bioRxiv preprint doi: https://doi.org/10.1101/2019.12.16.878900; this version posted December 17, 2019. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Homoeol ogous gene expression and co-expression networ k analyses and evolutionary

inferencein allopolyploids

Guanjing Hu', Corrinne E. Grover™, Mark A. Arick 112, Meiling Liu* Daniel G. Peterson?, and

Jonathan F. Wendel ¥

! Department of Ecology, Evolution, and Organismal Biology, lowa State University, Ames, |A
50011

2 Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University,
Mississippi State, MS 39762

% Department of Statistics, lowa State University, Ames, |A 50011

& Current address: Current address: Fred Hutchinson Cancer Research Center, Seattle, WA 98109

# Corresponding author: Corrinne E. Grover (corrinne@iastate.edu; 515-294-7098) and Jonathan

F. Wenddl (jfw@iastate.edu; 515-294-7172)



https://doi.org/10.1101/2019.12.16.878900
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.16.878900; this version posted December 17, 2019. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Biographical note

Guanjing Hu (https://orcid.org/0000-0001-8552-7394) is aresearcher in evolutionary genomics,

functional genomics, and whole-genome duplication (polyploidization).

Corrinne E. Grover (https://orcid.org/0000-0003-3878-5459) is aresearcher in evolutionary

genomics, molecular Evolution, and plant Systematics and Evolution. 0000-0003-3878-5459

Mark A. Arick Il (https://orcid.org/0000-0002-7207-3052) is a researcher in genomics,

bioinformatics, and computational sciences.

Meiling Liu (https.//orcid.org/0000-0001-7953-1506) is aresearcher in statistics and

bioinformatics.

Danid G. Peterson (https://orcid.org/0000-0002-0274-5968) is a researcher in genomics,

biocomputing, and biotechnol ogy.

Jonathan F. Wendel (https://orcid.org/0000-0003-2258-5081) is a researcher in evolutionary

genomics, molecular Evolution, and plant Systematics and Evolution.


https://doi.org/10.1101/2019.12.16.878900
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.16.878900; this version posted December 17, 2019. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

ABSTRACT

Polyploidy is awidespread phenomenon throughout eukaryotes. Due to the coexistence of
duplicated genomes, polyploids offer unique challenges for estimating gene expression levels,
which is essential for understanding the massive and various forms of transcriptomic responses
accompanying polyploidy. Although previous studies have explored the bioinformatics of
polyploid transcriptomic profiling, the causes and consequences of inaccurate quantification of
transcripts from duplicated gene copies have not been addressed. Using transcriptomic data from
the cotton genus (Gossypium) as an example, we present an analytical workflow to evaluate a
variety of bioinformatic method choices at different stages of RNA-seq analysis, from

homoeol og expression quantification to downstream analysis used to infer key phenomena of
polyploid expression evolution. In general, GSNAP-PolyCat outperforms other quantification
pipelines tested, and its derived expression dataset best represents the expected homoeol og
expression and co-expression divergence. The performance of co-expression network analysis
was less affected by homoeolog quantification than by network construction methods, where
weighted networks outperformed binary networks. By examining the extent and consequences of
homoeol og read ambiguity, we illuminate the potential artifacts that may affect our
understanding of duplicate gene expression, including an over-estimation of homoeolog co-
regulation and the incorrect inference of subgenome asymmetry in network topology. Taken
together, our work points to a set of reasonable practices that we hope are broadly applicable to
the evolutionary exploration of polyploids.

Keywor ds: allopolyplopid; RNA-seq; homoeolog-specific read partitioning; differential

expression; co-expression gene network
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INTRODUCTION

Comparative transcriptomics has become a widely employed and powerful tool in plant
evolutionary biology. Applications are many and diverse, including evolutionary rate estimation
[1-3], reconstruction of species relationships [3-5], and the elucidation of co-expression and
regulatory changes in gene networks [6,7]. Next-generation sequencing has facilitated
inexpensive and efficient transcriptomic profiling for species whose lack of existing genomic
resources would have previously been an obstacle. A landmark example is the recent publication
of transcriptomes from more than 1000 species of green plants, which substantially improved
available resources and facilitated comparative transcriptomics and phylogenetics among

previously underrepresented plants [8] (www.onekp.com). This success led to the 10KP project

(https.//db.cngb.org/10kp/), which aims to sequence 10,000 plant and protist genomes within the

next 5 years to further advance our understanding of plant evolution and diversity.

In the context of comparative transcriptomics, polyploid genomes offer unique challenges due to
the coexistence of highly similar duplicated genes (homoeologs). Polyploidy in plantsis far more
prevalent than once thought, acting historically and more recently to shape the genomes of all
angiosperms and most other groups of plants[8-11]. One realization that has emerged in the last
decade is that polyploidy is accompanied by massive transcriptomic responses, as reviewed [12—
14]. These responses are many and varied, including biased homoeolog expression, condition-
specific differential homoeolog usage, transgressive expression levels, and expression level
dominance. Duplicated gene expression patterns are coordinated in ways that are not fully

understood and which depend on myriad factors, including dosage effects, gene balance,
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interactions among divergent cis and trans-acting factors, and various topological aspects of

gene networks [6,15-18].

Research on polyploid transcriptomes is divided into two broad categories with respect to the
treatment of homoeologs: those that evaluate individual homoeol og expression separately and
those that evaluate the aggregate expression of homoeologs. The ability to consider homoeologs
separately depends largely upon the mode of origin (autopolyploid vs. alopolyploid) and the
extent of sequence divergence between homoeol ogs, as well as the genomic resources available.
Distinguishing individual homoeolog expression levels is difficult when sequence divergence
between homoeologs is too low, as often is the case with allopolyploids formed from recently
diverged diploid parents, or in evolutionarily young autopolyploids. When a reference genome or
transcriptome is available for a polyploid, quantitation of individual homoeolog expression levels
ispossible if sequence divergence is sufficiently high, and aggregated expression can be derived
from the summation of each homoeolog set. In many cases, reference genomes may only be
available for one or more model diploids. These diploid genomes can be useful in analyses of
duplicate gene expression in polyploids, but they require additional stepsto characterize and
partition homoeol og-specific reads. Regardless of the ploidy level of the reference genome, short
RNA-seq reads may be difficult to explicitly map to individual homoeologs due to their near-
duplicate nature (i.e., multi-mapped reads). That is, only a certain proportion of reads (related to
divergence between homoeol ogous genomes) will contain homoeol og distinguishing variants
(e.g. SNPs). Only those reads that can be unambiguously assigned to specific homoeologs can be

utilized for homoeol og transcript counting (Figure 1A).
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As previously noted by Ilut et a. [19], theissue of ambiguous read mapping is prevalent in
plants due to their natural genomic redundancy, and is even more so for recent polyploids. Many
intrinsic and extrinsic factors affect the ability to partition homoeolog expression, including: (1)
divergence between subgenomes, in terms of frequency and distribution of SNPs; (2) the
sequencing strategy (e.g. read length, and paired- vs. single-ended reads) for generating RNA-
seq data; (3) the quality of reference genome(s); and (4) the bioinformatic tools used for
partitioning and/or quantifying homoeol og-specific reads, including methods for allocating
ambiguous reads in general (such as RSEM [20] and Salmon [21]) and those specifically
developed for polyploid systems (i.e., PolyCat [22], PolyDog [23], HYLIiTE [24], HANDS [25]

and HAND2 [26]).

Given these complexities inherent in working with polyploid transcriptome data, the question
arises as to how these factors affect our ability to derive accurate polyploid gene expression
profiles. That is, how do the many issues noted above affect read assignment and our inferences
of gene expression and co-expression characteristics? Here we explore the causes and
consequences of read ambiguity in homoeologous differential expression and co-expression
networks using transcriptome data from the cotton genus (Gossypium) as an example (Figure
1B). Tetraploid cotton (represented here by G. hirsutum; AD;) originated from an
alopolyploidization event between an A-genome (G. herbaceum- or G. arboreum-like) and aD-
genome (G. raimondii-like) diploid species circa 1l to 2 million years ago (reviewed in [27]).
Because there is no gold standard for true expression levels of At and Dt (t denotes subgenome)
homoeol ogs in the polyploid AD; transcriptomes, we generated in silico allopolyploid datasets

(AD) by combining reads from the A- and D-genome diploid transcriptomes (see methods). This
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approach allowed us to evaluate accuracy of “homoeolog” expression against the actual diploids
reads used for generating in silico dataset. Methodologically, we first evaluated a variety of
bi oinformatic method choices at different stages of RNA-seq data analysis, with the aim of

generating insight into best practices that may be broadly applicable to other polyploid systems.
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Figure 1. Challenges of homoeolog gene expression analysis. A. Using the allotetraploid cotton species as an
example, only asmall portion of RNA-seq reads contain diagnostic SNPs (i.e., homoeolog-specific reads) reflecting
the parental origin of homoeologous genes. B. An analytic workflow of RNA-seq analysis was applied to evaluate
the use of homoeol og-specific reads to study duplicated gene expression and co-expression networks. A ground-
truth, in silico dataset of allopolyploid cotton (AD) was generated from the parental diploid cotton A, and Ds reads,

which was analyzed using a variety of method choices.

METHODS
All codes used in this study are available in Github

https://qi thub.com/Wendel | ab/homoeol ogGeneExpressi on-Coexpression.
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Data availability and preparation

For generating in silico allopolyploid cotton (AD) datasets, matched RNA-seq data of the model
diploid progenitors, i.e., G. arboreum (A,) and G. raimondii (Ds), were obtained, each
comprising 33 RNA-seq libraries under 12 sample conditions (Table S1). The seed dataset under
NCBI BioProject PRINA179447 consists of 11 libraries (4 seed developmental stages each with
2-3 biological replicates) for each diploid with 100 bp single-end reads and an average of 14.8
million reads per library. The flowering dataset under NCBI BioProject PRINA529417 consists
of 22 libraries (8 tissues each with 2 to 3 biological replicates) for each diploid with 150 bp
paired-end reads and an average of 13.8 million read pairs per library. Following adaptor and
quality trimming via Sickle [v1.33] [28], the matched A, and Ds libraries (at each condition and
replicate) were adjusted to contain equivalent number of filtered reads and subsequently
combined to generate the corresponding in silico allopolyploid (AD) datasets. For each pair of
AD homoeol ogous genes, the gene regions that should be unambiguously assigned to subgenome
(i.e. effective region), given the distinguishable SNP distribution between homoeologs and the
specific sequencing strategy involved, were detected using a custom script
“detectEffectiveRegion.r”. The proportion of each gene sequence that belongs to an effective
region was calculated as %Eflen. We next introduced a metric of Ambiguity for each pair of
homoeol ogous genes as calculated by 1-%Eflen, because %Eflen isinversely correlated with the

number of ambiguous reads that cannot be assigned via direct SNP evidence.
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RNA-seq read mapping and homoeol og-specific read partitioning
The following five pipelines were each independently applied to the diploid and AD polyploid

datasets.

GSNAP-PolyCat. This pipeline utilizes the SNP-tolerant capabilities of GSNAP [v2016-08-16]
[29] to map polyploid reads to asingle diploid progenitor genome (here, G. raimondii; [30]). The
SNP-tolerant feature of GSNAP permits equivocal mapping of both A- and D- diploid derived
reads based on a priori SNP information. Here, we used a previously generated genome-
diagnostic SNP-index [22] for mapping. The resulting alignments were sorted using samtools
[31] and subsequently partitioned into homoeol og-specific reads using PolyCat [v1.3] [22]. Read

counts were tabulated using HTSeq [v0.9.1] [32].

HyLIiTE. This software automates the process of read mapping, SNP detection, and read count
partitioning in asingle step [24]. Briefly, HyLi TE [v.2.0.1] employs Bowtie2 [v2.3.1] [33] to
map both diploid and polyploid readsto the reference gene models (here G. raimondii; (Paterson
et al., 2012)), and sorts homoeol ogous reads based on the SNPs detected from mapping the

diploid reads. Homoeol og-specific read count tables are automatically generated in the last step.

RSEM. While not specifically developed for polyploids, RSEM [v1.3.0] [20] and the following
programs (i.e., Salmon [v0.9.1] [21] and Kallisto [v0.44.0] [34]) were developed to address the
general issues of ambiguously mapped reads while also increasing mapping speed. RSEM
automates read alignment to a set of reference transcripts using Bowtie2 and subsequently

estimates feature counts using the EM algorithm, both at the gene and isoform level. Asthe
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presence of homoeologsis bioinformatically similar to presence of aleles of isoforms, RSEM
may be suitable for disentangling homoeologous reads and estimating homoeol og abundance.
For RSEM, we approximated the polyploid reference transcriptome by combining the G.
raimondii transcriptome and the predicted G. arboreum (A,) transcripts based on the same SNP
index used by GSNAP-PolyCat. That is, the G. arboreum transcripts here are ssmply the G.

raimondii transcripts with homoeologous SNP sites replaced with G. arboreum-specific SNPs.

Kallisto. This method belongsto a class of read aligners known as “ pseudoaligners’, which
leverage kmer information to detect the transcripts that could have generated a given read
without specifically aligning the read [34]. Kallisto, like other pseudoaligners, generates ade
Bruijn graph of the kmers present in atranscriptome to quickly assign reads based on
intersecting read and transcriptome kmer metrics. Kallisto was run under default parameters

using the above generated polyploid reference transcriptome.

Salmon. This method employs a light-weight, quasi-mapping strategy [35] similar to Kallisto and
atwo-phase estimation of expression. This two-phase estimation uses two forms of Bayesian
inference (Foulds et al. 2013; Do and Batzoglou 2008) to first estimate and then subsequently
refine transcript-level abundances[21]. Using this method, Salmon is able to estimate abundance
uncertainty due to ambiguously mapped reads, which are common with homoeologs. Salmon
was also run with default parameters using the above generated polyploid reference
transcriptome and the option “keepDuplicates’ for indexing the transcriptome. Estimated

transcript abundance is automatically returned by the program.

10
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Performance evaluation of estimating homoeolog expression

For each set of bioinformatically partitioned reads, multiple measures of performance were
conducted. Because the true assignment of each in silico polyploid (AD) read is known and
originates from only two sources (A, and Ds), assessing homoeolog assignment becomes a
binary classification problem. For example, when classifying A,-derived reads from the synthetic
polyploid transcriptome reads (i.e., At reads), the read could either be correctly assigned to At
(true positive; TP) or incorrectly assigned to Dt (false negative; FN). The same appliesto Ds-

derived reads; a Ds-derived reads assigned to Dt isa TP, whereas the assignment to At isa FN.

The prediction results of the binary classification can be arrayed as a 2x2 confusion matrix,
which summarizes the numbers of true/false positives/negatives (TP, FP, TN and FN) that can be
evaluated using information retrieval statistics[36], such as Precision/Recall [37] and the

Matthews correlation coefficient (MCC) [38]. The general formulas of these statistics are as

TP Accuracy — TP+TN Fl =7 x precisionXrecall

TP
Recall = ,
TP+TN+FP+FN

P+FP’ TP+FN'

follows: Precision = .

PR b
precision+recall

TP X TN—FP XFN
V(TP+FP)(TP+FN)(TN+FP)(TN+FN)'

and MCC =

Here we report both the F, and MCC scores, which

provide a generalized measure of accuracy; however, we note that MCC may be preferred
because it accounts for more of the confusion matrix and is more balanced with respect to classes

of very different sizes[39].

We also note that the results of binary classification measures for GSNAP-PolyCat and HyLIiTE
are somewhat misrepresentative of those pipelines. Because GSNAP-PolyCat and HyLIiTE
discard reads with no diagnostic SNPs, the number of TPs and FNs will be distorted for these

pipelines, i.e., reduced and increased, respectively. In contrast, the remaining pipelines (i.e.,

11
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RSEM, Salmon, and Kallisto) use statistical inference to completely assign all reads to
homoeologs. We therefore define two additional measures that reflect these differences,
Efficiency and Discrepancy. Here, the measure of Efficiency is smply the number of reads
assigned to ahomoeolog class (regardless of accuracy) divided by the total number of reads. The

overall difference between the obtained read count and expected true read count for each class

were measured by their Discrepancy = 225C25=¢xP)

exp

Gene expression analysis

Two methods of differential expression (DE) were used to analyze homoeologs expression, i.e.,
DESeg2 [40] and EBSeq [41]. DESeg2 takes a classical hypothesis testing approach to report
nominal p-values, whereas EBSeq accommodates the uncertainty inherent in isoforms (here,
homoeologs) using a Bayesian framework to return posterior probabilities for differential
expression. A false discovery rate o < 0.05 was required to determine significant DE changes,

which was applied to the adjusted p-values of DESeq2 [42] and the posterior probability (=1- «)

of EBSeq.

Because these in silico polyploid data were derived from combining diploid libraries, the null
hypothesisisthat DE between inferred homoeol ogs should match the DE observed between the
diploid libraries for those genes. We again treat this as a binary classification problem, marking
each gene as DE or non-DE and comparing the observed number of DE genesin the polyploid
libraries with the expected number derived from the diploid data. The same statistical measures
of performance (i.e., Precison, Recall, Accuracy, F;, and MCC) were calculated for each

pipeline, as described above. The receiver operating characteristic (ROC) curve and the area

12
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under the ROC curve (AUC) were calculated for each and visualized using the R package ROCR
[43]. AUC scores reflect the probability that a random classification is correct, ranging from 0.0

to 1.0 [44,45].

Gene expression correlation analysis

Differentia correlation (DC) analysisis commonly used to evaluate coordinated changesin gene
expression, either independent of, or in the context of, co-expression network analyses. Both DC
and network analyses require some form of variance-stabilizing transformation of the raw data.
Several methods of normalization exist [46,47], which have their own advantages and nuances.
Here two common methods were tested, i.e., RPKM followed by log, transformation and

regularized logarithm (rlog) transformation as implemented in DESeg?2.

Using the R package DGCA [48], Pearson correlation coefficients (r) and their corresponding
pvalues were calculated for each pair of genes across multiple samples, which were subsequently
classified as having a significant (p < 0.05) positive correlation (+), a significant negative
correlation (-), or not significantly different from zero (0). Fisher’s Z-test [49] was used to
identify significant correlation changes between the homoeol ogous and the diploid (expected) r

values.

Table 1. Nine classes of differential correlation (DC) changes.

Diploid Polyploid Description of DC pattern
correlation correlation

+ + Both positive but different in r-value
+ 0 Loss of positive correlation

13
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+ - Inversion from positive to negative correlation
0 + Gain of positive correlation
0 0 Neither significant but different in r-value
0 - Gain of negative correlation
+ Inversion from negative to positive correlation
0 Loss of negative correlation
Both negative but different in r-value

Given that each condition (i.e., diploid or polyploid) exhibits three possible correlation
conditions (+, -, or 0), there are nine possible categories to describe the pattern of DC (Table 1).
Among those, 0/0, +/+ and -/- indicate significant changes in r values while the inference of
correlation condition remains unchanged, and the other classes indicate that the read partitioned
AD dataset mis-identities the true condition of gene-to-gene correlations. We assessed

enrichment of each class for each pipeline using a one-sided Fisher's exact test (p < 0.05).

Finally, as previously described [15], we compiled alist of genes that are overrepresented with
the gene-to-gene paired DC relationships (see above) to identify differentially co-expressed
genes (DC genes). Briefly, the probability p of any pair of genes exhibiting a DC relationship is
defined as the percent of DC pairs detected among all possible gene pairs. For a gene observed in
k DC pairs among all possible pairsn, the probability of a“differential co-expression gene’

follows the binomial distribution model:
Ppe = (:) '
Py was corrected by the BH method [42] and a cutoff of 0.05 was used for identifying DC

genes.

14
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Co-expression network construction

Co-expression networks are a multidimensional representation of the expression relationships
among genes. Accordingly, construction of co-expression networks use similarity scores from
the pairwise gene expression profiles to generate an adjacency matrix which reflects connections
between genes (as nodes) in network [50]. Here, we used the Pearson correlation coefficients to
calculate the matrix of similarity scores. Derived from this correlation matrix, the adjacency
matrix was used as the basis for a series of binary and weighted gene co-expression networks.
which were generated for both the log,RPKM- and rlog-transformed read count tables from each

expression estimation pipeline.

For constructing binary networks, a hard threshold was applied to similarity scores to determine
whether a pair of genes should be connected in the network, resulting an adjacency matrix
containing only 0 and 1 values. Two types of hard thresholds were tested, specifically rank-based
and Fisher’'s Z-statistics [49] based thresholds. A set of rank-based cutoffs (5%, 1%, 0.5%, and
0.1%) were applied to these similarity scoresin order to select the top ranked connections as
possible edges. Following Fisher’s Z transformations to convert each Pearson correlation
coefficient to aZ-score, a set of cutoffs (i.e., 1.5, 2.0, 2.5, and 3.0) were used to retain
correlations with Z-score above the cutoff value as edges. The performance of network
construction was evaluated as a binary classification problem; that is, because we expected to see
the edges inferred from the expected expression (diploid) retained in the polyploid network, we
were able to create a confusion matrix from the presence or absence of edges compared to what

was expected. The edge classification was again evaluated with a ROC curve using the R
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package ROCR [43]. Due to the large gene number in the network (> 60,000 genes), a 10%

random sampling of genes was used for computation with 10 iterations.

While binary networks have their own utility, weighted co-expression networks are frequently
used for reasons enumerated elsewhere [51], including the ability to quantify network
connections. Weighted networks use soft thresholding to assign connection strengths to gene
pairs, thereby allowing the adjacency matrix to present network connections quantitatively.
Using the R package WGCNA [52,53], a set of soft thresholds (1, 12, 24) were applied for
automatic network construction with the bl ockwiseModul es function and the following
parameters. corType = "pearson”, networkType = "signed”, TOMType = "signed",
minModuleSize = 100. The performance of each polyploid network construction was evaluated
against the reference network generated using the diploid data. Preservation of the reference
network modules by AD dataset was calculated using the WGCNA function modul ePreservation
with 200 permutations. In general, modules with the derived preservation score Zgmmary > 10 are

interpreted as strong preservation.

Networ k topology measur es and functional connectivity assessment

Node connectivity and functional connectivity are two metrics that may provide insight into the
importance and/or function of a given gene in a network. Node connectivity (k) measures the
connectivity of any given node in the network, either by counting the number of connected edges
(for abinary network) or summing the connected edge weights (for a weighted network).
Functional connectivity (FC) uses the ‘ Guilt-by-Association’ principle to measure network

quality under the assumption that genes with similar functions should be connected in a well-
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constructed network. A neighbor voting algorithm from the R package EGAD [54] was used to
classify genesinto functional groups based on the functionality of their connected genes (i.e.,
their neighborhood). This package uses the the known functional labels of genes (e.g. GO and
KEGG annotations) and the voting algorithm as abinary classifier to return true or false
predictions for those functional labels; the performance of the neighbor voting functional
assignment can then be assessed by an ROC curve. The derived AUC characterizes the degree to
which an input network topology can predict the gene membership of afunctional category,
which intuitively corresponds to the assessment of functional connectivity. GO and KEGG terms
were extracted from the v2.1 annotation of Gossypium raimondii reference genome downloaded

from Phytozome (www.phytozome.net).

RESULTS

Subgenome diver gence and homoeolog read ambiguity: the problem

As mentioned in the introduction, the issue of ambiguous read mapping is prevalent in
polyploids and in plantsin general because of means other than polyploidy that generate
paralogs. Accurately partitioning polyploid reads is bioinformatically challenging (Figure 1A),
and the consequences of inaccurate partitioning are unknown. The proportion of ambiguous
reads is dependent both on subgenome divergence and the sequencing strategy, and the
subsequent treatment (i.e., removal or statistical assgnment) can affect the outcome of
downstream analyses. Here we evaluated the performance of five different pipelinesin assigning
reads to polyploid genomes and the effects of their treatment of ambiguous reads on downstream
analyses of duplicated gene expression (Figure 1B). Accordingly, we introduced the metric of

Ambiguity for each pair of homoeologous genes, which corresponds to the percentage of a gene
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region that cannot be distinguished between homoeologs (see Methods). Ideally, if the
homoeol ogous sequences were sufficiently divergent and the sequencing reads were long enough
to consistently contain homoeolog distinguishable variants (e.g. SNPs), all reads could be

assigned with zero Ambiguity; however, these conditions are rarely met by existing data.

In tetraploid Gossypium, where the average sequence divergence (in coding regions) between
homoeol ogs is approximately 1.5% [22], only 5% of homoeologous gene pairs can be
unambiguously mapped (Ambiguity = 0) by 50 bp RNA-seq reads, whereas over 90% can be
unambiguously mapped by 300 bp reads (Figure 2A). In the following analysis, we binned
homoeol ogous gene pairsinto five increasing levels of Ambiguity, i.e., (0), (0-0.05), (0.05-0.1),
(0.1-0.2), and (0.2-1.0). These bins were next used to relate the performance of read assignment

and other duplicated gene expression patterns to the level of read ambiguity (Figure 2).
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Figure 2. Homoeologous read ambiguity and consequences. A. Given the specific sequencing read length (i.e. 50,
100, 200 and 300 bp), the homoeologous gene pairs from Gossypium were binned by Ambiguity into five groups:
(0), (0-0.05), (0.05-0.1), (0.1-0.2), and (0.2-1.0), the first of which indicates complete read assignment via SNP
differentiation. The y-axis refersto the bin size of each gene group. These Ambiguity bins were used to relate the
performance of read assignment (B-E), differential expression (F), differential correlation (G), and the analysis of

node connectivity k (H). Error bars represent the standard deviation.
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Artificial allopolyploid datasets permit assessment of fidelity in homoeologous read
assignment

We generated in silico allotetraploid (AD) datasets for multiple sample conditions (tissues,
developmental timepoints, etc.; Supplementary Table S1) as a ground truth reference. For these,
we combined equal amounts of reads from two diploids, G. arboreum (A,) and G. raimondii
(Ds), which represent the model diploid progenitors for a clade of naturally occurring polyploids
in Gossypium. As these datasets are diploid-derived, the amount of A- and D-derived readsin the
AD datasets is known and the ability of each pipeline to accurately reconstruct this becomes

testable.

Because the five pipelines differ in how they treat ambiguous reads, either discarding them
(GSNAP-PolyCat and HyLI TE) or statistically partitioning them (RSEM, Salmon and Kallisto),
we first evaluated the Efficiency and Discrepancy of read assignment. Efficiency simply
measures the percentage of reads assigned, considering all the reads versus those partitioned into
each subgenome. As shown in Table 2, RSEM, Salmon, and Kallisto all achieved 100% read
assignment due to their underlying statistical inference of origin for ambiguous reads; however,
they tend to dlightly overestimate the number of At reads. Since GSNAP-PolyCat and HyLIi TE
discard ambiguous reads, their Efficiency negatively correlates with Ambiguity, as expected
(Figure 2B), with only 87.7% and 82.2% of total reads partitioned into subgenome (Table 2). In
contrast to RSEM, Salmon, and Kallisto, there appears to be a reference bias in both GSNAP-
PolyCat and HyLi TE that leads to more reads being characterized as D-derived; this biasis most
significant for HyLi TE (Table 2; At 78.5% vs. Dt 85.8%, Student’s T test p < 0.05). We aso

evaluated the Discrepancy for each pipeline, which measures the absolute difference between the
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obtained homoeolog read counts and the expected counts; this measure is affected by both the
assignment Efficiency and binary classification measures (see methods). Due to the 100%
Efficiency guaranteed by the algorithms of RSEM, Salmon and Kallisto, these pipelines exhibit
the lowest Discrepancy (5.1%; Table 2), while the highest Discrepancy was found in HyLITE
(18.1%), followed by 12.7% in GSNAP-PolyCat; in the latter two, the Discrepancy reflects both
assignment error and discarded reads. In general, Discrepancy from the actual read numbers

increases as the level of Ambiguity increases (Figure 2C), as expected.

While Efficiency and Discrepancy provide generic measures of read partitioning based on the
numbers expected, they do not account for whether each read is accurately assigned. Therefore,
the results of each pipeline were arrayed in a2x2 confusion matrix (i.e., true positive, false
negative, etc; [36]) and the performance of the pipeline was evaluated using the information
retrieval metrics of Precision, Recall, Accuracy, F1 score, and MCC. In the context of
information retrieval (asimplemented here), Precision measures how many of the reads assigned
to a given subgenome (A or D) were correctly identified, Recall measures how many of each
subgenome were retrieved from the mixed population (relative to expectations), and Accuracy
measures how well each pipeline correctly identifies one subgenome while excluding the other;
the measures F; and MCC account for more of the confusion matrix and attempt to generalize the
resultsinto a single score of performance (see methods for details). The resultsin Table 2 show
that that GSNAP-PolyCat generally performed better in all information retrieval metrics,
meaning that it recovered more relevant reads for each subgenome while excluding reads from
the other subgenome. The three generic, alignment-based approaches (i.e., RSEM, Salmon, and

Kallisto) showed comparable performance to each other, with only a slight reduction in all scores
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relative to GSNAP-PolyCat. Only HyLIiTE stands out as performing relatively poor compared to
the other pipelines; however, it is noteworthy that the other four pipelines all utilized the same
SNP information derived from rich genomic resequencing data[23], whereas HyLi TE conducted
on-the-fly SNP calling from the input parental diploid RNA-seq datasets. This most likely
explains the relatively poor performance of HyLITE, as tested here. Interestingly, as shown in
Figures 2D and 2E, GSNAP-PolyCat and HyLiTE both exhibit relatively consistent performance
across Ambiguity bins, indicating that their accuracy (as measured by Accuracy and MCC) is
largely static, irrespective of homoeolog divergence. RSEM, Salmon, and Kallisto, however,
perform nearly as well as GSNAP-PolyCat when the expected amount of homoeologous

ambiguity is low, but quickly descend when Ambiguity goes above 20% (Figures 2D and 2E).

Table 2. Overall and subgenome assessment of homoeolog expression estimation. The best performance for each
metric is marked in bold text.

GSNAP-PolyCat HyLIiTE RSEM Salmon Kallisto

Efficiency 87.7£1.5% 82.2+0.7% 100.0% 100.0% 100.0%

At 86.7+1.6% 78.5+1.0% 101.0+0.6% 101.6+0.5% 101.5+0.6%

Dt 88.6+1.6% 85.8+0.6% 99.1+0.6% 98.5+0.5% 98.6+0.6%
Discrepancy 12.7+1.5% 18.1+0.8% 5.1+0.6% 5.1+0.6% 5.1%+0.6%

At 13.4+1.6% 21.£1.06% 5.4+0.6% 5.2+0.6% 5.2+0.6%

Dt 12.1+1.5% 14.8+0.6% 4.8+0.6% 5.1+0.6% 5.0+£0.6%
Precision - - - - -

At 98.4+0.1% 92.4+0.3% 95.1+0.2% 94.3+0.2% 94.4+0.2%

Dt 97.7+0.5% 91.2+0.6% 97.0+£0.5% 96.5+0.4% 96.4+0.4%
Recall - - - - -

At 97.7+0.5% 90.6+0.6% 96.5+0.5% 96.4+0.4% 96.4+0.4%

Dt 98.1+0.1% 94.0+0.3% 96.2+0.2% 95.4+0.2% 95.4+0.2%
F1 score - - - - -

At 98.7+0.2% 92.2+0.4% 97.2+0.3% 96.8+0.2% 96.9+0.2%

Dt 98.7+0.2% 93.1+0.4% 97.2+0.3% 96.7+0.2% 96.7+0.2%
Accuracy* 98.2+0.2% 93.7+0.7% 96.3+0.3% 95.7+0.2% 95.8+0.2%
MCC* 96.8+0.5% 84.5+0.7% 95.5+0.5% 94.7+0.4% 94.8+0.4%

* Same values for At and Dt reads.
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The inference of homoeolog expression divergenceis affected by the choice of expression
estimating pipeline

Expression divergence of homoeol ogs, both relative to one another and to their progenitor
genomes, is amajor component of polyploid research. Allopolyploidy reunites formerly diverged
genes (and their regulatory context) into acommon nucleus while simultaneously generating
massive redundancy. Consequently, observed transcriptomic changes are myriad (reviewed in
[13]), and include homoeolog expression bias (reviewed by [12,13]) and functional divergence
[55-58]. Since our ability to accurately describe expression changes depends upon our ability to
accurately represent expression, we evaluated the extent to which each pipeline accurately
represented differential expression (DE) between homoeologs. That is, the homoeolog DE results
derived from each pipelineinferred AD dataset were compared to the expected DE results
between the diploid orthologs from which the AD dataset was derived. While many methods
exist for comparing DE among samples, we selected two of the most popular methods, namely
DESeg2 and EBSeq, to compare both stringency and accuracy in general and in the context of

the different pipelines.

Overal, DESeq2 detected an average of 18% more significant changes in expression than EBseq
(Supplementary Table S2; paired Student’s T test P < 0.05), suggesting that by default the latter
ismore stringent. Across the twelve sample conditions, homoeolog expression divergence was
detected from between 5% and 44% of the 37,223 homoeol ogous gene pairs, without significant
differences between the observed and expected results (Supplementary Table S2; paired

Student’s T test p = 0.26). As shown in Figure 3, arelatively high level of DE Accuracy (above
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80%) was consistently inferred. Regardless of which DE method was used, the expression
datasets generated by GSNAP-PolyCat outperformed those by other pipelines (Salmon/Kalisto >
HyLiTE/RSEM) in identifying the true expression divergence between homoeologs. While
DESeq?2 appeared to perform better than EBseq according to the measures of Precision, Recall,
F1 and MCC, the AUC scores suggested that EBseq is more robust than DESeg_2 to separate
binary classes (Figure 3), particularly for genes exhibiting high Ambiguity (Figure 2F). For both
methods, their AUCs were negatively correlated with Ambiguity, reflecting the strong

dependence of DE analysis on the extent of homoeolog sequence divergence (Figure 2F).

Precision Sensitivity Accuracy
" * “ﬁ“#ﬂ
L
0.7=
06- *®
05-
3
T || MCC || AUC
0.9~ ﬁ— -
0.8~ L]

* ) Fm TR
e My
0.6= h

@ * [ ]
0.5-
S S R A
\(\\' @6\0 \ﬂc;a q_‘%@‘*e@\«p eﬂ\'«@ {@\\e\ “c, @X*%?}@g @\?Sﬁ@ @%\Q‘Qd\*@ @é{; \@9
@* c,%“*?g e@é?

=5 DEseq [ EBseq

Figure 3. Performance evaluation of differential expression analysis between homoeol ogous genes.
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Figure 4. Inference changes in co-expression rel ationships between homoeol ogs. For each of the 10 combinations of
homoeolog expression estimation pipelines and data transformation methods (row), the number of differential
correlation (DC) changes between observed and expected datasets are shown for each DC category (column). Cell
color indicates the magnitude of significant over-representation based on -log;o(P-value) of Fisher's exact test (i.e.,
P = 0.05 is converted to 1.3). For example, the number in category P0/+ of the bottom row indicates that 1028
homoeolog pairs showed DC changes from no significant correlation (0) to significantly positive correlation (+) due

to the estimation error from the Salmon pipeline followed by 0g,RPKM transformation.

Co-expression relationships between homoeol ogs were measured using Pearson’s correlation

coefficient across multiple sample conditions. Approximately 1-5% of homoeolog pairs (418-
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1,834 out of 37,223 pairs) exhibited significant changes due to incorrect read assignment. As
shown in Figure 4, GSNAP_PolyCat and HyLIi TE introduced the smallest numbers of

differential co-expression (DC) changes, thereby outperforming RSEM, Salmon, and Kallisto.
Artifactually-induced DC was most prominent in those homoeol ogous gene pairs exhibiting
higher Ambiguity (Figure 2G), with the highest bin (i.e., 0.2-1) exhibiting anearly 4-fold
increase in DC than other bins for RSEM, Salmon, and Kallisto. Among the nine categories of
DC changes (Figure 4, columns), the class of 0/+ was most significantly enriched for each
pipeline except for GSNAP-PolyCat, where it was the second most enriched category after +/0.
This suggests that the mgjority of DC changes due to read partitioning errors lead to gainsin
correlation, generally changing our inferences from no significant correlations (0) to significantly
positive correlations (+). These observations suggest read partitioning methods could lead to an
over-estimation of co-regulation between homoeol ogous genes due to incorrect homoeolog
expression estimation, consequently restricting our ability to infer expression divergence and/or
possible functional divergence of duplicated genes. Notably, these patterns were consistent for
both the rlog and log,RPKM data transformation methods. In addition to DC between

homoeol ogous gene pairs, we also conducted identification and classification of DC patterns for
all possible gene pairs (Supplementary Table S3), resulting in 0.3%-1.1% global pairwise DC
changes, which affected 9.3-15.2% of total genes (i.e., DC genes enriched with DC pairs) in their

co-expression relationships.
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Robust construction of gene co-expression networ ks by the rank-based binary method and
WGCNA

Gene co-expression networks are commonly used to summarize the multidimensionality of gene
expression data into clusters of genes with putatively related functions (i.e., modules). In the
context of polyploidy, co-expression networks can be used to assess functional relatedness
among genes and homoeol ogs, reveal changesin homoeolog usage, and characterize the genetic
interplay between subgenomes [6]. We use both weighted and unweighted networks to assess the

influence of variation in read partitioning on our inferences of coexpression.

Constructing un-weighted co-expression networks requires a binary classifier (or hard threshold)
to decide whether there exists a connection (i.e., an edge) between each pair of genes. As shown
in Figure 5A, different rank-based thresholds (5%, 1%, 0.5% or 0.1% of top ranked correlations
become edges) yielded robust classification of the expected edges (based on diploid expression)
with AUC scores closeto 1. In contrast, the performance of Z-stati stics-based thresholds (i.e.,
significant correlations with Z-score above 1.5, 2.0, 2.5, or 3.0 become edges) were more
variable (AUC of 0.8~1) depending on the stringency of the Z thresholds. These results indicated
that the rank-based method is more robust here than Z-datistics to infer binary gene co-

expression network.

In addition to the network construction methods (ANOVA formula: AUC ~ construction +
pipeline + transformation; construction P < 2e-16), the choice of read estimation pipeline also
matters (P = 3.91e-09) with performance of RSEM significantly falling behind others (Tukey’s

HSD test p < 0.05); no significant difference was found between the rlog and log,RPKM
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transformation (ANOVA = 0.624). Interestingly, while not unexpected, edge inference within
the D-genome subnetwork is significantly more robust than edges within the A-genome
subnetwork or those across subnetworks (Figure 5B; ANOVA and Tukey’sHSD test < 0.05).
This observation likely reflects quality differences in the mapping reference, i.e., the high quality

D-genome reference and the inferred A-genome sequences (see methods).
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Figure 5. Performance of binary co-expression network construction. A. Boxplot of AUC scores were shown using

different homoeol og estimation pipelines (color) and binary thresholds (x-axis). B. Taking the Z-score threshold of
3, for example, AUC scores were compared among subnetworks: Overall - all edges considered; At - edges within
the A-genome subnetwork; Dt - edges within the D-genome subnetwork; At-Dt - edges connecting genes across A-

and D- subnetworks.

In weighted gene co-expression analysis (WGCNA) networks, the quantitative strength of
network connections is considered to maximize information captured in the network. The

topological preservation tests of expected modules (based on diploid expression) exhibited high
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preservation (Zsummary > 10) for almost all modules (Supplementary Figure S1A), regardless of
soft threshold (i.e., 1, 12, or 24; see methods), homoeolog read estimation pipeline, and method
of normalization. This result suggests that WGCNA-based inference of gene modular structure is

rather robust.

In addition to the separate topological evaluation above (binary networks by edge inference AUC
and WGCNA networks by module preservation), node connectivity (k) and network functional
connectivity (FC) were calculated for each binary and weighted co-expression network
constructed. Each AD network constructed was evaluated against the expected (diploid-based)
network. Pearson’s correlation coefficients between the expected and observed networks suggest
that both k and FC were rather consistent across different homoeolog expression estimation
pipelines (ANOVA formula: correlation ~ construction + pipeline + transformation; construction
p > 0.05), whereas the method of network construction could strongly influence topology (p <
2e-16; Supplementary Figure S1B-D). Notably, normalization method affected k (p < 2e-16;
log2RPKM outperforms rlog) but not FC (p = 0.08). As shown in Supplementary Figure S1B-D,
both rank-based binary construction and weighted gene network construction methods equally
outperformed all but the least strict Z-statistics methods. The accurate inference of k (measured
by correlation between observed and expected data; Figure 2H) is negatively correlated with
Ambiguity, albeit weakly. Thisdiminished relationship is expected as the network property of
each geneisintrinsically determined by all the other genes, thereby obscuring the impact of

ambiguity per gene.
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In addition, the measure of FC can be used to statistically evaluate the functional significance of
network topology [54]. According to the “ Guilt-by-Association” principle [59], genes with
similar functional properties tend to interact or be clustered together in biological networks.
Thus, higher FC indicates more reasonable network topology. As shown in Supplementary
Figure S2, the highest FC scores were observed for WGCNA networks (AUROC = 0.63-0.66),
followed by the ranked-based binary networks (0.54-0.63) and the Z-stati stics-based binary
networks (0.50-0.54), respectively. This may suggest that the WGCNA network construction

was able to capture more function and/or biologically-relevant information.

Overal, the performance of co-expression network analysis was more affected by network
construction methods than by read ambiguity and partitioning methods. In general, either
log,RPKM or rlog combined with WGCNA produced the best results for these data, regardless

of read assignment method.

Bioinfor matic choices can strongly affect the inter pretation of duplicated gene networ k
topology

In the context of polyploid gene network, it is of particular interest to compare subnetwork
properties within each subgenome and between subgenomes. Taking the GSNAP-PolyCat
dataset followed by log,RPKM normalization as an example, both rank-based and WGCNA
networks (Figure 6A and 6C, respectively) revealed the highest density (mean connections) of
the A-subnetwork, followed by that of the D-subnetwork and then of the inter-connections
between A and D subgenomes. In contrast, similar levels of A- and D- subnetwork density were

revealed in the Z-statistics-based networks (Figure 6B). These results led to opposite conclusions
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regarding the potential topological asymmetry between two subgenomes. According to the
performance assessment above, we believe that the conclusion derived from WGCNA and rank-
based binary networks is more reliable; that is, the At genes are more interconnected than are the
Dt genes, reflecting the difference in gene regulation between the two subgenomes (i.e. the A,
and Ds diploids used generate synthetic AD). In addition, all networks agreed on the much lower
density of inter-subgenome connections than that of within-subgenome connections, indicating
that a geneis much more likely to be connected with genes from the same subgenome than with
genes from the other subgenome. For other combinations of homoeolog expression estimation,
transformation and network construction methods, the measures of subnetwork density are

shown in Supplementary Table $4.
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Figure 6. Different inferences of subnetwork topology. The network density of A-subnetwork, D-subnetwork, and
interconnections between A- and D- subnetworks were shown for both the expected and observed data from the
GSNAP-PolyCat estimation with log,RPKM normalization. A - rank-based binary network with top 1%

connections; B - Z-datistics binary network with connections above Z-score of 2; C - WGCNA network with power

of 12.
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DISCUSSION

The duplicated nature of polyploid genomes poses unique challenges for bioinformatics.
Presently, we are witnessing an explosion of interest in better understanding these challenges and
devel oping appropriate methodol ogies and tools for polyploids, for applications as diverse as
genome sequence assembly [60], genotyping [61,62], haplotype phasing [63,64], population-
based trait analysis [65], phylogenetic inference [66,67], and transcriptomic-based analyses
[68,69] such as de novo transcriptome assembly [ 70] and transcript quantification [71].
Quantification of homoeolog expression is particularly interesting, given the various patterns of
duplicate gene expression possible in polyploid species (reviewed in [12]), the interactions
among homoeol ogs in a gene network context [6,14], and the phenomenon of unbalanced
homoeol og expression bias together with its potential long-term consequences for fractionation
[72—74]. A number of previous studies have explored the bioinformatics of homoeol og
expression profiling [68—71]; however, both the fundamental issue of read ambiguity and the
downstream inferences regarding polyploid expression evolution have not been addressed. Here
we present a comprehensve analytic workflow to demonstrate the challenges and pitfalls of
these analyses (Figure 1), as well as how they are influenced by the extent of read ambiguity in
the dataset and how that ambiguity is handled in understanding homoeolog expression and co-

expression patterns (Figure 2).
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Figure 7. A decision-making diagram to choose appropriate bioinformatic resources for estimating homoeolog
expression levels. When a reference genome or transcriptome is available for the polyploid species, quantification of
individual homoeologsis either straight-forward using the traditional aligners such as Tophat, or applying
probabilistic estimation methods and pseudo-aligners to consider the problem of read ambiguity. When the reference
isonly available for one or more diploid progenitors, software has been developed for partitioning and/or
quantifying homoeol og-specific reads. maroon colored software, such as RSEM and EAGLE-RC, statistically assign
the subgenome origin for ambiguously mapped reads; blue colored software such as PolyCat utilize only

unambiguously mapped reads for estimation. The polyploid systems for which they were originally developed are

noted in parentheses.

Duplication and deficiency: when redundancy render s reads unresolved

In addition to the redundant nature of polyploid genomes, there are a number of biological and

technical causes for ambiguous read mapping, including transcripts that are expressed at low
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levels, sequence homology, small-scale gene duplications, and errors in sequencing and
annotation. While we can control some of these factors through experimental design (i.e., read
length, paired-end sequencing, etc), the nature of the biological system and the
amount/distribution of subgenome divergence, as measured by Ambiguity, will influence the
ability to accurately assign reads to homoeologs. Although our analysisis limited to the example
data from Gossypium, the metric of Ambiguity can be applied to any other real-world or
simulated polyploid systems. For systems that have less divergent subgenomes than Gossypium,
the Ambiguity values are expected to be higher, and longer read lengths will be required to
improve the ability to accurately assign reads. Knowing the range of Ambiguity for any specific
polyploid system or for alist of genes of interest, we can foresee the use of Figure 2 to query
how such arange) affects the performance of bioinformatic inferences regarding homoeolog read

estimation (B-E) and polyploid expression evolution (F-H).

Among tools that have been devised to estimate homoeolog expression levels under different
conditions (e.g. the availability and type of the reference genome; Figure 7), numerous methods
exist for handling the subset of reads that are not uniquely assignable, typically either discarding
these reads (asin GSNAP-PolyCat and HyLi TE) or statistically assigning the reads (e.g., RSEM,
Kallisto, and Salmon). Among the five pipelines evaluated in this study, most performed
relatively well, achieving >90% success for information retrieval metrics. Notably, GSNAP-
PolyCat exhibited the best scores for most metrics, aside from those affected by read removal
(i.e., Efficiency and Discrepancy). Whileit is tempting to attribute the improved performance of
this pipeline to the underlying resequencing-based SNP data, which was not used by HyLITE,

the remaining pipdines (i.e.,, RSEM, Salmon, and Kallisto) were all provided a reference
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transcriptome derived from the homoeoSNP index used in GSNAP-PolyCat. When Ambiguity
was low, all pipelines performed similarly well; however, those that statistically assign
ambiguous reads (RSEM, Salmon, Kallisto) perform significantly worse for those genes with
Ambiguity above 20%. This may be due to the noise in the underlying statistics asthe relative
number of unique reads drops compared to those that will be statistically assigned; that is, any
error in gtatistical inference will be amplified as the number of ambiguous reads begins to
outweigh the number of unique reads. Thisis an important observation for polyploid systems
whose subgenomes are more recently diverged. That is, methods which statistically assign
ambiguous reads should be used with caution when the divergence between parental genomesis
low. For those genomes, GSNAP-PolyCat and HyLi TE will provide amorereliable
representation of relative homoeolog read counts, with GSNAP-PolyCat outperforming HyLi TE

when a priori homoeoSNP information is available.

In a previous study, [71] showed that EAGLE-RC, alikelihood model-based method,
outperforms other homoeol og expression quantification methodsincluding STAR, LAST,
Kallisto, and HomoeoRoq to precisely estimate homoeolog expression in both tetraploid
Arabidops s kamchatica and hexaploid wheat. The category of the subgenome-classification
approaches (Figure 7, bottom right), including EAGLE-RC, HomeoRoq [75], and PolyDog [22],
requires read mapping against each subgenome separately in order to determine the better
supported homoeolog origin for reads. These approaches were not included in our study, because
the reference quality and annotation methods differ between the A- and D- diploid progenitor
genomes, which introduces additional dimensions of complexity for homoeolog quantification.

For example, GSNAP-PolyCat and HyLi TE appeared to partition more reads than expected to
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the higher quality D-genome reference, whereas the other three pipelines statistically
characterized more reads as A-derived; the cause (likely differencesin algorithm) of this
discrepancy is unknown, but it has consequences even at the co-expression network level (more
robust inference of D- vs. A- subnetwork topology). These caveats notwithstanding, we envision
that this category of approaches will be useful for hybrid and polyploid systems where quality
differences among progenitor reference genomes are negligible and where similar annotation

methods are used for each.

Consequences of inaccur ate quantification for inferences of polyploid evolution

Beyond the narrow issue of evaluation of homoeolog quantification, our interest liesin
identifying a reasonable set of methods to address biological and evolutionary questions
concerning polyploidy. Differential expression (DE) is commonly among the first transcriptomic
analyses performed, providing a generalized look at the extent of expression divergence. For
polyploid species, the relative expression of each subgenome is of particular interest, which may
provide insights into homoeolog bias, expression level dominance, cis-trans resolution, putative
sub-/neo-functionalization of homoeologs, and other phenomena[14]. In general, GSNAP-
PolyCat best represented the expected DE between homoeol ogs, followed closely by Kallisto
and Salmon (Figure 3). The standout, RSEM, performed significantly more poorly than the rest
despite its intended application to isoform quantification; we therefore advise caution when using
RSEM for duplicate gene analyses. With respect to DE inference, both DESeg2 and EBseq
resulted in reasonable performance metrics, with the choice likely being the stringency level and

parameters preferred.
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In contrast to the general robustness of the DE results, homoeol og read ambiguity and the choice
of quantification pipelines strongly influence our interpretation of co-expression relationships
among genes. In particular, we are interested in detecting coordination among homoeol ogous
genesin polyploids. The most significant error evident is the false detection of positive
correlations where none exist. Notably, those methods that discard reads (i.e., GSNAP-PolyCat
and HyLITE) far outperformed the other methods, particularly for those genes with higher
Ambiguity. These results were consistent for the two normalization methodstried, i.e., rlog and
log2RPKM, and may indicate a general preference for discarding ambiguous reads when the

biologica question depends on an accurate assessment of differential co-expression.

The inference of co-expression network topology, on the other hand, was generally less sensitive
to the quantification method, but rather was dependent on method of network construction. This
is probably because the multivariate nature of co-expression relationships mitigates the influence
of individual and random quantification errors. In order to compare network topologies between
subgenomes, choosing the appropriate network construction method becomes critical, otherwise
incorrect and even opposite conclusions may be reached (Figure 6). For example, both rank-
based binary and WGCNA reconstructions of the present datasets suggest that the A-subnetwork
ismore tightly interconnected than the D-subnetwork, whereas the less reliable Z-statistic based

binary networks suggest they are equally interconnected.

Conclusions

In this study, we present an analytical workflow from homoeol og expression quantification to a

series of downstream analysis to infer key phenomena of polyploid expression evolution. By
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examining the extent and consequences of read ambiguity, we demonstrated the potential
artifacts that may affect our understanding of duplicate gene expression, such as an over-
estimation of homoeolog co-regulation and the incorrect inference of subgenome asymmetry in
network topology. Such errors may be reduced by mitigating technical factors that influence
ambiguity, i.e. sequencing strategy and fundamental resources (i.e., genomes and/or
resequencing). Although the collection of methods tested in this study may be superseded by
those yet to be developed, our work introduces the metric of Ambiguity and designates a set of

reasonable practices applicable to other polyploid systems.

KEY POINTS

e We present an analytical workflow to evaluate a variety of bioinformatic method choices
at different stages of polyploid RNA-seq analysis, from homoeolog expression
guantification to downstream analysis used to infer key phenomena of polyploid
expression evolution.

e We used transcriptomic data from the cotton genus (Gossypium) as an example to
examine the extent and consequences of homoeol og read ambiguity.

e Our results show that GSNAP-PolyCat outperforms other quantification pipelines tested,
and its derived expression dataset best represents the expected results in downstream
analyses of differential expression and co-expression network analysis.

e Weilluminate the potential artifacts that may affect our understanding of duplicate gene
expression, including an over-estimation of homoeolog co-regulation and the incorrect

inference of subgenome asymmetry in network topology.
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e Overall, our work pointsto a set of reasonable practices that are broadly applicable to the

evolutionary exploration of polyploids.
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