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ABSTRACT	
Microtubules	(MTs)	are	dynamic	polymers	with	critical	roles	in	processes	ranging	from	membrane	
transport	to	chromosome	separation.	Central	to	MT	function	is	dynamic	instability	(DI),	a	behavior	
typically	assumed	to	consist	of	growth	and	shortening,	with	sharp	transitions	in	between.	However,	this	
two-state	assumption	disregards	details	in	MT	behavior	that	are	evident	in	high-resolution	data.	For	
example,	MTs	exhibit	growth	rate	variability,	and	pinpointing	where	transitions	begin	can	be	difficult	
when	viewed	at	high	spatiotemporal	resolution.	These	observations	suggest	that	MT	behavior	is	more	
complicated	than	implied	by	standard	quantification	methods.	To	address	these	problems,	we	
developed	STADIA	(Statistical	Tool	for	Automated	Dynamic	Instability	Analysis).	STADIA’s	methods	are	
rooted	in	machine	learning	to	objectively	analyze	and	quantify	macro-level	DI	behaviors	exhibited	by	
MTs.	Applying	STADIA	to	MT	length-history	data	revealed	a	transient,	intermediate	phase	that	we	term	
‘stutter’,	during	which	the	rate	of	MT	length	change	is	smaller	in	magnitude	than	growth	or	shortening	
phases.	Significantly,	most	catastrophe	events	in	both	simulations	and	experiments	are	preceded	by	
stutters,	suggesting	that	this	newly	recognized	phase	is	mechanistically	involved	in	catastrophes.	
Consistent	with	this	idea,	a	MT	anti-catastrophe	factor	(CLASP2γ)	increases	the	likelihood	of	growth	
following	a	stutter	phase	in	experiments.	We	conclude	that	STADIA	enables	unbiased	identification	of	DI	
phases	including	stutters,	producing	more	complete	and	accurate	DI	measurements	than	possible	with	
classical	analysis	methods.	Identifying	stutters	as	a	distinct	and	quantifiable	phase	provides	a	new	target	
for	mechanistic	studies	regarding	DI	phase	transitions	and	their	regulation	by	MT	binding	proteins.	
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SIGNIFICANCE	STATEMENT	
Microtubules	are	cytoskeletal	fibers	that	undergo	dynamic	instability,	a	remarkable	process	involving	
phases	of	growth	and	shortening	separated	by	approximately	random	transitions	(catastrophe	and	
rescue).	Dissecting	the	mechanism	of	dynamic	instability	requires	first	characterizing	and	quantifying	
these	dynamics.	We	present	a	novel	machine-learning	based	tool	(STADIA),	which	shows	that	
microtubule	behavior	consists	not	only	of	growth	and	shortening,	but	also	a	transient	intermediate	
phase	we	term	"stutter."	Quantifying	stutter	and	other	dynamic	behaviors	with	STADIA	shows	that	most	
catastrophes	in	simulations	and	experiments	are	preceded	by	stutters,	and	that	the	anti-catastrophe	
factor	CLASP2γ	works	by	increasing	the	fraction	of	stutters	that	revert	to	growth.	STADIA	provides	new	
opportunities	for	analyzing	mechanisms	of	microtubule	dynamics	and	regulation	by	binding	proteins.	 	
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INTRODUCTION	
Microtubules	(MTs)	are	protein-based	biological	polymers	that	have	a	central	role	in	fundamental	
eukaryotic	processes	including	cellular	organization,	chromosome	separation	during	cell	division,	and	
intracellular	transport	(Goodson	and	Jonasson	2018).	Crucial	to	the	function	of	MTs	in	these	processes	is	
a	well-known	behavior	termed	dynamic	instability	(DI),	where	the	polymers	switch	stochastically	
between	periods	of	growth	and	shortening	(Mitchison	and	Kirschner	1984;	Desai	and	Mitchison	1997).	
Accurate	quantification	of	DI	provides	a	needed	foundation	for	understanding	the	significance	of	this	
behavior	in	vivo	and	for	investigating	the	activities	of	MT	regulating	proteins	in	vitro.	
	
Problems	with	current	methods	of	quantifying	DI	metrics	
Traditionally,	MTs	have	been	treated	as	two-state	polymers;	that	is,	MTs	have	been	considered	to	be	
either	growing	or	shortening,	with	abrupt,	instantaneous	transitions	called	catastrophes	and	rescues	
between	these	two	phases	(Figure	1	A,B,D).	In	this	framework,	MT	behavior	is	characterized	by	four	
quantities	called	DI	parameters:	Fcat	(frequency	of	catastrophe,	measured	as	the	number	of	catastrophes	
per	time	in	growth),	Fres	(frequency	of	rescue,	measured	as	the	number	of	rescues	per	time	in	
shortening),	Vgrowth	(velocity	of	growth,	measured	as	the	mean	of	the	growth	rates	over	the	set	of	
growth	phases),	and	Vshort	(velocity	of	shortening,	measured	as	the	mean	of	the	shrinkage	rates	over	the	
set	of	depolymerization	phases)	(Walker	et	al.	1988).	While	determination	of	DI	parameters	is	now	the	
standard	way	to	quantify	MT	behavior,	there	are	several	issues	with	using	this	approach.	
	
First,	it	has	long	been	recognized	that	both	growth	and	shortening	rates	are	variable	throughout	a	given	
phase	segment	and	between	different	segments;	this	variability	occurs	both	with	and	without	MT	
binding	proteins	(MTBPs)	(see	e.g.,	(Pedigo	and	Williams	2002;	Elizabeth	J.	Lawrence	et	al.	2018;	
Gildersleeve	et	al.	1992)).	This	observation	raises	the	concern	that	averaging	across	an	entire	growth	or	
depolymerization	phase	could	cause	finer	but	functionally	significant	aspects	of	MT	behavior	to	be	
missed	and	potentially	result	in	problems	with	precision	and	reproducibility.		
	
Second,	recent	improvements	in	imaging	technology	have	enabled	acquisition	of	MT	growth	data	with	
both	high	temporal	and	spatial	resolution.	These	data	have	verified	the	intrinsic	variability	of	MT	
behavior,	and	they	have	also	demonstrated	that	there	can	be	significant	time	periods	(e.g.,	a	few	
seconds	in	duration)	during	which	MTs	do	not	change	appreciably	in	length	(Figure	1	C,E;	see	also	
(Maurer	et	al.	2014;	Duellberg,	Cade,	and	Surrey	2016;	Rickman	et	al.	2017;	Duellberg	et	al.	2016)).	
These	relatively	flat	sections	of	length-history	plots	cannot	be	unambiguously	categorized	as	either	
growth	or	shortening,	and	thus	the	limitations	of	the	two-state	behavior	assumption	become	apparent.	
Because	including	these	slow-down	periods	in	either	growth	or	depolymerization	phases	would	reduce	
measured	values	of	Vgrowth	and	Vshort,	they	have	sometimes	been	excluded	from	quantification	of	DI	
parameters	(e.g.,	(Rickman	et	al.	2017)).	However,	entirely	excluding	these	behaviors	from	analysis	
could	potentially	result	in	the	loss	of	information	critical	for	understanding	the	mechanisms	of	the	phase	
transitions	or	their	regulation	by	MT	binding	proteins.	Thus,	capturing	and	quantifying	these	alternative	
behaviors	is	a	key	step	towards	explaining	the	recognized	variations	in	growth	and	shortening	rates,	
improving	the	precision	of	these	metrics,	and	elucidating	mechanisms	of	dynamic	instability.		
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The	advent	of	high-resolution	data	acquisition	has	revealed	an	additional	problem	with	standard	DI	
analysis:	it	can	be	difficult	to	determine	with	reasonable	precision	where	transitions	between	phases	
begin	and	end	(Figure	1	C,E).	This	observation	leaves	researchers	to	make	subjective	judgments	or	to	
use	‘in-house’	software	with	non-adaptive	criteria	to	identify	the	points	where	phase	transitions	occur	
(e.g.,	(Yenjerla,	Lopus,	and	Wilson	2010;	Goodson	and	Jonasson	2018;	Zanic	2016)).	To	illustrate	this	
problem,	consider	the	zoomed-out	length-history	plots	that	are	typically	used	for	DI	analysis	(Figure	1	
B,D).	Examination	of	these	plots	can	make	the	task	of	determining	when	transitions	occur	look	trivial.	
However,	the	zoomed-in	views	made	possible	by	high-resolution	data	acquisition	demonstrate	that	any	
software	or	method	using	the	aforementioned	two-state	behavior	framework	will	have	difficulty	
categorizing	ambiguous	behavior	that	often	occurs	between	growth	and	shortening	phases	(Figure	1	
C,E).		
	
Taken	together,	these	issues	indicate	that	there	is	significant	need	for	an	improved	method	of	
characterizing	MT	length-history	data	that	removes	the	two-state	behavior	assumption	and	allows	for	
unbiased,	objective	quantification	of	MT	behavior	and	DI	metrics.		
	
Summary	of	results	
Using	established	machine	learning	and	statistical	methods,	we	developed	the	Statistical	Tool	for	
Automated	Dynamic	Instability	Analysis	(STADIA),	an	automated	and	unbiased	tool	for	characterizing	
and	quantifying	MT	behavior.	Applying	STADIA	to	in	silico	and	in	vitro	MT	length-history	data	revealed	
the	existence	of	‘stutter,’	a	previously	uncharacterized,	transient	DI	phase	where	MTs	exhibit	rapid	low-
amplitude	fluctuations	but	with	an	overall	rate	of	change	in	MT	length	that	is	markedly	less	in	
magnitude	compared	to	growth	and	shortening	phases.	Significantly,	we	observed	that	most	
catastrophes,	78%	in	silico	and	86%	in	vitro,	are	preceded	by	stutters,	and	that	the	MT	stabilizing	protein	
CLASP2γ	reduces	catastrophe	by	increasing	the	fraction	of	stutters	that	return	to	growth	rather	than	
enter	shortening	phases.	These	results	indicate	that	classical	methods	of	analyzing	MT	behavior	miss	
mechanistically	significant	aspects	of	MT	behavior	and	that	our	novel	DI	analysis	tool,	STADIA,	is	able	to	
recognize	and	quantify	these	behaviors.	We	conclude	that	identification	of	stutters	as	a	phase	distinct	
from	growth	and	shortening	warrants	their	future	inclusion	in	DI	analyses,	and	serves	as	a	necessary	
step	forward	in	gaining	a	better	understanding	of	MTs,	their	dynamics,	and	their	regulation	by	MT	
binding	proteins.	
	
RESULTS	&	DISCUSSION	
We	first	present	a	brief	overview	of	STADIA	and	its	analysis	procedure	(readers	are	encouraged	to	refer	
to	the	Methods	for	more	detailed	information).	We	then	use	STADIA	to	analyze	MT	dynamics	as	they	are	
observed	in	simulations	(in	silico)	and	in	experiments	(in	vitro);	this	work	leads	us	to	identify	the	
existence	of	a	transient,	intermediate	phase	that	we	term	‘stutter’.	We	use	this	observation	as	a	
foundation	on	which	to	study	the	relationship	between	stutter	and	the	phase	transitions,	showing	that	
stutter	is	strongly	associated	with	catastrophe.	We	further	test	the	functional	significance	of	this	
observation	and	demonstrate	the	utility	of	STADIA	in	studying	MT-binding	proteins	by	using	STADIA	to	
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analyze	the	dynamics	of	MTs	growing	in	the	presence	of	the	anti-catastrophe	factor	CLASP2γ,	thus	
examining	for	the	first	time	its	effect	on	stutter.		

	

STADIA:	A	Novel	Tool	for	Analyzing	Dynamic	Instability	Behavior	of	MTs	
To	meet	the	goal	of	more	precisely	identifying,	categorizing,	and	quantifying	the	range	of	MT	behaviors,	
we	created	the	Statistical	Tool	for	Automated	Dynamic	Instability	Analysis	(STADIA).	Specific	aims	for	the	
development	of	STADIA	were	that	it	be:	1)	Automated	to	create	a	consistent	and	reproducible	method	
with	minimal	user	input;	2)	Unbiased	to	remove	any	assumptions	about	MT	dynamics	being	restricted	to	
two	states	(i.e.,	being	limited	to	growth	and	shortening);	3)	Adaptive	to	handle	varying	time	durations	
and	the	stochastic	nature	of	phase	changes;	4)	Compatible	with	classical	DI	analysis,	enabling	
comparison	to	and	continuity	with	previous	work;	5)	Capable	of	analyzing	data	sourced	from	both	
computational	simulations	and	laboratory	experiments.	
	
The	resulting	software,	STADIA,	is	a	data-driven	tool	that	uses	machine	learning	to	characterize	and	
quantify	MT	behavior.	The	process,	implemented	in	MATLAB,	has	three	major	stages	(SuppMat	Figure	
S1):	

1) Segmentation:	STADIA	creates	a	continuous	piecewise	linear	approximation	of	MT	length-
history	data,	where	segment	endpoints	mark	moments	of	significant	change,	i.e.,	transitions	
between	periods	of	sustained	behavior	(Figure	2).	

2) Classification:	STADIA	then	classifies	the	individual	segments	from	the	linear	approximation	
using	an	unsupervised	clustering	method,	k-means,	and	bundles	clusters	with	similar	
characteristics	into	phases	(Figure	3,	SuppMat	Figures	S2,S3,S4,S5).	

3) Phase	and	Transition	Analysis:	STADIA	then	applies	the	segment	classifications	to	length-
history	plots	and	characterizes	each	phase	and	transition	quantitatively	(Figure	3	G,H,	Table	
1,	SuppMat	Figure	S9).	

		
STADIA	can	be	run	in	automated	mode	(outlined	above;	used	for	performing	full	DI	analysis)	or	
diagnostic	mode	(useful	for	performing	preliminary	analyses	and	tuning	analysis	parameters,	mentioned	
below).	More	information	about	the	process	by	which	STADIA	analyzes	and	quantifies	dynamic	
instability	is	provided	in	the	Methods	and	Supplementary	Information.	
	
In	initial	testing,	we	used	STADIA	to	analyze	data	from	our	detailed	kinetic	Monte	Carlo	model	of	MT	
dynamics	(model	described	in	Methods	section)	under	settings	where	we	forced	STADIA	to	assume	that	
MT	dynamics	consist	only	of	growth	and	shortening	phases.	As	expected,	under	these	constrained	
conditions,	the	DI	parameters	measured	by	STADIA	were	consistent	with	those	measured	through	
traditional	DI	analysis;	similar	results	were	obtained	when	STADIA	was	used	to	analyze	data	from	in	vitro	
dynamic	instability	experiments	under	the	same	constraints	(Table	1).	These	observations	provided	a	
solid	foundation	on	which	to	proceed	with	using	STADIA	to	analyze	DI	without	preconceptions	about	
how	many	distinguishable	phases	exist	in	MT	length-history	data.	
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Gap	statistic	analysis	provides	evidence	for	multiple	types	of	growth	and	depolymerization	behavior	
in	both	simulation	and	experimental	data	
As	mentioned	above	and	described	more	in	the	Methods	and	Supplementary	Information,	STADIA	
clusters	individual	MT	length-history	segments	into	groups	(which	may	or	may	not	correspond	to	
recognizable	DI	phases).	Clustering	is	performed	using	an	unsupervised	clustering	method,	which	means	
that	the	method	does	not	presuppose	that	the	clusters	correspond	to	any	particular	DI	phase;	after	the	
segments	are	assigned	to	clusters,	the	DI	phase	to	which	each	cluster	belongs	will	be	determined	based	
on	cluster	metrics.	The	particular	method	we	use	is	called	k-means	clustering,	and	requires	that	the	
desired	number	of	clusters,	k,	is	provided	in	advance	(see	the	Methods	for	more	information	regarding	
k-means	clustering	and	its	use	in	this	analysis).	Though	various	approaches	exist	for	determining	the	k-
value	with	which	to	perform	the	clustering	(reviewed	by	(Steinley	2006;	Pham,	Dimov,	and	Nguyen	
2005)),	STADIA	uses	a	measurement	called	the	gap	statistic	(Tibshirani,	Walther,	and	Hastie	2001).	
Briefly,	with	STADIA	running	in	diagnostic	mode,	the	value	of	the	gap	statistic	at	each	integer	k	is	
evaluated	for	a	dataset	and	compared	to	results	at	other	k	values	to	indicate	how	well	a	dataset	can	be	
described	by	k-many	clusters.	Generally,	the	value	of	k	at	which	the	gap	statistic	plot	attains	its	first	local	
maximum	is	considered	to	be	the	optimal	number	of	clusters,	though	decisions	about	what	k-value	is	
most	appropriate	should	consider	other	aspects	of	the	data	as	well	(Tibshirani,	Walther,	and	Hastie	
2001).	The	scientist	using	STADIA	is	meant	to	take	the	suggestions	from	the	diagnostic	mode	and	supply	
appropriate	k-values	to	obtain	final	clustering	results	from	the	automated	mode.		
	
Initial	Observations	
Using	the	two	datasets	(in	silico	and	in	vitro)	already	analyzed	in	Table	1,	we	performed	analysis	using	
the	gap	statistic	to	determine	which	of	the	following	two	possibilities	is	better	supported:	(1)	that	MT	
dynamics	adhere	to	two-state	behavior,	consisting	of	only	growth	and	shortening,	with	instantaneous	
transitions	between	these	two	states;	or	(2)	that	MT	behavior	is	more	complex,	consisting	of	additional	
behaviors	and	transitions.	Applying	the	gap	statistic	calculation	to	the	entire	dataset	(either	in	silico	or	in	
vitro),	such	that	all	types	of	segments	(positive	and	negative	slopes)	were	considered	together,	did	not	
identify	an	optimal	number	of	clusters	(SuppMat	Figure	S6).	We	moved	forward	by	treating	positive	and	
negative	slope	segments	separately	to	determine	if	each	consists	of	either	one	or	multiple	clusters.	
	
Separate	analysis	of	growing	and	shortening	segments	
We	calculated	the	gap	statistic	separately	for	the	positive	and	negative	slope	segments,	after	removing	
the	set	of	segments	with	approximately	zero-slope	(since	flat	segments	obviously	do	not	belong	to	
either	growth	or	shortening	phases	and	should	thus	be	treated	separately).	Performing	analysis	with	the	
gap	statistic	in	this	manner	on	the	in	silico	data	suggested	k=3	to	be	the	optimal	number	of	clusters	for	
both	the	positive	and	negative	sloped	segment	groups	(Figure	3	A,D	&	SuppMat	Figures	S4,S5).	These	
observations	indicate	that	the	in	silico	dataset	contained	multiple	clusters	of	growth	and	shortening	
behaviors.	In	total,	when	including	the	near	zero-slope	segments,	7	distinct	clusters	were	identified	in	
simulation	data	(SuppMat	Figure	S7).		
	
Consistent	with	the	in	silico	results,	the	analysis	of	the	in	vitro	experimental	data	suggested	k=3	for	
positive	slopes	(Figure	3	B	and	SuppMat	Figure	S4).	However,	differences	were	found	between	the	in	
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silico	and	in	vitro	data	in	analysis	of	the	negative	slopes:	the	optimal	number	of	clusters	was	identified	to	
be	two	(k=2)	in	both	experimental	datasets	(Figure	3	E	and	SuppMat	Figure	S5),	in	contrast	to	the	three	
clusters	identified	in	the	simulation	data.	This	observation	can	be	explained	by	the	fact	that	for	technical	
reasons,	the	in	vitro	dataset	contains	the	beginning	of	shortening	phases,	but	not	the	full	loss	of	MTs	to	
near-zero	length,	which	was	available	with	the	simulation	data.	Consistent	with	this	explanation,	
inspection	of	the	clustering	results	for	the	negative	slope	segments	in	Figure	3	shows	that	segments	
belonging	to	Negative	Slope	Cluster	3	(the	cluster	with	the	longest	time	durations)	in	the	in	silico	data	in	
Figure	3	D	were	not	captured	for	the	in	vitro	data	in	Figure	3	E.	Therefore,	we	can	only	conclude	that	
there	are	at	least	two	clusters	with	negative	slopes	for	the	in	vitro	data.	For	illustration	purposes,	a	
“ghost”	region	is	added	to	Figure	3	E	where	we	expect	the	missing	third	negative	slope	cluster	to	reside.	
Thus,	including	the	flat	slope	segments,	we	find	evidence	for	at	least	6	distinct	clusters	in	the	
experimental	DI	data:	three	clusters	of	growth,	two	clusters	of	shortening,	plus	the	small	number	of	flat	
slope	segments	used	to	separate	the	positive	and	negative	slope	segments	(SuppMat	Figure	S7).	An	
additional	cluster	of	shortening	segments	might	be	identified	if	full	depolymerization	events	were	
captured	in	experiments.		
	
In	summary,	application	of	gap	statistic	analysis	to	DI	data	from	either	simulations	or	experiments	leads	
to	a	similar	conclusion:	the	data	argue	against	the	idea	that	MT	DI	can	be	characterized	as	a	two-state	
process	consisting	only	of	growth	and	shortening	with	instantaneous	transitions.	More	specifically,	the	
results	provide	evidence	for	considering	multiple	types	of	growth	behavior	(3	clusters)	and	multiple	
types	of	shortening	behavior	(3	clusters,	or	2	clusters	for	the	truncated	experimental	data).	In	the	next	
section,	we	examine	the	differences	between	these	clusters	of	length-history	segments	to	determine	
how	the	segments	in	these	clusters	differ	from	each	other	and	how	these	clusters	might	correspond	to	
recognizably	different	phases	of	DI	behavior.		
	
STADIA	can	identify	growth	and	shortening	phases	consistent	with	those	identified	by	classical	DI	
analysis	
After	using	STADIA	in	diagnostic	mode	to	perform	gap	statistic	analysis	and	thus	gain	information	about	
the	optimal	number	of	clusters	to	use	in	the	k-means	clustering	process,	we	used	STADIA	in	the	
automated	mode	to	perform	a	full	analysis	of	MT	behavior.	In	the	automated	mode,	STADIA	first	
determines	the	centroid	of	each	cluster	of	length-history	segments.	It	then	categorizes	each	segment	
identified	from	the	segmentation	stage	as	belonging	to	one	cluster	or	another	(see	SuppMat	Figure	S1	
for	an	outline	of	the	full	analysis	process;	see	the	Methods	section	for	more	details).	To	study	the	
relationships	between	these	clusters	of	length-history	segments	and	recognizable	phases	of	DI,	we	
examined	the	average	characteristics	of	the	segments	in	each	group.		
	
This	analysis	showed	that,	for	both	the	in	silico	and	in	vitro	data,	some	of	the	clusters	correspond	to	the	
well-recognized	growth	and	shortening	phases	of	DI.	More	specifically,	two	of	the	positive	segment	
clusters	(positive	slope	clusters	1	and	2	from	Figure	3	A	and	B)	have	slopes	(rates	of	length	change)	
similar	to	growth	rates	reported	in	classical	DI	analysis	(compare	STADIA	results	in	Figure	3	C	and	Table	
1	to	classical	analysis	results	in	Table	1).	Similarly,	negative	slope	cluster	2	(in	silico	and	in	vitro,	Figure	3	
D	and	E)	and	negative	slope	cluster	3	(in	silico,	Figure	3	D)	have	slopes	similar	to	shortening	rates	
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reported	in	classical	DI	analysis	(compare	Figure	3	F	and	Table	1).	Based	on	this	information,	in	the	
classification	stage	of	STADIA,	length-history	segments	were	assigned	to	the	growth	phase	if	they	
belonged	to	one	of	the	clusters	with	a	steep	positive	slope	(Positive	Slope	Cluster	1	or	2	in	Figure	3	C,I),	
and	to	the	shortening	phase	if	they	belonged	to	a	cluster	with	a	steep	negative	slope	(Negative	Slope	
Cluster	2	or	3	in	Figure	3	F,I).		
	
The	identification	of	two	clusters	within	the	bundled	growth	phase	(and	for	the	in	silico	data,	within	the	
bundled	shortening	phase)	is	unexpected.	It	is	notable	that	in	each	case	(both	positive	and	negative	
slopes),	the	clusters	differ	primarily	by	duration	(brief	or	sustained,	Figure	3I	and	SuppMat	Figure	S8).	
This	observation	may	be	evidence	of	different	behaviors	of	tapered	or	split	tips	(e.g.,	as	observed	by	
(Coombes	et	al.	2013;	Doodhi	et	al.	2016;	Aher	et	al.	2018))	relative	to	the	rest	of	the	MT;	such	
structures	might	be	able	to	extend	or	retract	faster	than	the	bulk	MT	lattice	in	the	absence	of	lateral	
bonds.	Future	work	will	investigate	whether	the	differences	between	brief	and	sustained	growth	(or	
shortening)	relate	to	tip	structure.	
	
In	the	next	section,	we	consider	the	length-history	segments	that	have	much	shallower	slopes,	which	set	
them	apart	from	the	other	growth	and	shortening	behaviors	discussed	above.	
	
‘Stutters’:	a	distinct	phase	identified	in	MT	DI	behavior	
Examination	of	Figure	3	A-F	shows	that,	in	addition	to	clusters	with	slopes	that	correspond	to	rates	of	
length	change	seen	in	classical	growth	or	shortening	behaviors,	STADIA	also	identifies	clusters	with	
much	shallower	slopes	(Positive	Slope	Cluster	3	and	Negative	Slope	Cluster	1	in	Figure	3	A-F;	Table	1).	
Moreover,	the	segments	in	these	shallow-slope	clusters	have	time	durations	much	shorter	than	typical	
segments	classified	as	sustained	growth	and	sustained	shortening,	though	typically	longer	than	those	
recognized	as	brief	growth	and	brief	shortening	segments	(SuppMat	Figure	S8).	We	term	these	shallow-
slope	clusters	of	segments	‘stutters’	to	convey	the	idea	that	these	sections	of	length-history	data	exhibit	
high-frequency,	low-amplitude	fluctuations	throughout	which	the	MT	length	changes	little	from	a	
macro-level	perspective.		
	
Note	that	stutters	are	distinguishable	from	previously	identified	‘pauses’,	which	are	periods	longer	in	
duration	(typically	>	15	seconds),	during	which	the	MT	neither	grows	nor	shortens	detectably	(Yenjerla,	
Lopus,	and	Wilson	2010).	In	contrast,	MT	lengths	do	indeed	change	dynamically	during	stutter	periods,	
though	the	net	rate	of	change	is	small.	In	addition,	it	is	notable	that	events	categorized	as	pauses	are	
typically	described	as	being	rare	(<1%	of	total	behavior	duration)	in	the	absence	of	MT	stabilizing	
proteins	(e.g.,	(Walker	et	al.	1988;	Moriwaki	and	Goshima	2016)).	These	observations	support	the	
conclusion	that	stutters	are	different	from	events	previously	classified	as	pauses,	though	there	is	likely	
some	overlap,	especially	in	cases	where	events	categorized	as	pauses	are	allowed	to	be	short	in	duration	
(e.g.,	(Walker	et	al.	1988;	Guo	et	al.	2018)).	Stutters	as	described	above	likely	encompass	the	periods	of	
slowed	growth	or	shortening	previously	noted	(but	not	quantified	or	characterized)	in	recent	dynamic	
instability	data	acquired	at	high	spatiotemporal	resolution	(e.g,.	(Rickman	et	al.	2017;	Duellberg,	Cade,	
and	Surrey	2016);	see	also	(Margolin	et	al.	2012)).	In	contrast	to	previous	work,	we	quantify	and	
consider	the	role	of	stutters	in	DI	as	part	of	the	procedures	included	in	STADIA.	
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Together,	these	characteristics	indicate	that	these	transient	periods	of	little	length	change	are	clearly	
distinct	from	either	classical	growth	or	shortening	phases.	Thus,	we	assigned	these	clusters	with	shallow	
slopes	to	a	new	DI	phase	class,	‘stutters’.	The	stutter	phase	consists	of	‘up	stutters’	(Positive	Slope	
Cluster	3),	‘flat	stutters’	(Near-zero	Slope	Cluster)	and	‘down	stutters’	(Negative	Slope	Cluster	1)	
depending	on	whether	the	shallow	slopes	are	positive,	near	zero,	or	negative,	respectively	(Figure	3	I).		
	
At	this	point,	every	segment	of	length-history	has	been	classified,	and	the	assignment	of	individual	
segments	to	growth,	shortening,	and	stutter	phases	can	be	visualized	in	the	context	of	the	original	
length-history	data	as	in	Figure	3	G,H.	
	
MTs	spend	a	significant	fraction	of	time	in	the	stutter	phase		
We	begin	to	investigate	the	significance	of	stutter	by	first	examining	the	fraction	of	time	that	MTs	spend	
in	the	stutter	phase.	As	one	might	expect,	both	in	silico	MTs	and	physical	MTs	spend	the	majority	of	
their	time	in	growth	phases.	However,	in	both	simulations	and	experiments,	MTs	spend	a	substantial	
amount	of	time	in	stutter	phases.	Notably,	in	our	in	silico	datasets,	the	MTs	spent	more	time	in	stutter	
(8%)	than	in	shortening	(6%)	(Figure	4	A;	SuppMat	Figures	S8,S9).	For	in	vitro	MTs,	a	substantial	amount	
of	the	time	for	the	observed	MTs	was	spent	in	the	stutter	phase	(SuppMat	Figures	S8,S9),	but	direct	
comparison	to	time	spent	in	the	shortening	phase	is	not	conclusive	because	depolymerizations	were	not	
fully	captured.	Given	other	similarities	between	the	simulated	and	physical	MTs,	it	seems	likely	the	ratio	
of	time	in	stutter	to	time	in	depolymerization	would	be	similar	to	that	observed	with	simulation	MTs.	
These	observations	indicate	that	stutters	contribute	appreciably	to	MT	behavior	as	assessed	in	length-
history	plots.	
	
Catastrophes	are	usually	preceded	by	stutters	in	silico	and	in	vitro	
To	investigate	the	functional	significance	of	stutters,	we	used	STADIA	to	examine	how	transitions	
between	phases	occur	(Figure	4	B-I;	Figure	5).	Specifically,	we	wished	to	quantify	all	examples	of	
transitions	between	growth,	shortening,	and	stutter	(in	any	order).	Considering	the	chronological	
ordering	of	phases,	STADIA	automatically	categorized	catastrophes	and	rescues	as	being	either	‘abrupt’	
(if	the	switch	between	growth	and	shortening	occurred	without	a	detected	stutter	between	them)	
(Figure	4	D,E;	Figure	5	D,E)	or	‘transitional’	(if	a	stutter	phase	occurred	during	[at]	the	switch	between	
growth	and	shortening	phases)	(Figure	4	F,G;	Figure	5	F,G).	We	also	identified	‘interrupted	growth’	
(when	a	stutter	occurred	between	two	periods	of	growth)	(Figure	4	H;	Figure	5	H,I)	and	‘interrupted	
shortening’	(when	a	stutter	occurred	between	two	periods	of	shortening)	(Figure	4	I).		
	
Remarkably,	when	we	examined	the	simulation	data,	we	found	that	78%	of	catastrophes	commenced	
with	a	stutter,	i.e.,	were	transitional	(Figure	4	B).	A	related	observation	is	that	almost	half	(44%)	of	
stutters	that	occurred	during	growth	ended	in	catastrophe	(Figure	4	C).	A	similar	but	more	dramatic	
association	between	stutter	and	catastrophe	was	observed	in	vitro:	86%	of	catastrophes	commenced	
from	a	stutter	(Figure	5	A),	and	75%	of	stutters	during	growth	ended	in	a	catastrophe	(Figure	5	B).		
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In	contrast	to	catastrophes,	rescues	as	observed	in	silico	rarely	occurred	with	stutter.	More	specifically,	
only	5%	of	in	silico	rescues	were	transitional	(i.e.,	few	rescues	initiated	from	a	stutter	phase)	(Figure	4	
B),	and	only	8%	of	stutters	that	occurred	during	depolymerization	resulted	in	a	rescue	(Figure	4	C).	
Because	we	do	not	have	data	for	rescues	in	vitro,	we	cannot	make	strong	conclusions	on	the	correlation	
between	stutters	and	rescue	in	physical	MTs.	However,	these	results	do	suggest	that	catastrophe	and	
rescue	are	not	simply	the	mechanistic	opposites	of	each	other.		
	
CLASP2γ	reduces	the	frequency	of	catastrophe	by	increasing	the	prevalence	of	interrupted	growth	
To	further	test	STADIA's	utility	in	analyzing	dynamic	instability	and	examine	both	the	prevalence	and	
significance	of	stutters,	we	analyzed	another,	comparable	in	vitro	dataset	in	which	the	MTs	were	
polymerizing	in	the	presence	of	the	MT	binding	protein	CLASP2γ,	which	has	been	previously	
characterized	as	an	anti-catastrophe	factor	(E.	J.	Lawrence	and	Zanic	2019;	Aher	et	al.	2018).	
Qualitatively,	the	results	obtained	from	using	STADIA	to	analyze	length-history	data	generated	in	the	
presence	of	CLASP2γ	were	similar	to	those	with	the	control	MTs	in	vitro.	Most	significantly,	separable	
stutter	phases	were	again	observed	(SuppMat	Figure	S4,S5).	
	
However,	dramatic	differences	between	the	CLASP2γ	data	and	control	in	vitro	data	were	observed	when	
these	data	were	examined	quantitatively.	First,	the	frequency	of	transitional	catastrophes	in	the	
presence	of	CLASP2γ	was	significantly	reduced	(Figure	5	A	and	SuppMat	Figure	S10).	This	itself	is	not	
surprising,	given	that	previous	work	(e.g.,	(Elizabeth	J.	Lawrence	et	al.	2018;	Sousa	et	al.	2007;	Aher	et	al.	
2018;	Majumdar	et	al.	2018))	has	shown	that	CLASP2γ	reduces	the	frequency	of	catastrophe	(see	also	
Figure	5	C).	Strikingly,	however,	CLASP2γ	also	increased	the	frequency	of	interrupted	growths	(growth-
stutter-growth)	(Figure	5	B	and	SuppMat	Figure	S10).	More	specifically,	among	transitions	that	begin	as	
growth-to-stutter,	CLASP2γ	increased	the	proportion	that	are	growth-stutter-growth	and	decreased	the	
proportion	that	are	growth-stutter-shortening	(Figure	5	B).	Taken	together,	these	data	demonstrate	
that	STADIA	analysis	provides	information	about	CLASP2γ	function	not	supplied	by	traditional	analysis	
and	indicates	that	CLASP2γ	suppresses	catastrophe	at	least	in	part	by	enabling	stuttering	MTs	to	re-
enter	the	growth	phase.	This	idea	is	supported	by	recent	reports	that	MTs	can	withstand	greater	growth	
rate	variability	without	undergoing	catastrophe	in	the	presence	of	CLASP2γ	(Elizabeth	J.	Lawrence	et	al.	
2018;	E.	J.	Lawrence	and	Zanic	2019)	and	that	CLASP2γ	can	protect	against	catastrophe	in	the	presence	
of	lagging	protofilaments	(Aher	et	al.	2018).	
	
Mechanisms	of	stutters	and	implications	for	the	process	of	catastrophe		
What	causes	stutters,	especially	those	that	disrupt	growth,	and	why	are	they	associated	with	
catastrophe?	An	important	clue	comes	from	recognizing	that	when	transitioning	from	growth	to	stutter,	
there	is	a	net	decrease	in	the	number	of	subunits	that	are	incorporated	into	the	MT	per	unit	time.	This	
net	decrease	could	occur	because	new	subunits	attach	to	the	tip	less	frequently	than	during	normal	
growth,	or	because	bound	subunits	leave	the	tip	more	frequently	than	during	growth,	or	a	combination	
of	these	two.		
	
While	simple	stochastic	fluctuations	in	subunit	arrival	or	departure	could	potentially	contribute	to	
stutters,	changes	in	rates	of	attachment	and	detachment	could	also	result	from	changes	in	tip	structure.	
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However,	one	could	argue	that	the	rate	of	subunit	attachment	should	not	vary	with	tip	structure:	
assuming	that	longitudinal	bonds	form	first,	there	are	always	13	landing	sites	for	new	subunits	(Castle	
and	Odde	2013).	Therefore,	we	suggest	that	stutters	following	growth	segments	likely	result	from	a	
situation	where	an	unusually	large	fraction	of	incoming	subunits	detach	from	the	tip	structure	without	
being	fully	incorporated	into	the	lattice,	e.g.,	because	tip	taper	or	other	structural	features	make	it	
difficult	for	lateral	bonds	to	form.	In	other	words,	we	suggest	that	stutters	occur	when	the	structure	of	
the	tip	is	such	that	the	subunit	detachment	rate	is	unusually	high	compared	to	the	average	detachment	
rate	during	growth.	This	reasoning	provides	a	potential	explanation	for	the	correlation	between	stutter	
and	catastrophe:	if	fewer	subunits	are	incorporated	into	the	lattice	than	normal,	the	stabilizing	cap	of	
GTP-tubulin	at	the	MT	end	will	become	smaller,	the	likelihood	of	exposing	GDP-tubulin	subunits	will	
increase,	and	the	possibility	of	complete	cap	loss	(catastrophe)	will	rise.	At	present,	these	ideas	are	
speculation,	but	future	work	may	be	able	to	shed	light	on	these	hypotheses.	
	
CONCLUSIONS	
The	key	results	of	this	work	are	four-fold:	(1)	the	development	of	STADIA	as	an	improved	analytical	tool	
for	quantification	of	MT	behavior;	(2)	the	use	of	STADIA	to	identify	‘stutter’,	a	previously	
uncharacterized	and	unquantified	phase	in	MT	dynamics;	(3)	the	observation	that	stutter	is	strongly	
associated	with	catastrophe	in	silico	and	in	vitro;	(4)	the	evidence	that	the	anti-catastrophe	factor	
CLASP2γ	reduces	catastrophe	by	increasing	the	fraction	of	stutters	that	return	to	growth	rather	than	
enter	shortening	phases.	We	suggest	that	quantification	of	stutters	in	future	DI	analysis	through	STADIA	
or	similar	tools	will	enable	improved	analysis	of	MT	dynamics	that	is	more	complete,	precise	and	
reproducible.	The	clearer	picture	that	results	from	this	analysis	will	facilitate	investigation	of	the	
mechanisms	of	catastrophe	and	rescue	and	the	activities	of	the	MT	binding	proteins	that	regulate	these	
transitions.		
	
METHODS	
CLASSICAL	DI	ANALYSIS	
In	the	classical	DI	analysis,	growth	and	shortening	phases	were	identified	as	described	in	the	
Supplemental	Methods	of	(Jonasson	et	al.	2019).	Briefly,	using	a	custom	MATLAB	script	[program],	
major	peaks	in	the	length-history	data	were	identified,	and	then	the	ascent	to	each	major	peak	was	
classified	as	a	growth	segment	and	the	descent	from	the	peak	was	classified	as	a	shortening	segment.	
For	the	analysis	in	this	paper,	the	minimum	prominence	for	major	peaks	(minimum	height	change	
between	a	major	peak	and	the	nearest	major	valley)	in	the	classical	DI	analysis	was	set	equal	to	the	
maximum	height	error	tolerance	in	STADIA.	The	minimum	peak	height	and	the	minimum	rescue	length	
in	the	classical	DI	analysis	were	set	equal	to	the	sum	of	the	nucleation	height	threshold	plus	the	
maximum	height	error	tolerance	in	STADIA	(see	SuppMat	Table	S1).		
	
Vgrowth	and	Vshort	were	calculated	as	follows.	A	linear	regression	was	fitted	to	each	growth	or	shortening	
segment.	Vgrowth	was	calculated	as	the	arithmetic	mean	of	the	slopes	of	the	regression	lines	for	all	
growth	segments	whose	linear	regression	had	an	R2	value	of	at	least	95%.	Vshort	was	calculated	in	the	
same	manner	using	the	shortening	segments.	Fcat	was	calculated	as	the	total	number	of	catastrophes	
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divided	by	the	total	time	spent	in	growth	phases.	Similarly,	the	Fres	was	calculated	as	the	total	number	of	
rescues	divided	by	the	total	time	spent	in	shortening	phases.	
	
STATISTICAL	TOOL	FOR	AUTOMATED	DYNAMIC	INSTABILITY	ANALYSIS:	STADIA	
This	section	outlines	the	three	major	stages	of	STADIA	analysis	(Segmentation,	Classification,	and	Phase	
and	Transition	Analysis)	as	well	as	the	parameters	used	for	the	inspection	of	in	silico	and	in	vitro	data	
using	STADIA.	Refer	to	SuppMat	Table	S1	for	a	complete	list	of	all	STADIA	user-defined	parameters	used	
for	analysis	of	both	in	silico	and	in	vitro	MTs.	
	
Segmentation	
In	the	segmentation	stage,	STADIA	takes	MT	length-history	data	and	generates	a	continuous	piecewise	
linear	approximation	of	the	MT	length-history	plot.	Segmentation	also	includes	a	preprocessing	step	
that	prepares	the	user's	length-history	data	for	input	into	STADIA	and	a	post-processing	step	that	
prepares	the	results	of	the	segmentation	step	for	classification.	
	
Preprocessing:	As	an	initial	step,	STADIA	automatically	formats	the	inputted	MT	length-history	data	into	
a	single	time	series	of	length-history	data	points.	MT	length-history	data	can	be	provided	either	as	a	
long-time	observation	of	a	single	MT	(possible	with	simulations)	or	as	a	series	of	length	histories	of	
multiple	MTs	(common	with	experimental	data).	In	the	latter	case,	STADIA	automatically	connects,	or	
‘stitches’,	the	data	from	multiple	MTs	(with	separators	in	between)	into	a	single	time	series	
representation	of	MT	length-history	data.	Note	that	special	treatment	of	the	stitching	separator	
between	observations	allows	the	segmentation	to	avoid	misclassification	of	stitch	boundaries	as	
transitions.	This	preprocessing	step	allows	STADIA	to	conduct	analysis	for	both	simulation	data	and	
experimental	data	in	a	similar	and	consistent	manner.		
	
In	this	manuscript,	the	simulation	data	were	provided	as	one	long	time	series	from	an	individual	MT	(no	
stitching	required),	while	the	in	vitro	data	(both	with	and	without	CLASP2γ)	were	obtained	from	multiple	
MTs	over	a	shorter	period	of	observation	(for	details,	see	Data	Acquisition	–	In	Vitro	Microtubule	
Experiments	in	the	Supplemental	Material).	Because	long	depolymerization	phases	were	not	captured	
(for	technical	reasons),	the	data	from	a	specific	MT	were	broken	into	samples	that	typically	consisted	of	
a	growth	phase	followed	by	an	initial	depolymerization	and	then	termination	of	that	observation.	
STADIA	first	placed	individual	length-history	samples	for	a	given	MT	consecutively	into	the	same	time	
series	plot,	and	then	stitched	all	of	the	data	for	all	of	the	MTs	within	each	experiment.	Note	that	the	
clustering	methods	used	in	STADIA	require	a	dataset	large	enough	to	display	a	rich	variety	of	possible	DI	
behaviors.	Therefore,	instead	of	analyzing	each	individual	in	vitro	MT	for	various	behaviors,	it	is	
necessary	to	collectively	consider	multiple	MTs	from	the	same	experiment	so	there	is	enough	length-
history	data	to	classify.	Thus,	this	stitching	procedure	captured	all	the	available	behavior	from	the	in	
vitro	experimental	conditions	into	single	time	series	representations	(one	with	CLASP2γ	and	one	
without).		
	
Segmentation:	STADIA	takes	the	single	time	series	graph	produced	by	the	preprocessing	step	and	
performs	segmentation	as	an	adaptive,	iterative	process	according	to	restrictions	provided	by	user-
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defined	thresholds.	The	segmentation	process	begins	by	identifying	major	peaks	and	valleys	(i.e.,	local	
extrema)	in	MT	length-history	data	using	the	findpeaks()	function	in	MATLAB.	Consecutive	extrema	are	
connected	by	line	segments	to	form	an	initial	linear	approximation	of	the	length-history	data	(Figure	2	
C).	These	peaks	and	valleys	serve	as	the	initial	list	of	vertices	used	to	construct	the	continuous	piecewise	
linear	approximation.	The	iterative	process	seeks	to	include	new	vertices	to	define	line	segments	to	
improve	accuracy	(Figure	2	D)	as	follows:	For	each	segment	between	two	vertices,	the	error	is	calculated	
between	each	point	in	the	length-history	data	and	its	corresponding	approximation	on	the	line	segment.	
If	the	maximum	error	from	this	segment	is	less	than	the	user-defined	tolerance,	then	the	error	condition	
is	satisfied,	and	the	process	moves	onto	the	next	segment.	If	the	maximum	error	is	greater	than	the	
user-defined	tolerance,	then	the	data	point	where	the	greatest	error	occurs	is	identified	as	a	new	vertex	
and	an	additional	line	segment	is	added	(i.e.,	1	segment	is	broken	into	2	at	the	point	with	greatest	
error).	This	process	effectively	resolves	the	approximation	error	at	that	point	by	capturing	a	point	where	
significant	and	sustained	change	in	MT	behavior	occurs,	thus	improving	the	accuracy.	When	selecting	
new	vertices,	the	algorithm	is	careful	not	to	violate	the	user-defined	minimum	duration	constraint,	
which	ensures	a	macro-level	approximation	is	constructed	by	limiting	how	close	two	vertices	can	be	to	
each	other.		
	
This	process	is	repeated	until	all	line	segments	in	the	approximation	meet	the	error	tolerance	
requirement	while	also	meeting	the	minimum	time-step	constraint.	The	result	is	a	continuous,	piecewise	
linear	approximation	that	fits	the	whole	of	the	length-history	dataset	according	to	a	user-defined	error	
threshold	(excerpts	of	the	full	length-history	approximation	are	illustrated	in	Figure	2	D,	and	the	black	
lines	plotted	in	Figure	3	G,H).	The	vertices	of	the	piecewise	linear	approximations	provide	line	segments	
with	endpoints	at	exact	moments	where	significant	and	sustained	changes	in	MT	behavior	occur.	Thus,	
the	activity	covered	by	each	segment	between	endpoints	represents	a	consistent	period	of	MT	length-
history	behavior	that	can	be	identified	as	belonging	to	a	DI	phase	in	the	classification	stage.	
	
The	following	user-defined	parameters	set	the	accuracy	of	the	piecewise	linear	approximations	for	all	
datasets	considered	in	this	study:	Minimum	Duration	=	0.5	seconds;	Error	tolerance	threshold	=	20	
subunits.		
	
Post-processing	to	prepare	for	classification:	Line	segments	from	the	piecewise	linear	approximation	
each	have	measured	slopes,	time	durations,	and	height	changes	(Figure	2	E);	this	set	of	measurements	
provides	a	3-D	feature	space	where	the	segments	reside.	However,	some	post-processing	is	needed	
before	submitting	this	dataset	to	the	classification	process.	First,	new	vertices	are	added	to	mark	the	
boundaries	between	which	the	MT	lengths	are	below	a	threshold	length,	generally	chosen	to	be	near	
the	limits	of	observation	in	experimental	conditions.	These	periods	of	time	are	described	as	‘nucleation’	
and	are	excluded	from	other	analysis.	Next,	line	segments	are	identified	as	flat	stutters	if	either	their	
total	height	change	or	slope	magnitude	are	below	user-defined	thresholds.	Flat	stutters	are	set	aside	
until	the	end	of	the	classification	procedures.	The	remaining	positive	and	negative	sloped	segments	are	
considered	separately	during	the	next	stage	(classification).	
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In	this	work,	line	segments	containing	MT	lengths	less	than	75	subunits	were	considered	nucleation	
segments.	Segments	were	identified	as	flat	stutters	if	the	total	height	change	was	less	than	3	subunits	or	
the	absolute	value	of	their	slopes	was	less	than	0.5	subunits/second.	
	
Classification	
In	the	classification	stage,	STADIA	takes	the	results	of	the	segmentation	stage	(segregated	positive	and	
negative	sloped	line	segments	that	approximate	the	MT	length-history	data)	and	analyzes	them	using	k-
means	clustering	in	conjunction	with	the	gap	statistic.		
	
Justification	for	using	k-means	clustering:	As	noted	at	the	beginning	of	the	Results	and	Discussion	
section,	one	criterion	for	developing	STADIA	was	that	it	be	unbiased	as	to	the	number	of	behaviors	
exhibited	by	MTs	to	remove	any	assumptions	about	MT	dynamics	being	restricted	to	two	behaviors	(i.e.,	
only	growth	and	shortening).	The	need	for	an	unbiased	classification	process	mandates	the	use	of	an	
unsupervised	machine	learning	method,	of	which	selection	is	limited.	Because	of	its	ability	to	identify	
locally	dense	substructures	within	data	of	various	types,	we	chose	to	use	k-means	to	handle	
classification	of	MT	length-history	data.	Ideal	datasets	for	k-means	follow	a	Gaussian	distribution	and	
are	regularly	(globularly)	shaped.	Although	our	data	is	not	Gaussian,	k-means	still	provides	an	objective	
methodology	to	find	substructures	in	the	overall	data	structure.	The	observation	that	k-means	enables	
us	to	identify	and	quantify	stutters	(a	behavior	that	has	previously	been	noted	but	not	quantified)	
indicates	that	it	provides	a	useful	methodology	for	unbiased	categorization	and	quantification	of	MT	
behavior.	
	
Preprocessing:	K-means	clustering	uses	Euclidean	distance	(i.e.,	straight-line	distance	between	two	
points	in	3-D	space)	as	the	primary	measurement	in	its	algorithm	to	classify	data.	Therefore,	that	all	
features	should	exist	on	the	same	scale	so	as	to	give	each	feature	equal	weight	in	the	k-means	
classification	process.	To	meet	this	requirement,	the	features	(slope,	height	change,	and	time	duration	
values)	of	each	segment	were	transformed	by	first	being	log-scaled	and	then	standardized	(i.e.,	by	
subtracting	the	mean	and	dividing	by	the	standard	deviation).	Scaling	and	standardizing	the	data	in	this	
way	is	a	common	practice	for	analysis	utilizing	k-means	clustering	and	allows	for	all	features	to	be	
considered	on	the	same	scale	to	better	suit	the	Euclidean	distance	used	in	k-means	clustering	(Hastie,	
Tibshirani,	and	Friedman	2009).	
	
Determining	appropriate	number	of	clusters	for	each	dataset:	The	k-value	(i.e.,	number	of	clusters	to	use	
in	k-means)	was	determined	for	positive	and	negative	slopes	separately	in	the	diagnostic	mode	of	
STADIA.	This	process	utilizes	the	‘gap	statistic’,	which	compares	the	within-cluster	dispersion	to	a	null	
reference	distribution	when	seeking	the	optimal	number	of	clusters	that	best	separates	the	data	during	
k-means	clustering	(i.e.,	the	gap	statistic	answers	the	question:	‘what	number	of	clusters	results	in	the	
best	separation	between	the	clusters?’)	(Tibshirani,	Walther,	and	Hastie	2001).	The	gap	statistic	is	the	
primary	driver	in	determining	the	proper	k-value	for	clustering	the	line	segment	data.	However,	it	is	also	
recommended	for	the	user	to	check	how	well	the	number	of	clusters	suggested	by	the	gap	statistic	
describes	the	dataset	qualitatively.	Typically,	the	optimal	k-value	corresponds	to	the	first	local	maximum	
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of	the	gap-statistic	plot.	In	some	cases,	however,	qualitative	inspection	of	the	data	may	suggest	that	the	
first	local	maximum	is	not	optimal,	in	which	case	the	next	local	maximum	should	be	used.	
	
For	the	purposes	of	informing	the	optimal	k-value	for	use	in	k-means	clustering,	STADIA	repeats	
clustering	procedures	for	different	k-values,	ranging	from	1	through	12,	using	100	random	starts	for	
each	value	(k-means	clustering	does	not	converge	to	a	global	maximum	so	multiple	starts	are	required	
to	determine	optimal	centroid	locations,	described	below).	Simultaneously,	STADIA	measures	the	
corresponding	gap	statistic	for	each	value	of	k.	As	explained	above,	in	our	analyses	the	k-value	
corresponding	to	the	first	local	maximum	of	the	gap	statistic	plot	was	usually	chosen	as	the	optimal	
number	of	clusters.	However,	qualitative	inspection	of	the	clustering	for	the	positive	slopes	of	the	in	
vitro	MTs	without	CLASP2γ	and	comparison	to	the	other	datasets	suggested	that	the	first	local	maximum	
greater	than	k=1	(i.e.,	k=3)	described	the	data	more	appropriately.	
	
k-means	clustering:	Once	the	optimal	number	of	clusters	is	determined	for	both	positive	and	negative	
slopes	using	the	diagnostic	mode	of	STADIA,	the	user	inputs	these	k-values,	and	k-means	clustering	
(Lloyd	1982;	Macqueen	1967)	is	performed	in	the	fully	automated	mode	on	the	positive	and	negative	
slopes	separately.	Segments	from	simulation	data	were	clustered	using	k=3	for	each	of	the	positive	and	
negative	slope	groups.	Similarly,	all	experimental	data	(either	with	or	without	CLASP2γ)	was	clustered	
using	k=3	for	positive	slopes	and	k=2	for	negative	slopes	(as	discussed	in	the	main	text,	k=2	for	negative	
slopes	was	appropriate	for	these	datasets	because	the	full	depolymerizations	were	not	captured	for	
technical	reasons).	The	final	clustering	results	were	obtained	from	using	500	random	starts	(again,	
multiple	trials	must	be	performed	to	determine	optimal	centroid	locations	as	k-means	is	not	guaranteed	
to	converge	to	a	global	optimum);	centroid	locations	that	attained	the	lowest	sum	of	squared	distances	
between	the	centroids	and	each	point	in	their	respective	clusters	were	chosen	for	further	analysis.	
	
Phase	bundling:	Following	k-means	clustering,	the	resulting	positive	and	negative	sloped	clusters	are	
collected,	along	with	the	‘flat	stutters’	that	were	removed	prior	to	clustering,	and	all	are	considered	
together	in	the	3-D	space	defined	by	the	segment	features	(SuppMat	Figure	S7).	Additionally,	statistics	
such	as	average	slopes,	average	time	duration,	and	average	height	change	are	calculated	for	each	
cluster	and	are	reported	(slopes	are	illustrated	in	Figure	3	C,F	and	slopes	and	time	durations	are	
illustrated	in	SuppMat	Figure	S8).	Clusters	with	similar	average	slopes	are	bundled	together	to	form	
larger	groups	representing	DI	phase	classes	(Figure	3	I).	Clusters	with	slopes	considerably	less	in	
magnitude	(flatter)	are	grouped	into	a	newly	identified	phase	called	‘stutters’	(along	with	the	‘flat	
stutters’	not	considered	during	the	clustering	process).	The	remaining	clusters	with	slopes	larger	in	
magnitude	(i.e.,	the	higher	positive	valued	and	lower	negative	valued	slope	segments)	more	closely	
resembled	the	classically	understood	growth	and	shortening	phases	(i.e.,	similar	positively	sloped	
segments	would	both	be	considered	‘growth’	phases,	and	similar	negatively	sloped	segments	would	
both	be	considered	‘shortening’	phases).	The	name	‘stutters’	suggests	that	though	there	may	be	micro-
level	fluctuations	in	the	MT	length,	the	net	length	does	not	change	considerably	over	the	duration	of	
each	stutter	segment,	especially	when	compared	to	segments	classified	as	growth	or	shortening	phases.		
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At	this	point,	every	segment	identified	during	the	segmentation	stage	has	been	classified	as	belonging	to	
one	of	the	following	DI	phase	classes:	nucleation,	growth,	shortening,	or	stutter.	Applying	these	phase	
class	labels	to	each	segment	in	the	length-history	plot	is	illustrated	in	Figure	3	G,H.	The	chronological	
ordering	of	phases,	recognized	as	phase	transitions,	can	now	be	performed.	
	
Phase	and	Transition	Analysis	
After	classifying	segments	into	phases,	classical	methods	of	calculating	DI	metrics	are	adapted	for	use	
with	the	newly	identified	stutter	phases.		
	
Phase	analysis:	The	following	attributes	of	each	phase	class	are	calculated:	percent	time	spent	in	each	

phase	(!"!#$	!&'(	)*(+!	&+	*,#)(
!"!#$	!&'(

×100%),	total	number	of	segments	(from	the	piecewise	linear	

approximation)	for	each	phase,	and	percent	height	change	corresponding	to	each	phase	(Figure	4	A	and	
SuppMat	Figure	S9).	
	

Transition	analysis:	Transition	frequencies	are	calculated	in	a	manner	similarly	to	what	has	been	done	
classically.	However,	with	the	newly	identified	stutter	phases,	there	are	additional	transitions	to	
consider.	In	particular,	it	is	necessary	to	determine	whether	catastrophes	and	rescues	are	(or	are	not)	
directly	preceded	by	stutters.	Catastrophes	and	rescues	are	identified	as	either	abrupt	(occurring	
without	detectable	stutters)	or	transitional	(occurring	via	a	stutter)	(Figure	4	D,E,F,G	and	Figure	5	
D,E,F,G).	Additionally,	our	analysis	quantifies	interrupted	growth	(growth	à	stutter	à	growth)	(Figure	4	
H;	Figure	5	H,I)	and	interrupted	shortening	(shortening	à	stutter	à	shortening)	(Figure	4	I).	Note	that	
MTs	shorter	than	a	user-defined	threshold	(here	the	threshold	used	was	75	dimer	lengths)	are	
considered	to	be	in	‘nucleation’	phase;	transitions	into	or	out	of	nucleation	phases	are	not	considered	
here	because	such	MTs	would	be	difficult	to	detect	in	experiments,	and	their	behavior	might	be	
influenced	by	the	seed.	
	
In	agreement	with	what	has	been	done	in	classic	DI	analyses,	frequencies	of	catastrophe	and	rescue	are	
calculated	as	the	ratio	of	the	number	of	catastrophe	or	rescue	events	to	the	total	time	spent	in	growth	
or	shortening,	respectively	(Table	1;	SuppMat	Figure	S9).	Similarly,	interruptions	are	calculated	as	the	
ratio	of	the	number	of	interrupted	growths	or	interrupted	shortenings	to	the	total	time	spent	in	growth	
or	shortening,	respectively.	Calculations	can	be	done	separately	for	abrupt	and	transitional	types	(e.g.,	

FAbrupt	Catastrophe	=	
#	"3	#456*!	7#!#)!5"*,()
!"!#$	!&'(	)*(+!	&+	85"9!,

)	or	collectively	by	simply	adding	the	frequencies	for	each	type	

together	(Fcat	=	Fabrupt	catastrophe	+	Ftransitional	catastrophe)	(SuppMat	Figure	S9).	
	
For	other	information	including	the	data	acquisition	methods	for	both	the	in	silico	and	the	in	
vitro	experiments,	please	see	the	Supplemental	Material.	
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Figure 1. Qualitative examples of behavior that does not fit two-state
framework in high-resolution simulation (in silico) and experimental (in vitro)
data. (A) An illustration of the classically recognized two-state representation
of DI, recognizing behavior as simply growth and shortening phases, with
instantaneous transitions known as catastrophe and rescue events. (B,D)
Zoomed out (two-state representation analogous to (A)) length history plots of
simulation data (detailed 13-PF model; see Methods) and experimental data
(note that depolymerizations were not tracked in their entirety in these
experiments). Black rectangles in B (simulation data) and D (experimental data)
indicate the zoomed-in portions shown in C and E, respectively. (C,E) Closer
inspection of transitions shows ambiguous behavior that cannot clearly be
categorized as either growth or shortening. Other behavioral phases need to be
considered in order to fully describe MT transitions and identify the exact
moments where transitions occur.
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Figure 2. Continuous piecewise linear approximation of length history data & segment data extraction. Classical Segmentation
Method: (A) Identify major vertices, such that local maxima and minima (blue triangles) are considered as catastrophes and rescues
(or nucleation events) respectively. (B) Connect major vertices (orange lines) to create a segmentation and approximation of the MT
length history data. Then calculate DI metrics from this approximation. STADIA Segmentation Method: (C) Generate initial
approximation by finding major peaks and valleys (local extrema with high prominence) and connecting these with line segments. (D)
Iteratively include new vertices (blue dots) where the highest error occurs in each segment to produce the final approximation, such
that all point-wise errors are less than the user-defined threshold (usually 10 to 25 dimer subunits). Note: this method produces a
closer approximation of the data than the classical segmentation method produces. (E) Calculate slope, height change, and time
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Figure 3. Cluster analysis results, slope metrics for the different clusters across data sets, and subsets of length history data with
subsequently labeled DI phases. STADIA performs the cluster analysis using the segment-feature metrics (slope, height change, and
time duration) identified in the length history approximation during the segmentation stage. (A,B) Log-transformed and standardized
segment features extracted from in silico and in vitro (control, no CLASP2γ) length history data approximations for positive sloped line
segments. Three clusters are suggested by the gap statistic for positive slopes in both data sets. (D,E) Log-transformed and standardized
segment features extracted from in silico and in vitro (control, no CLASP2γ) length history data approximations for negative sloped line
segments. The gap statistic suggested 3 clusters for the in silico negative sloped segments and 2 clusters for the in vitro negative sloped
segments. (C,F) Growth rates for the positive sloped segment clusters and shortening rates for negative sloped segment clusters
identified in the in silico and in vitro data sets. For positive slopes in each data set, two clusters (light and dark green) had average growth
rates relatively large in magnitude compared to the third (light blue). For negative slopes in each data set, the red (and light red for in
silico data) labeled shortening rates were on average relatively large in magnitude compared to the purple labeled group. (G,H) Previously
unlabeled in silico and in vitro MT length history plots (see Figure 1 A,C) are now labeled according to the subgroups that each line
segment fits into. Zoomed-in portions of previously ambiguous length history data (see Figure 1 B,D) are now clearly labeled as well-
defined DI phases. (I) Examination of the average slopes of the individual clusters indicates that bundling subgroups (clusters) together
into larger phase classes based on the average slopes of the individual clusters is appropriate. Clusters with positive and negative slopes
relatively larger in magnitude were bundled together into ‘Growth’ and ‘Shortening’ phases respectively. The remaining clusters, where
significantly less changes in length occur, were bundled together, along with the previously identified ‘near zero’ slope or flat segments,
into a new phase called ‘Stutters’. Further, ‘Brief’ and ‘Sustained’ sub-classes of the Growth and Shortening phases were characterized by
their time durations. The ‘Up’, ‘Flat’, and ‘Down’ sub-classes of the Stutter phase are characterized by the segment slope being positive,
near-zero, or negative, respectively.
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Figure 4. Phase metrics and transition analysis for in silico data (Max Protofilament length). (A) Percent time spent in and
percent height (MT length) change occurring during each bundled phase. A large majority of time is spent in the growth phase.
Interestingly, in silico MTs spend more time in the stutter phase than in the shortening phase, thus making stutters a significant
phase worth studying. Most height change occurs during growth and shortening phases, as is expected. Stutters account for a
markedly smaller percentage of height change, particularly when considered relative to their percentage of time; this makes sense
given that little height change takes place during stutter segments. (B) Percentages of transitional vs. abrupt phase changes
(transitional = with stutter phase between the growth/shortening phases; abrupt = without stutters) to/from growth and
shortening show that catastrophes are primarily transitional, whereas rescues are overwhelmingly abrupt. (C) The percentage of
phase transitions with stutters are compared separately for growth-to-stutters transitions and shortening-to-stutter transitions. A
bit more than half of the transitions entering stutters from a growth phase were observed to return to a growth phase; in other
words, stutter phases occur somewhat more commonly in interrupted growth transitions than transitional catastrophes. A vast
majority of transitions entering stutters from a shortening phase return to shortening, i.e., stutter phases appear in interrupted
shortening transitions much more commonly than transitional rescues. (D,E,F,G) Examples of abrupt/transitional catastrophes
(D,F) and abrupt/transitional rescues (E,G) for in silico MTs. Background colors indicate the subgroup identified by STADIA for
various sections of length history data. (H,I) Examples of interrupted growth and interrupted shortening for in silico MTs, where
interruption is defined by MTs in a growth/shortening phase undergoing a transition into a stutter phase, and then returning to
growth/shortening (growth-stutter-growth or shortening-stutter-shortening).
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Figure 5. Effect of CLASP2γ on the nature of catastrophes and the fate of MTs entering stutter phase. (A) Consistent with what
was seen for in silico MTs, the majority of catastrophes for in vitro MTs without CLASP2γ are transitional. In contrast, introduction
of CLASP2γ results in a reduction of stutter phases preceding catastrophes; it is possible that this is due to CLASP2γ promoting
growth after stutter phases. (B) When MTs transition from growth to stutter phases, they are more likely to transition into a
depolymerization phase when CLASP2γ is not present (i.e., without CLASP2γ, transitional catastrophes occur more often than
interrupted growth). With CLASP2γ, however, when MTs move from growth to stutter phases, they are more likely to transition
back into the growth phase (i.e., with CLASP2γ, interrupted growth occurs more often than transitional catastrophes). These
results provide a possible explanation for how CLASP2γ changes the overall makeup of catastrophes for in vitro MTs: transitions
that would have been transitional catastrophes without CLASP2γ are now interrupted growths with CLASP2γ. (C) CLASP2γ
decreases the overall frequency of catastrophe without significantly reducing the frequency of transitioning from the growth
phase to the stutter phase, indicating that CLASP2γ is preventing catastrophes by promoting growth following stutters without
preventing stutters altogether. (D,E,F,G) Examples of transitional and abrupt catastrophes, for in vitro MTs both with (bottom)
and without (top) CLASP2γ, show a clear qualitative distinction between transitional and abrupt catastrophes identified by
STADIA. (H,I) Examples of interrupted growth exhibited by in vitro MTs both with (bottom) and without (top) CLASP2γ shows a
transition from growth into stutter and back into growth phase.
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Simulation Data (Max PF Length)

Method
Total 

Cat.

Total 

Res.

Fcat

(min-1)

Fres

(min-1)

Vgrowth

(nm/s)

Vshort

(nm/s)

Classical Method 355 123 0.659 2.483 46.1 ± 5.1 540.0 ± 47.9
Strictly two-state:
*k=1 for pos & neg

449 214 0.912 4.391 46.4 ± 18.4 530.4 ± 556.0

Two-state w/ flat stutters:
**k=1 for pos & neg

429 195 0.870 4.098 47.2 ± 17.6 547.2 ± 556.8

All phases found by STADIA:

k=3 pos, k=3 neg
298 75 0.660 1.944

48.0 ± 7.2
63.2  ± 19.2
22.4 ± 8.8

552.8 ± 87.2
1016.8 ± 717.6

107.2 ± 72.8

Experimental Data (Control)

Method
Total 

Cat.

Total 

Res.

Fcat

(min-1)

Fres
***

(min-1)

Vgrowth

(nm/s)

Vshort
****

(nm/s)

Classical Method 802 40 0.717 N.D. 29.5 ± 12.7 330.1 ± 136.5
Strictly two-state:
*k=1 for pos & neg

856 83 0.777 N.D. 32.0 ± 24.8 216 ± 199.2

Two-state w/ flat stutters:
**k=1 for pos & neg

846 76 0.760 N.D. 32.8 ± 24.8 227.2 ± 198.4 

All phases found by STADIA:

k=3 pos, k=2 neg
734 18 0.756 N.D.

30.4 ± 7.2

60.0 ± 44.8

15.2 ± 5.6

373.6 ± 143.2

39.2 ± 25.6

Experimental Data (CLASP2γ)

Method
Total 

Cat.

Total 

Res.

Fcat

(min-1)

Fres
***

(min-1)

Vgrowth

(nm/s)

Vshort
****

(nm/s)

Classical Method 99 62 0.500 N.D. 43.1± 34.4 155.1 ± 77.6
Strictly two-state:
*k=1 for pos & neg

142 94 0.720 N.D. 46.4 ± 41.6 96.0 ± 84.0

Two-state w/ flat stutters:
**k=1 for pos & neg

131 87 0.676 N.D. 48.0± 41.6 108 ± 82.4

All phases found by STADIA:

k=3 pos, k=2 neg
86 52 0.498 N.D.

37.6 ± 11.2

100.0 ± 57.6

16.0 ± 7.2

158.4 ± 68.8

32.8 ± 17.6

Up Stutter

Down Stutter

Sustained 
Growth

Brief 
Growth

Sustained 
Shortening

Brief 
Shortening

Comparison of Full Analysis to k=1 and Classical Method

Table 1. Comparison of DI metrics from classical two-state analysis, STADIA two-state analysis, and STADIA full analysis.
The results from the full, automated analysis conducted by STADIA were compared to results from both the classical
method (identifying only major peaks and valleys, and connecting line segments to form a course-grained approximation)
as well as two-state approaches (a fine-grained approximation was generated by STADIA, but phase classes were restricted
to only growth and shortening (*) or growth, shortening, and flat stutters (**) ). While there is not one-to-one
correspondence between any of the methods, there is general agreement where possible. For the experimental datasets,
depolymerizations were not captured in their entirety, so (***) rescue data was not reported and (****) negative slope
segments were separated into only two clusters, yielding only two Vshort measurements. Vgrowth and Vshort measurements
are listed in a mean standard deviation format. Additionally, rescue metrics were not determined (N.D.) for experimental
data due to depolymerizations not being captured in their entirety.
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Figure S1. Workflow diagram outlining main steps of STADIA.

Input MT length 
history data (e.g., 
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data)
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Classify line segments into 
subgroups using k-means in 
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3-D line segment features
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Calculate subgroup metrics

Conduct transition analysis by 
considering all possible 

combinations of phase ordering

Identify local extrema as a
initial approximation

Bundle subgroups 
into phase classes

Segmentation Classification Transition Analysis

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 17, 2019. ; https://doi.org/10.1101/2019.12.16.878603doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.16.878603
http://creativecommons.org/licenses/by-nc-nd/4.0/


100

0

-100

-200

Sl
o

p
e

 (
su

b
u

n
it

s/
s)

200

200 10

2 4 6 8100 0 -100

150

50

-50

-150

Figure S2. (A) Data points representing each line segment reside on this Z(X,Y) = X/Y manifold, where Z = slope, X = time, and Y =
height. (B) Justification for using height, time, and slope is demonstrated using a parallel example in two dimensions where we
plot a dataset containing four groups (clusters) of points that fall on the curve determined by the function y = 1/x. Plotting only y
(top left) or only x (bottom right) creates the appearance that this dataset contains only three groups of points. In contrast, when
the data are plotted in two dimensions (upper right), the data are separated sufficiently to reveal that the dataset actually contains
four groups of points. For similar reasons, we need to consider all three variables in our line segment data to properly identify the
groups in our dataset.
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Figure S3. The segment features (slope, height change, and time duration) for segments
identified from the piecewise linear approximation to the in silico length history data. Each
point corresponds to one line segment from the length history approximation and is colored
according to the phase class identified by STADIA after a full analysis. (A-D) Multiple
perspectives of the same plot, provided to help visualize the 3-D data. (E) An illustration of how
the segment points lie on the Z=Y/X manifold described in Supplemental Figure S2.
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Figure S4. Gap Statistic plots and corresponding clustering profiles for positive slope
segments in each log transformed and normalized data set. When using the gap
statistic to suggest the best number of clusters to use in k-means clustering, the rule
of thumb is to use the first k-value where the gap statistic plot shows a local
maximum. In practice here, we expect the number of clusters to be greater than 1,
because the 3-D data structure shows multiple appendages separated by a sparsely
populated region of points. Thus, for the case with simulation data using the mean PF
length and the control experimental data, the local maximum at k=1 is rejected.
Taking this into consideration, all data sets indicate that the gap statistic attains the
first local maximum greater than one at k=3. So, for all positive slope segment data, k-
means clustering is performed by separating the data into 3 clusters. Furthermore,
since the clustering profile of the simulation data using the max PF length more
closely resembles the clustering profile of the experimental data, we choose to use
the max PF data instead of the mean PF data for presenting the STADIA results in the
main text.

2
0

-2
-4Sl

o
p

e

4

-5 0
5 -5

0
5

-6
-8

12

3

2
0

-2
-4Sl

o
p

e

4

-5 0
5 -5

0
5

-6
-8

12

3

4

2

0

-2

Sl
o

p
e

6

-5 0
5 -5

0
5

-4

1
2

3

4
2
0

-2Sl
o

p
e

6

-5 0 5 -5 0 5

-4
-6

1
2

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 17, 2019. ; https://doi.org/10.1101/2019.12.16.878603doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.16.878603
http://creativecommons.org/licenses/by-nc-nd/4.0/


1.2

1.0

0.8

0.6

G
ap

 V
al

u
e

s

1.4

0

Number of Clusters

2 4 6 8 10 12 14

NEGATIVE Slopes

Si
m

u
la

te
d

 D
at

a 
(M

e
an

 P
F)

1.3

1.1

0.9

0.7

G
ap

 V
al

u
e

s

1.5

0

Number of Clusters

2 4 6 8 10 12 14

NEGATIVE Slopes

Si
m

u
la

te
d

 D
at

a 
(M

ax
 P

F)

1.25

1.15

1.05

0.95

G
ap

 V
al

u
e

s

1.35

0

Number of Clusters

2 4 6 8 10 12 14

NEGATIVE Slopes

Ex
p

e
ri

m
e

n
t 

D
at

a 
(C

o
n

tr
o

l)

0.65

0.55

0.45

0.35

G
ap

 V
al

u
e

s

0.75

0

Number of Clusters

2 4 6 8 10 12 14

NEGATIVE Slopes

Ex
p

e
ri

m
e

n
t 

D
at

a 
(C

LA
SP

2
γ)

Figure S5. Gap Statistic plots and corresponding clustering profiles for negative
slope segments in each log transformed and normalized data set. When using the
gap statistic to suggest the best number of clusters to use in k-means clustering, the
rule of thumb is to use the first k-value where the gap statistic plot shows a local
maximum. The two simulation data sets indicate that the gap statistic attains the first
local maximum greater than one at k=3, whereas the experimental data sets indicate
k=2. We attribute this disagreement to the fact that in these experimental datasets,
only the beginnings of depolymerization events were captured, thus omitting long
time duration shortening segments from the dataset. So, for negative slope
segments, we performed k-means clustering separating the simulation data into 3
clusters and the experimental data into 2 clusters.
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Figure S6. Gap Statistic plots and segment feature plots for an analysis where all slope segments in each data set were considered
together (excluding flat segments), not separated into positive and negative slopes as in Figures S4 and S5. Note that the gap
statistic plots are monotonically increasing, indicating that the initial dataset was too complex for effective identification of an optimal
k-value for clustering (for this reason, the data are not color-coded as in the previous two figures). If the two-state model were correct,
one might expect that the dataset would be optimally separable into two groups, and that the gap statistic plot would attain its first
local maximum at k=2. However, even when the two-state conclusion is assisted by removing segments with slope or length change
approximately equal to zero, providing a clear band of separation between growth and shortening (as is depicted in this figure), k=2 is
still not suggested by the gap statistic. This result indicated that we needed to subdivide the dataset before further analysis (Tibshirani,
Walther, and Hastie 2001). Combined with established knowledge of mechanistic differences between growth and shortening, we
chose to treat positive and negative separately.
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Figure S7. Clustering profiles for ALL segments of in silico and in vitro data. Following
separate classification of the positive and negative slopes (see Figures S4 and S5), segment
data is un-log-transformed and unstandardized for full view of line segment data in 3-D
space. Note that the classification step has already taken place, and these figures are
simply for visualizing how the clusters exist in relation to each other in 3-D space.
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Figure S8. Box and whisker plots of rates of MT length change (subunits/sec) and time durations for different subgroups
across data sets to motivate subsequent bundling (box and whiskers cover the four quartiles of each subset, and the ‘X’
marks the mean value in the plots). Note: the first two data sets in A and B are the same as the data presented in Figure 3 C
and F, respectively. (A) Growth rates for the positive sloped segment clusters identified in the simulation data sets and the
experimental data sets without and with CLASP2γ. In each data set, two clusters (light and dark green) had average growth
rates relatively large in magnitude compared to the third (light blue). (B) Shortening rates for the negative sloped segment
clusters identified in the simulation data and in the experimental data sets without and with CLASP2γ. In each data set, the
red-labeled shortening rates were on average relatively large in magnitude compared to the purple-labeled group. (C) Time
durations for the positive sloped segment clusters show that one subset of segments (light green) represents a longer, more
sustained period of consistent behavior than the other two subsets (blue and dark green) for all data sets considered. (D) Time
durations for negative sloped segment clusters from simulation data also shows that one subset (light red) represents a longer,
more sustained period of consistent behavior than the other two subsets (purple and dark red). Since the experimental data
did not capture most of the shortening behavior, analysis of longer time duration shortening segments was not possible for the
in vitro data sets. (E) Bundling subgroups together into larger phase classes based on the average slopes of individual clusters.
Clusters with positive and negative slopes relatively larger in magnitude were bundled together into ‘Growth’ and ‘Shortening’
phases respectively. The remaining clusters, where significantly less changes in length occur, were bundled together, along
with the previously identified ‘near zero’ slope or flat segments, into a new phase called ‘Stutters’. Further, ‘Brief’ and
‘Sustained’ sub-classes of the Growth and Shortening phases were characterized by their time durations. The ‘Up’, ‘Flat’, and
‘Down’ sub-classes of the Stutter phase are characterized by the segment slope being positive, near-zero, or negative
respectively.
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Figure S9. Segment statistics for all in silico and in vitro data sets. Number of segments, percent time, and percent
height change for each cluster are recorded for each data set. For the in silico data sets where depolymerizations
were fully captured, the breakdown of the number of segments, time duration, and height change are
representative of the actual time the simulated MT spent in the various phases. As noted throughout the paper, the
in vitro depolymerizations were not captured in their entirety, and so the number of negative slope segments,
percent time, and the percent height change attributed to negatively sloped MT behavior is largely underreported.
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Figure S10. Detailed transition statistics for each data set. Both in silico data sets as well as the control experimental data set
demonstrate that a significant majority of catastrophes occur via stutter (i.e., transitional catastrophe), while the CLASP2γ data set
shows a shift to MTs exhibiting abrupt catastrophes. We speculate that the shift to abrupt catastrophes is due to CLASP2γ
promoting tip extensions (see the Results and Discussion for more information on mechanistic speculation regarding the effects of
CLASP2γ). Rescue data for in silico MTs indicates clearly that rescues largely occur abruptly. Note that rescue metrics were not
determined (N.D.) for the in vitro data due to a lack of depolymerizations captured for in vitro MTs.

Transition Statistics
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Total Catastrophe 734 0.0126

Abrupt Rescue
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STADIA: User-defined Parameters

Nucleation height threshold 75 subunits

Minimum time duration of a linear segment 500 ms

Maximum height error tolerance 20 subunits

Maximum height change for near-zero slope segments 3 subunits

Maximum slope magnitude for near-zero slope segments 0.5 subunits/sec

Number of centroids for positive slope segments 3

Number of centroids for negative slope segments (in 

silico data)
3

Number of centroids for negative slope segments (in vitro

data)
2

Table S1. User-defined parameters for STADIA and classical analysis.

Classical Analysis: User-defined Parameters
Minimum peak height 95 subunits

Minimum rescue length 95 subunits

Minimum Prominence For Major Peaks 20 subunits

Minimum Prominence For Minor Peaks 0.1 subunits

Minimum Regression R2 0.95
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13-PF Detailed MT Computational Model Parameters

Number of protofilaments 13

Tubulin concentration 10 μM

Simulation time 10 hours

Seam shift 1.5 subunit lengths

Compete for tubulin No

Hydrolysis rate 0.7 subunits/sec

HalfMax 200

kgrowT 250

kgrowD 250

kshortT 0.02

kshortD 20

kbondTT 100

kbondTD 100

kbondDT 100

kbondDD 100

kbreakTT 70

kbreakTD 90

kbreakDT 90

kbreakDD 400

SkbondTT 200

SkbondTD 200

SkbondDT 200

SkbondDD 200

SkbreakTT 140

SkbreakTD 180

SkbreakDT 180

SkbreakDD 800

Table S2. Computational model parameters used to 
generate simulation data. Parameters used are from 
Margolin et al. 2012.
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SUPPLEMENTAL MATERIAL 
DATA ACQUISITION: IN SILICO MICROTUBULE EXPERIMENTS 

This section outlines the details regarding the acquisition of simulation MT data including information 

about both the model and the parameters used.  

 

The computational model: Stochastic model for simulating 13-protofilament (13-PF) MTs 

The computational MT model used in this paper to generate the in silico length-history data was an 

updated version of the detailed, stochastic MT model published in (Margolin et al. 2012), which is a 

kinetic Monte Carlo simulation that tracks the state of individual subunits (representing tubulin dimers) 

in the entire 13-protofilament MT structure. Simulation of MTs is done using biochemical rate constants 

in conjunction with the Gillespie algorithm (Gillespie 1976, 1977) to sample event times and to build a 

stochastic simulation of individual molecular-level events (e.g., formation/breaking of longitudinal and 

lateral bonds, and hydrolysis). A key difference between the previous versions and the current 

computational model is strict adherence to the assumption that only one of the many possible 

biochemical events occurs at a time. The previous detailed level 13-PF MT model approximated 

hydrolysis events by allowing several subunits to hydrolyze simultaneously after one of the other four 

reaction events (lateral bonding/breaking or subunit gain/loss) have occurred. Hydrolysis events are 

now considered as a possible event in the same way that the others are handled. This modification 

resulted in very little change in macro-level behavior of in silico MTs, but the ability to output dedicated 

observations to each dimer-level event is a more accurate representation of MT biochemistry. The 

overall result of the simulation is in silico MTs that exhibit macro-level DI behaviors in agreement with 

those observed for previously (Margolin et al. 2012).  

 

Simulation setup and parameters 

The dimer-scale kinetic parameters used in this study to simulate a 13-protofilament MT using the 

model described above were tuned in (Margolin et al. 2012) based on in vitro DI measurements from 

(Walker et al. 1988); a detailed list of parameters can be found in SuppMat Table S2. For the purposes 

of this analysis, a single non-competing MT was simulated at a constant [free tubulin] of 10 μM for 10 

hours of simulation time. The max PF length (i.e., the length of the longest of the 13 protofilaments) was 

reported as the length of the MT, which was used to generate a length-history plot passed into STADIA. 

Though the mean PF length could have been used to represent the length of the entire MT, better 

agreement with the in vitro data used here was found using the max PF length instead (see clustering 

profiles in SuppMat Figure S4). 

 

DATA ACQUISITION: IN VITRO MICROTUBULE EXPERIMENTS 

This section outlines the details regarding capture of experimental MT data including conditions for a 

control group (tubulin + EB1) and a group with MTBPs (tubulin + EB1 + CLASP2γ). A subset of the in vitro 

dataset was previously published in (Lawrence et al. 2018). 

 

Protein preparation 

His-CLASP2γ and His-EB1 were purified as previously described (Zanic et al. 2013; Lawrence et al. 2018). 

Bovine brain tubulin was purified using the high-molarity method (Castoldi and Popov 2003). Tubulin 
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was labeled with TAMRA and Alexa Fluor 488 (Invitrogen) according to the standard protocols, as 

previously described (Hyman et al. 1991).  

 

TIRF microscopy 

Imaging was performed using a Nikon Eclipse Ti microscope with a 100×/1.49 n.a. TIRF objective, NEO 

sCMOS (complementary metal–oxide–semiconductor) camera; 488- and 561- solid-state lasers (Nikon 

Lu-NA); Finger Lakes Instruments HS-625 high speed emission filter wheel; and standard filter sets. An 

objective heater was used to maintain the sample at 35°C. Microscope chambers were constructed as 

previously described (Gell et al. 2010). In brief, 22 × 22 mm and 18 × 18 mm silanized coverslips were 

separated by strips of Parafilm to create a narrow channel for the exchange of solution (Gell et al. 2010). 

Images were acquired using NIS-Elements (Nikon). 

 

Dynamic MT Assay 

GMPCPP-stabilized MTs were prepared according to standard protocols (Hyman et al. 1992; Gell et al. 

2010). Dynamic MT extensions were polymerized from surface-immobilized GMPCPP-stabilized 

templates as described previously (Gell et al. 2010). The imaging buffer consisted of BRB80 

supplemented with 40 mM glucose, 40 µg/ml glucose oxidase, 16 µg/ml catalase, 0.5 mg/ml casein, 100 

mM KCl, 10 mM DTT, and 0.1% methylcellulose. The imaging buffer containing 1 mM GTP and purified 

proteins was introduced into the imaging chamber. Dynamic MTs were grown with 12 µM Alexa 488-

labeled tubulin and 200 nM EB1 with or without 400 nM CLASP2γ and imaged at 2 fps using a 100× 

objective and an Andor Neo camera (pixel size of 70 nm). Alexa-488-labeled tubulin was used at ratio of 

23% of the total tubulin. Dynamic MT tip positions as a function of time were determined by kymograph 

analysis using KymographDirect and KymographClear (Mangeol, Prevo, and Peterman 2016). 

 

In vitro MT length-history data  

Length-history data for in vitro MTs was obtained from 30 minute-long experiments using both a control 

group and a group with the stabilizing MTBP, CLASP2γ. The control group data was acquired from 68 MT 

seeds, from which 776 individual traces were observed. The group with CLASP2γ was acquired from 29 

MT seeds, from which 85 individual traces were observed. After applying the stitching preprocessing 

step during the STADIA segmentation stage, the control group and the group with CLASP2γ each 

generated a single stream time series representing length-history data with total time duration over 21 

hours and 3.5 hours respectively. The collective consideration of all experimental data samples together 

meets the needs of the machine learning requirements for reliable clustering results (i.e., the lifetime of 

a single MT alone would not be a sufficient amount of data for k-means clustering). 
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