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ABSTRACT

Microtubules (MTs) are dynamic polymers with critical roles in processes ranging from membrane
transport to chromosome separation. Central to MT function is dynamic instability (Dl), a behavior
typically assumed to consist of growth and shortening, with sharp transitions in between. However, this
two-state assumption disregards details in MT behavior that are evident in high-resolution data. For
example, MTs exhibit growth rate variability, and pinpointing where transitions begin can be difficult
when viewed at high spatiotemporal resolution. These observations suggest that MT behavior is more
complicated than implied by standard quantification methods. To address these problems, we
developed STADIA (Statistical Tool for Automated Dynamic Instability Analysis). STADIA’s methods are
rooted in machine learning to objectively analyze and quantify macro-level DI behaviors exhibited by
MTs. Applying STADIA to MT length-history data revealed a transient, intermediate phase that we term
‘stutter’, during which the rate of MT length change is smaller in magnitude than growth or shortening
phases. Significantly, most catastrophe events in both simulations and experiments are preceded by
stutters, suggesting that this newly recognized phase is mechanistically involved in catastrophes.
Consistent with this idea, a MT anti-catastrophe factor (CLASP2y) increases the likelihood of growth
following a stutter phase in experiments. We conclude that STADIA enables unbiased identification of DI
phases including stutters, producing more complete and accurate DI measurements than possible with
classical analysis methods. Identifying stutters as a distinct and quantifiable phase provides a new target
for mechanistic studies regarding DI phase transitions and their regulation by MT binding proteins.
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SIGNIFICANCE STATEMENT

Microtubules are cytoskeletal fibers that undergo dynamic instability, a remarkable process involving

phases of growth and shortening separated by approximately random transitions (catastrophe and
rescue). Dissecting the mechanism of dynamic instability requires first characterizing and quantifying
these dynamics. We present a novel machine-learning based tool (STADIA), which shows that
microtubule behavior consists not only of growth and shortening, but also a transient intermediate
phase we term "stutter." Quantifying stutter and other dynamic behaviors with STADIA shows that most
catastrophes in simulations and experiments are preceded by stutters, and that the anti-catastrophe
factor CLASP2y works by increasing the fraction of stutters that revert to growth. STADIA provides new
opportunities for analyzing mechanisms of microtubule dynamics and regulation by binding proteins.
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INTRODUCTION

Microtubules (MTs) are protein-based biological polymers that have a central role in fundamental

eukaryotic processes including cellular organization, chromosome separation during cell division, and
intracellular transport (Goodson and Jonasson 2018). Crucial to the function of MTs in these processes is
a well-known behavior termed dynamic instability (DI), where the polymers switch stochastically
between periods of growth and shortening (Mitchison and Kirschner 1984; Desai and Mitchison 1997).
Accurate quantification of DI provides a needed foundation for understanding the significance of this
behavior in vivo and for investigating the activities of MT regulating proteins in vitro.

Problems with current methods of quantifying DI metrics

Traditionally, MTs have been treated as two-state polymers; that is, MTs have been considered to be
either growing or shortening, with abrupt, instantaneous transitions called catastrophes and rescues
between these two phases (Figure 1 A,B,D). In this framework, MT behavior is characterized by four
guantities called DI parameters: F (frequency of catastrophe, measured as the number of catastrophes
per time in growth), F.es (frequency of rescue, measured as the number of rescues per time in
shortening), Vgrouwth (velocity of growth, measured as the mean of the growth rates over the set of
growth phases), and Vot (velocity of shortening, measured as the mean of the shrinkage rates over the
set of depolymerization phases) (Walker et al. 1988). While determination of DI parameters is now the
standard way to quantify MT behavior, there are several issues with using this approach.

First, it has long been recognized that both growth and shortening rates are variable throughout a given
phase segment and between different segments; this variability occurs both with and without MT
binding proteins (MTBPs) (see e.g., (Pedigo and Williams 2002; Elizabeth J. Lawrence et al. 2018;
Gildersleeve et al. 1992)). This observation raises the concern that averaging across an entire growth or
depolymerization phase could cause finer but functionally significant aspects of MT behavior to be
missed and potentially result in problems with precision and reproducibility.

Second, recent improvements in imaging technology have enabled acquisition of MT growth data with
both high temporal and spatial resolution. These data have verified the intrinsic variability of MT
behavior, and they have also demonstrated that there can be significant time periods (e.g., a few
seconds in duration) during which MTs do not change appreciably in length (Figure 1 C,E; see also
(Maurer et al. 2014; Duellberg, Cade, and Surrey 2016; Rickman et al. 2017; Duellberg et al. 2016)).
These relatively flat sections of length-history plots cannot be unambiguously categorized as either
growth or shortening, and thus the limitations of the two-state behavior assumption become apparent.
Because including these slow-down periods in either growth or depolymerization phases would reduce
measured values of Vgowth and Vgnort, they have sometimes been excluded from quantification of DI
parameters (e.g., (Rickman et al. 2017)). However, entirely excluding these behaviors from analysis
could potentially result in the loss of information critical for understanding the mechanisms of the phase
transitions or their regulation by MT binding proteins. Thus, capturing and quantifying these alternative
behaviors is a key step towards explaining the recognized variations in growth and shortening rates,
improving the precision of these metrics, and elucidating mechanisms of dynamic instability.


https://doi.org/10.1101/2019.12.16.878603
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.16.878603; this version posted December 17, 2019. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

The advent of high-resolution data acquisition has revealed an additional problem with standard DI
analysis: it can be difficult to determine with reasonable precision where transitions between phases
begin and end (Figure 1 C,E). This observation leaves researchers to make subjective judgments or to
use ‘in-house’ software with non-adaptive criteria to identify the points where phase transitions occur
(e.g., (Yenjerla, Lopus, and Wilson 2010; Goodson and Jonasson 2018; Zanic 2016)). To illustrate this
problem, consider the zoomed-out length-history plots that are typically used for DI analysis (Figure 1
B,D). Examination of these plots can make the task of determining when transitions occur look trivial.
However, the zoomed-in views made possible by high-resolution data acquisition demonstrate that any
software or method using the aforementioned two-state behavior framework will have difficulty
categorizing ambiguous behavior that often occurs between growth and shortening phases (Figure 1
C,E).

Taken together, these issues indicate that there is significant need for an improved method of
characterizing MT length-history data that removes the two-state behavior assumption and allows for
unbiased, objective quantification of MT behavior and DI metrics.

Summary of results

Using established machine learning and statistical methods, we developed the Statistical Tool for
Automated Dynamic Instability Analysis (STADIA), an automated and unbiased tool for characterizing
and quantifying MT behavior. Applying STADIA to in silico and in vitro MT length-history data revealed
the existence of ‘stutter,” a previously uncharacterized, transient DI phase where MTs exhibit rapid low-
amplitude fluctuations but with an overall rate of change in MT length that is markedly less in
magnitude compared to growth and shortening phases. Significantly, we observed that most
catastrophes, 78% in silico and 86% in vitro, are preceded by stutters, and that the MT stabilizing protein
CLASP2y reduces catastrophe by increasing the fraction of stutters that return to growth rather than
enter shortening phases. These results indicate that classical methods of analyzing MT behavior miss
mechanistically significant aspects of MT behavior and that our novel DI analysis tool, STADIA, is able to
recognize and quantify these behaviors. We conclude that identification of stutters as a phase distinct
from growth and shortening warrants their future inclusion in DI analyses, and serves as a necessary
step forward in gaining a better understanding of MTs, their dynamics, and their regulation by MT
binding proteins.

RESULTS & DISCUSSION

We first present a brief overview of STADIA and its analysis procedure (readers are encouraged to refer

to the Methods for more detailed information). We then use STADIA to analyze MT dynamics as they are
observed in simulations (in silico) and in experiments (in vitro); this work leads us to identify the
existence of a transient, intermediate phase that we term ‘stutter’. We use this observation as a
foundation on which to study the relationship between stutter and the phase transitions, showing that
stutter is strongly associated with catastrophe. We further test the functional significance of this
observation and demonstrate the utility of STADIA in studying MT-binding proteins by using STADIA to
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analyze the dynamics of MTs growing in the presence of the anti-catastrophe factor CLASP2y, thus
examining for the first time its effect on stutter.

STADIA: A Novel Tool for Analyzing Dynamic Instability Behavior of MTs

To meet the goal of more precisely identifying, categorizing, and quantifying the range of MT behaviors,
we created the Statistical Tool for Automated Dynamic Instability Analysis (STADIA). Specific aims for the
development of STADIA were that it be: 1) Automated to create a consistent and reproducible method
with minimal user input; 2) Unbiased to remove any assumptions about MT dynamics being restricted to
two states (i.e., being limited to growth and shortening); 3) Adaptive to handle varying time durations
and the stochastic nature of phase changes; 4) Compatible with classical DI analysis, enabling
comparison to and continuity with previous work; 5) Capable of analyzing data sourced from both
computational simulations and laboratory experiments.

The resulting software, STADIA, is a data-driven tool that uses machine learning to characterize and
quantify MT behavior. The process, implemented in MATLAB, has three major stages (SuppMat Figure
S1):

1) Segmentation: STADIA creates a continuous piecewise linear approximation of MT length-
history data, where segment endpoints mark moments of significant change, i.e., transitions
between periods of sustained behavior (Figure 2).

2) Classification: STADIA then classifies the individual segments from the linear approximation
using an unsupervised clustering method, k-means, and bundles clusters with similar
characteristics into phases (Figure 3, SuppMat Figures $2,53,54,S5).

3) Phase and Transition Analysis: STADIA then applies the segment classifications to length-

history plots and characterizes each phase and transition quantitatively (Figure 3 G,H, Table
1, SuppMat Figure S9).

STADIA can be run in automated mode (outlined above; used for performing full DI analysis) or
diagnostic mode (useful for performing preliminary analyses and tuning analysis parameters, mentioned
below). More information about the process by which STADIA analyzes and quantifies dynamic
instability is provided in the Methods and Supplementary Information.

In initial testing, we used STADIA to analyze data from our detailed kinetic Monte Carlo model of MT
dynamics (model described in Methods section) under settings where we forced STADIA to assume that
MT dynamics consist only of growth and shortening phases. As expected, under these constrained
conditions, the DI parameters measured by STADIA were consistent with those measured through
traditional DI analysis; similar results were obtained when STADIA was used to analyze data from in vitro
dynamic instability experiments under the same constraints (Table 1). These observations provided a
solid foundation on which to proceed with using STADIA to analyze DI without preconceptions about
how many distinguishable phases exist in MT length-history data.
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Gap statistic analysis provides evidence for multiple types of growth and depolymerization behavior
in both simulation and experimental data

As mentioned above and described more in the Methods and Supplementary Information, STADIA
clusters individual MT length-history segments into groups (which may or may not correspond to
recognizable DI phases). Clustering is performed using an unsupervised clustering method, which means
that the method does not presuppose that the clusters correspond to any particular DI phase; after the
segments are assigned to clusters, the DI phase to which each cluster belongs will be determined based
on cluster metrics. The particular method we use is called k-means clustering, and requires that the
desired number of clusters, k, is provided in advance (see the Methods for more information regarding
k-means clustering and its use in this analysis). Though various approaches exist for determining the k-
value with which to perform the clustering (reviewed by (Steinley 2006; Pham, Dimov, and Nguyen
2005)), STADIA uses a measurement called the gap statistic (Tibshirani, Walther, and Hastie 2001).
Briefly, with STADIA running in diagnostic mode, the value of the gap statistic at each integer k is
evaluated for a dataset and compared to results at other k values to indicate how well a dataset can be
described by k-many clusters. Generally, the value of k at which the gap statistic plot attains its first local
maximum is considered to be the optimal number of clusters, though decisions about what k-value is
most appropriate should consider other aspects of the data as well (Tibshirani, Walther, and Hastie
2001). The scientist using STADIA is meant to take the suggestions from the diagnostic mode and supply
appropriate k-values to obtain final clustering results from the automated mode.

Initial Observations

Using the two datasets (in silico and in vitro) already analyzed in Table 1, we performed analysis using
the gap statistic to determine which of the following two possibilities is better supported: (1) that MT
dynamics adhere to two-state behavior, consisting of only growth and shortening, with instantaneous
transitions between these two states; or (2) that MT behavior is more complex, consisting of additional
behaviors and transitions. Applying the gap statistic calculation to the entire dataset (either in silico or in
vitro), such that all types of segments (positive and negative slopes) were considered together, did not
identify an optimal number of clusters (SuppMat Figure S6). We moved forward by treating positive and
negative slope segments separately to determine if each consists of either one or multiple clusters.

Separate analysis of growing and shortening segments

We calculated the gap statistic separately for the positive and negative slope segments, after removing
the set of segments with approximately zero-slope (since flat segments obviously do not belong to
either growth or shortening phases and should thus be treated separately). Performing analysis with the
gap statistic in this manner on the in silico data suggested k=3 to be the optimal number of clusters for
both the positive and negative sloped segment groups (Figure 3 A,D & SuppMat Figures $4,5S5). These
observations indicate that the in silico dataset contained multiple clusters of growth and shortening
behaviors. In total, when including the near zero-slope segments, 7 distinct clusters were identified in
simulation data (SuppMat Figure S7).

Consistent with the in silico results, the analysis of the in vitro experimental data suggested k=3 for
positive slopes (Figure 3 B and SuppMat Figure S4). However, differences were found between the in
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silico and in vitro data in analysis of the negative slopes: the optimal number of clusters was identified to
be two (k=2) in both experimental datasets (Figure 3 E and SuppMat Figure S5), in contrast to the three
clusters identified in the simulation data. This observation can be explained by the fact that for technical
reasons, the in vitro dataset contains the beginning of shortening phases, but not the full loss of MTs to
near-zero length, which was available with the simulation data. Consistent with this explanation,
inspection of the clustering results for the negative slope segments in Figure 3 shows that segments
belonging to Negative Slope Cluster 3 (the cluster with the longest time durations) in the in silico data in
Figure 3 D were not captured for the in vitro data in Figure 3 E. Therefore, we can only conclude that
there are at least two clusters with negative slopes for the in vitro data. For illustration purposes, a
“ghost” region is added to Figure 3 E where we expect the missing third negative slope cluster to reside.
Thus, including the flat slope segments, we find evidence for at least 6 distinct clusters in the
experimental DI data: three clusters of growth, two clusters of shortening, plus the small number of flat
slope segments used to separate the positive and negative slope segments (SuppMat Figure S7). An
additional cluster of shortening segments might be identified if full depolymerization events were

captured in experiments.

In summary, application of gap statistic analysis to DI data from either simulations or experiments leads
to a similar conclusion: the data argue against the idea that MT DI can be characterized as a two-state
process consisting only of growth and shortening with instantaneous transitions. More specifically, the
results provide evidence for considering multiple types of growth behavior (3 clusters) and multiple
types of shortening behavior (3 clusters, or 2 clusters for the truncated experimental data). In the next
section, we examine the differences between these clusters of length-history segments to determine
how the segments in these clusters differ from each other and how these clusters might correspond to
recognizably different phases of DI behavior.

STADIA can identify growth and shortening phases consistent with those identified by classical DI
analysis

After using STADIA in diagnostic mode to perform gap statistic analysis and thus gain information about
the optimal number of clusters to use in the k-means clustering process, we used STADIA in the
automated mode to perform a full analysis of MT behavior. In the automated mode, STADIA first
determines the centroid of each cluster of length-history segments. It then categorizes each segment
identified from the segmentation stage as belonging to one cluster or another (see SuppMat Figure S1
for an outline of the full analysis process; see the Methods section for more details). To study the
relationships between these clusters of length-history segments and recognizable phases of DI, we

examined the average characteristics of the segments in each group.

This analysis showed that, for both the in silico and in vitro data, some of the clusters correspond to the
well-recognized growth and shortening phases of DI. More specifically, two of the positive segment
clusters (positive slope clusters 1 and 2 from Figure 3 A and B) have slopes (rates of length change)
similar to growth rates reported in classical DI analysis (compare STADIA results in Figure 3 C and Table
1 to classical analysis results in Table 1). Similarly, negative slope cluster 2 (in silico and in vitro, Figure 3
D and E) and negative slope cluster 3 (in silico, Figure 3 D) have slopes similar to shortening rates
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reported in classical DI analysis (compare Figure 3 F and Table 1). Based on this information, in the
classification stage of STADIA, length-history segments were assigned to the growth phase if they
belonged to one of the clusters with a steep positive slope (Positive Slope Cluster 1 or 2 in Figure 3 C,1),
and to the shortening phase if they belonged to a cluster with a steep negative slope (Negative Slope
Cluster 2 or 3 in Figure 3 F,l).

The identification of two clusters within the bundled growth phase (and for the in silico data, within the
bundled shortening phase) is unexpected. It is notable that in each case (both positive and negative
slopes), the clusters differ primarily by duration (brief or sustained, Figure 31 and SuppMat Figure S8).
This observation may be evidence of different behaviors of tapered or split tips (e.g., as observed by
(Coombes et al. 2013; Doodhi et al. 2016; Aher et al. 2018)) relative to the rest of the MT; such
structures might be able to extend or retract faster than the bulk MT lattice in the absence of lateral
bonds. Future work will investigate whether the differences between brief and sustained growth (or
shortening) relate to tip structure.

In the next section, we consider the length-history segments that have much shallower slopes, which set
them apart from the other growth and shortening behaviors discussed above.

‘Stutters’: a distinct phase identified in MT DI behavior

Examination of Figure 3 A-F shows that, in addition to clusters with slopes that correspond to rates of
length change seen in classical growth or shortening behaviors, STADIA also identifies clusters with
much shallower slopes (Positive Slope Cluster 3 and Negative Slope Cluster 1 in Figure 3 A-F; Table 1).
Moreover, the segments in these shallow-slope clusters have time durations much shorter than typical
segments classified as sustained growth and sustained shortening, though typically longer than those
recognized as brief growth and brief shortening segments (SuppMat Figure S8). We term these shallow-
slope clusters of segments ‘stutters’ to convey the idea that these sections of length-history data exhibit
high-frequency, low-amplitude fluctuations throughout which the MT length changes little from a
macro-level perspective.

Note that stutters are distinguishable from previously identified ‘pauses’, which are periods longer in
duration (typically > 15 seconds), during which the MT neither grows nor shortens detectably (Yenjerla,
Lopus, and Wilson 2010). In contrast, MT lengths do indeed change dynamically during stutter periods,
though the net rate of change is small. In addition, it is notable that events categorized as pauses are
typically described as being rare (<1% of total behavior duration) in the absence of MT stabilizing
proteins (e.g., (Walker et al. 1988; Moriwaki and Goshima 2016)). These observations support the
conclusion that stutters are different from events previously classified as pauses, though there is likely
some overlap, especially in cases where events categorized as pauses are allowed to be short in duration
(e.g., (Walker et al. 1988; Guo et al. 2018)). Stutters as described above likely encompass the periods of
slowed growth or shortening previously noted (but not quantified or characterized) in recent dynamic
instability data acquired at high spatiotemporal resolution (e.g,. (Rickman et al. 2017; Duellberg, Cade,
and Surrey 2016); see also (Margolin et al. 2012)). In contrast to previous work, we quantify and
consider the role of stutters in DI as part of the procedures included in STADIA.
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Together, these characteristics indicate that these transient periods of little length change are clearly
distinct from either classical growth or shortening phases. Thus, we assigned these clusters with shallow
slopes to a new DI phase class, ‘stutters’. The stutter phase consists of ‘up stutters’ (Positive Slope
Cluster 3), ‘flat stutters’ (Near-zero Slope Cluster) and ‘down stutters’ (Negative Slope Cluster 1)
depending on whether the shallow slopes are positive, near zero, or negative, respectively (Figure 3 1).

At this point, every segment of length-history has been classified, and the assignment of individual
segments to growth, shortening, and stutter phases can be visualized in the context of the original
length-history data as in Figure 3 G,H.

MTs spend a significant fraction of time in the stutter phase

We begin to investigate the significance of stutter by first examining the fraction of time that MTs spend
in the stutter phase. As one might expect, both in silico MTs and physical MTs spend the majority of
their time in growth phases. However, in both simulations and experiments, MTs spend a substantial
amount of time in stutter phases. Notably, in our in silico datasets, the MTs spent more time in stutter
(8%) than in shortening (6%) (Figure 4 A; SuppMat Figures $8,59). For in vitro MTs, a substantial amount
of the time for the observed MTs was spent in the stutter phase (SuppMat Figures $8,59), but direct
comparison to time spent in the shortening phase is not conclusive because depolymerizations were not
fully captured. Given other similarities between the simulated and physical MTs, it seems likely the ratio
of time in stutter to time in depolymerization would be similar to that observed with simulation MTs.
These observations indicate that stutters contribute appreciably to MT behavior as assessed in length-
history plots.

Catastrophes are usually preceded by stutters in silico and in vitro

To investigate the functional significance of stutters, we used STADIA to examine how transitions
between phases occur (Figure 4 B-l; Figure 5). Specifically, we wished to quantify all examples of
transitions between growth, shortening, and stutter (in any order). Considering the chronological
ordering of phases, STADIA automatically categorized catastrophes and rescues as being either ‘abrupt’
(if the switch between growth and shortening occurred without a detected stutter between them)
(Figure 4 D,E; Figure 5 D,E) or ‘transitional’ (if a stutter phase occurred during [at] the switch between
growth and shortening phases) (Figure 4 F,G; Figure 5 F,G). We also identified ‘interrupted growth’
(when a stutter occurred between two periods of growth) (Figure 4 H; Figure 5 H,I) and ‘interrupted
shortening’ (when a stutter occurred between two periods of shortening) (Figure 4 1).

Remarkably, when we examined the simulation data, we found that 78% of catastrophes commenced
with a stutter, i.e., were transitional (Figure 4 B). A related observation is that almost half (44%) of
stutters that occurred during growth ended in catastrophe (Figure 4 C). A similar but more dramatic
association between stutter and catastrophe was observed in vitro: 86% of catastrophes commenced
from a stutter (Figure 5 A), and 75% of stutters during growth ended in a catastrophe (Figure 5 B).

10
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In contrast to catastrophes, rescues as observed in silico rarely occurred with stutter. More specifically,
only 5% of in silico rescues were transitional (i.e., few rescues initiated from a stutter phase) (Figure 4
B), and only 8% of stutters that occurred during depolymerization resulted in a rescue (Figure 4 C).
Because we do not have data for rescues in vitro, we cannot make strong conclusions on the correlation
between stutters and rescue in physical MTs. However, these results do suggest that catastrophe and

rescue are not simply the mechanistic opposites of each other.

CLASP2y reduces the frequency of catastrophe by increasing the prevalence of interrupted growth
To further test STADIA's utility in analyzing dynamic instability and examine both the prevalence and
significance of stutters, we analyzed another, comparable in vitro dataset in which the MTs were
polymerizing in the presence of the MT binding protein CLASP2y, which has been previously
characterized as an anti-catastrophe factor (E. J. Lawrence and Zanic 2019; Aher et al. 2018).
Qualitatively, the results obtained from using STADIA to analyze length-history data generated in the
presence of CLASP2y were similar to those with the control MTs in vitro. Most significantly, separable
stutter phases were again observed (SuppMat Figure S4,S5).

However, dramatic differences between the CLASP2y data and control in vitro data were observed when
these data were examined quantitatively. First, the frequency of transitional catastrophes in the
presence of CLASP2y was significantly reduced (Figure 5 A and SuppMat Figure S10). This itself is not
surprising, given that previous work (e.g., (Elizabeth J. Lawrence et al. 2018; Sousa et al. 2007; Aher et al.
2018; Majumdar et al. 2018)) has shown that CLASP2y reduces the frequency of catastrophe (see also
Figure 5 C). Strikingly, however, CLASP2y also increased the frequency of interrupted growths (growth-
stutter-growth) (Figure 5 B and SuppMat Figure $10). More specifically, among transitions that begin as
growth-to-stutter, CLASP2y increased the proportion that are growth-stutter-growth and decreased the
proportion that are growth-stutter-shortening (Figure 5 B). Taken together, these data demonstrate
that STADIA analysis provides information about CLASP2y function not supplied by traditional analysis
and indicates that CLASP2y suppresses catastrophe at least in part by enabling stuttering MTs to re-
enter the growth phase. This idea is supported by recent reports that MTs can withstand greater growth
rate variability without undergoing catastrophe in the presence of CLASP2y (Elizabeth J. Lawrence et al.
2018; E. J. Lawrence and Zanic 2019) and that CLASP2y can protect against catastrophe in the presence
of lagging protofilaments (Aher et al. 2018).

Mechanisms of stutters and implications for the process of catastrophe

What causes stutters, especially those that disrupt growth, and why are they associated with
catastrophe? An important clue comes from recognizing that when transitioning from growth to stutter,
there is a net decrease in the number of subunits that are incorporated into the MT per unit time. This
net decrease could occur because new subunits attach to the tip less frequently than during normal
growth, or because bound subunits leave the tip more frequently than during growth, or a combination

of these two.

While simple stochastic fluctuations in subunit arrival or departure could potentially contribute to
stutters, changes in rates of attachment and detachment could also result from changes in tip structure.
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However, one could argue that the rate of subunit attachment should not vary with tip structure:
assuming that longitudinal bonds form first, there are always 13 landing sites for new subunits (Castle
and Odde 2013). Therefore, we suggest that stutters following growth segments likely result from a
situation where an unusually large fraction of incoming subunits detach from the tip structure without
being fully incorporated into the lattice, e.g., because tip taper or other structural features make it
difficult for lateral bonds to form. In other words, we suggest that stutters occur when the structure of
the tip is such that the subunit detachment rate is unusually high compared to the average detachment
rate during growth. This reasoning provides a potential explanation for the correlation between stutter
and catastrophe: if fewer subunits are incorporated into the lattice than normal, the stabilizing cap of
GTP-tubulin at the MT end will become smaller, the likelihood of exposing GDP-tubulin subunits will
increase, and the possibility of complete cap loss (catastrophe) will rise. At present, these ideas are
speculation, but future work may be able to shed light on these hypotheses.

CONCLUSIONS

The key results of this work are four-fold: (1) the development of STADIA as an improved analytical tool
for quantification of MT behavior; (2) the use of STADIA to identify ‘stutter’, a previously
uncharacterized and unquantified phase in MT dynamics; (3) the observation that stutter is strongly
associated with catastrophe in silico and in vitro; (4) the evidence that the anti-catastrophe factor
CLASP2y reduces catastrophe by increasing the fraction of stutters that return to growth rather than
enter shortening phases. We suggest that quantification of stutters in future DI analysis through STADIA
or similar tools will enable improved analysis of MT dynamics that is more complete, precise and
reproducible. The clearer picture that results from this analysis will facilitate investigation of the
mechanisms of catastrophe and rescue and the activities of the MT binding proteins that regulate these
transitions.

METHODS

CLASSICAL DI ANALYSIS

In the classical DI analysis, growth and shortening phases were identified as described in the
Supplemental Methods of (Jonasson et al. 2019). Briefly, using a custom MATLAB script [program],
major peaks in the length-history data were identified, and then the ascent to each major peak was
classified as a growth segment and the descent from the peak was classified as a shortening segment.
For the analysis in this paper, the minimum prominence for major peaks (minimum height change
between a major peak and the nearest major valley) in the classical DI analysis was set equal to the
maximum height error tolerance in STADIA. The minimum peak height and the minimum rescue length
in the classical DI analysis were set equal to the sum of the nucleation height threshold plus the
maximum height error tolerance in STADIA (see SuppMat Table S1).

Vgrowth and Vhore Were calculated as follows. A linear regression was fitted to each growth or shortening
segment. Vgouth Was calculated as the arithmetic mean of the slopes of the regression lines for all
growth segments whose linear regression had an R? value of at least 95%. Vo Was calculated in the
same manner using the shortening segments. F,; was calculated as the total number of catastrophes
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divided by the total time spent in growth phases. Similarly, the F..; was calculated as the total number of
rescues divided by the total time spent in shortening phases.

STATISTICAL TOOL FOR AUTOMATED DYNAMIC INSTABILITY ANALYSIS: STADIA

This section outlines the three major stages of STADIA analysis (Segmentation, Classification, and Phase
and Transition Analysis) as well as the parameters used for the inspection of in silico and in vitro data
using STADIA. Refer to SuppMat Table S1 for a complete list of all STADIA user-defined parameters used
for analysis of both in silico and in vitro MTs.

Segmentation
In the segmentation stage, STADIA takes MT length-history data and generates a continuous piecewise

linear approximation of the MT length-history plot. Segmentation also includes a preprocessing step
that prepares the user's length-history data for input into STADIA and a post-processing step that
prepares the results of the segmentation step for classification.

Preprocessing: As an initial step, STADIA automatically formats the inputted MT length-history data into
a single time series of length-history data points. MT length-history data can be provided either as a
long-time observation of a single MT (possible with simulations) or as a series of length histories of
multiple MTs (common with experimental data). In the latter case, STADIA automatically connects, or
‘stitches’, the data from multiple MTs (with separators in between) into a single time series
representation of MT length-history data. Note that special treatment of the stitching separator
between observations allows the segmentation to avoid misclassification of stitch boundaries as
transitions. This preprocessing step allows STADIA to conduct analysis for both simulation data and
experimental data in a similar and consistent manner.

In this manuscript, the simulation data were provided as one long time series from an individual MT (no
stitching required), while the in vitro data (both with and without CLASP2y) were obtained from multiple
MTs over a shorter period of observation (for details, see Data Acquisition — In Vitro Microtubule
Experiments in the Supplemental Material). Because long depolymerization phases were not captured
(for technical reasons), the data from a specific MT were broken into samples that typically consisted of
a growth phase followed by an initial depolymerization and then termination of that observation.
STADIA first placed individual length-history samples for a given MT consecutively into the same time
series plot, and then stitched all of the data for all of the MTs within each experiment. Note that the
clustering methods used in STADIA require a dataset large enough to display a rich variety of possible DI
behaviors. Therefore, instead of analyzing each individual in vitro MT for various behaviors, it is
necessary to collectively consider multiple MTs from the same experiment so there is enough length-
history data to classify. Thus, this stitching procedure captured all the available behavior from the in
vitro experimental conditions into single time series representations (one with CLASP2y and one
without).

Segmentation: STADIA takes the single time series graph produced by the preprocessing step and
performs segmentation as an adaptive, iterative process according to restrictions provided by user-
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defined thresholds. The segmentation process begins by identifying major peaks and valleys (i.e., local
extrema) in MT length-history data using the findpeaks() function in MATLAB. Consecutive extrema are
connected by line segments to form an initial linear approximation of the length-history data (Figure 2
C). These peaks and valleys serve as the initial list of vertices used to construct the continuous piecewise
linear approximation. The iterative process seeks to include new vertices to define line segments to
improve accuracy (Figure 2 D) as follows: For each segment between two vertices, the error is calculated
between each point in the length-history data and its corresponding approximation on the line segment.
If the maximum error from this segment is less than the user-defined tolerance, then the error condition
is satisfied, and the process moves onto the next segment. If the maximum error is greater than the
user-defined tolerance, then the data point where the greatest error occurs is identified as a new vertex
and an additional line segment is added (i.e., 1 segment is broken into 2 at the point with greatest
error). This process effectively resolves the approximation error at that point by capturing a point where
significant and sustained change in MT behavior occurs, thus improving the accuracy. When selecting
new vertices, the algorithm is careful not to violate the user-defined minimum duration constraint,
which ensures a macro-level approximation is constructed by limiting how close two vertices can be to
each other.

This process is repeated until all line segments in the approximation meet the error tolerance
requirement while also meeting the minimum time-step constraint. The result is a continuous, piecewise
linear approximation that fits the whole of the length-history dataset according to a user-defined error
threshold (excerpts of the full length-history approximation are illustrated in Figure 2 D, and the black
lines plotted in Figure 3 G,H). The vertices of the piecewise linear approximations provide line segments
with endpoints at exact moments where significant and sustained changes in MT behavior occur. Thus,
the activity covered by each segment between endpoints represents a consistent period of MT length-
history behavior that can be identified as belonging to a DI phase in the classification stage.

The following user-defined parameters set the accuracy of the piecewise linear approximations for all
datasets considered in this study: Minimum Duration = 0.5 seconds; Error tolerance threshold = 20
subunits.

Post-processing to prepare for classification: Line segments from the piecewise linear approximation
each have measured slopes, time durations, and height changes (Figure 2 E); this set of measurements
provides a 3-D feature space where the segments reside. However, some post-processing is needed
before submitting this dataset to the classification process. First, new vertices are added to mark the
boundaries between which the MT lengths are below a threshold length, generally chosen to be near
the limits of observation in experimental conditions. These periods of time are described as ‘nucleation’
and are excluded from other analysis. Next, line segments are identified as flat stutters if either their
total height change or slope magnitude are below user-defined thresholds. Flat stutters are set aside
until the end of the classification procedures. The remaining positive and negative sloped segments are
considered separately during the next stage (classification).
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In this work, line segments containing MT lengths less than 75 subunits were considered nucleation
segments. Segments were identified as flat stutters if the total height change was less than 3 subunits or
the absolute value of their slopes was less than 0.5 subunits/second.

Classification

In the classification stage, STADIA takes the results of the segmentation stage (segregated positive and
negative sloped line segments that approximate the MT length-history data) and analyzes them using k-
means clustering in conjunction with the gap statistic.

Justification for using k-means clustering: As noted at the beginning of the Results and Discussion
section, one criterion for developing STADIA was that it be unbiased as to the number of behaviors
exhibited by MTs to remove any assumptions about MT dynamics being restricted to two behaviors (i.e.,
only growth and shortening). The need for an unbiased classification process mandates the use of an
unsupervised machine learning method, of which selection is limited. Because of its ability to identify
locally dense substructures within data of various types, we chose to use k-means to handle
classification of MT length-history data. Ideal datasets for k-means follow a Gaussian distribution and
are regularly (globularly) shaped. Although our data is not Gaussian, k-means still provides an objective
methodology to find substructures in the overall data structure. The observation that k-means enables
us to identify and quantify stutters (a behavior that has previously been noted but not quantified)
indicates that it provides a useful methodology for unbiased categorization and quantification of MT
behavior.

Preprocessing: K-means clustering uses Euclidean distance (i.e., straight-line distance between two
points in 3-D space) as the primary measurement in its algorithm to classify data. Therefore, that all
features should exist on the same scale so as to give each feature equal weight in the k-means
classification process. To meet this requirement, the features (slope, height change, and time duration
values) of each segment were transformed by first being log-scaled and then standardized (i.e., by
subtracting the mean and dividing by the standard deviation). Scaling and standardizing the data in this
way is a common practice for analysis utilizing k-means clustering and allows for all features to be
considered on the same scale to better suit the Euclidean distance used in k-means clustering (Hastie,
Tibshirani, and Friedman 2009).

Determining appropriate number of clusters for each dataset: The k-value (i.e., number of clusters to use
in k-means) was determined for positive and negative slopes separately in the diagnostic mode of
STADIA. This process utilizes the ‘gap statistic’, which compares the within-cluster dispersion to a null
reference distribution when seeking the optimal number of clusters that best separates the data during
k-means clustering (i.e., the gap statistic answers the question: ‘what number of clusters results in the
best separation between the clusters?’) (Tibshirani, Walther, and Hastie 2001). The gap statistic is the
primary driver in determining the proper k-value for clustering the line segment data. However, it is also
recommended for the user to check how well the number of clusters suggested by the gap statistic
describes the dataset qualitatively. Typically, the optimal k-value corresponds to the first local maximum
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of the gap-statistic plot. In some cases, however, qualitative inspection of the data may suggest that the
first local maximum is not optimal, in which case the next local maximum should be used.

For the purposes of informing the optimal k-value for use in k-means clustering, STADIA repeats
clustering procedures for different k-values, ranging from 1 through 12, using 100 random starts for
each value (k-means clustering does not converge to a global maximum so multiple starts are required
to determine optimal centroid locations, described below). Simultaneously, STADIA measures the
corresponding gap statistic for each value of k. As explained above, in our analyses the k-value
corresponding to the first local maximum of the gap statistic plot was usually chosen as the optimal
number of clusters. However, qualitative inspection of the clustering for the positive slopes of the in
vitro MTs without CLASP2y and comparison to the other datasets suggested that the first local maximum
greater than k=1 (i.e., k=3) described the data more appropriately.

k-means clustering: Once the optimal number of clusters is determined for both positive and negative
slopes using the diagnostic mode of STADIA, the user inputs these k-values, and k-means clustering
(Lloyd 1982; Macqueen 1967) is performed in the fully automated mode on the positive and negative
slopes separately. Segments from simulation data were clustered using k=3 for each of the positive and
negative slope groups. Similarly, all experimental data (either with or without CLASP2y) was clustered
using k=3 for positive slopes and k=2 for negative slopes (as discussed in the main text, k=2 for negative
slopes was appropriate for these datasets because the full depolymerizations were not captured for
technical reasons). The final clustering results were obtained from using 500 random starts (again,
multiple trials must be performed to determine optimal centroid locations as k-means is not guaranteed
to converge to a global optimum); centroid locations that attained the lowest sum of squared distances
between the centroids and each point in their respective clusters were chosen for further analysis.

Phase bundling: Following k-means clustering, the resulting positive and negative sloped clusters are
collected, along with the ‘flat stutters’ that were removed prior to clustering, and all are considered
together in the 3-D space defined by the segment features (SuppMat Figure S7). Additionally, statistics
such as average slopes, average time duration, and average height change are calculated for each
cluster and are reported (slopes are illustrated in Figure 3 C,F and slopes and time durations are
illustrated in SuppMat Figure S8). Clusters with similar average slopes are bundled together to form
larger groups representing DI phase classes (Figure 3 1). Clusters with slopes considerably less in
magnitude (flatter) are grouped into a newly identified phase called ‘stutters’ (along with the ‘flat
stutters’ not considered during the clustering process). The remaining clusters with slopes larger in
magnitude (i.e., the higher positive valued and lower negative valued slope segments) more closely
resembled the classically understood growth and shortening phases (i.e., similar positively sloped
segments would both be considered ‘growth’ phases, and similar negatively sloped segments would
both be considered ‘shortening’ phases). The name ‘stutters’ suggests that though there may be micro-
level fluctuations in the MT length, the net length does not change considerably over the duration of
each stutter segment, especially when compared to segments classified as growth or shortening phases.
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At this point, every segment identified during the segmentation stage has been classified as belonging to
one of the following DI phase classes: nucleation, growth, shortening, or stutter. Applying these phase
class labels to each segment in the length-history plot is illustrated in Figure 3 G,H. The chronological
ordering of phases, recognized as phase transitions, can now be performed.

Phase and Transition Analysis

After classifying segments into phases, classical methods of calculating DI metrics are adapted for use
with the newly identified stutter phases.

Phase analysis: The following attributes of each phase class are calculated: percent time spent in each
phase (total time spent in phase

approximation) for each phase, and percent height change corresponding to each phase (Figure 4 A and

- x100%), total number of segments (from the piecewise linear
total time

SuppMat Figure S9).

Transition analysis: Transition frequencies are calculated in a manner similarly to what has been done
classically. However, with the newly identified stutter phases, there are additional transitions to
consider. In particular, it is necessary to determine whether catastrophes and rescues are (or are not)
directly preceded by stutters. Catastrophes and rescues are identified as either abrupt (occurring
without detectable stutters) or transitional (occurring via a stutter) (Figure 4 D,E,F,G and Figure 5
D,E,F,G). Additionally, our analysis quantifies interrupted growth (growth - stutter > growth) (Figure 4
H; Figure 5 H,l) and interrupted shortening (shortening = stutter = shortening) (Figure 4 1). Note that
MTs shorter than a user-defined threshold (here the threshold used was 75 dimer lengths) are
considered to be in ‘nucleation’ phase; transitions into or out of nucleation phases are not considered
here because such MTs would be difficult to detect in experiments, and their behavior might be
influenced by the seed.

In agreement with what has been done in classic DI analyses, frequencies of catastrophe and rescue are
calculated as the ratio of the number of catastrophe or rescue events to the total time spent in growth
or shortening, respectively (Table 1; SuppMat Figure S9). Similarly, interruptions are calculated as the
ratio of the number of interrupted growths or interrupted shortenings to the total time spent in growth

or shortening, respectively. Calculations can be done separately for abrupt and transitional types (e.g.,
# of abrupt catastrophes

F Abrupt catastrophe = ) or collectively by simply adding the frequencies for each type

total time spent in growth

tOgether (Fcat = Fabrupt catastrophe + F'transitional catastrophe) (SUPPM3t Figure 59)

For other information including the data acquisition methods for both the in silico and the in
vitro experiments, please see the Supplemental Material.
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Figure 1. Qualitative examples of behavior that does not fit two-state
framework in high-resolution simulation (in silico) and experimental (in vitro)
data. (A) An illustration of the classically recognized two-state representation
of DI, recognizing behavior as simply growth and shortening phases, with
instantaneous transitions known as catastrophe and rescue events. (B,D)
Zoomed out (two-state representation analogous to (A)) length history plots of
simulation data (detailed 13-PF model; see Methods) and experimental data
(note that depolymerizations were not tracked in their entirety in these
experiments). Black rectangles in B (simulation data) and D (experimental data)
indicate the zoomed-in portions shown in C and E, respectively. (C,E) Closer
inspection of transitions shows ambiguous behavior that cannot clearly be
categorized as either growth or shortening. Other behavioral phases need to be
considered in order to fully describe MT transitions and identify the exact
moments where transitions occur.
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Figure 2. Continuous piecewise linear approximation of length history data & segment data extraction. Classical Segmentation
Method: (A) Identify major vertices, such that local maxima and minima (blue triangles) are considered as catastrophes and rescues
(or nucleation events) respectively. (B) Connect major vertices (orange lines) to create a segmentation and approximation of the MT
length history data. Then calculate DI metrics from this approximation. STADIA Segmentation Method: (C) Generate initial
approximation by finding major peaks and valleys (local extrema with high prominence) and connecting these with line segments. (D)
Iteratively include new vertices (blue dots) where the highest error occurs in each segment to produce the final approximation, such
that all point-wise errors are less than the user-defined threshold (usually 10 to 25 dimer subunits). Note: this method produces a
closer approximation of the data than the classical segmentation method produces. (E) Calculate slope, height change, and time
duration for each segment, and use for K-means clustering during the classification stage of STADIA.
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Figure 3. Cluster analysis results, slope metrics for the different clusters across data sets, and subsets of length history data with
subsequently labeled DI phases. STADIA performs the cluster analysis using the segment-feature metrics (slope, height change, and
time duration) identified in the length history approximation during the segmentation stage. (A,B) Log-transformed and standardized
segment features extracted from in silico and in vitro (control, no CLASP2y) length history data approximations for positive sloped line
segments. Three clusters are suggested by the gap statistic for positive slopes in both data sets. (D,E) Log-transformed and standardized
segment features extracted from in silico and in vitro (control, no CLASP2y) length history data approximations for negative sloped line
segments. The gap statistic suggested 3 clusters for the in silico negative sloped segments and 2 clusters for the in vitro negative sloped
segments. (C,F) Growth rates for the positive sloped segment clusters and shortening rates for negative sloped segment clusters
identified in the in silico and in vitro data sets. For positive slopes in each data set, two clusters (light and dark green) had average growth
rates relatively large in magnitude compared to the third (light blue). For negative slopes in each data set, the red (and light red for in
silico data) labeled shortening rates were on average relatively large in magnitude compared to the purple labeled group. (G,H) Previously
unlabeled in silico and in vitro MT length history plots (see Figure 1 A,C) are now labeled according to the subgroups that each line
segment fits into. Zoomed-in portions of previously ambiguous length history data (see Figure 1 B,D) are now clearly labeled as well-
defined DI phases. (I) Examination of the average slopes of the individual clusters indicates that bundling subgroups (clusters) together
into larger phase classes based on the average slopes of the individual clusters is appropriate. Clusters with positive and negative slopes
relatively larger in magnitude were bundled together into ‘Growth’ and ‘Shortening’ phases respectively. The remaining clusters, where
significantly less changes in length occur, were bundled together, along with the previously identified ‘near zero’ slope or flat segments,
into a new phase called ‘Stutters’. Further, ‘Brief’ and ‘Sustained’ sub-classes of the Growth and Shortening phases were characterized by
their time durations. The ‘Up’, ‘Flat’, and ‘Down’ sub-classes of the Stutter phase are characterized by the segment slope being positive,
near-zero, or negative, respectively.
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Figure 4. Phase metrics and transition analysis for in silico data (Max Protofilament length). (A) Percent time spent in and
percent height (MT length) change occurring during each bundled phase. A large majority of time is spent in the growth phase.
Interestingly, in silico MTs spend more time in the stutter phase than in the shortening phase, thus making stutters a significant
phase worth studying. Most height change occurs during growth and shortening phases, as is expected. Stutters account for a
markedly smaller percentage of height change, particularly when considered relative to their percentage of time; this makes sense
given that little height change takes place during stutter segments. (B) Percentages of transitional vs. abrupt phase changes
(transitional = with stutter phase between the growth/shortening phases; abrupt = without stutters) to/from growth and
shortening show that catastrophes are primarily transitional, whereas rescues are overwhelmingly abrupt. (C) The percentage of
phase transitions with stutters are compared separately for growth-to-stutters transitions and shortening-to-stutter transitions. A
bit more than half of the transitions entering stutters from a growth phase were observed to return to a growth phase; in other
words, stutter phases occur somewhat more commonly in interrupted growth transitions than transitional catastrophes. A vast
majority of transitions entering stutters from a shortening phase return to shortening, i.e., stutter phases appear in interrupted
shortening transitions much more commonly than transitional rescues. (D,E,F,G) Examples of abrupt/transitional catastrophes
(D,F) and abrupt/transitional rescues (E,G) for in silico MTs. Background colors indicate the subgroup identified by STADIA for
various sections of length history data. (H,I) Examples of interrupted growth and interrupted shortening for in silico MTs, where
interruption is defined by MTs in a growth/shortening phase undergoing a transition into a stutter phase, and then returning to
growth/shortening (growth-stutter-growth or shortening-stutter-shortening).
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Figure 5. Effect of CLASP2y on the nature of catastrophes and the fate of MTs entering stutter phase. (A) Consistent with what
was seen for in silico MTs, the majority of catastrophes for in vitro MTs without CLASP2y are transitional. In contrast, introduction
of CLASP2y results in a reduction of stutter phases preceding catastrophes; it is possible that this is due to CLASP2y promoting
growth after stutter phases. (B) When MTs transition from growth to stutter phases, they are more likely to transition into a
depolymerization phase when CLASP2y is not present (i.e., without CLASP2y, transitional catastrophes occur more often than
interrupted growth). With CLASP2y, however, when MTs move from growth to stutter phases, they are more likely to transition
back into the growth phase (i.e., with CLASP2y, interrupted growth occurs more often than transitional catastrophes). These
results provide a possible explanation for how CLASP2y changes the overall makeup of catastrophes for in vitro MTs: transitions
that would have been transitional catastrophes without CLASP2y are now interrupted growths with CLASP2y. (C) CLASP2y
decreases the overall frequency of catastrophe without significantly reducing the frequency of transitioning from the growth
phase to the stutter phase, indicating that CLASP2y is preventing catastrophes by promoting growth following stutters without
preventing stutters altogether. (D,E,F,G) Examples of transitional and abrupt catastrophes, for in vitro MTs both with (bottom)
and without (top) CLASP2y, show a clear qualitative distinction between transitional and abrupt catastrophes identified by
STADIA. (H,l) Examples of interrupted growth exhibited by in vitro MTs both with (bottom) and without (top) CLASP2y shows a
transition from growth into stutter and back into growth phase.
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Table 1. Comparison of DI metrics from classical two-state analysis, STADIA two-state analysis, and STADIA full analysis.
The results from the full, automated analysis conducted by STADIA were compared to results from both the classical
method (identifying only major peaks and valleys, and connecting line segments to form a course-grained approximation)
as well as two-state approaches (a fine-grained approximation was generated by STADIA, but phase classes were restricted
to only growth and shortening (*) or growth, shortening, and flat stutters (**) ). While there is not one-to-one
correspondence between any of the methods, there is general agreement where possible. For the experimental datasets,
depolymerizations were not captured in their entirety, so (***) rescue data was not reported and (****) negative slope
segments were separated into only two clusters, yielding only two V. measurements. V., and V. measurements
are listed in a mean standard deviation format. Additionally, rescue metrics were not determined (N.D.) for experimental
data due to depolymerizations not being captured in their entirety.
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Figure S1. Workflow diagram outlining main steps of STADIA.
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Figure S2. (A) Data points representing each line segment reside on this Z(X,Y) = X/Y manifold, where Z = slope, X = time, and Y =
height. (B) Justification for using height, time, and slope is demonstrated using a parallel example in two dimensions where we
plot a dataset containing four groups (clusters) of points that fall on the curve determined by the function y = 1/x. Plotting only y
(top left) or only x (bottom right) creates the appearance that this dataset contains only three groups of points. In contrast, when
the data are plotted in two dimensions (upper right), the data are separated sufficiently to reveal that the dataset actually contains
four groups of points. For similar reasons, we need to consider all three variables in our line segment data to properly identify the
groups in our dataset.
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Figure S3. The segment features (slope, height change, and time duration) for segments
identified from the piecewise linear approximation to the in silico length history data. Each
point corresponds to one line segment from the length history approximation and is colored
according to the phase class identified by STADIA after a full analysis. (A-D) Multiple
perspectives of the same plot, provided to help visualize the 3-D data. (E) An illustration of how
the segment points lie on the Z=Y/X manifold described in Supplemental Figure S2.
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Figure S4. Gap Statistic plots and corresponding clustering profiles for positive slope
segments in each log transformed and normalized data set. When using the gap
statistic to suggest the best number of clusters to use in k-means clustering, the rule
of thumb is to use the first k-value where the gap statistic plot shows a local
maximum. In practice here, we expect the number of clusters to be greater than 1,
because the 3-D data structure shows multiple appendages separated by a sparsely
populated region of points. Thus, for the case with simulation data using the mean PF
length and the control experimental data, the local maximum at k=1 is rejected.
Taking this into consideration, all data sets indicate that the gap statistic attains the
first local maximum greater than one at k=3. So, for all positive slope segment data, k-
means clustering is performed by separating the data into 3 clusters. Furthermore,
since the clustering profile of the simulation data using the max PF length more
closely resembles the clustering profile of the experimental data, we choose to use
the max PF data instead of the mean PF data for presenting the STADIA results in the
main text.
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Figure S5. Gap Statistic plots and corresponding clustering profiles for negative
slope segments in each log transformed and normalized data set. When using the
gap statistic to suggest the best number of clusters to use in k-means clustering, the
rule of thumb is to use the first k-value where the gap statistic plot shows a local
maximum. The two simulation data sets indicate that the gap statistic attains the first
local maximum greater than one at k=3, whereas the experimental data sets indicate
k=2. We attribute this disagreement to the fact that in these experimental datasets,
only the beginnings of depolymerization events were captured, thus omitting long
time duration shortening segments from the dataset. So, for negative slope
segments, we performed k-means clustering separating the simulation data into 3
clusters and the experimental data into 2 clusters.
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Figure S6. Gap Statistic plots and segment feature plots for an analysis where all slope segments in each data set were considered
together (excluding flat segments), not separated into positive and negative slopes as in Figures S4 and S5. Note that the gap
statistic plots are monotonically increasing, indicating that the initial dataset was too complex for effective identification of an optimal
k-value for clustering (for this reason, the data are not color-coded as in the previous two figures). If the two-state model were correct,
one might expect that the dataset would be optimally separable into two groups, and that the gap statistic plot would attain its first
local maximum at k=2. However, even when the two-state conclusion is assisted by removing segments with slope or length change
approximately equal to zero, providing a clear band of separation between growth and shortening (as is depicted in this figure), k=2 is
still not suggested by the gap statistic. This result indicated that we needed to subdivide the dataset before further analysis (Tibshirani,
Walther, and Hastie 2001). Combined with established knowledge of mechanistic differences between growth and shortening, we
chose to treat positive and negative separately.
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Figure S7. Clustering profiles for ALL segments of in silico and in vitro data. Following
separate classification of the positive and negative slopes (see Figures S4 and S5), segment
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space. Note that the classification step has already taken place, and these figures are
simply for visualizing how the clusters exist in relation to each other in 3-D space.
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Figure S8. Box and whisker plots of rates of MT length change (subunits/sec) and time durations for different subgroups
across data sets to motivate subsequent bundling (box and whiskers cover the four quartiles of each subset, and the ‘X’
marks the mean value in the plots). Note: the first two data sets in A and B are the same as the data presented in Figure 3 C
and F, respectively. (A) Growth rates for the positive sloped segment clusters identified in the simulation data sets and the
experimental data sets without and with CLASP2y. In each data set, two clusters (light and dark green) had average growth
rates relatively large in magnitude compared to the third (light blue). (B) Shortening rates for the negative sloped segment
clusters identified in the simulation data and in the experimental data sets without and with CLASP2y. In each data set, the
red-labeled shortening rates were on average relatively large in magnitude compared to the purple-labeled group. (C) Time
durations for the positive sloped segment clusters show that one subset of segments (light green) represents a longer, more
sustained period of consistent behavior than the other two subsets (blue and dark green) for all data sets considered. (D) Time
durations for negative sloped segment clusters from simulation data also shows that one subset (light red) represents a longer,
more sustained period of consistent behavior than the other two subsets (purple and dark red). Since the experimental data
did not capture most of the shortening behavior, analysis of longer time duration shortening segments was not possible for the
in vitro data sets. (E) Bundling subgroups together into larger phase classes based on the average slopes of individual clusters.
Clusters with positive and negative slopes relatively larger in magnitude were bundled together into ‘Growth’ and ‘Shortening’
phases respectively. The remaining clusters, where significantly less changes in length occur, were bundled together, along
with the previously identified ‘near zero’ slope or flat segments, into a new phase called ‘Stutters’. Further, ‘Brief’ and
‘Sustained’ sub-classes of the Growth and Shortening phases were characterized by their time durations. The ‘Up’, ‘Flat’, and
‘Down’ sub-classes of the Stutter phase are characterized by the segment slope being positive, near-zero, or negative
respectively.
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Figure S9. Segment statistics for all in silico and in vitro data sets. Number of segments, percent time, and percent
height change for each cluster are recorded for each data set. For the in silico data sets where depolymerizations
were fully captured, the breakdown of the number of segments, time duration, and height change are
representative of the actual time the simulated MT spent in the various phases. As noted throughout the paper, the
in vitro depolymerizations were not captured in their entirety, and so the number of negative slope segments,
percent time, and the percent height change attributed to negatively sloped MT behavior is largely underreported.
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Figure S10. Detailed transition statistics for each data set. Both in silico data sets as well as the control experimental data set
demonstrate that a significant majority of catastrophes occur via stutter (i.e., transitional catastrophe), while the CLASP2y data set
shows a shift to MTs exhibiting abrupt catastrophes. We speculate that the shift to abrupt catastrophes is due to CLASP2y
promoting tip extensions (see the Results and Discussion for more information on mechanistic speculation regarding the effects of
CLASP2y). Rescue data for in silico MTs indicates clearly that rescues largely occur abruptly. Note that rescue metrics were not
determined (N.D.) for the in vitro data due to a lack of depolymerizations captured for in vitro MTs.
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STADIA: User-defined Parameters

Nucleation height threshold 75 subunits
Minimum time duration of a linear segment 500 ms
Maximum height error tolerance 20 subunits
Maximum height change for near-zero slope segments 3 subunits
Maximum slope magnitude for near-zero slope segments | 0.5 subunits/sec
Number of centroids for positive slope segments 3
Number of centroids for negative slope segments (in 3
silico data)

Number of centroids for negative slope segments (in vitro 5
data)

Classical Analysis: User-defined Parameters

Minimum peak height 95 subunits
Minimum rescue length 95 subunits
Minimum Prominence For Major Peaks 20 subunits
Minimum Prominence For Minor Peaks 0.1 subunits
Minimum Regression R? 0.95

Table S1. User-defined parameters for STADIA and classical analysis.
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13-PF Detailed MT Computational Model Parameters
Number of protofilaments 13
Tubulin concentration 10 uM
Simulation time 10 hours
Seam shift 1.5 subunit lengths
Compete for tubulin No
Hydrolysis rate 0.7 subunits/sec
HalfMax 200
kgrowT 250
kgrowD 250
kshortT 0.02
kshortD 20
kbondTT 100
kbondTD 100
kbondDT 100
kbondDD 100
kbreakTT 70
kbreakTD 90
kbreakDT 90
kbreakDD 400
SkbondTT 200
SkbondTD 200
SkbondDT 200
SkbondDD 200
SkbreakTT 140
SkbreakTD 180
SkbreakDT 180
SkbreakDD 800

Table S2. Computational model parameters used to
generate simulation data. Parameters used are from
Margolin et al. 2012.
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SUPPLEMENTAL MATERIAL

DATA ACQUISITION: IN SILICO MICROTUBULE EXPERIMENTS

This section outlines the details regarding the acquisition of simulation MT data including information
about both the model and the parameters used.

The computational model: Stochastic model for simulating 13-protofilament (13-PF) MTs

The computational MT model used in this paper to generate the in silico length-history data was an
updated version of the detailed, stochastic MT model published in (Margolin et al. 2012), which is a
kinetic Monte Carlo simulation that tracks the state of individual subunits (representing tubulin dimers)
in the entire 13-protofilament MT structure. Simulation of MTs is done using biochemical rate constants
in conjunction with the Gillespie algorithm (Gillespie 1976, 1977) to sample event times and to build a
stochastic simulation of individual molecular-level events (e.g., formation/breaking of longitudinal and
lateral bonds, and hydrolysis). A key difference between the previous versions and the current
computational model is strict adherence to the assumption that only one of the many possible
biochemical events occurs at a time. The previous detailed level 13-PF MT model approximated
hydrolysis events by allowing several subunits to hydrolyze simultaneously after one of the other four
reaction events (lateral bonding/breaking or subunit gain/loss) have occurred. Hydrolysis events are
now considered as a possible event in the same way that the others are handled. This modification
resulted in very little change in macro-level behavior of in silico MTs, but the ability to output dedicated
observations to each dimer-level event is a more accurate representation of MT biochemistry. The
overall result of the simulation is in silico MTs that exhibit macro-level DI behaviors in agreement with
those observed for previously (Margolin et al. 2012).

Simulation setup and parameters

The dimer-scale kinetic parameters used in this study to simulate a 13-protofilament MT using the
model described above were tuned in (Margolin et al. 2012) based on in vitro DI measurements from
(Walker et al. 1988); a detailed list of parameters can be found in SuppMat Table S2. For the purposes
of this analysis, a single non-competing MT was simulated at a constant [free tubulin] of 10 uM for 10
hours of simulation time. The max PF length (i.e., the length of the longest of the 13 protofilaments) was
reported as the length of the MT, which was used to generate a length-history plot passed into STADIA.
Though the mean PF length could have been used to represent the length of the entire MT, better
agreement with the in vitro data used here was found using the max PF length instead (see clustering
profiles in SuppMat Figure S4).

DATA ACQUISITION: IN VITRO MICROTUBULE EXPERIMENTS

This section outlines the details regarding capture of experimental MT data including conditions for a
control group (tubulin + EB1) and a group with MTBPs (tubulin + EB1 + CLASP2y). A subset of the in vitro
dataset was previously published in (Lawrence et al. 2018).

Protein preparation
His-CLASP2y and His-EB1 were purified as previously described (Zanic et al. 2013; Lawrence et al. 2018).
Bovine brain tubulin was purified using the high-molarity method (Castoldi and Popov 2003). Tubulin
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was labeled with TAMRA and Alexa Fluor 488 (Invitrogen) according to the standard protocols, as
previously described (Hyman et al. 1991).

TIRF microscopy

Imaging was performed using a Nikon Eclipse Ti microscope with a 100x/1.49 n.a. TIRF objective, NEO
sCMOS (complementary metal-oxide—semiconductor) camera; 488- and 561- solid-state lasers (Nikon
Lu-NA); Finger Lakes Instruments HS-625 high speed emission filter wheel; and standard filter sets. An
objective heater was used to maintain the sample at 35°C. Microscope chambers were constructed as
previously described (Gell et al. 2010). In brief, 22 x 22 mm and 18 x 18 mm silanized coverslips were
separated by strips of Parafilm to create a narrow channel for the exchange of solution (Gell et al. 2010).
Images were acquired using NIS-Elements (Nikon).

Dynamic MT Assay

GMPCPP-stabilized MTs were prepared according to standard protocols (Hyman et al. 1992; Gell et al.
2010). Dynamic MT extensions were polymerized from surface-immobilized GMPCPP-stabilized
templates as described previously (Gell et al. 2010). The imaging buffer consisted of BRB80
supplemented with 40 mM glucose, 40 pg/ml glucose oxidase, 16 ug/ml catalase, 0.5 mg/ml casein, 100
mM KCl, 10 mM DTT, and 0.1% methylcellulose. The imaging buffer containing 1 mM GTP and purified
proteins was introduced into the imaging chamber. Dynamic MTs were grown with 12 uM Alexa 488-
labeled tubulin and 200 nM EB1 with or without 400 nM CLASP2y and imaged at 2 fps using a 100x
objective and an Andor Neo camera (pixel size of 70 nm). Alexa-488-labeled tubulin was used at ratio of
23% of the total tubulin. Dynamic MT tip positions as a function of time were determined by kymograph
analysis using KymographDirect and KymographClear (Mangeol, Prevo, and Peterman 2016).

In vitro MT length-history data

Length-history data for in vitro MTs was obtained from 30 minute-long experiments using both a control
group and a group with the stabilizing MTBP, CLASP2y. The control group data was acquired from 68 MT
seeds, from which 776 individual traces were observed. The group with CLASP2y was acquired from 29
MT seeds, from which 85 individual traces were observed. After applying the stitching preprocessing
step during the STADIA segmentation stage, the control group and the group with CLASP2y each
generated a single stream time series representing length-history data with total time duration over 21
hours and 3.5 hours respectively. The collective consideration of all experimental data samples together
meets the needs of the machine learning requirements for reliable clustering results (i.e., the lifetime of
a single MT alone would not be a sufficient amount of data for k-means clustering).
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