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ABSTRACT 

Polyploidy is a widespread phenomenon throughout eukaryotes. Due to the coexistence of 

duplicated genomes, polyploids offer unique challenges for estimating gene expression levels, 

which is essential for understanding the massive and various forms of transcriptomic responses 

accompanying polyploidy. Although previous studies have explored the bioinformatics of 

polyploid transcriptomic profiling, the causes and consequences of inaccurate quantification of 

transcripts from duplicated gene copies have not been addressed. Using transcriptomic data from 

the cotton genus (Gossypium) as an example, we present an analytical workflow to evaluate a 

variety of bioinformatic method choices at different stages of RNA-seq analysis, from 

homoeolog expression quantification to downstream analysis used to infer key phenomena of 

polyploid expression evolution. In general, GSNAP-PolyCat outperforms other quantification 

pipelines tested, and its derived expression dataset best represents the expected homoeolog 

expression and co-expression divergence. The performance of co-expression network analysis 

was less affected by homoeolog quantification than by network construction methods, where 

weighted networks outperformed binary networks. By examining the extent and consequences of 

homoeolog read ambiguity, we illuminate the potential artifacts that may affect our 

understanding of duplicate gene expression, including an over-estimation of homoeolog co-

regulation and the incorrect inference of subgenome asymmetry in network topology. Taken 

together, our work points to a set of reasonable practices that we hope are broadly applicable to 

the evolutionary exploration of polyploids. 

Keywords: allopolyplopid; RNA-seq; homoeolog-specific read partitioning; differential 

expression; co-expression gene network 
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INTRODUCTION 

Comparative transcriptomics has become a widely employed and powerful tool in plant 

evolutionary biology. Applications are many and diverse, including evolutionary rate estimation 

[1–3], reconstruction of species relationships [3–5], and the elucidation of co-expression and 

regulatory changes in gene networks [6,7]. Next-generation sequencing has facilitated 

inexpensive and efficient transcriptomic profiling for species whose lack of existing genomic 

resources would have previously been an obstacle. A landmark example is the recent publication 

of transcriptomes from more than 1000 species of green plants, which substantially improved 

available resources and facilitated comparative transcriptomics and phylogenetics among 

previously underrepresented plants [8](www.onekp.com). This success led to the 10KP project 

(https://db.cngb.org/10kp/), which aims to sequence 10,000 plant and protist genomes within the 

next 5 years to further advance our understanding of plant evolution and diversity. 

 

In the context of comparative transcriptomics, polyploid genomes offer unique challenges due to 

the coexistence of highly similar duplicated genes (homoeologs). Polyploidy in plants is far more 

prevalent than once thought, acting historically and more recently to shape the genomes of all 

angiosperms and most other groups of plants [8–11]. One realization that has emerged in the last 

decade is that polyploidy is accompanied by massive transcriptomic responses, as reviewed [12–

14]. These responses are many and varied, including biased homoeolog expression, condition-

specific differential homoeolog usage, transgressive expression levels, and expression level 

dominance. Duplicated gene expression patterns are coordinated in ways that are not fully 

understood and which depend on myriad factors, including dosage effects, gene balance, 
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interactions among divergent cis and trans-acting factors, and various topological aspects of 

gene networks [6,15–18].  

 

Research on polyploid transcriptomes is divided into two broad categories with respect to the 

treatment of homoeologs: those that evaluate individual homoeolog expression separately and 

those that evaluate the aggregate expression of homoeologs. The ability to consider homoeologs 

separately depends largely upon the mode of origin (autopolyploid vs. allopolyploid) and the 

extent of sequence divergence between homoeologs, as well as the genomic resources available. 

Distinguishing individual homoeolog expression levels is difficult when sequence divergence 

between homoeologs is too low, as often is the case with allopolyploids formed from recently 

diverged diploid parents, or in evolutionarily young autopolyploids. When a reference genome or 

transcriptome is available for a polyploid, quantitation of individual homoeolog expression levels 

is possible if sequence divergence is sufficiently high, and aggregated expression can be derived 

from the summation of each homoeolog set. In many cases, reference genomes may only be 

available for one or more model diploids. These diploid genomes can be useful in analyses of 

duplicate gene expression in polyploids, but they require additional steps to characterize and 

partition homoeolog-specific reads. Regardless of the ploidy level of the reference genome, short 

RNA-seq reads may be difficult to explicitly map to individual homoeologs due to their near-

duplicate nature (i.e., multi-mapped reads). That is, only a certain proportion of reads (related to 

divergence between homoeologous genomes) will contain homoeolog distinguishing variants 

(e.g. SNPs). Only those reads that can be unambiguously assigned to specific homoeologs can be 

utilized for homoeolog transcript counting (Figure 1A).  
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As previously noted by Ilut et al. [19], the issue of ambiguous read mapping is prevalent in 

plants due to their natural genomic redundancy, and is even more so for recent polyploids. Many 

intrinsic and extrinsic factors affect the ability to partition homoeolog expression, including: (1) 

divergence between subgenomes, in terms of frequency and distribution of SNPs; (2) the 

sequencing strategy (e.g. read length, and paired- vs. single-ended reads) for generating RNA-

seq data; (3) the quality of reference genome(s); and (4) the bioinformatic tools used for 

partitioning and/or quantifying homoeolog-specific reads, including methods for allocating 

ambiguous reads in general (such as RSEM [20] and Salmon [21]) and those specifically 

developed for polyploid systems (i.e., PolyCat [22], PolyDog [23], HyLiTE [24], HANDS [25] 

and HAND2 [26]). 

 

Given these complexities inherent in working with polyploid transcriptome data, the question 

arises as to how these factors affect our ability to derive accurate polyploid gene expression 

profiles. That is, how do the many issues noted above affect read assignment and our inferences 

of gene expression and co-expression characteristics? Here we explore the causes and 

consequences of read ambiguity in homoeologous differential expression and co-expression 

networks using transcriptome data from the cotton genus (Gossypium) as an example (Figure 

1B). Tetraploid cotton (represented here by G. hirsutum; AD1) originated from an 

allopolyploidization event between an A-genome (G. herbaceum- or G. arboreum-like) and a D-

genome (G. raimondii-like) diploid species circa 1 to 2 million years ago (reviewed in [27]). 

Because there is no gold standard for true expression levels of At and Dt (t denotes subgenome) 

homoeologs in the polyploid AD1 transcriptomes, we generated in silico allopolyploid datasets 

(AD) by combining reads from the A- and D-genome diploid transcriptomes (see methods). This 
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approach allowed us to evaluate accuracy of “homoeolog” expression against the actual diploids 

reads used for generating in silico dataset. Methodologically, we first evaluated a variety of 

bioinformatic method choices at different stages of RNA-seq data analysis, with the aim of 

generating insight into best practices that may be broadly applicable to other polyploid systems. 

  

Figure 1. Challenges of homoeolog gene expression analysis. A. Using the allotetraploid cotton species as an 

example, only a small portion of RNA-seq reads contain diagnostic SNPs (i.e., homoeolog-specific reads) reflecting 

the parental origin of homoeologous genes. B. An analytic workflow of RNA-seq analysis was applied to evaluate 

the use of homoeolog-specific reads to study duplicated gene expression and co-expression networks. A ground-

truth, in silico dataset of allopolyploid cotton (AD) was generated from the parental diploid cotton A2 and D5 reads, 

which was analyzed using a variety of method choices. 

 

METHODS 

All codes used in this study are available in Github 

https://github.com/Wendellab/homoeologGeneExpression-Coexpression. 

7 

g 
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Data availability and preparation 

For generating in silico allopolyploid cotton (AD) datasets, matched RNA-seq data of the model 

diploid progenitors, i.e., G. arboreum (A2) and G. raimondii (D5), were obtained, each 

comprising 33 RNA-seq libraries under 12 sample conditions (Table S1). The seed dataset under 

NCBI BioProject PRJNA179447 consists of 11 libraries (4 seed developmental stages each with 

2-3 biological replicates) for each diploid with 100 bp single-end reads and an average of 14.8 

million reads per library. The flowering dataset under NCBI BioProject PRJNA529417 consists 

of 22 libraries (8 tissues each with 2 to 3 biological replicates) for each diploid with 150 bp 

paired-end reads and an average of 13.8 million read pairs per library. Following adaptor and 

quality trimming via Sickle [v1.33] [28], the matched A2 and D5 libraries (at each condition and 

replicate) were adjusted to contain equivalent number of filtered reads and subsequently 

combined to generate the corresponding in silico allopolyploid (AD) datasets. For each pair of 

AD homoeologous genes, the gene regions that should be unambiguously assigned to subgenome 

(i.e. effective region), given the distinguishable SNP distribution between homoeologs and the 

specific sequencing strategy involved, were detected using a custom script 

“detectEffectiveRegion.r”. The proportion of each gene sequence that belongs to an effective 

region was calculated as %Eflen. We next introduced a metric of Ambiguity for each pair of 

homoeologous genes as calculated by 1-%Eflen, because %Eflen is inversely correlated with the 

number of ambiguous reads that cannot be assigned via direct SNP evidence.  
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RNA-seq read mapping and homoeolog-specific read partitioning 

The following five pipelines were each independently applied to the diploid and AD polyploid 

datasets. 

 

GSNAP-PolyCat. This pipeline utilizes the SNP-tolerant capabilities of GSNAP [v2016-08-16] 

[29] to map polyploid reads to a single diploid progenitor genome (here, G. raimondii; [30]). The 

SNP-tolerant feature of GSNAP permits equivocal mapping of both A- and D- diploid derived 

reads based on a priori SNP information. Here, we used a previously generated genome-

diagnostic SNP-index [22] for mapping. The resulting alignments were sorted using samtools 

[31] and subsequently partitioned into homoeolog-specific reads using PolyCat [v1.3] [22]. Read 

counts were tabulated using HTSeq [v0.9.1] [32].  

 

HyLiTE. This software automates the process of read mapping, SNP detection, and read count 

partitioning in a single step [24]. Briefly, HyLiTE [v.2.0.1] employs Bowtie2 [v2.3.1] [33] to 

map both diploid and polyploid reads to the reference gene models (here G. raimondii; (Paterson 

et al., 2012)), and sorts homoeologous reads based on the SNPs detected from mapping the 

diploid reads. Homoeolog-specific read count tables are automatically generated in the last step.  

 

RSEM. While not specifically developed for polyploids, RSEM [v1.3.0] [20] and the following 

programs (i.e., Salmon [v0.9.1] [21] and Kallisto [v0.44.0] [34]) were developed to address the 

general issues of ambiguously mapped reads while also increasing mapping speed. RSEM 

automates read alignment to a set of reference transcripts using Bowtie2 and subsequently 

estimates feature counts using the EM algorithm, both at the gene and isoform level. As the 
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presence of homoeologs is bioinformatically similar to presence of alleles of isoforms, RSEM 

may be suitable for disentangling homoeologous reads and estimating homoeolog abundance. 

For RSEM, we approximated the polyploid reference transcriptome by combining the G. 

raimondii transcriptome and the predicted G. arboreum (A2) transcripts based on the same SNP 

index used by GSNAP-PolyCat. That is, the G. arboreum transcripts here are simply the G. 

raimondii transcripts with homoeologous SNP sites replaced with G. arboreum-specific SNPs. 

 

Kallisto. This method belongs to a class of read aligners known as “pseudoaligners”, which 

leverage kmer information to detect the transcripts that could have generated a given read 

without specifically aligning the read [34]. Kallisto, like other pseudoaligners, generates a de 

Bruijn graph of the kmers present in a transcriptome to quickly assign reads based on 

intersecting read and transcriptome kmer metrics. Kallisto was run under default parameters 

using the above generated polyploid reference transcriptome. 

 

Salmon. This method employs a light-weight, quasi-mapping strategy [35] similar to Kallisto and 

a two-phase estimation of expression. This two-phase estimation uses two forms of Bayesian 

inference (Foulds et al. 2013; Do and Batzoglou 2008) to first estimate and then subsequently 

refine transcript-level abundances [21]. Using this method, Salmon is able to estimate abundance 

uncertainty due to ambiguously mapped reads, which are common with homoeologs. Salmon 

was also run with default parameters using the above generated polyploid reference 

transcriptome and the option “keepDuplicates” for indexing the transcriptome. Estimated 

transcript abundance is automatically returned by the program. 
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Performance evaluation of estimating homoeolog expression  

For each set of bioinformatically partitioned reads, multiple measures of performance were 

conducted. Because the true assignment of each in silico polyploid (AD) read is known and 

originates from only two sources (A2 and D5), assessing homoeolog assignment becomes a 

binary classification problem. For example, when classifying A2-derived reads from the synthetic 

polyploid transcriptome reads (i.e., At reads), the read could either be correctly assigned to At 

(true positive; TP) or incorrectly assigned to Dt (false negative; FN). The same applies to D5-

derived reads; a D5-derived reads assigned to Dt is a TP, whereas the assignment to At is a FN. 

 

The prediction results of the binary classification can be arrayed as a 2x2 confusion matrix, 

which summarizes the numbers of true/false positives/negatives (TP, FP, TN and FN) that can be 

evaluated using information retrieval statistics [36], such as Precision/Recall [37] and the 

Matthews correlation coefficient (MCC) [38]. The general formulas of these statistics are as 

follows: Precision = 
��

�����
, Recall = 

��

�����
, Accuracy = 

�����

�����������
, F1 = 2 �

���	
�
�
���	���

���	
�
�
���	���
, 

and MCC = 
�� � ����� ���

√����������������������������
. Here we report both the F1 and MCC scores, which 

provide a generalized measure of accuracy; however, we note that MCC may be preferred 

because it accounts for more of the confusion matrix and is more balanced with respect to classes 

of very different sizes [39]. 

 

We also note that the results of binary classification measures for GSNAP-PolyCat and HyLiTE 

are somewhat misrepresentative of those pipelines. Because GSNAP-PolyCat and HyLiTE 

discard reads with no diagnostic SNPs, the number of TPs and FNs will be distorted for these 

pipelines, i.e., reduced and increased, respectively. In contrast, the remaining pipelines (i.e., 
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RSEM, Salmon, and Kallisto) use statistical inference to completely assign all reads to 

homoeologs. We therefore define two additional measures that reflect these differences, 

Efficiency and Discrepancy. Here, the measure of Efficiency is simply the number of reads 

assigned to a homoeolog class (regardless of accuracy) divided by the total number of reads. The 

overall difference between the obtained read count and expected true read count for each class 

were measured by their Discrepancy = 
������������

���
.  

 

Gene expression analysis 

Two methods of differential expression (DE) were used to analyze homoeologs expression, i.e., 

DESeq2 [40] and EBSeq [41]. DESeq2 takes a classical hypothesis testing approach to report 

nominal p-values, whereas EBSeq accommodates the uncertainty inherent in isoforms (here, 

homoeologs) using a Bayesian framework to return posterior probabilities for differential 

expression. A false discovery rate α < 0.05 was required to determine significant DE changes, 

which was applied to the adjusted p-values of DESeq2 [42] and the posterior probability (=1- α) 

of EBSeq.  

 

Because these in silico polyploid data were derived from combining diploid libraries, the null 

hypothesis is that DE between inferred homoeologs should match the DE observed between the 

diploid libraries for those genes. We again treat this as a binary classification problem, marking 

each gene as DE or non-DE and comparing the observed number of DE genes in the polyploid 

libraries with the expected number derived from the diploid data. The same statistical measures 

of performance (i.e., Precision, Recall, Accuracy, F1, and MCC) were calculated for each 

pipeline, as described above. The receiver operating characteristic (ROC) curve and the area 
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under the ROC curve (AUC) were calculated for each and visualized using the R package ROCR 

[43]. AUC scores reflect the probability that a random classification is correct, ranging from 0.0 

to 1.0 [44,45]. 

 

Gene expression correlation analysis 

Differential correlation (DC) analysis is commonly used to evaluate coordinated changes in gene 

expression, either independent of, or in the context of, co-expression network analyses. Both DC 

and network analyses require some form of variance-stabilizing transformation of the raw data. 

Several methods of normalization exist [46,47], which have their own advantages and nuances. 

Here two common methods were tested, i.e., RPKM followed by log2 transformation and 

regularized logarithm (rlog) transformation as implemented in DESeq2.  

 

Using the R package DGCA [48], Pearson correlation coefficients (r) and their corresponding 

�values were calculated for each pair of genes across multiple samples, which were subsequently 

classified as having a significant (� < 0.05) positive correlation (+), a significant negative 

correlation (-), or not significantly different from zero (0). Fisher’s Z-test [49] was used to 

identify significant correlation changes between the homoeologous and the diploid (expected) r 

values.  

 

Table 1. Nine classes of differential correlation (DC) changes. 

Diploid 
correlation 

Polyploid 
correlation 

Description of DC pattern 

+ + Both positive but different in r-value 

+ 0 Loss of positive correlation 
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+ - Inversion from positive to negative correlation 

0 + Gain of positive correlation 

0 0 Neither significant but different in r-value 

0 - Gain of negative correlation 

- + Inversion from negative to positive correlation 

- 0 Loss of negative correlation 

- - Both negative but different in r-value 

 

Given that each condition (i.e., diploid or polyploid) exhibits three possible correlation 

conditions (+, -, or 0), there are nine possible categories to describe the pattern of DC (Table 1). 

Among those, 0/0, +/+ and -/- indicate significant changes in r values while the inference of 

correlation condition remains unchanged, and the other classes indicate that the read partitioned 

AD dataset mis-identities the true condition of gene-to-gene correlations. We assessed 

enrichment of each class for each pipeline using a one-sided Fisher's exact test (� < 0.05). 

 

Finally, as previously described [15], we compiled a list of genes that are overrepresented with 

the gene-to-gene paired DC relationships (see above) to identify differentially co-expressed 

genes (DC genes). Briefly, the probability � of any pair of genes exhibiting a DC relationship is 

defined as the percent of DC pairs detected among all possible gene pairs. For a gene observed in 

� DC pairs among all possible pairs �, the probability of a “differential co-expression gene” 

follows the binomial distribution model:  

 

��� was corrected by the BH method [42] and a cutoff of 0.05 was used for identifying DC 

genes. 
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Co-expression network construction 

Co-expression networks are a multidimensional representation of the expression relationships 

among genes. Accordingly, construction of co-expression networks use similarity scores from 

the pairwise gene expression profiles to generate an adjacency matrix which reflects connections 

between genes (as nodes) in network [50]. Here, we used the Pearson correlation coefficients to 

calculate the matrix of similarity scores. Derived from this correlation matrix, the adjacency 

matrix was used as the basis for a series of binary and weighted gene co-expression networks. 

which were generated for both the log2RPKM- and rlog-transformed read count tables from each 

expression estimation pipeline.  

 

For constructing binary networks, a hard threshold was applied to similarity scores to determine 

whether a pair of genes should be connected in the network, resulting an adjacency matrix 

containing only 0 and 1 values. Two types of hard thresholds were tested, specifically rank-based 

and Fisher’s Z-statistics [49]  based thresholds. A set of rank-based cutoffs (5%, 1%, 0.5%, and 

0.1%) were applied to these similarity scores in order to select the top ranked connections as 

possible edges. Following Fisher’s Z transformations to convert each Pearson correlation 

coefficient to a Z-score, a set of cutoffs (i.e., 1.5, 2.0, 2.5, and 3.0) were used to retain 

correlations with Z-score above the cutoff value as edges. The performance of network 

construction was evaluated as a binary classification problem; that is, because we expected to see 

the edges inferred from the expected expression (diploid) retained in the polyploid network, we 

were able to create a confusion matrix from the presence or absence of edges compared to what 

was expected. The edge classification was again evaluated with a ROC curve using the R 
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package ROCR [43]. Due to the large gene number in the network (> 60,000 genes), a 10% 

random sampling of genes was used for computation with 10 iterations.  

 

While binary networks have their own utility, weighted co-expression networks are frequently 

used for reasons enumerated elsewhere [51], including the ability to quantify network 

connections. Weighted networks use soft thresholding to assign connection strengths to gene 

pairs, thereby allowing the adjacency matrix to present network connections quantitatively. 

Using the R package WGCNA [52,53], a set of soft thresholds (1, 12, 24) were applied for 

automatic network construction with the blockwiseModules function and the following 

parameters: corType = "pearson", networkType = "signed", TOMType = "signed", 

minModuleSize = 100. The performance of each polyploid network construction was evaluated 

against the reference network generated using the diploid data. Preservation of the reference 

network modules by AD dataset was calculated using the WGCNA function modulePreservation 

with 200 permutations. In general, modules with the derived preservation score Zsummary > 10 are 

interpreted as strong preservation. 

 

Network topology measures and functional connectivity assessment 

Node connectivity and functional connectivity are two metrics that may provide insight into the 

importance and/or function of a given gene in a network. Node connectivity (k) measures the 

connectivity of any given node in the network, either by counting the number of connected edges 

(for a binary network) or summing the connected edge weights (for a weighted network). 

Functional connectivity (FC) uses the ‘Guilt-by-Association’ principle to measure network 

quality under the assumption that genes with similar functions should be connected in a well-
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constructed network. A neighbor voting algorithm from the R package EGAD [54] was used to 

classify genes into functional groups based on the functionality of their connected genes (i.e., 

their neighborhood). This package uses the the known functional labels of genes (e.g. GO and 

KEGG annotations) and the voting algorithm as a binary classifier to return true or false 

predictions for those functional labels; the performance of the neighbor voting functional 

assignment can then be assessed by an ROC curve. The derived AUC characterizes the degree to 

which an input network topology can predict the gene membership of a functional category, 

which intuitively corresponds to the assessment of functional connectivity. GO and KEGG terms 

were extracted from the v2.1 annotation of Gossypium raimondii reference genome downloaded 

from Phytozome (www.phytozome.net).  

 

RESULTS 

Subgenome divergence and homoeolog read ambiguity: the problem 

As mentioned in the introduction, the issue of ambiguous read mapping is prevalent in 

polyploids and in plants in general because of means other than polyploidy that generate 

paralogs. Accurately partitioning polyploid reads is bioinformatically challenging (Figure 1A), 

and the consequences of inaccurate partitioning are unknown. The proportion of ambiguous 

reads is dependent both on subgenome divergence and the sequencing strategy, and the 

subsequent treatment (i.e., removal or statistical assignment) can affect the outcome of 

downstream analyses. Here we evaluated the performance of five different pipelines in assigning 

reads to polyploid genomes and the effects of their treatment of ambiguous reads on downstream 

analyses of duplicated gene expression (Figure 1B). Accordingly, we introduced the metric of 

Ambiguity for each pair of homoeologous genes, which corresponds to the percentage of a gene 
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region that cannot be distinguished between homoeologs (see Methods). Ideally, if the 

homoeologous sequences were sufficiently divergent and the sequencing reads were long enough 

to consistently contain homoeolog distinguishable variants (e.g. SNPs), all reads could be 

assigned with zero Ambiguity; however, these conditions are rarely met by existing data.  

 

In tetraploid Gossypium, where the average sequence divergence (in coding regions) between 

homoeologs is approximately 1.5% [22], only 5% of homoeologous gene pairs can be 

unambiguously mapped (Ambiguity = 0) by 50 bp RNA-seq reads, whereas over 90% can be 

unambiguously mapped by 300 bp reads (Figure 2A). In the following analysis, we binned 

homoeologous gene pairs into five increasing levels of Ambiguity, i.e., (0), (0-0.05), (0.05-0.1), 

(0.1-0.2), and (0.2-1.0). These bins were next used to relate the performance of read assignment 

and other duplicated gene expression patterns to the level of read ambiguity (Figure 2).  
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Figure 2. Homoeologous read ambiguity and consequences. A. Given the specific sequencing read length (i.e. 50, 

100, 200 and 300 bp), the homoeologous gene pairs from Gossypium were binned by Ambiguity into five groups: 

(0), (0-0.05), (0.05-0.1), (0.1-0.2), and (0.2-1.0), the first of which indicates complete read assignment via SNP 

differentiation. The y-axis refers to the bin size of each gene group. These Ambiguity bins were used to relate the 

performance of read assignment (B-E), differential expression (F), differential correlation (G), and the analysis of 

node connectivity k (H). Error bars represent the standard deviation.  
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Artificial allopolyploid datasets permit assessment of fidelity in homoeologous read 

assignment 

We generated in silico allotetraploid (AD) datasets for multiple sample conditions (tissues, 

developmental timepoints, etc.; Supplementary Table S1) as a ground truth reference. For these, 

we combined equal amounts of reads from two diploids, G. arboreum (A2) and G. raimondii 

(D5), which represent the model diploid progenitors for a clade of naturally occurring polyploids 

in Gossypium. As these datasets are diploid-derived, the amount of A- and D-derived reads in the 

AD datasets is known and the ability of each pipeline to accurately reconstruct this becomes 

testable. 

 

Because the five pipelines differ in how they treat ambiguous reads, either discarding them 

(GSNAP-PolyCat and HyLiTE) or statistically partitioning them (RSEM, Salmon and Kallisto), 

we first evaluated the Efficiency and Discrepancy of read assignment. Efficiency simply 

measures the percentage of reads assigned, considering all the reads versus those partitioned into 

each subgenome. As shown in Table 2, RSEM, Salmon, and Kallisto all achieved 100% read 

assignment due to their underlying statistical inference of origin for ambiguous reads; however, 

they tend to slightly overestimate the number of At reads. Since GSNAP-PolyCat and HyLiTE 

discard ambiguous reads, their Efficiency negatively correlates with Ambiguity, as expected 

(Figure 2B), with only 87.7% and 82.2% of total reads partitioned into subgenome (Table 2). In 

contrast to RSEM, Salmon, and Kallisto, there appears to be a reference bias in both GSNAP-

PolyCat and HyLiTE that leads to more reads being characterized as D-derived; this bias is most 

significant for HyLiTE (Table 2; At 78.5% vs. Dt 85.8%, Student’s T test � < 0.05). We also 

evaluated the Discrepancy for each pipeline, which measures the absolute difference between the 
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obtained homoeolog read counts and the expected counts; this measure is affected by both the 

assignment Efficiency and binary classification measures (see methods). Due to the 100% 

Efficiency guaranteed by the algorithms of RSEM, Salmon and Kallisto, these pipelines exhibit 

the lowest Discrepancy (5.1%; Table 2), while the highest Discrepancy was found in HyLiTE 

(18.1%), followed by 12.7% in GSNAP-PolyCat; in the latter two, the Discrepancy reflects both 

assignment error and discarded reads. In general, Discrepancy from the actual read numbers 

increases as the level of Ambiguity increases (Figure 2C), as expected. 

 

While Efficiency and Discrepancy provide generic measures of read partitioning based on the 

numbers expected, they do not account for whether each read is accurately assigned. Therefore, 

the results of each pipeline were arrayed in a 2x2 confusion matrix (i.e., true positive, false 

negative, etc; [36]) and the performance of the pipeline was evaluated using the information 

retrieval metrics of Precision, Recall, Accuracy, F1 score, and MCC. In the context of 

information retrieval (as implemented here), Precision measures how many of the reads assigned 

to a given subgenome (A or D) were correctly identified, Recall measures how many of each 

subgenome were retrieved from the mixed population (relative to expectations), and Accuracy 

measures how well each pipeline correctly identifies one subgenome while excluding the other; 

the measures F1 and MCC account for more of the confusion matrix and attempt to generalize the 

results into a single score of performance (see methods for details). The results in Table 2 show 

that that GSNAP-PolyCat generally performed better in all information retrieval metrics, 

meaning that it recovered more relevant reads for each subgenome while excluding reads from 

the other subgenome. The three generic, alignment-based approaches (i.e., RSEM, Salmon, and 

Kallisto) showed comparable performance to each other, with only a slight reduction in all scores 
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relative to GSNAP-PolyCat. Only HyLiTE stands out as performing relatively poor compared to 

the other pipelines; however, it is noteworthy that the other four pipelines all utilized the same 

SNP information derived from rich genomic resequencing data [23], whereas HyLiTE conducted 

on-the-fly SNP calling from the input parental diploid RNA-seq datasets. This most likely 

explains the relatively poor performance of HyLiTE, as tested here. Interestingly, as shown in 

Figures 2D and 2E, GSNAP-PolyCat and HyLiTE both exhibit relatively consistent performance 

across Ambiguity bins, indicating that their accuracy (as measured by Accuracy and MCC) is 

largely static, irrespective of homoeolog divergence. RSEM, Salmon, and Kallisto, however, 

perform nearly as well as GSNAP-PolyCat when the expected amount of homoeologous 

ambiguity is low, but quickly descend when Ambiguity goes above 20% (Figures 2D and 2E). 

 

Table 2. Overall and subgenome assessment of homoeolog expression estimation. The best performance for each 
metric is marked in bold text. 
 GSNAP-PolyCat HyLiTE  RSEM Salmon Kallisto 

Efficiency 87.7±1.5% 82.2±0.7% 100.0% 100.0% 100.0% 

At 86.7±1.6% 78.5±1.0% 101.0±0.6% 101.6±0.5% 101.5±0.6% 
Dt 88.6±1.6% 85.8±0.6% 99.1±0.6% 98.5±0.5% 98.6±0.6% 

Discrepancy  12.7±1.5% 18.1±0.8% 5.1±0.6% 5.1±0.6% 5.1%±0.6% 
At 13.4±1.6% 21.±1.06% 5.4±0.6% 5.2±0.6% 5.2±0.6% 
Dt 12.1±1.5% 14.8±0.6% 4.8±0.6% 5.1±0.6% 5.0±0.6% 

Precision  - - - - - 
At 98.4±0.1% 92.4±0.3% 95.1±0.2% 94.3±0.2% 94.4±0.2% 
Dt 97.7±0.5% 91.2±0.6% 97.0±0.5% 96.5±0.4% 96.4±0.4% 

Recall - - - - - 
At 97.7±0.5% 90.6±0.6% 96.5±0.5% 96.4±0.4% 96.4±0.4% 
Dt  98.1±0.1% 94.0±0.3% 96.2±0.2% 95.4±0.2% 95.4±0.2% 

F1 score - - - - - 
At 98.7±0.2% 92.2±0.4% 97.2±0.3% 96.8±0.2% 96.9±0.2% 
Dt 98.7±0.2% 93.1±0.4% 97.2±0.3% 96.7±0.2% 96.7±0.2% 

Accuracy* 98.2±0.2% 93.7±0.7% 96.3±0.3% 95.7±0.2% 95.8±0.2% 
MCC* 96.8±0.5% 84.5±0.7% 95.5±0.5% 94.7±0.4% 94.8±0.4% 
* Same values for At and Dt reads. 
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The inference of homoeolog expression divergence is affected by the choice of expression 

estimating pipeline 

Expression divergence of homoeologs, both relative to one another and to their progenitor 

genomes, is a major component of polyploid research. Allopolyploidy reunites formerly diverged 

genes (and their regulatory context) into a common nucleus while simultaneously generating 

massive redundancy. Consequently, observed transcriptomic changes are myriad (reviewed in 

[13]), and include homoeolog expression bias (reviewed by [12,13]) and functional divergence 

[55–58]. Since our ability to accurately describe expression changes depends upon our ability to 

accurately represent expression, we evaluated the extent to which each pipeline accurately 

represented differential expression (DE) between homoeologs. That is, the homoeolog DE results 

derived from each pipeline inferred AD dataset were compared to the expected DE results 

between the diploid orthologs from which the AD dataset was derived. While many methods 

exist for comparing DE among samples, we selected two of the most popular methods, namely 

DESeq2 and EBSeq, to compare both stringency and accuracy in general and in the context of 

the different pipelines. 

 

Overall, DESeq2 detected an average of 18% more significant changes in expression than EBseq 

(Supplementary Table S2; paired Student’s T test P < 0.05), suggesting that by default the latter 

is more stringent. Across the twelve sample conditions, homoeolog expression divergence was 

detected from between 5% and 44% of the 37,223 homoeologous gene pairs, without significant 

differences between the observed and expected results (Supplementary Table S2; paired 

Student’s T test � = 0.26). As shown in Figure 3, a relatively high level of DE Accuracy (above 
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80%) was consistently inferred. Regardless of which DE method was used, the expression 

datasets generated by GSNAP-PolyCat outperformed those by other pipelines (Salmon/Kalisto > 

HyLiTE/RSEM) in identifying the true expression divergence between homoeologs. While 

DESeq2 appeared to perform better than EBseq according to the measures of Precision, Recall, 

F1 and MCC, the AUC scores suggested that EBseq is more robust than DESeq2 to separate 

binary classes (Figure 3), particularly for genes exhibiting high Ambiguity (Figure 2F). For both 

methods, their AUCs were negatively correlated with Ambiguity, reflecting the strong 

dependence of DE analysis on the extent of homoeolog sequence divergence (Figure 2F).  

 

 

Figure 3. Performance evaluation of differential expression analysis between homoeologous genes. 
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Figure 4. Inference changes in co-expression relationships between homoeologs. For each of the 10 combinations of

homoeolog expression estimation pipelines and data transformation methods (row), the number of differential 

correlation (DC) changes between observed and expected datasets are shown for each DC category (column). Cell 

color indicates the magnitude of significant over-representation based on -log10(P-value) of Fisher’s exact test (i.e., 

P = 0.05 is converted to 1.3). For example, the number in category P0/+ of the bottom row indicates that 1028 

homoeolog pairs showed DC changes from no significant correlation (0) to significantly positive correlation (+) due 

to the estimation error from the Salmon pipeline followed by log2RPKM transformation. 

 

Co-expression relationships between homoeologs were measured using Pearson’s correlation 

coefficient across multiple sample conditions. Approximately 1-5% of homoeolog pairs (418-
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1,834 out of 37,223 pairs) exhibited significant changes due to incorrect read assignment. As 

shown in Figure 4, GSNAP_PolyCat and HyLiTE introduced the smallest numbers of 

differential co-expression (DC) changes, thereby outperforming RSEM, Salmon, and Kallisto. 

Artifactually-induced DC was most prominent in those homoeologous gene pairs exhibiting 

higher Ambiguity (Figure 2G), with the highest bin (i.e., 0.2-1) exhibiting a nearly 4-fold 

increase in DC than other bins for RSEM, Salmon, and Kallisto. Among the nine categories of 

DC changes (Figure 4, columns), the class of 0/+ was most significantly enriched for each 

pipeline except for GSNAP-PolyCat, where it was the second most enriched category after +/0. 

This suggests that the majority of DC changes due to read partitioning errors lead to gains in 

correlation, generally changing our inferences from no significant correlations (0) to significantly 

positive correlations (+). These observations suggest read partitioning methods could lead to an 

over-estimation of co-regulation between homoeologous genes due to incorrect homoeolog 

expression estimation, consequently restricting our ability to infer expression divergence and/or 

possible functional divergence of duplicated genes. Notably, these patterns were consistent for 

both the rlog and log2RPKM data transformation methods. In addition to DC between 

homoeologous gene pairs, we also conducted identification and classification of DC patterns for 

all possible gene pairs (Supplementary Table S3), resulting in 0.3%-1.1% global pairwise DC 

changes, which affected 9.3-15.2% of total genes (i.e., DC genes enriched with DC pairs) in their 

co-expression relationships.  

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 17, 2019. ; https://doi.org/10.1101/2019.12.16.878900doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.16.878900
http://creativecommons.org/licenses/by-nc-nd/4.0/


27 

Robust construction of gene co-expression networks by the rank-based binary method and 

WGCNA 

Gene co-expression networks are commonly used to summarize the multidimensionality of gene 

expression data into clusters of genes with putatively related functions (i.e., modules). In the 

context of polyploidy, co-expression networks can be used to assess functional relatedness 

among genes and homoeologs, reveal changes in homoeolog usage, and characterize the genetic 

interplay between subgenomes [6]. We use both weighted and unweighted networks to assess the 

influence of variation in read partitioning on our inferences of coexpression.  

 

Constructing un-weighted co-expression networks requires a binary classifier (or hard threshold) 

to decide whether there exists a connection (i.e., an edge) between each pair of genes. As shown 

in Figure 5A, different rank-based thresholds (5%, 1%, 0.5% or 0.1% of top ranked correlations 

become edges) yielded robust classification of the expected edges (based on diploid expression) 

with AUC scores close to 1. In contrast, the performance of Z-statistics-based thresholds (i.e., 

significant correlations with Z-score above 1.5, 2.0, 2.5, or 3.0 become edges) were more 

variable (AUC of 0.8~1) depending on the stringency of the Z thresholds. These results indicated 

that the rank-based method is more robust here than Z-statistics to infer binary gene co-

expression network.  

 

In addition to the network construction methods (ANOVA formula: AUC ~ construction + 

pipeline + transformation; construction P < 2e-16), the choice of read estimation pipeline also 

matters (P = 3.91e-09) with performance of RSEM significantly falling behind others (Tukey’s 

HSD test � < 0.05); no significant difference was found between the rlog and log2RPKM 
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transformation (ANOVA  = 0.624). Interestingly, while not unexpected, edge inference within 

the D-genome subnetwork is significantly more robust than edges within the A-genome 

subnetwork or those across subnetworks (Figure 5B; ANOVA and Tukey’s HSD test  < 0.05). 

This observation likely reflects quality differences in the mapping reference, i.e., the high quality 

D-genome reference and the inferred A-genome sequences (see methods). 

 

Figure 5. Performance of binary co-expression network construction. A. Boxplot of AUC scores were shown using 

different homoeolog estimation pipelines (color) and binary thresholds (x-axis). B. Taking the Z-score threshold of 

3, for example, AUC scores were compared among subnetworks: Overall - all edges considered; At - edges within 

the A-genome subnetwork; Dt - edges within the D-genome subnetwork; At-Dt - edges connecting genes across A- 

and D- subnetworks. 

 

In weighted gene co-expression analysis (WGCNA) networks, the quantitative strength of 

network connections is considered to maximize information captured in the network. The 

topological preservation tests of expected modules (based on diploid expression) exhibited high 

28 
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preservation (Zsummary > 10) for almost all modules (Supplementary Figure S1A), regardless of 

soft threshold (i.e., 1, 12, or 24; see methods), homoeolog read estimation pipeline, and method 

of normalization. This result suggests that WGCNA-based inference of gene modular structure is 

rather robust. 

 

In addition to the separate topological evaluation above (binary networks by edge inference AUC 

and WGCNA networks by module preservation), node connectivity (k) and network functional 

connectivity (FC) were calculated for each binary and weighted co-expression network 

constructed. Each AD network constructed was evaluated against the expected (diploid-based) 

network. Pearson’s correlation coefficients between the expected and observed networks suggest 

that both k and FC were rather consistent across different homoeolog expression estimation 

pipelines (ANOVA formula: correlation ~ construction + pipeline + transformation; construction 

� > 0.05), whereas the method of network construction could strongly influence topology (� < 

2e-16; Supplementary Figure S1B-D). Notably, normalization method affected k (� < 2e-16; 

log2RPKM outperforms rlog) but not FC (� = 0.08). As shown in Supplementary Figure S1B-D, 

both rank-based binary construction and weighted gene network construction methods equally 

outperformed all but the least strict Z-statistics methods. The accurate inference of k (measured 

by correlation between observed and expected data; Figure 2H) is negatively correlated with 

Ambiguity, albeit weakly. This diminished relationship is expected as the network property of 

each gene is intrinsically determined by all the other genes, thereby obscuring the impact of 

ambiguity per gene. 
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In addition, the measure of FC can be used to statistically evaluate the functional significance of 

network topology [54]. According to the “Guilt-by-Association” principle [59], genes with 

similar functional properties tend to interact or be clustered together in biological networks. 

Thus, higher FC indicates more reasonable network topology. As shown in Supplementary 

Figure S2, the highest FC scores were observed for WGCNA networks (AUROC = 0.63-0.66), 

followed by the ranked-based binary networks (0.54-0.63) and the Z-statistics-based binary 

networks (0.50-0.54), respectively. This may suggest that the WGCNA network construction 

was able to capture more function and/or biologically-relevant information. 

 

Overall, the performance of co-expression network analysis was more affected by network 

construction methods than by read ambiguity and partitioning methods. In general, either 

log2RPKM or rlog combined with WGCNA produced the best results for these data, regardless 

of read assignment method.  

 

Bioinformatic choices can strongly affect the interpretation of duplicated gene network 

topology 

In the context of polyploid gene network, it is of particular interest to compare subnetwork 

properties within each subgenome and between subgenomes. Taking the GSNAP-PolyCat 

dataset followed by log2RPKM normalization as an example, both rank-based and WGCNA 

networks (Figure 6A and 6C, respectively) revealed the highest density (mean connections) of 

the A-subnetwork, followed by that of the D-subnetwork and then of the inter-connections 

between A and D subgenomes. In contrast, similar levels of A- and D- subnetwork density were 

revealed in the Z-statistics-based networks (Figure 6B). These results led to opposite conclusions 
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regarding the potential topological asymmetry between two subgenomes. According to the 

performance assessment above, we believe that the conclusion derived from WGCNA and rank-

based binary networks is more reliable; that is, the At genes are more interconnected than are the 

Dt genes, reflecting the difference in gene regulation between the two subgenomes (i.e. the A2 

and D5 diploids used generate synthetic AD). In addition, all networks agreed on the much lower 

density of inter-subgenome connections than that of within-subgenome connections, indicating 

that a gene is much more likely to be connected with genes from the same subgenome than with 

genes from the other subgenome. For other combinations of homoeolog expression estimation, 

transformation and network construction methods, the measures of subnetwork density are 

shown in Supplementary Table S4. 

 

Figure 6. Different inferences of subnetwork topology. The network density of A-subnetwork, D-subnetwork, and 

interconnections between A- and D- subnetworks were shown for both the expected and observed data from the 

GSNAP-PolyCat estimation with log2RPKM normalization. A - rank-based binary network with top 1% 

connections; B - Z-statistics binary network with connections above Z-score of 2; C - WGCNA network with power 

of 12. 
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DISCUSSION 

The duplicated nature of polyploid genomes poses unique challenges for bioinformatics. 

Presently, we are witnessing an explosion of interest in better understanding these challenges and 

developing appropriate methodologies and tools for polyploids, for applications as diverse as 

genome sequence assembly [60], genotyping [61,62], haplotype phasing [63,64], population-

based trait analysis [65], phylogenetic inference [66,67], and transcriptomic-based analyses 

[68,69] such as de novo transcriptome assembly [70] and transcript quantification [71]. 

Quantification of homoeolog expression is particularly interesting, given the various patterns of 

duplicate gene expression possible in polyploid species (reviewed in [12]), the interactions 

among homoeologs in a gene network context [6,14], and the phenomenon of unbalanced 

homoeolog expression bias together with its potential long-term consequences for fractionation 

[72–74]. A number of previous studies have explored the bioinformatics of homoeolog 

expression profiling [68–71]; however, both the fundamental issue of read ambiguity and the 

downstream inferences regarding polyploid expression evolution have not been addressed. Here 

we present a comprehensive analytic workflow to demonstrate the challenges and pitfalls of 

these analyses (Figure 1), as well as how they are influenced by the extent of read ambiguity in 

the dataset and how that ambiguity is handled in understanding homoeolog expression and co-

expression patterns (Figure 2). 
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Figure 7. A decision-making diagram to choose appropriate bioinformatic resources for estimating homoeolog 

expression levels. When a reference genome or transcriptome is available for the polyploid species, quantification of 

individual homoeologs is either straight-forward using the traditional aligners such as Tophat, or applying 

probabilistic estimation methods and pseudo-aligners to consider the problem of read ambiguity. When the reference

is only available for one or more diploid progenitors, software has been developed for partitioning and/or 

quantifying homoeolog-specific reads: maroon colored software, such as RSEM and EAGLE-RC, statistically assign

the subgenome origin for ambiguously mapped reads; blue colored software such as PolyCat utilize only 

unambiguously mapped reads for estimation. The polyploid systems for which they were originally developed are 

noted in parentheses. 

 

 

Duplication and deficiency: when redundancy renders reads unresolved 

In addition to the redundant nature of polyploid genomes, there are a number of biological and 

technical causes for ambiguous read mapping, including transcripts that are expressed at low 
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levels, sequence homology, small-scale gene duplications, and errors in sequencing and 

annotation. While we can control some of these factors through experimental design (i.e., read 

length, paired-end sequencing, etc), the nature of the biological system and the 

amount/distribution of subgenome divergence, as measured by Ambiguity, will influence the 

ability to accurately assign reads to homoeologs. Although our analysis is limited to the example 

data from Gossypium, the metric of Ambiguity can be applied to any other real-world or 

simulated polyploid systems. For systems that have less divergent subgenomes than Gossypium, 

the Ambiguity values are expected to be higher, and longer read lengths will be required to 

improve the ability to accurately assign reads. Knowing the range of Ambiguity for any specific 

polyploid system or for a list of genes of interest, we can foresee the use of Figure 2 to query 

how such a range) affects the performance of bioinformatic inferences regarding homoeolog read 

estimation (B-E) and polyploid expression evolution (F-H). 

 

Among tools that have been devised to estimate homoeolog expression levels under different 

conditions (e.g. the availability and type of the reference genome; Figure 7), numerous methods 

exist for handling the subset of reads that are not uniquely assignable, typically either discarding 

these reads (as in GSNAP-PolyCat and HyLiTE) or statistically assigning the reads (e.g., RSEM, 

Kallisto, and Salmon). Among the five pipelines evaluated in this study, most performed 

relatively well, achieving >90% success for information retrieval metrics. Notably, GSNAP-

PolyCat exhibited the best scores for most metrics, aside from those affected by read removal 

(i.e., Efficiency and Discrepancy). While it is tempting to attribute the improved performance of 

this pipeline to the underlying resequencing-based SNP data, which was not used by HyLiTE, 

the remaining pipelines (i.e., RSEM, Salmon, and Kallisto) were all provided a reference 
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transcriptome derived from the homoeoSNP index used in GSNAP-PolyCat. When Ambiguity 

was low, all pipelines performed similarly well; however, those that statistically assign 

ambiguous reads (RSEM, Salmon, Kallisto) perform significantly worse for those genes with 

Ambiguity above 20%. This may be due to the noise in the underlying statistics as the relative 

number of unique reads drops compared to those that will be statistically assigned; that is, any 

error in statistical inference will be amplified as the number of ambiguous reads begins to 

outweigh the number of unique reads. This is an important observation for polyploid systems 

whose subgenomes are more recently diverged. That is, methods which statistically assign 

ambiguous reads should be used with caution when the divergence between parental genomes is 

low. For those genomes, GSNAP-PolyCat and HyLiTE will provide a more reliable 

representation of relative homoeolog read counts, with GSNAP-PolyCat outperforming HyLiTE 

when a priori homoeoSNP information is available.  

 

In a previous study, [71] showed that EAGLE-RC, a likelihood model-based method, 

outperforms other homoeolog expression quantification methods including STAR, LAST, 

Kallisto, and HomoeoRoq to precisely estimate homoeolog expression in both tetraploid 

Arabidopsis kamchatica and hexaploid wheat. The category of the subgenome-classification 

approaches (Figure 7, bottom right), including EAGLE-RC, HomeoRoq [75], and PolyDog [22], 

requires read mapping against each subgenome separately in order to determine the better 

supported homoeolog origin for reads. These approaches were not included in our study, because 

the reference quality and annotation methods differ between the A- and D- diploid progenitor 

genomes, which introduces additional dimensions of complexity for homoeolog quantification. 

For example, GSNAP-PolyCat and HyLiTE appeared to partition more reads than expected to 
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the higher quality D-genome reference, whereas the other three pipelines statistically 

characterized more reads as A-derived; the cause (likely differences in algorithm) of this 

discrepancy is unknown, but it has consequences even at the co-expression network level (more 

robust inference of D- vs. A- subnetwork topology). These caveats notwithstanding, we envision 

that this category of approaches will be useful for hybrid and polyploid systems where quality 

differences among progenitor reference genomes are negligible and where similar annotation 

methods are used for each. 

 

Consequences of inaccurate quantification for inferences of polyploid evolution 

Beyond the narrow issue of evaluation of homoeolog quantification, our interest lies in 

identifying a reasonable set of methods to address biological and evolutionary questions 

concerning polyploidy. Differential expression (DE) is commonly among the first transcriptomic 

analyses performed, providing a generalized look at the extent of expression divergence. For 

polyploid species, the relative expression of each subgenome is of particular interest, which may 

provide insights into homoeolog bias, expression level dominance, cis-trans resolution, putative 

sub-/neo-functionalization of homoeologs, and other phenomena [14]. In general, GSNAP-

PolyCat best represented the expected DE between homoeologs, followed closely by Kallisto 

and Salmon (Figure 3). The standout, RSEM, performed significantly more poorly than the rest 

despite its intended application to isoform quantification; we therefore advise caution when using 

RSEM for duplicate gene analyses. With respect to DE inference, both DESeq2 and EBseq 

resulted in reasonable performance metrics, with the choice likely being the stringency level and 

parameters preferred. 
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In contrast to the general robustness of the DE results, homoeolog read ambiguity and the choice 

of quantification pipelines strongly influence our interpretation of co-expression relationships 

among genes. In particular, we are interested in detecting coordination among homoeologous 

genes in polyploids. The most significant error evident is the false detection of positive 

correlations where none exist. Notably, those methods that discard reads (i.e., GSNAP-PolyCat 

and HyLiTE) far outperformed the other methods, particularly for those genes with higher 

Ambiguity. These results were consistent for the two normalization methods tried, i.e., rlog and 

log2RPKM, and may indicate a general preference for discarding ambiguous reads when the 

biological question depends on an accurate assessment of differential co-expression. 

 

The inference of co-expression network topology, on the other hand, was generally less sensitive 

to the quantification method, but rather was dependent on method of network construction. This 

is probably because the multivariate nature of co-expression relationships mitigates the influence 

of individual and random quantification errors. In order to compare network topologies between 

subgenomes, choosing the appropriate network construction method becomes critical, otherwise 

incorrect and even opposite conclusions may be reached (Figure 6). For example, both rank-

based binary and WGCNA reconstructions of the present datasets suggest that the A-subnetwork 

is more tightly interconnected than the D-subnetwork, whereas the less reliable Z-statistic based 

binary networks suggest they are equally interconnected.  

 

Conclusions 

In this study, we present an analytical workflow from homoeolog expression quantification to a 

series of downstream analysis to infer key phenomena of polyploid expression evolution. By 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 17, 2019. ; https://doi.org/10.1101/2019.12.16.878900doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.16.878900
http://creativecommons.org/licenses/by-nc-nd/4.0/


38 

examining the extent and consequences of read ambiguity, we demonstrated the potential 

artifacts that may affect our understanding of duplicate gene expression, such as an over-

estimation of homoeolog co-regulation and the incorrect inference of subgenome asymmetry in 

network topology. Such errors may be reduced by mitigating technical factors that influence 

ambiguity, i.e. sequencing strategy and fundamental resources (i.e., genomes and/or 

resequencing). Although the collection of methods tested in this study may be superseded by 

those yet to be developed, our work introduces the metric of Ambiguity and designates a set of 

reasonable practices applicable to other polyploid systems.  

 

KEY POINTS 

● We present an analytical workflow to evaluate a variety of bioinformatic method choices 

at different stages of polyploid RNA-seq analysis, from homoeolog expression 

quantification to downstream analysis used to infer key phenomena of polyploid 

expression evolution. 

● We used transcriptomic data from the cotton genus (Gossypium) as an example to 

examine the extent and consequences of homoeolog read ambiguity. 

● Our results show that GSNAP-PolyCat outperforms other quantification pipelines tested, 

and its derived expression dataset best represents the expected results in downstream 

analyses of differential expression and co-expression network analysis.  

● We illuminate the potential artifacts that may affect our understanding of duplicate gene 

expression, including an over-estimation of homoeolog co-regulation and the incorrect 

inference of subgenome asymmetry in network topology.  
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● Overall, our work points to a set of reasonable practices that are broadly applicable to the 

evolutionary exploration of polyploids. 
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