382 

the range of other plant species including 91 genes in J. curcas, 84 genes in R. 383 

communis, 87 genes in A. thaliana, 105 genes in S. indicum, and 210 genes in G. Max 384 

(Table S54). 385 

   Several key genes important in oil biosynthesis have been studied extensively, 386 

including acetyl CoA carboxylase (ACCase), FADs, DGATs and oleosins (OLEs) 387 

(Figure 6A). The current study indentified one additional DGAT3 and two additional 388 

FADs besides those reported previously. We also reported for the first time that tung 389 

tree genome had six phospholipid:diacylglycerol acyltransferase genes (PDAT) 390 

(Figure 6A). 391 

   ACCase and phosphoenolpyruvate carboxykinase (PEPC) are probably the key 392 

enzymes determining the metabolic pathways towards oil or protein biosynthesis in 393 

the seeds (Figure 6A) [25]. We identified nine ACCase genes in tung tree genome 394 

with high expression levels in the mid-late developing stages of tung seeds (Figure 395 

6A). There are 10 ACCase genes in soybean, and 6-7 genes in other species (Table 396 
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S54). We also identified three PEPC genes in tung tree genome which were expressed 397 

in the early developing stages of tung seeds (Figure 6A; Table S54). There are 16 398 

PEPC genes in soybean and more PEPC genes in other species than tung tree. 399 

Comparison of soybean whose seed has high protein content (~ 40%) and low oil 400 

content (~ 20%), the fewer PEPC genes in tung tree genome might be the reason of 401 

high oil (~ 55%) and low protein content (~ 5%) in tung seeds, probably contributing 402 

to carbon flow towards fatty acid biosynthesis in tung seeds. 403 

   FAD protein family catalyzes the desaturation of fatty acids [5] and therefore is 404 

responsible for polyunsaturated lipid synthesis in developing seeds of oil crops. FAD2 405 

and FAD3 are the main enzymes responsible for the Δ12 linoleic acid and Δ15 406 

linolenic acid desaturation, respectively. We identified one FAD2, two FAD3 and two 407 

FADx genes in tung tree (Table S54). FAD2 and FADx-1 were highly expressed in 408 

mid-late stages of developing seeds; whereas FAD3 was expressed higher in early 409 

stages of seeds (Figure 6A). FADx, a divergent FAD2, converts linoleic acid to α-ESA, 410 

the major component of tung oil [14], but the evolutionary relationship between 411 

FADx and FAD2 is still uncertain. According to the newly generated phylogenetic tree 412 

in this study (Figure 7), we found FAD2/x clade could be divided into two clades 413 

(FAD2 and FADx) in eudicot plants, suggesting that the two clades were due to gene 414 

duplication in eudicot ancestors. The eudicot ancestors have γ WGD event, and gene 415 

duplication is likely to be retained by the WGD event. Further synteny analysis 416 

revealed that FAD2s and FADxs were likely to be generated by WGDs event (Table 417 

S56), which corresponded to the γ WGD event shared by core eudicots. Notably, the 418 

FADx clade lost many genes in species like the members of Brassicaceae. 419 

   DGAT protein family catalyzes the last step of triacylglycerol (TAG) biosynthesis 420 

and is regarded as the rate-limiting step for TAG accumulation. Three DGATs were 421 

reported in tung tree in previous studies. DGAT2 was proposed to be the most 422 

important DGAT for TAG biosynthesis in tung tree seeds. Our transcripomics study 423 

found four DGATs (DGAT1, DGAT2, and two DGAT3) expressed in tung seeds 424 

(Figure 6A; Table S55). DGAT2 was confirmed to be the most abundantly expressed 425 

DGAT in tung seeds which corresponded to oil accumulation (20–30 WAF), but 426 

DGAT3-1 was the dominant form of DGAT in immature seeds (10–15 WAF) and other 427 

tissues including stem, root, leaf and female flower (Figure 6A; Table S55).  428 

   Recently, it has become obvious that TAG synthesis also can be catalyzed by 429 

PDAT. We reported for the first time that there were five PDATs in tung tree genome. 430 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 18, 2019. ; https://doi.org/10.1101/2019.12.17.877803doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.17.877803
http://creativecommons.org/licenses/by-nc/4.0/


PDAT1-1 and 1-4 were expressed more in mid-late stages of developing seeds but the 431 

other three PDAT genes were expressed more in the early stages of developing seeds 432 

(Figure 6A).  433 

   OLEs are the major proteins in plant oil bodies. Genome-wide phylogenetic 434 

analysis and multiple sequence alignment demonstrated that the five tung OLE genes 435 

represented the five OLE subfamilies and all contained the “proline knot” motif 436 

(PX5SPX3P) shared among 65 OLE from 19 tree species [26]. We confirmed the five 437 

tung tree OLE genes coding for small hydrophobic proteins. These five OLEs were 438 

highly expressed in mid-late stage of developing tung seeds (Figure 6A; Table S55).  439 

   A total of eight long chain fatty aycl-CoA synthetases (LACS) genes were 440 

identified in tung tree genome, of which LACS1 and 2 were more highly expressed in 441 

early stage but LACS7, 8 and 9 were highly expressed in mid-late stages of 442 

developing seeds (Figure 6A). Additionally, 9 glycerol-3-phosphateacyltransferases 443 

(GPATs), 7 lysophosphatidic acid acyltransferases (LPATs), and 6 phosphatidate 444 

phosphatases (PPs) genes were identified in tung tree genome whose expression 445 

levels of some genes were higher in early stage rather than late stages of developing 446 

seeds and verse visa (Figure 6A; Table S55). 447 

   To explore possible synergistic effects among genes in oil accumulation, we 448 

performed a weighted correlation network analysis of transcript expression in 449 

developing seeds at five stages (FPKM values ≥ 1) (File S8). We identified 10 450 

co-expression modules for each stage sample, among which oil biosynthesis-related 451 

genes at 20 WAF were highly enriched in two significant modules (PCC values ≥ 0.8，452 

P value ≤ 0.1): MEbrown and MEyellow containing 1,156 and 908 genes, 453 

respectively (Tables S57 and S58; Figures S31 and S32). We did not find oil 454 

biosynthesis-related genes in other significant modules. In MEyellow and MEbrown 455 

modules, 18 and 13 genes were respectively identified to play pivotal roles in fatty 456 

acid synthesis and oil accumulation, such as fatty acid synthases (FASs), the upstream 457 

rate-limiting enzyme ACCase subunits (α-CT, BCCP-1, BCCP-2, BCCP-2, and BC-1), 458 

and genes related to TAG assembly like GPDH, LPAT, etc (Figure 8). A number of 459 

transcription factors were also identified in the two modules and co-expression 460 

networks (Figure 8) including WRINKLED1 (WRI1), FUSCA3 (FUS3), LEAFY 461 
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COTYLEDON1 (LEC1), and ABSCISIC Acid INSENSITIVE3 (ABI3), which has been 462 

reported to facilitate oil accumulation by interacting each other or with oil 463 

biosynthesis-related genes [27−31]. We selected four tung tree transcription factors 464 

(FUS3, ABI3, LEC1-1 and LEC1-2) to conduct yeast two-hybrid assay (File S9) and 465 

observed that FUS3 and LEC1-2 were interacted (Figure S33). The gene 466 

co-expression networks indicate that transcription factors and oil biosynthesis-related 467 

genes  have synergistic effects in oil biosynthesis, which may contribute to high oil 468 

content in tung seeds. 469 

 470 

Discussion 471 

The whole genomes of an increasing number of plant species have been sequenced 472 

due to rapid development of new sequencing technologies in recent years. The 473 

genome information provides researchers a useful resource for better understanding 474 

plant evolutionary history and exploring important genes to uncover the mechanisms 475 

controlling various traits during long-term evolution process. As an economically 476 

important tree species, tung tree has been cultivated and utilized for thousands of 477 

years. Presently its oil has a great potential for producing environmentally-friendly 478 

coatings with low VOCs. However, producing tung oil on an industrial scale is 479 

hampered by low yield. Our genome sequencing effort will facilitate the breeding of 480 

elite cultivars with yield-related traits including fruit setting rate and seed oil content. 481 

In this study, the large amount of repeat sequences and low GC content made the tung 482 

tree genome a challenge for WGS strategies using NGS technology even though the 483 

tung tree genome was estimated to be extremely low heterozygosity. To overcome the 484 

challenge of high repeat content, we generated long reads from 10 kb and 20 kb 485 

libraries via PacBio sequencing. Finally, we used the Hi-C map to generate a 486 

chromosome-scale assembly of the tung tree genome. The genome sequence covered 487 

~ 85.50% of the estimated genome size and harbored 28,422 genes. Among the 488 

Euphorbiaceae family, rubber tree and cassava instead of tung tree, physic nut and 489 

castor bean were found to have undergone a recent WGD event, although they all 490 
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shared an ancient WGD event. Interestingly, rubber tree and cassava have more genes 491 

than the other three species (Figure 2A). The recent WGD event could cause 492 

chromosomal rearrangements, fissions or fusions and is one of the reasons resulting in 493 

expansion of gene families [18], which may contribute to more gene expansions in 494 

rubber tree and cassava than those in tung tree, physic nut and castor bean. The 495 

genome sequence of tung tree opens a window to functional and molecular breeding 496 

of economically important woody oil plants within the Euphorbiaceae family. 497 

Tung tree had a larger genome size than physic nut and castor bean. In most 498 

cases, genome expansions are caused by repeated sequence insertion, like those 499 

occurred in tea tree, rubber tree, and Ginkgo (G. biloba) [32]. Similar to the three 500 

species, Ty3/Gypsy families contributed the most to the tung tree genome expansion. 501 

Based on our insertion time analysis, we proposed that lack of efficient deleting 502 

mechanisms of repeated DNA sequences might have resulted in long-term and 503 

continuous LTR retrotransposon bursts and growth, eventually leading to the whole 504 

genome size expansion. This is also consistent with the findings in tea tree and P. 505 

abies [33]. We also found that different LTR retrotransposon families were 506 

differentially expressed in various tissues, confirming the retrotransposon activity in 507 

the tung tree genome. The eFP Browser has proved to be a useful tool to display gene 508 

expression levels visually in several plant species including A. thaliana, P. 509 

trichocarpa, G. Max, S. tuberosum, S. lycopersicum, C. sativa, F. vesca and other 510 

species [34−37]. Based on tung tree genome sequences generated in this study, we 511 

created a Tung Tree eFP Browser to display tung tree RNA-seq data from 17 different 512 

tissues and stages. This eFP Browser work should facilitate further research in tung 513 

tree and other Euphorbiaceae plants. 514 

   Plant disease resistance has always been a research hotspot. NBS genes are the 515 

largest class of plant disease resistance genes. They confer the capacity for the plant to 516 

resist the intrusion of outside pathogens, including bacteria, fungi and virus [38]. The 517 

present studies suggested that the TIR domain-containing NBS genes are widely 518 

distributed in dicots but not monocots, whereas they are lost in tung tree genome. To 519 

date only tung tree and sesame [22] out of dicots have been reported for TIR 520 

domain-containing NBS gene loss. This finding provides a new paradigm to 521 
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investigate the evolution of disease resistance genes. CC is the functional domain of 522 

many proteins and CC structure plays an important role in protein-protein interaction 523 

[39]. LRR is the signal region in transmembrane domain and loss of it can result in 524 

loss of function [40]. In this study, the highest proportion of CC-NBS-LRR genes (4/7, 525 

57.14%) responded to F. oxysporum infection at early stage, suggesting that CC and 526 

LRR domains play more important roles than other domains. 527 

   Tung tree is a high-efficient photosynthetic tree with strong photosynthesis rate. 528 

Sucrose, the major photosynthesis product, is synthesized in the chloroplast and 529 

exported to the sink tissues such as seeds for seed development and metabolite 530 

accumulation. Sucrose is converted into hexose phosphate, triose phosphate, 531 

phosphoenolpyruvate (PEP), and pyruvate. PEP is a key intermediate metabolite for 532 

synthesizing both fatty acids and proteins. PEP is converted into pyruate by pyruate 533 

kinase (PK), which is subsequently converted into acyl-CoA and enters fatty acid 534 

biosynthesis pathway after ACCase action. On the other hand, PEP is catalyzed by 535 

PEPC to produce oxaloacetic acid, which is subsequently used for protein synthesis. 536 

Therefore, ACCase and PEPC are probably the keys enzymes determining the 537 

metabolic pathway towards oil or protein biosynthesis in the seeds [25]. We identified 538 

nine ACCase genes in tung tree genome with high expression levels in the mid-late 539 

developing stages of tung seeds, which are indicative of their importance in tung oil 540 

biosynthesis. There are 10 ACCase genes in soybean, and 6-7 genes in other species. 541 

We also identified three PEPC genes in tung tree genome with high expression levels 542 

in the early developing stages of tung seeds. By contrast, there are 16 PEPC genes in 543 

soybean and more PEPC genes in other species than tung tree. Because soybean has 544 

more PEPC genes and higher protein/ lower oil content in the seed, it is possible that 545 

the fewer PEPC genes in tung tree diverted less carbon flow towards protein 546 

biosynthesis and resulted in high oil/low protein content in tung seeds. 547 

   Tung oil is the major economically important product from tung tree. 548 

Identification and characterization of all genes involved in tung oil biosynthesis is 549 

essential for improving tung oil production and economic value. Many tung oil 550 

biosynthetic genes have been identified in our laboratories, including those coding for 551 
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diacylglycerol acyltransferases (DGAT) [13,17], delta-12 oleic acid desaturase 552 

(FAD2) and delta-12 fatty acid conjugase (FADx) [14], omega-3 fatty acid desaturase 553 

(FAD3) [41], acyl-CoA binding proteins [42], cytochrome b5 [43], cytochrome b5 554 

reductase [15], glycerol-3-phosphate acyltransferase (GPAT) [44], plastid-type 555 

omega-3 fatty acid desaturase (TnDES2) [45], aquaporin and glutaredoxin [46], and 556 

ß-ketoacyl-ACP synthase (KAS) [47]. Interestingly, we identified an additional FADx 557 

gene, FADx-2, which was probably generated by gene duplication and 558 

sub-functionalization based on the different expression patterns of FADx-1 and 559 

FADx-2 genes. In comparison with FADx-2, FADx-1 was the dominant form 560 

responsible for α-ESA synthesis in developing seeds of tung tree. We also identified 9 561 

ACCases, 4 DGATs, 7 FADs, 6 PDATs, 5 OLEs, 8 LACSs, 9 GPATs, 7 LPATs, and 6 562 

PPs genes in the tung tree genome. This study provided a more complete picture for 563 

genes involved in tung oil biosynthesis. The numbers of tung oil-synthesizing genes 564 

are within the range of other species. These suggest that there is no gene expansion in 565 

tung tree and the amount and types of oils in various species may not be directly 566 

related to the number of genes in oil biosynthesis.  567 

   Transcriptomic analysis evaluated the expression profiles of all these genes. Our 568 

results indicated that the expression patterns of some of the most important genes 569 

were well-coordinated with oil biosynthesis and accumulation in tung tree seeds. 570 

Specifically, DGAT2 was shown to be the most abundantly expressed DGAT in tung 571 

seeds but DGAT3-1 was the dominant form of DGAT in immature seeds and other 572 

tissues including stem, root, leaf and female flower, in agreement with our previous 573 

results [13,17]. FAD2 and FADx were highly expressed in mid-late stages of 574 

developing seeds; whereas FAD3 was expressed higher in early stages of seed, also in 575 

agreement with published results [14]. All five OLEs were highly expressed in 576 

mid-late stage of developing tung seeds, similar results to what we reported 577 

previously [26]. Our expression analysis provided novel insights into the potential 578 

role of PDATs in tung oil biosynthesis by showing that PDAT1-1, 1-4, and 2-2 were 579 

expressed more in mid-late stages of developing seeds but the other three PDAT genes 580 

were expressed more in the early stages of developing seeds, which were not reported 581 
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previously. Our gene co-expression analysis revealed that oil biosynthesis-related 582 

genes were enriched in two significant modules only at 20 WAF when the seed oil 583 

started to accumulate rapidly. The enriched oil biosynthesis-related genes included 584 

most of FAS genes, part of TAG biosynthesis genes and some transcription factors. 585 

The complete gene co-expression networks provide insights into oil biosynthesis by 586 

gene-gene synergistic function.  587 

   In conclusion, this study provides whole-genome sequence information, eFP 588 

browser, and extensive RNA-seq data. These critical lines of information should be 589 

used as valuable resources for functional genomics studies and tree improvement of 590 

economically important traits such as oil content and disease resistance in the tung 591 

tree.  592 

 593 

Materials and methods 594 

Plant materials 595 

The self-bred progeny ‘VF1-12’ of the elite V. fordii cv. Putaotong was used for whole 596 

genome sequencing in this study (File S1). Young leaves were collected from ‘VF1-12’ 597 

in the spring for genome sequencing. Young plantlets were used for Hi-C library 598 

construction and sequencing. A total of 17 fresh tissues including stems, roots, male 599 

flowers, female flowers, and seeds at different developmental stages were collected 600 

for RNA-seq. The developing seeds were also used for oil content measurement and 601 

fatty acid analysis.    602 

 603 

Whole-genome sequencing, assembly and assessment  604 

The tung tree genome size was estimated by a modified Lander-Waterman algorithm 605 

i.e., a formula G = Bnum/Bdepth = Knum/Kdepth [48]. Heterozygosity was estimated 606 

by the k-mer distribution and GenomeScope [49]. Nuclear DNA was isolated from 607 

fresh leaf tissues by using a DNeasy Plant Mini Kit (Qiagen, CA, USA). A series of 608 

DNA libraries were constructed and sequenced with an Illumina HiSeq 2000 609 

sequencing platform (Illumina, CA, USA) (File S10). In addition, 610 

SMRTbell template libraries of 20 kb were constructed and sequenced on the PacBio 611 

RSII. After removing low-quality reads, the whole genome assembly of tung tree was 612 

performed with a hierarchical assembly strategy due to its homozygous genome with 613 
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highly repetitive sequences (File S11). The genome completeness was assessed by 614 

Core Eukaryotic Genes Mapping Approach (CEGMA) [50], Benchmarking Universal 615 

Single-Copy Orthologs (BUSCO) analysis [51] and RNA-seq reads mapping [52].  616 

 617 

Hi-C data preparation and contig clustering 618 

The Hi-C library was prepared with the standard procedure described [53]. Raw Hi-C 619 

data were generated using HiSeq2500 sequencing platform and then were processed 620 

to filter low-quality reads and trim adapters. Clean reads were mapped to the 621 

assembled scaffolds by BWA-aln after truncating the putative Hi-C junctions in 622 

sequence reads. HiC-Pro software (version 2.7.1) was used to filter the invalid 623 

ligation read pairs, including dangling-end and self-ligation, re-ligation and dumped 624 

products. Finally the scaffolds were clustered, ordered and orientated onto 625 

chromosomes using the valid read pairs by LACHESIS 626 

(http://shendurelab.github.io/LACHESIS/). 627 

 628 

Genome annotation  629 

Gene prediction was conducted using de novo prediction, homology information and 630 

RNA-seq data (File S12). Gene functions were assigned according to the best match 631 

derived from the alignments to proteins annotated in SwissProt and TrEMBL 632 

databases using Blastp, and the pathway in which the gene might be involved was 633 

annotated by KAAS [54]. Motifs and domains were annotated using Inter ProScan 634 

(Version 5.2-45.0) [55] by searching against publicly available databases in InterPro 635 

[56]. The rRNA, snRNA and miRNA genes were predicted by INFERNAL software 636 

using the Rfam database. The rRNA subunits were identified by RNAmmer [57] 637 

based on hidden Markkov models (HMMs). The tRNA genes were predicted by 638 

tRNAscan-SE [58] with eukaryote parameters. A de novo and homology-based 639 

approach was used to identify 640 

repetitive sequence and transposable elements (TEs) in the tung tree genome.  641 

 642 

Evolutionary analysis 643 

Phylogeny of a total of eight species was constructed based on single-copy gene 644 

families by the maximum likelihood (ML) method (File S13). The divergence times 645 

were estimated based on all single-copy genes and 4-fold degenerate sites with the 646 

program MCMCTree of the PAML package [59]. The neutral evolutionary rate was 647 
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calculated via Bayes estimation with Markov Chain Monte Carlo algorithm. Gene 648 

families which underwent expansions or contractions were identified using the CAFE 649 

(Computational Analysis of gene Family Evolution) program [60].The selection 650 

pressure of tung tree in the phylogenetic tree was calculated by Codeml. The 651 

significance of the identified PSGs was verified using a Chi-square test. WGD events 652 

were identified by 4DTv (four-fold synonymous third-codon transversion) and 653 

synonymous Ks analysis.   654 

 655 

Data access 656 
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 867 

Figure legends 868 

Figure 1  The genomic landscape of tung tree 869 

The features from outside to inside are pseudochromosomes (a), gene density (0−1) 870 

(b), repeat density (0−1) (c), GC content (0%−50%) (d), expression (0−1) (e), 871 

retroelement (0−0.70) (f), DNA transposon (0−0.09) (g), tandem repeat (0−0.40) (h), 872 

genome synteny (i); Intra-genome collinear blocks with gene pairs numbering more 873 

than 20 are highlighted with arcs in the middle of the diagram. Circos was used to 874 

construct the diagram. All distributions were drawn using a window size of 1 Mb with 875 

the exception of expression, which was drawn using a window of 50 Kb. Chr, 876 

chromosome. 877 

 878 

Figure 2  Evolution of tung tree genome  879 

A. Phylogenetic tree of tung tree and 7 other plant species based on orthologues of 880 

single-copy gene families. The number in parentheses at each branch point represents 881 

the divergence time (Mya). The number at the root (15,662) represents the number of 882 

gene families in the common ancestor. The value above each branch indicates the 883 

number of gene family expansion/contraction at each round of genome duplication 884 

after divergence from the common ancestor. Bootstrap value for each node is 100. B. 885 

Density distribution of 4DTv and Ks for paralogous genes. The peak value is shown 886 

in the inset. “non” means no peak value. C. Collinear relationship of V. fordii, M. 887 

esculenta and V. vinifera. Gray line connects matched gene pairs. The chromosomes 888 
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of tung tree, cassava and grapevine were assigned with green, blue and purple, 889 

respectively. The annotated genes were clustered into gene families among eight 890 

sequenced whole genomes including A. thaliana, P. trichocarpa, V. vinifera and five 891 

Euphorbiaceae species i.e. V. fordii, R. communis, M. esculenta, H. brasiliensis, and J. 892 

curcas. 893 

 894 

Figure 3  Analysis of the LTR Retrotransposons in the tung tree genome 895 

A. The neighbor-joining tree based on 347 Ty1/copia sequences; B. The 896 

neighbor-joining tree based non 622 Ty3/gypsy sequences. C. Proportions of LTR 897 

Retrotransposon families by copy number in the tung tree genome. D. Heat map of 898 

expression patterns of 701 LTR Retrotransposons. All aligned sequences correspond 899 

to the RT domains without premature termination codon. LTR family names and their 900 

proportion are indicated. I, II, and III indicate high-copy families (>= 5 intact 901 

members), median-copy families (2–4 intact members) and single-copy families, 902 

respectively. 903 

 904 

Figure 4  Functional conservation and diversification of tung tree homologs as 905 

visualized with the Tung Tree eFP Browser  906 

eFP browser images showing conservation, sub-functionalization, 907 

neo-functionalization and non-functionalization of tung tree homologs. In each panel, 908 

the expression patterns of three homologs of each gene is shown. In all cases, red 909 

represents higher levels of transcript accumulation and yellow represents a lower level 910 

of transcript accumulation. From top to bottom, the genes are involved in feruloyl 911 

CoA ortho-hydroxylase (from left to right Vf03G0652, Vf00G0634, and Vf03G0623), 912 

Protein ECERIFERUM (from left to right Vf04G0546, Vf06G2858, and Vf06G2857), 913 

Purple acid phosphatase (from left to right Vf04G0305, Vf04G0306, and Vf11G0977), 914 

and Protein LYK5 (from left to right Vf09G1183, Vf03G0089, and Vf09G0959).WAF, 915 

week after flowering. 916 

 917 

Figure 5  The NBS-encoding genes in tung tree genome  918 

A. The maximum-likelihood phylogenetic tree based on 88 tung tree NBS encoding 919 

genes; dots in green, blue, pink, and orange indicate NBS subfamily, NBS-LRR 920 

subfamily, CC-NBS subfamily, and CC-NBS-LRR subfamily, respectively. Gene IDs 921 
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in red indicate tandem repeats. B. Heat map of expression patterns of tung tree 922 

NBS-encoding genes. FOE, FOM, and FOL represents early, middle, and late stage 923 

after F. oxysporum infection. Different colored arrows indicate NBS genes responding 924 

to Fusarium wilt. 925 

 926 

Figure 6  Network of genes involved in tung oil biosynthesis 927 

A. Tung oil biosynthesis pathway. Tung oil biosynthesis is catalyzed by 18 enzymatic 928 

steps with multiple isozymes in each step. Acetyl-CoA is converted into C16 and C18 929 

fatty acids in the plastid. TAG is synthesized in the endoplasmic reticulum and packed 930 

in the oil bodies. The metabolites are described in the black box. The enzymes are 931 

circled between two metabolite boxes. The expression levels of oil-biosynthesis genes 932 

are presented with the heat map. The scale bar of relative expression levels are shown 933 

at the top left. B. Oil droplet development in tung tree seeds. C. Tung oil and fatty 934 

acid accumulation profiles. PEPC, phosphoenolpyruvate carboxylase. PK, pyruvate 935 

kinase. ACCase, acetyl CoA carboxylase. α/β-CT, acetyl-coenzyme A carboxylase 936 

carboxyl transferase subunit alpha/ beta. BCCP, biotin carboxyl carrier protein. BC, 937 

biotin carboxylase. MAT, malonyl-CoA transacylases. KAS, ketoacyl-ACP synthase. 938 

KAR, ketoacyl-ACP reductase. HAD, hydroxyacyl-ACP dehydrase. EAR, enoyl-ACP 939 

reductase. FAT, fatty-acyl carrier protein thioesterase. SAD, stearoyl-ACP desaturase. 940 

FA, fatty acid. LACS, long-chain acyl-CoA synthetase. G3P, glycerol-3-phosphate. 941 

GPAT, glycerol-3-phosphate acyltransferase. LPA, lysophosphatidic acid. LPAT, 942 

lysophosphatidic acid acyltransferase. PA, phosphatidic acid. PP, phosphatidate 943 

Phosphatase DAG, diacylglycerol. PDCT, phosphatidylcholine. DAG-CPT, 944 

CDP-choline-diacylglycerol cholinephosphotransferase. PC, phosphatidylcholine. 945 

FAD, fatty-acid desaturase. DAGT, diacylglycerol O-acyltransferase. PDAT, 946 

phospholipid-DAG acyltransferase. LPC, lyso-phosphatidylcholine. TAG, 947 

triacylglycerol. Ole, oleosin. WAF, week after flowering. 948 

 949 

Figure 7  Phylogeny of FAD2 and FADx proteins  950 

A maximum-likelihood phylogenetic tree constructed from protein sequences. The 951 

taxon names in the phylogenetic tree are indicated after gene ID. The clades are 952 

marked by four different block colors in the tree. The last one (yellow), a basal 953 

angiosperm, A. trichopoda, used as an outgroup; the monocot FAD2, eudicot FAD2 954 
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and eudicot FADx clades are marked in red, blue and green, respectively.   955 

 956 

Figure 8  Co-expression networks of tung tree oil biosynthesis-related genes and 957 

transcription factors at the transcriptome level  958 

Oil biosynthesis-related genes are colored in red, and their adjacent transcription 959 

factors are colored in black.  960 
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Figure S4  The k-mer analysis to estimate the tung tree genome size 982 

Figure S5  Distribution of length (A) and quality (B) of Pacbio raw reads 983 
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