

1 **An open-source multiple-bioreactor system for replicable gas-
2 fermentation experiments: Nitrate feed results in stochastic
3 inhibition events, but improves ethanol production of
4 *Clostridium ljungdahlii* with CO₂ and H₂**

5 **Christian-Marco Klask¹, Nicolai Kliem-Kuster¹, Bastian Molitor¹, Largus T. Angenent^{1,2*}**

6 ¹Environmental Biotechnology Group, Center for Applied Geoscience, University of Tübingen,
7 72074 Tübingen, Germany

8 ²Max Planck Fellow, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany

9 *** Correspondence:**

10 Corresponding Author

11 l.angenent@uni-tuebingen.de

12 **Keywords: gas fermentation, *Clostridium ljungdahlii*, acetogenic bacteria, bioreactor system,
13 pH-regulation, nitrate.**

14 **Abstract**

15 The pH-value in fermentation broth has a large impact on the metabolic flux and growth behavior of
16 acetogens. A decreasing pH level throughout time due to undissociated acetic acid accumulation is
17 anticipated under uncontrolled pH conditions such as in bottle experiment. As a result, the impact of
18 changes in the metabolism (e.g., due to a genetic modification) might remain unclear or even
19 unrevealed. In contrast, pH-controlled conditions can be easily achieved in commercially available
20 bioreactors. However, their acquisition is costly and their operation is time consuming, and therefore
21 the experiment is often limited to a single bioreactor run. Here, we present a self-built, relatively
22 cheap, and easy to handle open-source multiple-bioreactor system (MBS) consisting of six pH-
23 controlled bioreactors at a 1-L scale. The functionality of the MBS was tested in three experiments by
24 cultivating the acetogen *Clostridium ljungdahlii* with CO₂ and H₂ at steady-state conditions
25 (=chemostat). The experiments were addressing the questions: (1) does the MBS provide replicable
26 data for gas-fermentation experiments?; (2) does feeding acetate alter the production rate of ethanol;
27 and (3) does feeding nitrate influence the product spectrum under controlled pH conditions with CO₂
28 and H₂? We applied four different periods in each experiment ranging from pH 6.0 to pH 4.5. Our
29 data show high reproducibility for gas-fermentation experiments with *C. ljungdahlii*, using the MBS.
30 We found that feeding acetate did not improve ethanol production, but rather impaired growth and
31 reduced acetate production. Using nitrate as sole N-source, on the other hand, enhanced biomass
32 production even at a low pH. However, we observed differences in growth, acetate, and ethanol
33 production rates between triplicate bioreactors (n=3). We explained the different performances
34 because of stochastic inhibition events, which we observed through the accumulation of nitrite, and
35 which led to complete crashes at different operating times. One of these bioreactors recovered after
36 the crash and showed enhanced ethanol production rates while simultaneously producing less acetate.
37 The MBS offers a great opportunity to perform bench-scale bioreactor experiments at steady-state
38 conditions with replicates, which is especially attractive for academia.

40 Introduction

41 An increasing world population will likely lead to growing energy demands. To meet these demands
42 in a sustainable way, we need to rethink the *status quo* of a fossil-based economy and transition into
43 a renewable-based and circular economy. Furthermore, we have to mitigate the apparent climate
44 effects of anthropogenic greenhouse gas emissions, such as carbon dioxide (CO₂), which are caused
45 preliminary by industry, agriculture, and transportation. Biotechnology offers potential to contribute
46 to climate-friendly and economically feasible solutions. One promising solution is synthesis gas
47 (syngas) fermentation with microbes (Mohammadi et al., 2011). For syngas fermentation, mixtures of
48 the gases CO₂, hydrogen (H₂), and carbon monoxide (CO) are converted into products, such as
49 acetate and ethanol, by acetogenic bacteria (Dürre, 2017). This process provides a promising way to
50 produce chemicals and biofuels with a reduced CO₂-footprint (Latif et al., 2014; Molitor et al., 2017;
51 Phillips et al., 2017).

52 In recent years, the company LanzaTech (Skokie, IL, USA) demonstrated that ethanol production
53 from syngas with the acetogen *Clostridium autoethanogenum* is possible at commercial scale, which
54 further indicates the potential of this platform. While the LanzaTech technology is based on
55 proprietary strains of *C. autoethanogenum*, in academic research the most frequently studied
56 acetogen is the closely related microbe *Clostridium ljungdahlii*. Both microbes produce acetic acid,
57 ethanol, and some 2,3-butanediol from gaseous substrates (Tanner et al., 1993; Abrini et al., 1994;
58 Köpke et al., 2010; Brown et al., 2014).

59 Different strategies are employed to optimize *C. autoethanogenum* and *C. ljungdahlii* for
60 biotechnology. On the one hand, genetic engineering is used to generate modified strains that
61 produce butyrate (Köpke et al., 2010), butanol (Köpke and Liew, 2012; Ueki et al., 2014), acetone,
62 and isopropanol (Bengelsdorf et al., 2016; Köpke et al., 2016). In academic research, the
63 physiological characterization of these genetically engineered strains is typically performed in batch
64 experiments with serum bottles, which does not allow to control important process parameters such
65 as the pH-value. On the other hand, bioprocess engineering is used to investigate and optimize the
66 production of naturally occurring products, such as ethanol, in optimized bioreactor systems
67 (Younesi et al., 2005; Mohammadi et al., 2012; Richter et al., 2013; Abubackar et al., 2015). While
68 the impact of cultivation parameters can be investigated within one study, these studies often are
69 difficult to compare with each other, because very different bioreactor architectures and process
70 parameters are used (Asimakopoulos et al., 2018). Furthermore, because of the complexity, these
71 setups are not suitable to perform preliminary experiments with genetically engineered strains. These
72 issues can be partly overcome by utilizing commercially available bioreactor (chemostat) systems.
73 However, these systems are costly, and therefore often not available to laboratories that do not focus
74 on bioprocess engineering. Consequently, genetically engineered strains are typically not studied in
75 fermentations beyond the serum bottle size, which leaves a gap between the construction of these
76 strains and the investigation under controlled fermentation conditions.

77 To close this gap, we developed a cost-efficient, open-source multiple-bioreactor system (MBS) that
78 can be built from off-the-shelf components at a considerably lower cost compared to the cost of
79 commercial bioreactor systems. We give all information on purchasing the required parts, the
80 assembly of the MBS, the process control elements (e.g., stirring, pH, temperature), and further
81 improvement ideas. We tested our MBS with *C. ljungdahlii* and CO₂ and H₂ as substrate under
82 controlled pH conditions by addressing three questions: (1) does the MBS provide replicable data for
83 gas-fermentation experiments; (2) does feeding acetate alter the production rate of ethanol; and (3)
84 does feeding nitrate influence the product spectrum?

85 We selected the first question to test the reproducibility of our system, while the latter two questions
86 address the physiology of the microbe. Acetogens such as *C. ljungdahlii* are known to be highly
87 dependent on the pH in the fermentation broth. Since their main fermentation product is acetate,
88 which acts (in the form of the undissociated acetic acid) as a weak acid, no pH control in serum
89 bottles would intrinsically lower the pH of the medium during growth, but can be controlled in
90 bioreactors such as in our MBS (Drake et al., 2008).

91 Our second question addresses acetate as a fermentation product directly. It has been demonstrated
92 that feeding acetate from the first stage to the second stage in a two-stage bioreactor system with
93 syngas including CO led to increased ethanol production rates with *C. ljungdahlii* (Richter et al.,
94 2013). Others have shown that feeding acetate to a single bioreactor with CO₂ and H₂ also led to
95 increased ethanol production rates with *C. autoethanogenum* (Mock et al., 2015). In both cases the
96 pH was an important parameter because ethanol production is thermodynamically triggered at a low
97 pH (Richter et al., 2016).

98 Our third question addresses the finding from a recent study in which nitrate was used as an
99 alternative electron acceptor by *C. ljungdahlii*, while it also served as sole nitrogen source (N-source)
100 in ammonium-free medium (Emerson et al., 2019). The co-utilization of CO₂ and nitrate enhanced
101 the autotrophic biomass formation with CO₂ and H₂ compared to standard cultivation conditions with
102 ammonium as the sole N-source. Contrarily, ethanol production was strongly reduced under nitrate
103 conditions with CO₂ and H₂. The authors discussed that nitrate reduction consumes electrons, which
104 would be no longer available for the production of ethanol. At the same time, nitrate reduction led to
105 an accumulation of ammonium, which resulted in a continuous increase of the pH from 6.0 to 8.0
106 during the batch cultivations in serum bottles (Emerson et al., 2019), which would intrinsically
107 prevent ethanol production. These two questions on the physiology address growth conditions in
108 which the medium pH has a considerable impact on the production of biomass and fermentation
109 products, such as acetate and ethanol, and therefore are perfectly suited to demonstrate the
110 functionality of our MBS.

111 Materials and Methods

112 Microbial strains and medium composition

113 Wild type *C. ljungdahlii* PETC (DSM 13528) was obtained from the DSMZ (Braunschweig,
114 Germany) and used for all experiments. Pre-cultures were grown heterotrophically at 37°C (IN260
115 stand incubator, Memmert, Germany) in 100-mL serum bottles with 50 mL of standard PETC
116 medium containing (per liter): 0.5 g yeast extract; 1.0 g NH₄Cl; 0.1 g KCl; 0.2 g MgSO₄·7 H₂O; 0.8 g
117 NaCl; 0.1 g KH₂PO₄; 0.02 g CaCl₂·2 H₂O; 4 mL resazurin-solution (0.025 vol%); 10 ml trace
118 element solution (TE, 100x); 10 mL Wolfe's vitamin solution (100x); 10 mL reducing agent (100x);
119 and 20 mL of fructose/2-(*N*-morpholino)ethanesulfonic acid (MES) solution (50x). Vitamins,
120 reducing agent, and fructose/MES solution were added after autoclaving under sterile conditions. TE
121 was prepared as 100x stock solution containing (per liter): 2 g nitrilotriacetic acid (NTA); 1 g
122 MnSO₄·H₂O; 0.8 g Fe(SO₄)₂(NH₄Cl)₂·6 H₂O; 0.2 g CoCl₂·6 H₂O; 0.0002 g ZnSO₄·7 H₂O; 0.2 g
123 CuCl₂·2 H₂O; 0.02 g NiCl₂·6 H₂O; 0.02 g Na₂MoO₄·2 H₂O; 0.02 g Na₂SeO₄; and 0.02 g Na₂WO₄.
124 The pH of the TE was adjusted to 6.0 after adding NTA. The solution was autoclaved and stored at
125 4°C. Wolfe's vitamin solution was prepared aerobically containing (per liter): 2 mg biotin; 2 mg folic
126 acid; 10 mg pyridoxine-hydrochloride; 5 mg thiamin-HCl; 5 mg riboflavin; 5 mg nicotinic acid; 5 mg
127 calcium pantothenate; 5 mg *p*-aminobenzoic acid; 5 mg lipoic acid; and 0.1 mg cobalamin. The
128 vitamin solution was sterilized using a sterile filter (0.2 µm), sparged with N₂ through a sterile filter,

129 and stored at 4°C. The 50x fructose/MES solution contained (per 100 mL): 25 g fructose; and 10 g
130 MES. The pH was adjusted to 6.0 by adding KOH. The solution was sterilized, sparged with N₂
131 through a sterile filter, and stored at room temperature. The reducing agent was prepared under 100%
132 N₂ in a glove box (UniLab Pro Eco, MBraun, Germany) and contained (per 100 mL): 0.9 g NaOH; 4
133 g cysteine-HCl; and 2.17 g/L Na₂S (60 weight%). Anaerobic water was used for the preparation of
134 the reducing agent. The reducing agent was autoclaved and stored at 4°C.

135 For all bioreactor experiments, the standard PETC medium for the initial batch phase was
136 supplemented with 0.5 g L⁻¹ yeast extract and autoclaved inside the bioreactor vessel with an open
137 off-gas line to enable pressure balance. The autoclaved bioreactors were slowly cooled down at room
138 temperature overnight with an attached sterile filter at the off-gas line. After transferring each
139 bioreactor to the MBS frame, the medium was continuously sparged with a gas mixture of CO₂ and
140 H₂ (20:80 vol%) through a sterile filter. After 1 h, vitamins and reducing agent were added through
141 the sampling port. N₂ gas was applied through a sterile filter to flush the sampling port after each
142 addition of media components. Subsequently, each bioreactor was inoculated with 5 mL of an
143 exponential heterotrophically grown PETC culture (OD₆₀₀ 0.5-0.8). Feed bottles containing 4 L of
144 PETC medium with additions, as described below, were prepared for continuous mode, autoclaved,
145 and stored overnight with an attached sterile filter on the off-gas line. The bottles were sparged with
146 N₂ for 2 h through a sterile filter. Vitamins and reducing agents were added under sterile conditions.
147 A gas bag with N₂ gas was attached with a sterile filter to balance the pressure in the feed bottle
148 during the bioreactor run. Standard PETC medium for continuous mode did not contain yeast extract
149 and was adjusted to the respective pH of the period. For the first experiment we used standard PETC
150 medium. For the second experiment, we added 100 mM Na-acetate or 100 mM NaCl (to give a
151 similar ion strength). For the third experiment, we supplied no NH₄Cl, but we supplied the equivalent
152 amount of nitrogen as NaNO₃ (18.7 mM).

153 Bioreactor setup and standard operating conditions

154 Six 1-L self-built bioreactors (**Fig. 1, Results S1**) with a working volume of 0.5 L were used for the
155 three experimental bioreactor runs (**Fig. 2**, **Fig. 3**, **Fig. S4**). The cultivation temperature was 37°C
156 and the agitation was set to 300 rpm. The gas flow rate was adjusted to 30 mL min⁻¹ *prior* to
157 inoculation. For continuous-mode operating conditions, the medium feed rate was measured to be
158 0.10 mL min⁻¹, which resulted in a 3.5-day hydraulic retention time (HRT), and which represents 1.7
159 HRT periods within each period of six days. To establish microbial growth in the MBS after one
160 inoculation event for each bioreactor, we operated the MBS in batch mode for three days before
161 switching to continuous mode. The pH was set to 6.0 during the batch mode and the first 6 days
162 (Period I) in continuous mode. Subsequently, the pH setting was lowered stepwise in 6 days to a pH
163 of 5.5, 5.0, and 4.5 (Period II-IV). While the pH of the feed medium was adjusted to the anticipated
164 pH of the period, we did not use the acid feed to actively adjust the pH within the bioreactor. Instead,
165 we let the pH decrease to the set value by the microbial production of undissociated acetic acid to
166 avoid a pH shock. This took approximately two days of each 6-day period (**Table 1**). For the first
167 experimental bioreactor run (**Fig. 2**), only base pumps were connected to the bioreactors. For the
168 second experimental bioreactor run (**Fig. 3**), acid and base pumps were connected to the bioreactors
169 with nitrate feed and only base pumps to the bioreactors with ammonium feed.

170

171 Sampling and analyses

172 Bioreactors were sampled once or twice per day. A pre-sample of 3 mL of cell suspension was
173 discarded, before transferring 2 mL of cell suspension into 2-mL reaction tubes (main sample). The
174 multi-channel pump was switched off during the sampling procedure. Cell growth was monitored by
175 measuring the optical density at 600 nm (OD_{600}) (Nanophotometer NP80, Implen, Germany). For
176 OD_{600} -values larger than 0.5, dilutions with 100 mM phosphate-buffered saline (PBS) at pH=7.4
177 were prepared. Nitrate and nitrite concentrations were qualitatively monitored using test stripes
178 (Quantofix nitrate/nitrite, Macherey-Nagel, Germany). A correlation between cellular dry weight
179 (CDW) and OD_{600} was calculated by harvesting 50 mL of culture sample from every bioreactor,
180 centrifugation of the samples at 3428 relative centrifugal force (rcf) (Eppendorf centrifuge 5920R)
181 for 12 min at room temperature (RT) and, subsequently, drying the pellet at 65°C for 3 days. The
182 CDW for an OD_{600} of 1 was determined to be 0.24 g L⁻¹ for cultures grown in PETC medium and
183 0.29 g L⁻¹ for cultures grown in PETC medium with nitrate instead of ammonium.

184 Acetate and ethanol concentrations were analyzed *via* a high pressure liquid chromatography (HPLC)
185 (LC20, Shimadzu, Japan) system that was equipped with an Aminex HPX-87H column and operated
186 with 5 mM sulfuric acid as eluent. The flow was 0.6 mL min⁻¹ (LC-20AD). The oven temperature
187 was 65°C (CTO-20AC). The sample rack of the HPLC was constantly cooled to 15°C in the
188 autosampler unit (SIL-20AC_{HT}). For HPLC sample preparation, all culture samples were centrifuged
189 for 3 min at 15871 rcf (Centrifuge 5424, Eppendorf, Germany) in 1.5-mL reaction tubes. 750 µL of
190 the supernatant was transferred into clean reaction tubes and stored at -20°C until use. Frozen
191 samples were thawed at 30°C and 250 revolutions per minute (rpm) for 10 min (Thermomixer C,
192 Eppendorf, Germany). The samples were centrifuged again and 500 µL of the supernatant was
193 transferred into short thread HPLC/GC vials (glass vial ND9, VWR, Germany) and sealed with short
194 screw caps, which contained rubber septa (6 mm for ND9, VWR, Germany). New standards for
195 acetate and ethanol were prepared for every analysis (retention time of acetate was 14.8 min and
196 retention time of ethanol was 21.5 min). All samples were randomized.

197 Results

198 Designing and testing the functionality of the MBS

199 We based our experiments in this study on a versatile self-built multiple-bioreactor system (MBS).
200 The MBS (**Fig. 1**, **Results S1**, **Fig. S1 and S2**, **Table S1**) was designed to either perform
201 heterotrophic or autotrophic cultivation experiments in batch or continuous mode. The MBS can be
202 used to operate up to six bioreactors simultaneously, each individually at different pH conditions or,
203 if necessary, with different feed medium.

204 To show high comparability and reproducibility of our MBS, we grew *C. ljungdahlii* simultaneously
205 as triplicates with standard PETC medium and CO₂ and H₂ (ammonium, bioreactors 1/2/3) during the
206 first experiment (**Fig. 2**, **Fig. S3**). We observed that growth was similar in the triplicate bioreactors
207 during the cultivation for 27.6 days. During the initial batch mode, the average OD_{600} increased to
208 0.58 ± 0.01 (**Fig. 2A**). After switching to continuous mode, the average OD_{600} increased further to
209 values of 0.82 ± 0.04 during Period I. For Periods II, III, and IV, the average OD_{600} for the
210 bioreactors constantly decreased to values of 0.69 ± 0.01, 0.51 ± 0.05, and 0.18 ± 0.06 (**Fig. 2A**,
211 **Table 1**). As expected, the pH of each bioreactor was decreasing during all periods by microbial
212 acetate production. The simultaneous and constant decrease of OD_{600} indicated reduced growth rates
213 of *C. ljungdahlii* at a lower pH level in our system. In batch mode, the acetate production rates
214 increased with increasing OD_{600} , but then considerably dropped after switching to continuous mode
215 (**Fig. 2A**). The acetate production rates increased again to an average value of 73.1 ± 2.1 mmol-C L⁻¹

216 d^{-1} for Period I (**Fig. 2B**). The acetate production rates decreased to average values of 60.1 ± 3.4
217 mmol-C $\text{L}^{-1} \text{d}^{-1}$, and 53.7 ± 3.3 mmol-C $\text{L}^{-1} \text{d}^{-1}$ for Periods II and III, respectively. For Period IV, the
218 acetate production rate had only an average value of 29.2 ± 10.0 mmol-C $\text{L}^{-1} \text{d}^{-1}$ (**Fig. 2B**). Ethanol
219 production rates in mmol-C $\text{L}^{-1} \text{d}^{-1}$ were negligible during batch mode, but slowly increased after
220 switching to continuous mode. The highest ethanol production rates were observed for Period II with
221 average values of 22.5 ± 0.5 mmol-C $\text{L}^{-1} \text{d}^{-1}$. During the Periods III and IV, the ethanol production
222 rates kept decreasing to average values of 18.7 ± 4.8 mmol-C $\text{L}^{-1} \text{d}^{-1}$ and 3.4 ± 1.4 mmol-C $\text{L}^{-1} \text{d}^{-1}$,
223 respectively (**Fig. 2B**). The results showed high reproducibility with small standard deviation for all
224 tested parameters using the MBS.

225 **Feeding additional acetate to continuous and pH-controlled gas fermentation of *C. ljungdahlii***
226 **with CO_2 and H_2**

227 During the second experiment, we investigated the impact of feeding acetate on the production of
228 ethanol from CO_2 and H_2 during an operating period of 27.2 days (**Results S2, Fig. S4**). For this,
229 three bioreactors (Na-acetate, bioreactors 4/5/6) were fed with PETC medium that was supplemented
230 with 100 mM Na-acetate, while three bioreactors (NaCl, bioreactors 7/8/9) were fed with PETC
231 medium that was supplemented with 100 mM NaCl to achieve a similar ionic strength. We found
232 again that our triplicate bioreactors were reproducible in terms of growth. However, feeding acetate
233 did not result in the expected increased ethanol production rates. Instead, the additional acetate led to
234 impaired growth, lower OD_{600} -values, and reduced production rates of acetate and ethanol (**Fig. S4**,
235 **Table S2**). However, feeding additional NaCl compared to our first experiment with standard PETC
236 medium had a positive stimulating impact on ethanol production rates at lower pH (**Fig. S5 and S7**,
237 **Table S2**). Growth (OD_{600}) and acetate production were not influenced by the higher NaCl content in
238 the medium and showed similarities to our preliminary experiment with standard PETC medium
239 (**Fig. 2, Table 1**). The second experiment shows that acetate did not, but that NaCl did improve
240 ethanol production of *C. ljungdahlii* with CO_2 and H_2 .

241 **Applying nitrate as a sole N-source to a continuous and pH-controlled gas fermentation of**
242 ***C. ljungdahlii* with CO_2 and H_2**

243 During our third experiment with an operating period of 27.5 days, we investigated the impact of
244 nitrate as an alternative N-source on the production of ethanol from CO_2 and H_2 (**Fig. 3**). For this
245 experiment, three bioreactors (nitrate, bioreactors 10/11/12) were fed with PETC medium containing
246 nitrate instead of ammonium at an equivalent molar amount of nitrogen (=18.7 mM). We found an
247 increasing pH due to ammonium production in preliminary bottle experiments in nitrate-containing
248 PETC medium (**Fig. S7**). A pH increase was also observed in the nitrate bottle experiments of
249 Emerson et al. (2019). Despite the pH-control in our experiment, all bioreactors with nitrate feed
250 showed remarkable differences in growth, pH, acetate production, and ethanol production rates.
251 Therefore, we report individual data for each bioreactor and highlight lowest and highest values (**Fig.**
252 **3, Table 2**). We use the data of the first experiment (ammonium, bioreactor 1/2/3) as the control in
253 which ammonium served as the sole N-source (**Fig. 2, Table 1**). Unexpectedly, we observed a pH-
254 buffering effect in all bioreactors with nitrate feed during the fermentation. This was most likely due
255 to an interplay between the produced acetate and ammonium by the microbes. Overall, the pH was
256 slowly decreasing in all bioreactors with nitrate feed (**Fig. 3A**), and we did not measure increasing
257 pH values.

258 During the initial batch mode, two of the bioreactors with nitrate feed (bioreactor 10 and 11) reached
259 OD_{600} -values of 0.58, while one of the bioreactors with nitrate feed (bioreactor 12) stagnated after

260 two days of cultivation in batch mode and reached an OD_{600} of 0.23 (**Fig. 3A**). After switching to
261 continuous mode, all three bioreactors with nitrate feed reached similar OD_{600} -values of ~1.2 during
262 the end of Period I, which were 25-30% higher compared to the OD_{600} of the bioreactors with
263 ammonium feed (**Table 1**, **Fig. 2**, **Fig. 3A**). The highest observed OD_{600} for the bioreactors with
264 nitrate feed were 1.29 on day 21 during Period IV for bioreactor 10, 1.36 on day 9 during Period II
265 for bioreactor 11, and 1.34 on day 7 during Period I for bioreactor 12 (**Fig. 3**, **Table 2**). In
266 comparison, the bioreactors with ammonium feed had the highest average OD_{600} -value of 0.90 ± 0.02
267 on day 4 for Period I (**Fig. 2**, **Table 1**).

268 Another noticeable difference was that the OD_{600} -values did not remain stable for all bioreactors with
269 nitrate feed during the experiment. Each bioreactor showed fluctuating values at higher OD_{600} before
270 it crashed at different time points during the operating period. For instance, bioreactor 10 underwent
271 a crash in biomass growth on day 8 which continued for the rest of Period II with continuously
272 decreasing OD_{600} (**Fig. 3A**). At this point, the pH stagnated at a pH of 5.8 for bioreactor 10.
273 However, after switching to Period III, bioreactor 10 recovered in OD_{600} back to a value of 1.30 and
274 reached a pH of 5.0 on day 17 of the operating period. During Period IV the OD_{600} was stable for
275 bioreactor 10 (**Fig. 3A**). On day 11 of the operating period, bioreactor 11 underwent a similar crash
276 in biomass growth but, contrarily, did not recover back to high OD_{600} -values until the end of the
277 operating period. The pH of this bioreactor 11 remained stable at pH 5.5 from day 11 of the operating
278 period independent of the following periods (**Fig. 3A**). A similar behavior was observed for
279 bioreactor 12, but the abrupt crash in OD_{600} occurred on day 21 during Period III. Bioreactor 12 also
280 did not recover from the crash until the end of the operating period (**Fig. 3A**). It is noteworthy, that
281 we detected nitrate and nitrite in culture samples of bioreactors with nitrate feed undergoing a crash,
282 while neither nitrate nor nitrite were detectable in actively growing or recovering bioreactors with
283 nitrate feed. This indicates a high uptake rate for nitrate by the microbes from the feed medium, and
284 an immediate conversion of the nitrate to ammonium *via* nitrite as an intermediate.

285 The acetate production rates of all bioreactors with nitrate feed somewhat followed the OD_{600} profile,
286 and reached the highest values that we observed in all our experiments with a maximum value of 129
287 $mmol\text{-C L}^{-1} d^{-1}$ for bioreactor 10 during Period I (**Fig. 3B**). The acetate production rate considerably
288 decreased at the time point of the OD_{600} crashes for the three bioreactors with nitrate feed (**Fig. 3B**).
289 Ethanol production rates were negligible during batch mode for all bioreactors with nitrate feed and
290 slowly increased with decreasing pH during the different periods, after switching to continuous
291 mode, and also considerably dropped after the OD_{600} crashes (**Fig. 3B**). We observed high ethanol
292 production rates in each of the three bioreactors with nitrate feed before the respective OD_{600} crashes
293 with values of $62.0\text{ mmol\text{-C L}^{-1} d}^{-1}$ for bioreactor 10, $29.9\text{ mmol\text{-C L}^{-1} d}^{-1}$ for bioreactor 11, and 30.6
294 $mmol\text{-C L}^{-1} d^{-1}$ for bioreactor 12 (**Table 2**, **Fig. 3**). While for bioreactors 11 and 12 the ethanol
295 production rates did not recover after the crashes, for bioreactor 10 the ethanol production rate
296 increased with increasing OD_{600} after the crash, and reached its maximum during Period IV, which is
297 the highest value for the entire study (**Fig. 3B**, **Table 2**). This value is ~2.5-fold higher compared to
298 the highest ethanol production rate observed for *C. ljungdahlii* growing with ammonium (**Fig. 2**,
299 **Table 2**). Acetate production rates, on the other hand, remained low after the recovery of bioreactor
300 10, which led to the highest measured ethanol/acetate ratio of ~3.8 with CO_2 and H_2 in this study. To
301 our knowledge it is also the highest ethanol/acetate ratio for published studies with acetogens and
302 CO_2 and H_2 , because Mock et al. (2019) achieved a ratio of ~1:1. We found that all three bioreactors
303 with nitrate feed behaved differently and underwent stochastic crashes in the OD_{600} at different time
304 points that were most likely connected to a simultaneous accumulation of nitrite. The recovery of one
305 bioreactor from this crash influenced the ethanol and acetate production rates.

306 Finally, to further test the impact of pH changes on the bioreactors with nitrate feed, we manually
307 adjusted the pH by feeding acid to all bioreactors with nitrate feed to decrease and then keep the pH
308 at pH 4.5 on day 24 of the operating period (**Fig. 3**, indicated with a star symbol). This intervention
309 immediately resulted in a second crash of the OD₆₀₀ and production rates for bioreactor 10, while
310 bioreactors 11 and 12 already were at low OD₆₀₀-values with low acetate and ethanol production rates
311 at that time point.

312 Discussion

313 Our MBS resulted in reproducible gas-fermentation experiments with *C. ljungdahlii*

314 The MBS was successfully tested to cultivate *C. ljungdahlii* with CO₂ and H₂ in triplicates under
315 various pH conditions during three experiments for four conditions (total of 12 bioreactors). The
316 highly comparable growth behavior of the three replicate bioreactors under batch and continuous
317 conditions for three conditions (*i.e.*, Na-acetate, NaCl, and ammonium conditions) confirm a high
318 stability of our MBS (**Fig. S4A, S5A, and S6A**). We did observe minor differences in the ethanol
319 and acetate production rates between replicates, which were connected to the same medium feed
320 bottle under continuous conditions (**Fig. S4B, S5B, and S6B**). These differences in single replicates
321 may lead to different production rates, even in controlled bioreactors, and may result from slightly
322 varying gassing or medium feed rates, variations in the pH control, or small but varying diffusion of
323 oxygen into individual bioreactors. This finding clearly indicates the need for replicates during strain
324 characterization and pre-selection in lab-scale bioreactor experiments before scaling up to larger
325 fermentations. With our MBS, we can combine experiments at steady-state conditions for replicates,
326 which saves time in generating statistically relevant data sets. Our future work to further optimize the
327 MBS will target the additional integration of analytic equipment to calculate gas consumption and
328 carbon uptake rates. We had sampled the inlet and outlet gases during all experiments, but our
329 current setup was not sufficient to obtain reliable results. Additional equipment, such as mass-flow
330 controllers, will fill this gap and further increase the data quality during future experiments.

331 Acetate feed does not improve ethanol production in *C. ljungdahlii*, but salt stress does at low 332 pH

333 For our second experiment, we addressed the question whether external acetate feed would increase
334 the ethanol production from CO₂ and H₂ for *C. ljungdahlii*, which had been demonstrated for
335 *C. autoethanogenum* (Mock et al., 2015). Both strains are closely related. In contrast to the relatively
336 high ethanol production rates for *C. autoethanogenum*, we observed a negative impact of the acetate
337 feed on growth and production rates of acetate and ethanol (**Results S2, Fig. S4**). The most important
338 differences for our experiment were that for the previous study by Mock et al. (2015): (1) a sterile
339 filtration system were used, which allowed the retention of 90% of all microbial cells in the
340 bioreactor; (2) a 2-fold higher dilution rate for the medium was applied, which resulted in a 2.3-fold
341 higher feeding rate of acetate; and (3) a ~12-fold higher gas feeding rate of 350 mL min⁻¹ was
342 applied. These differences resulted in a 18-fold higher maximum biomass concentration (based on
343 cellular dry weight) for the previous study compared to our experiment (during Period II).
344 Regardless, we had anticipated a higher ethanol production rate for *C. ljungdahlii* with external
345 acetate feed. Therefore, further experiments are required why this did not occur.

346 For the control, we had supplemented the standard PETC medium with 100 mM NaCl to give a
347 similar ion strength compared to Na-acetate. This resulted in increased ethanol production rates and
348 ethanol/acetate ratios of 0.8 and 1.2 at a lower pH level during Periods III and IV, respectively

349 **(Results S2, Table S2, Fig. S5 and S7).** This is considerably higher than the ethanol/acetate ratios of
350 ~0.1-0.4 for all other periods in this experiment. While it is likely that the increased salt
351 concentration in the feed medium resulted in a cellular stress response, which has been demonstrated
352 before (Philips et al., 2017), the exact nature of this response in our experiment remains elusive and
353 requires further experimentation. Others have found increased ethanol production rates from syngas
354 with *C. ljungdahlii* in response to cellular stress, which was induced by a low pH in combination
355 with sulfur limitation (Martin et al., 2016), or oxygen exposure (Whitham et al., 2015). The feeding
356 of NaCl at low pH might have interacting effects on ethanol production from CO₂ and H₂.

357 **Feeding nitrate as sole N-source leads to enhanced cell growth even at low pH**

358 For our third experiment, we tested the impact of nitrate as sole N-source on the growth and
359 production rates of acetate and ethanol under pH-controlled conditions. It was recently demonstrated
360 that *C. ljungdahlii* can use nitrate simultaneously for the generation of ammonium (assimilatory
361 nitrate reduction) (Nagarajan et al., 2013), and as an alternative electron acceptor (dissimilatory
362 nitrate reduction) (Emerson et al., 2019). This resulted in enhanced cell growth with sugars or CO₂
363 and H₂ (Emerson et al., 2019). From these findings and our own preliminary batch experiments (**Fig.**
364 **S8**), we also expected enhanced cell growth in our bioreactor experiment. Our data confirm that the
365 use of nitrate as sole N-source is enhancing CO₂ and H₂-dependent growth of *C. ljungdahlii* by up to
366 50% (based on OD₆₀₀) in continuous mode (**Fig. 3, Table 2**). Emerson et al. (2019) observed 42%
367 increased growth rates for bottles experiments with CO₂ and H₂, while the pH increased from 6.0 to
368 8.0. We observed a similar increase in the pH-value and a 200% increased final OD₆₀₀ in our
369 preliminary bottle experiments (**Fig. S8**). Our bioreactors with nitrate feed had high OD₆₀₀-values at
370 low pH values, whereas all our other bioreactors showed a correlation between low pH and low
371 OD₆₀₀. We had not anticipated this observation, since acetate production is becoming
372 thermodynamically limited at lower pH (Richter et al., 2016). Consequently, less acetate is produced
373 from acetyl-CoA and, in turn, less ATP is available for the Wood-Ljungdahl pathway (Schuchmann
374 and Müller, 2014). One possible explanation for this observation is that the depleting pool of ATP at
375 low pH is refilled with ATP generated through the reduction of nitrate and concomitant redirection of
376 reducing equivalents. This ATP can then be used for biomass formation.

377 Our data show that the highest OD₆₀₀ in our bioreactors with nitrate feed remained between an OD₆₀₀
378 of 1.29 and an OD₆₀₀ of 1.36 during different periods (**Table 2**). This indicates that ATP was not the
379 limiting factor for growth for the bioreactors with nitrate feed and nitrate reduction was sufficient to
380 regenerate redox cofactors. Ethanol formation was not observed in our bottle experiments and in the
381 experiments by Emerson et al. (2019). This led to the hypothesis by the authors that *C. ljungdahlii*
382 predominantly shifts electrons into nitrate reduction rather than towards ethanol formation. The
383 generated ammonium is responsible for the increasing pH-value. In contrast, we demonstrated for all
384 bioreactors with nitrate feed that ethanol production is still possible under pH-controlled conditions
385 (**Fig. 3**). We believe that ethanol formation was absent in our bottle experiments due to the increasing
386 pH-value from ammonia. This is proof that observations with bottles should be followed up with pH-
387 controlled bioreactors.

388 **Nitrite accumulation indicated a metabolic crash of *C. ljungdahlii* followed by a high ethanol
389 production selectivity after recovering**

390 All three bioreactors with nitrate feed showed different performance behavior during the continuous
391 mode. All these bioreactors underwent a crash at different time points during the cultivation. These
392 crashes were stochastic, because we had already observed the reproducible nature of our MBS. For

each of the three bioreactors, we measured an accumulation of nitrite and nitrate at the time point when the crash occurred and afterwards. Before the crashes, we were not able to detect nitrate in any sample. Therefore, we assume that the applied nitrate feed rate of 0.11 mmol h^{-1} ($18.7 \text{ mM} \times 0.10 \text{ mL min}^{-1}$) was lower than the metabolic uptake rate for nitrate of *C. ljungdahlii*. Our results indicate that an accumulation of nitrite and nitrate is harmful to the microbes and leads to an abrupt halt of the metabolism for yet unknown reasons. A complete physiological characterization of the nitrate metabolism of *C. ljungdahlii*, or any other acetogen, is still missing in literature. Emerson et al. (2019) described that once the applied nitrate was depleted, the culture halted acetate production and crashed (as measured by the OD_{600}). The authors explained the crash through an abrupt end of the ATP supply, which is critical to maintain high cell densities for *C. autoethanogenum* (Valgepea et al., 2017). However, the bottle cultures of Emerson et al. (2019) did not crash completely. The OD_{600} decreased by 50% but recovered after a short lag phase, indicating that the remaining CO_2 and H_2 was further consumed. An accumulation of nitrite was neither observed during the crash in these experiments nor in our own preliminary bottle experiments (Fig. S8). One explanation might be that the metabolic crash was triggered by an insufficient regeneration of NADH. *C. ljungdahlii* possesses two putative hydroxylamine reductases (CLJU_c22260, CLJU_c07730), which could catalyze the reduction of nitrite to ammonium with electrons from NADH (Köpke et al., 2010; Nagarajan et al., 2013). Since we observed simultaneous nitrite and nitrate accumulation in crashing cultures, a metabolic bottleneck at this catalytic step is possible. Another explanation might be that nitrite and/or nitrate inhibit one or several enzymes in *C. ljungdahlii*. Then, as soon as some nitrite and/or nitrate accumulated and inhibited the metabolism, a feedback loop was triggered that quickly led to a complete crash of the metabolism.

For recovering the culture, we assume that the inhibiting compounds have to be washed out of the system to a certain critical threshold. In addition, some removal of the inhibiting compounds due to the recovering activity of the culture would also contribute. For bioreactor 10, we observed a constant decrease of the OD_{600} and acetate and ethanol production rates after the crash in Period I. However, on day 13-14 the decrease started to reach a valley, which indicates that the microbial growth was able to catch up with the dilution of our continuous process. For this bioreactor, the pH in Period II was still high enough to support sufficient growth, and after ~ 2 HRT periods the growth rate of the microbes exceeded the dilution rate again, which is indicated by an increasing OD_{600} in the bioreactor (Fig. 3A). The recovery of this bioreactor 10 in growth as well as in acetate and ethanol production rates indicates that: (1) the nitrate reduction pathway is not *per se* inhibited at low pH; and (2) the reduction of nitrate and the production of ethanol is possible simultaneously, and that most likely the low pH triggers a thermodynamic shift towards ethanol production (Richter et al., 2016). However, it remains elusive why the ethanol/acetate ratio in bioreactor 10 reached a nearly ten-fold higher value after recovering from the crash in the presence of nitrate compared to the bioreactors with ammonium feed (Fig. 3B, Table 2).

In contrast, the crash occurred for bioreactor 11 in Period II. While the OD_{600} immediately decreased after the crash, the acetate and ethanol production rates remained somewhat constant until the switch to Period III. However, this bioreactor never recovered from the crash in terms of OD_{600} . We believe that the lower pH levels during Period III for bioreactor 11 prevented the growth recovery, which for bioreactor 10 took place at the higher pH level of Period II. We had found reduced growth conditions for all other bioreactors at the lower pH levels (Fig. 3, Fig. S4). The same findings hold true for bioreactor 12 for which the growth crash occurred even later. What could be the reason for the stochastic crashes? Valgepea et al. (2017) discussed occurring “crash and recover cycles” during syngas fermentation with *C. autoethanogenum*. They hypothesized that the Wood-Ljungdahl pathway becomes the limiting factor during a period of ample supply of acetyl-CoA at higher

440 biomass and acetate concentration. This can result in an insufficient supply of reducing equivalents
441 due to a loss of H₂ uptake when the Wood-Ljungdahl pathway cannot keep up anymore.
442 Consequently, the cells are not able to deliver the ATP demand, resulting in a crash. The cells
443 recovered, however, once the extracellular acetate concentration went below a certain threshold, but
444 crashed again after exceeding the threshold. Unfortunately, these threshold acetate concentrations
445 were not given. We observed higher acetate production rates for bioreactor 10 and 11 before the
446 crash compared to those of the bioreactors with ammonium feed (**Fig. 2B, Fig. 3B**). Bioreactor 12
447 did not reach a similarly high acetate concentration, but the crash occurred at the beginning of Period
448 IV at the lower pH of 4.5. Intrinsically, the extracellular undissociated acetic acid concentration
449 would be higher as a key to trigger the crash event. However, more work is necessary to ascertain the
450 mechanisms of the stochastic crashes.

451 Nitrate reduction offers a great potential to further optimize gas fermentation of *C. ljungdahlii*.
452 Because ATP limitation is one of the highest burdens to overcome for acetogens (Schuchmann and
453 Müller, 2014; Molitor et al., 2017), the surplus of ATP derived from nitrate reduction could be used
454 to extent the product portfolio towards energy-intense products (Emerson et al., 2019). However, our
455 work clearly demonstrates that nitrate metabolism of *C. ljungdahlii* needs further investigation on
456 both a physiological and a bioprocessing level. The stochastic metabolic crashes demonstrate the
457 importance of replicated bioreactor experiments in the field of acetogen research.

458 Acknowledgments

459 This work was funded through the Alexander von Humboldt Foundation in the framework of the
460 Alexander von Humboldt Professorship, which was awarded to LTA. We are also thankful for
461 additional funding to LTA and BM from the Deutsche Forschungsgemeinschaft (DFG, German
462 Research Foundation) under Germany's Excellence Strategy – EXC 2124 – 390838134. Finally, we
463 acknowledge support by the DFG and Open Access Publishing Fund of University of Tübingen.

464 Author Contributions

465 CK and LTA designed the MBS. LTA, CK, and BM planned the experiments. CK and NK built,
466 maintained, and sampled the bioreactors. LTA and BM supervised the project. CK analyzed the raw
467 data and drafted the manuscript. All authors edited the manuscript and approved the final version.

468 Conflict of Interest

469 The authors declare no conflict of interest

470 Contribution to the Field Statement

471 Microbial gas-fermentation with CO₂ offers great potential to contribute to a climate-friendly and
472 economically feasible production of bio-based chemicals. Various laboratories work on microbial
473 strain design to expand this production platform, while others focus on process engineering in single
474 optimized bioreactors. Consequently, a gap exists between both fields and strain design is often not
475 studied beyond the serum bottle experiment level. We present an open-source multiple-bioreactor
476 system (MBS) for replicable gas-fermentation experiments at a small lab-scale, which fills this gap
477 and provides a transition between strain design and bioprocessing. We show the functionality of our
478 MBS by investigating different physiological changes for the CO₂-utilizing bacterium *Clostridium*
479 *ljungdahlii*. Our findings contribute to a better understanding of the microbe in a pH-controlled
480 environment, which is required for bioreactors in biotechnological applications. This will help to

481 look beyond the serum bottle experiment level and enables pre-selection of microbes for further
482 scaling experiments. Furthermore, using our MBS will save time in generating statistically relevant
483 data sets, which is especially relevant for academia.

484

485 **Literature**

486 Abrini, J., Naveau, H., and Nyns, E.J. (1994). *Clostridium autoethanogenum*, Sp-Nov, an anaerobic
487 bacterium that produces ethanol from carbon monoxide. *Arch Microbiol* 161(4), 345-351. doi:
488 10.1007/Bf00303591.

489 Abubackar, H.N., Veiga, M.C., and Kennes, C. (2015). Carbon monoxide fermentation to ethanol by
490 *Clostridium autoethanogenum* in a bioreactor with no accumulation of acetic acid. *Bioresour
491 Technol* 186, 122-127. doi: 10.1016/j.biortech.2015.02.113.

492 Asimakopoulos, K., Gavala, H.N., and Skiadas, I.V. (2018). Reactor systems for syngas fermentation
493 processes: A review. *Chem Eng J* 348, 732-744. doi: 10.1016/j.cej.2018.05.003.

494 Bengelsdorf, F.R., Poehlein, A., Linder, S., Erz, C., Hummel, T., Hoffmeister, S., et al. (2016).
495 Industrial acetogenic biocatalysts: A comparative metabolic and genomic analysis. *Front
496 Microbiol* 7(1036), 1-15. doi: 10.3389/fmicb.2016.01036.

497 Brown, S.D., Nagaraju, S., Utturkar, S., De Tissera, S., Segovia, S., Mitchell, W., et al. (2014).
498 Comparison of single-molecule sequencing and hybrid approaches for finishing the genome
499 of *Clostridium autoethanogenum* and analysis of CRISPR systems in industrial relevant
500 Clostridia. *Biotechnol Biofuels* 7(40), 1-18. doi: 10.1186/1754-6834-7-40.

501 Drake, H.L., Gossner, A.S., and Daniel, S.L. (2008). Old acetogens, new light. *Ann N Y Acad Sci*
502 1125, 100-128. doi: 10.1196/annals.1419.016.

503 Dürre, P. (2017). Gas fermentation - a biotechnological solution for today's challenges. *Microb
504 Biotechnol* 10(1), 14-16. doi: 10.1111/1751-7915.12431.

505 Emerson, D.F., Woolston, B.M., Liu, N., Donnelly, M., Currie, D.H., and Stephanopoulos, G. (2019).
506 Enhancing hydrogen-dependent growth of and carbon dioxide fixation by *Clostridium
507 ljungdahlii* through nitrate supplementation. *Biotechnol Bioeng* 116(2), 294-306. doi:
508 10.1002/bit.26847.

509 Köpke, M., Held, C., Hujer, S., Liesegang, H., Wiezer, A., Wollherr, A., et al. (2010). *Clostridium
510 ljungdahlii* represents a microbial production platform based on syngas. *Proc Natl Acad Sci U
511 S A* 107(29), 13087-13092. doi: 10.1073/pnas.1004716107.

512 Köpke, M., and Liew, F. (2012). "Production of butanol from carbon monoxide by a recombinant
513 microorganism". World Intellectual Property Organization, WIPO (PCT) No
514 WO2012053905A1).

515 Köpke, M., Simpson, S.D., Liew, F., and Chen, W. (2016). "Fermentation process for producing
516 isopropanol using a recombinant microorganism". U.S. Patent, U.S. Patent No
517 US9365868B2).

518 Latif, H., Zeidan, A.A., Nielsen, A.T., and Zengler, K. (2014). Trash to treasure: Production of
519 biofuels and commodity chemicals via syngas fermenting microorganisms. *Curr Opin
520 Biotechnol* 27, 79-87. doi: 10.1016/j.copbio.2013.12.001.

521 Martin, M.E., Richter, H., Saha, S., and Angenent, L.T. (2016). Traits of selected *Clostridium* strains
522 for syngas fermentation to ethanol. *Biotechnol Bioeng* 113(3), 531-539. doi:
523 10.1002/bit.25827.

524 Mock, J., Zheng, Y., Müller, A.P., Ly, S., Tran, L., Segovia, S., et al. (2015). Energy conservation
525 associated with ethanol formation from H₂ and CO₂ in *Clostridium autoethanogenum*
526 involving electron bifurcation. *J Bacteriol* 197(18), 2965-2980. doi: 10.1128/JB.00399-15.

527 Mohammadi, M., Najafpour, G.D., Younesi, H., Lahijani, P., Uzir, M.H., and Mohamed, A.R.
528 (2011). Bioconversion of synthesis gas to second generation biofuels: A review. *Renew Sust*
529 *Energ Rev* 15(9), 4255-4273. doi: 10.1016/j.rser.2011.07.124.

530 Mohammadi, M., Younesi, H., Najafpour, G., and Mohamed, A.R. (2012). Sustainable ethanol
531 fermentation from synthesis gas by *Clostridium ljungdahlii* in a continuous stirred tank
532 bioreactor. *J Chem Technol Biot* 87(6), 837-843. doi: 10.1002/jctb.3712.

533 Molitor, B., Marcellin, E., and Angenent, L.T. (2017). Overcoming the energetic limitations of
534 syngas fermentation. *Curr Opin Chem Biol* 41, 84-92. doi: 10.1016/j.cbpa.2017.10.003.

535 Nagarajan, H., Sahin, M., Nogales, J., Latif, H., Lovley, D.R., Ebrahim, A., et al. (2013).
536 Characterizing acetogenic metabolism using a genome-scale metabolic reconstruction of
537 *Clostridium ljungdahlii*. *Microb Cell Fact* 12(118), 1-13. doi: 10.1186/1475-2859-12-118.

538 Philips, J., Rabaey, K., Lovley, D.R., and Vargas, M. (2017). Biofilm formation by *Clostridium*
539 *ljungdahlii* is induced by sodium chloride stress: Experimental evaluation and transcriptome
540 analysis. *PLoS One* 12(1), 1-25. doi: 10.1371/journal.pone.0170406.

541 Phillips, J.R., Huhnke, R.L., and Atiyeh, H.K. (2017). Syngas fermentation: A microbial conversion
542 process of gaseous substrates to various products. *Fermentation* 3(2), 1-28. doi:
543 10.3390/fermentation3020028.

544 Richter, H., Martin, M.E., and Angenent, L.T. (2013). A two-stage continuous fermentation system
545 for conversion of syngas into ethanol. *Energies* 6(8), 3987-4000. doi: 10.3390/en6083987.

546 Richter, H., Molitor, B., Wei, H., Chen, W., Aristilde, L., and Angenent, L.T. (2016). Ethanol
547 production in syngas-fermenting *Clostridium ljungdahlii* is controlled by thermodynamics
548 rather than by enzyme expression. *Energ Environ Sci* 9(7), 2392-2399. doi:
549 10.1039/c6ee01108j.

550 Schuchmann, K., and Müller, V. (2014). Autotrophy at the thermodynamic limit of life: a model for
551 energy conservation in acetogenic bacteria. *Nat Rev Microbiol* 12(12), 809-821. doi:
552 10.1038/nrmicro3365.

553 Tanner, R.S., Miller, L.M., and Yang, D. (1993). *Clostridium ljungdahlii* sp. nov., an acetogenic
554 species in clostridial rRNA homology group I. *Int J Syst Bacteriol* 43(2), 232-236. doi:
555 10.1099/00207713-43-2-232.

556 Ueki, T., Nevin, K.P., Woodard, T.L., and Lovley, D.R. (2014). Converting carbon dioxide to
557 butyrate with an engineered strain of *Clostridium ljungdahlii*. *MBio* 5(5), 1-10. doi:
558 10.1128/mBio.01636-14.

559 Valgepea, K., de Souza Pinto Lemgruber, R., Meaghan, K., Palfreyman, R.W., Abdalla, T., Heijstra,
560 B.D., et al. (2017). Maintenance of ATP homeostasis triggers metabolic shifts in gas-
561 fermenting acetogens. *Cell Syst* 4(5), 505-515. doi: 10.1016/j.cels.2017.04.008.

562 Whitham, J.M., Tirado-Acevedo, O., Chinn, M.S., Pawlak, J.J., and Grunden, A.M. (2015).
563 Metabolic response of *Clostridium ljungdahlii* to oxygen exposure. *Appl Environ Microbiol*
564 81(24), 8379-8391. doi: 10.1128/AEM.02491-15.

565 Younesi, H., Najafpour, G., and Mohamed, A.R. (2005). Ethanol and acetate production from
566 synthesis gas via fermentation processes using anaerobic bacterium, *Clostridium ljungdahlii*.
567 *Biochem Eng J* 27(2), 110-119. doi: 10.1016/j.bej.2005.08.015.

568

569 **Figure Captions**

570 **Figure 1. Flow chart of a single bioreactor operated in the MBS.** The 1-L bioreactor vessel
571 consisted of a double-walled glass vessel and a customized lid, while it was placed on a multi-stirring
572 plate with up to six bioreactors. The bioreactor temperature was maintained through a water
573 circulation unit at 37°C. The autoclavable lid offered connections for 5x GL14 and 1x GL25. A set of
574 stainless-steel tubing was used for the gas-in/-out lines and for the medium feed-out line. The three-
575 way valve at the medium feed-out line was required for sampling using a 5-mL syringe. The pH and
576 bioreactor medium temperature was tracked *via* a pH/pt1000-electrode that was connected to a multi-
577 parameter instrument. The multi-parameter instrument controlled and triggered two mini pumps (for
578 base and acid) at programmable conditions. For continuous mode, the feed medium to each
579 bioreactor was pumped *via* a single multi-channel pump from the feed tank into the bioreactor. The
580 same pump was used to transfer the effluent from each bioreactor into the effluent tank. Sterile CO₂
581 and H₂ gas (20:80 vol-%) was sparged into the system through stainless-steel tubing with an attached
582 sparger. The gas-out line was connected to a 100-mL serum bottle to serve as a water trap before the
583 outgoing gas passed an airlock. The 1x, 2x, and 6x next to each unit in the figure describe the
584 quantity, which is required to operate six bioreactors simultaneously. Abbreviations: A/B, Acid
585 and/or base feed line; E, pH/pt1000 electrode; Fa, medium feed-out line; Fi, medium feed-in line; Ga,
586 gas-out line; Gi, gas-in line; GL14, screw joint connection size 14; GL25, screw joint connection size
587 25; rpm, revolutions per minute; SB, stirring bar; 3WV, three-way valve. Blue lines indicate liquid
588 transfer, red lines contain gas, and dotted black lines provide electric power or signals.

589 **Figure 2. Continuous gas fermentation of *C. ljungdahlii* with CO₂ and H₂ in standard PETC
590 medium at different periods.** Mean values of triplicates with standard deviation (n=3) for pH and
591 OD₆₀₀ (A), and for acetate and ethanol production rates in mmol-C L⁻¹ d⁻¹ (B). Standard PETC
592 medium containing 18.7 mM ammonium chloride as sole N-source was used. The horizontal dotted
593 lines indicate the continuous process in which medium of different pH was fed to each bioreactor.
594 Period: I, pH=6.0; II, pH=5.5, III, pH=5.0; and IV, pH=4.5.

595 **Figure 3. Impact of nitrate as alternative N-source on continuous gas fermentation of
596 *C. ljungdahlii* using CO₂ and H₂ at different periods.** Single values for pH and OD₆₀₀ (A), and for
597 acetate and ethanol production rates in mmol-C L⁻¹ d⁻¹ (B). The bioreactors with nitrate feed were
598 grown in ammonium-free PETC medium supplemented with 18.7 mM Na-nitrate. The horizontal dotted
599 lines indicate the continuous process in which medium of different pH was fed to each
600 bioreactor. The red arrows and circles indicate the crash in OD₆₀₀ of each bioreactor with nitrate feed
601 at different time points. The star symbol describes the time point where the pH was lowered manually
602 by adding HCl to the system until a pH of 4.5 was reached. Period: I, pH=6.0; II, pH=5.5, III,
603 pH=5.0; and IV, pH=4.5.

604

605 **Tables**

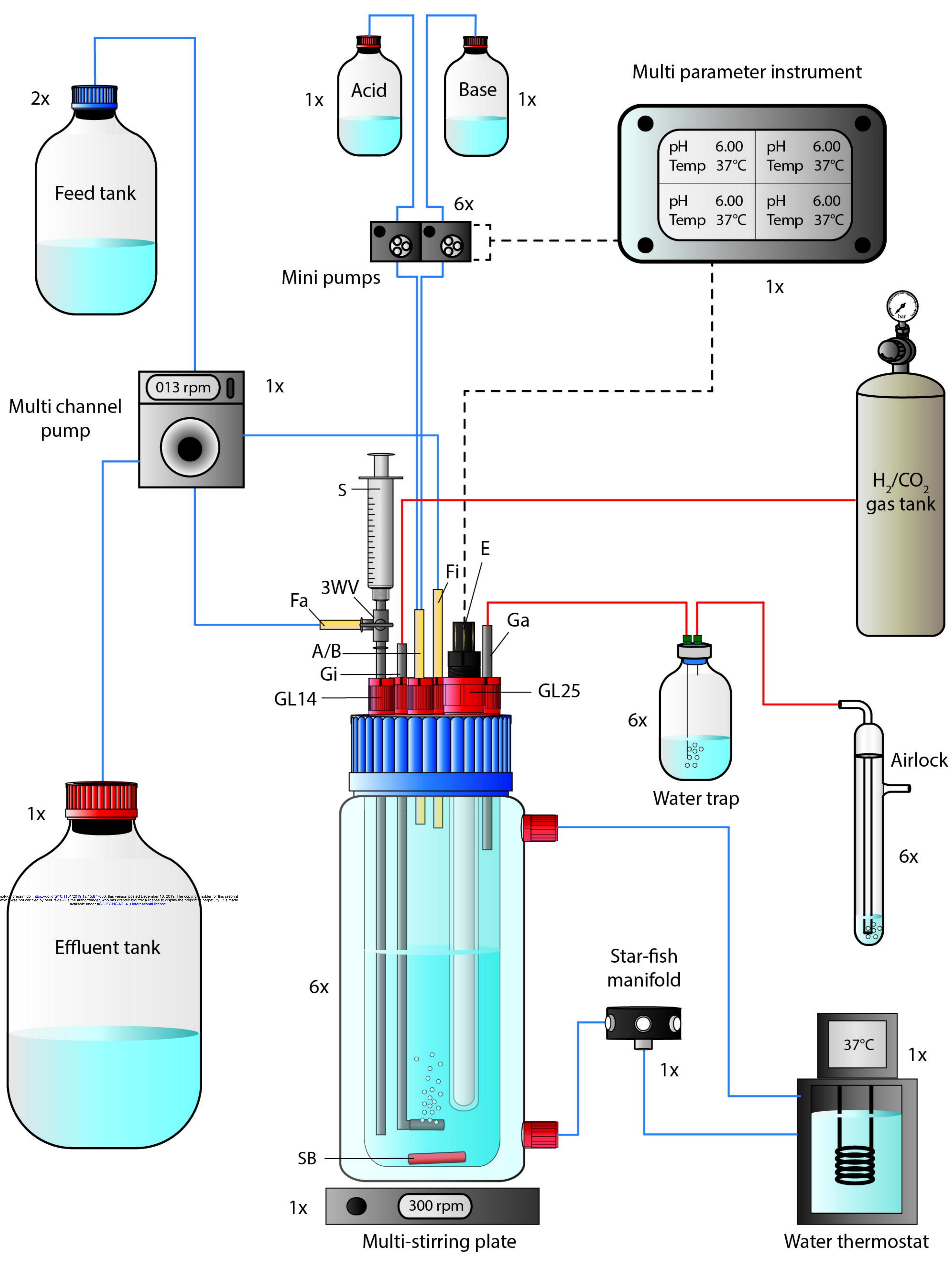
606 **Table 1**

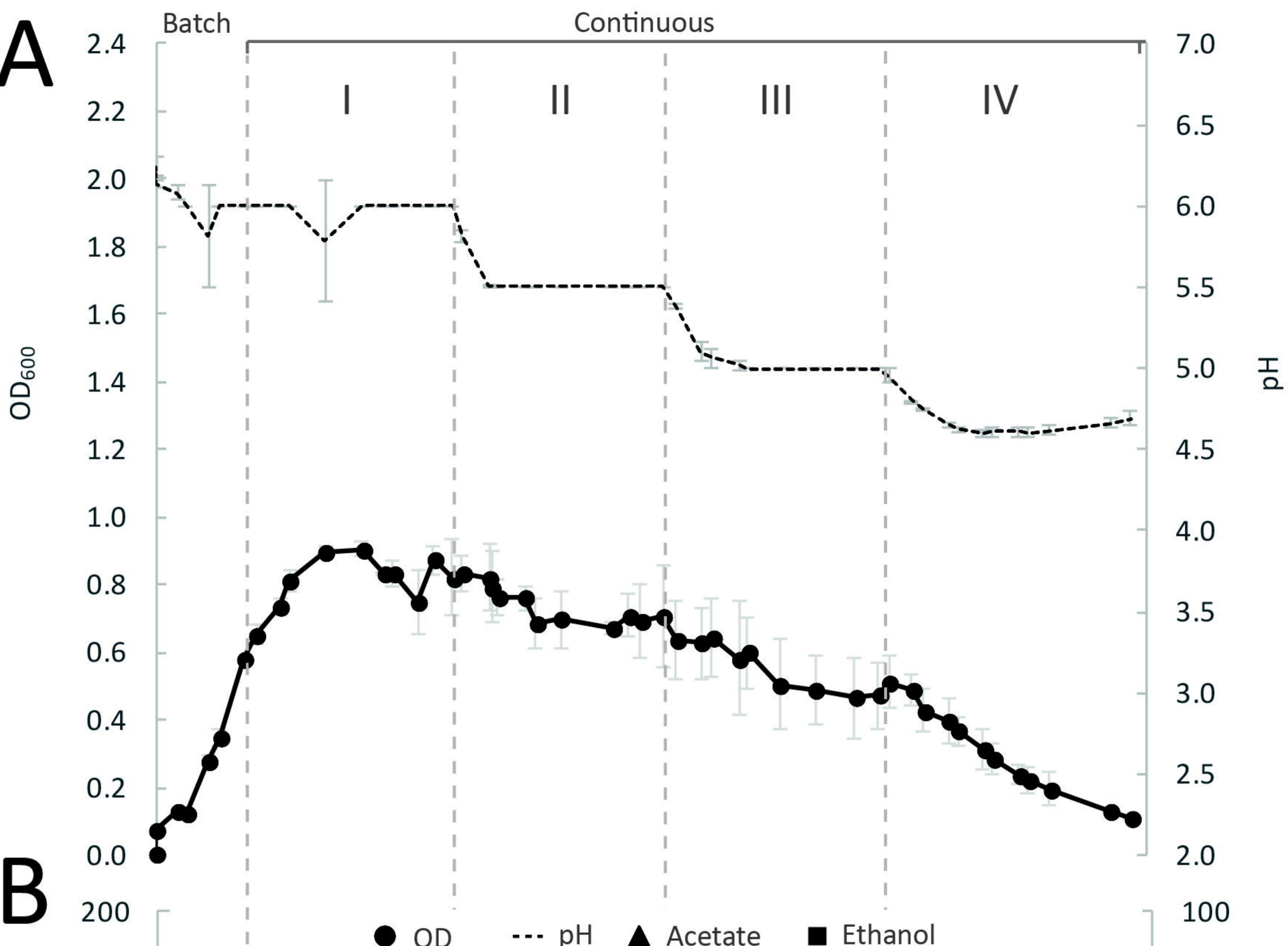
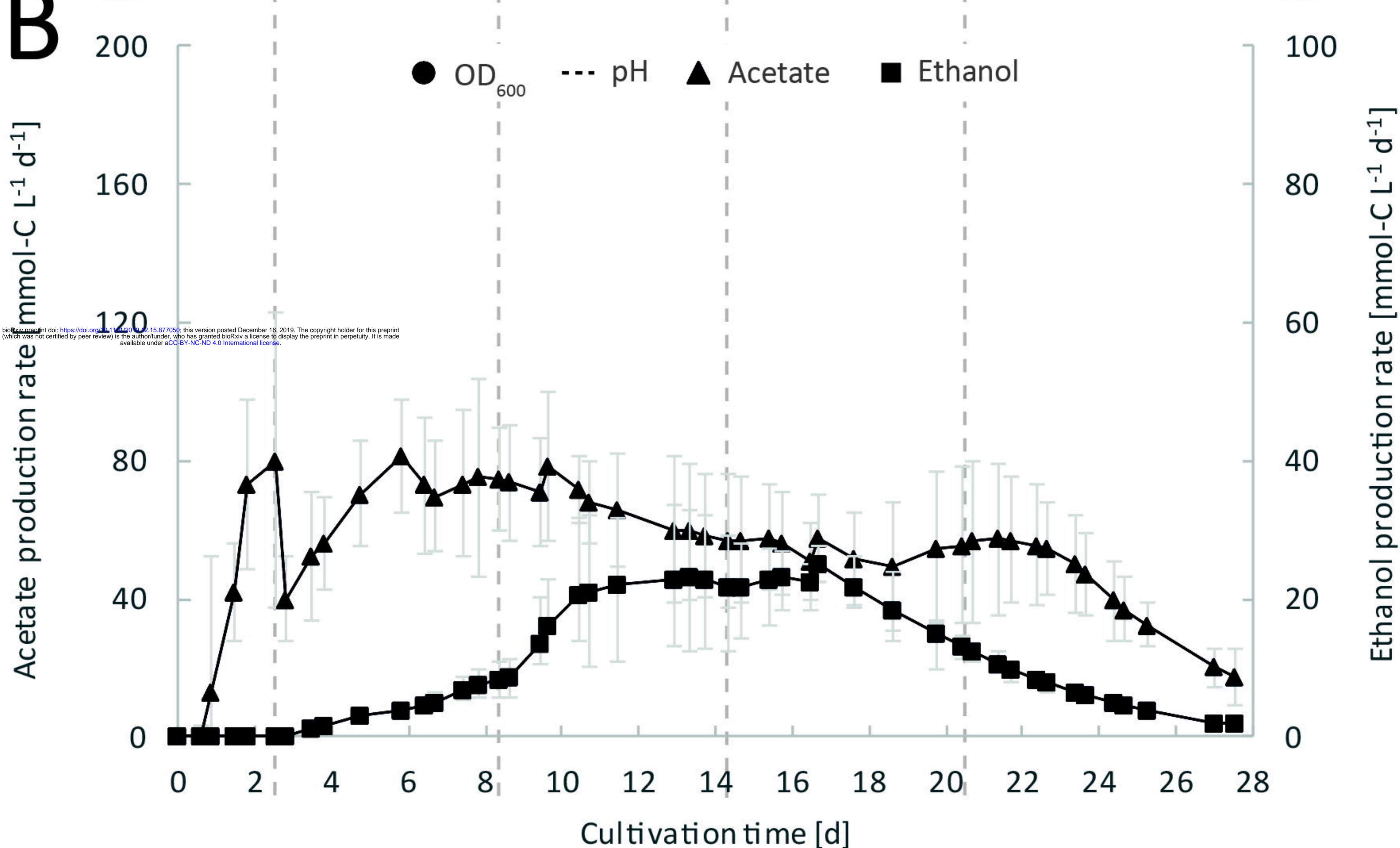
607 **Table 1. Average values for OD₆₀₀ and acetate/ethanol production rates during the continuous**
608 **fermentation of *C. ljungdahlii* with CO₂ and H₂ at four different pH conditions in standard**
609 **PETC medium using the MBS.**

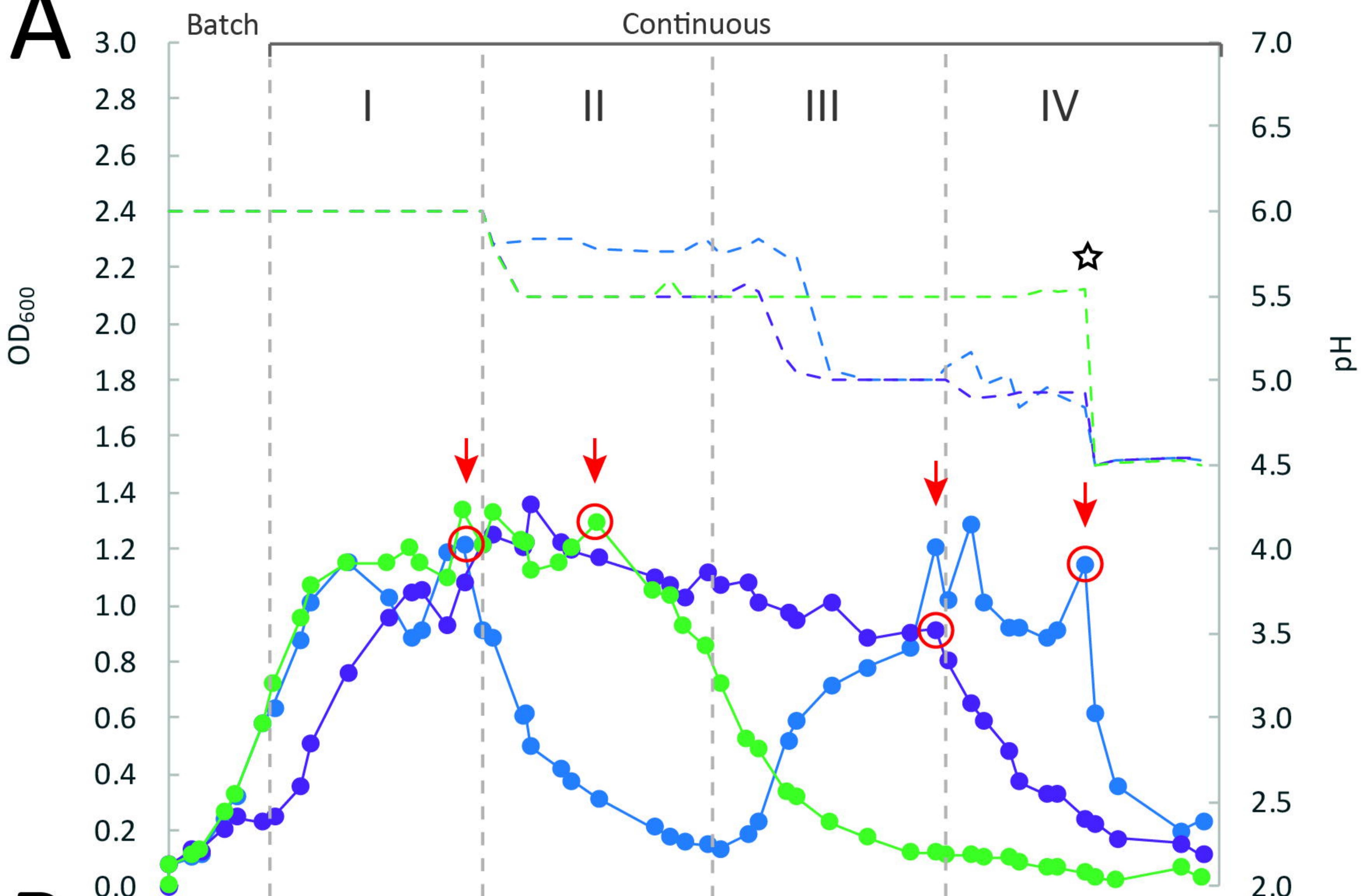
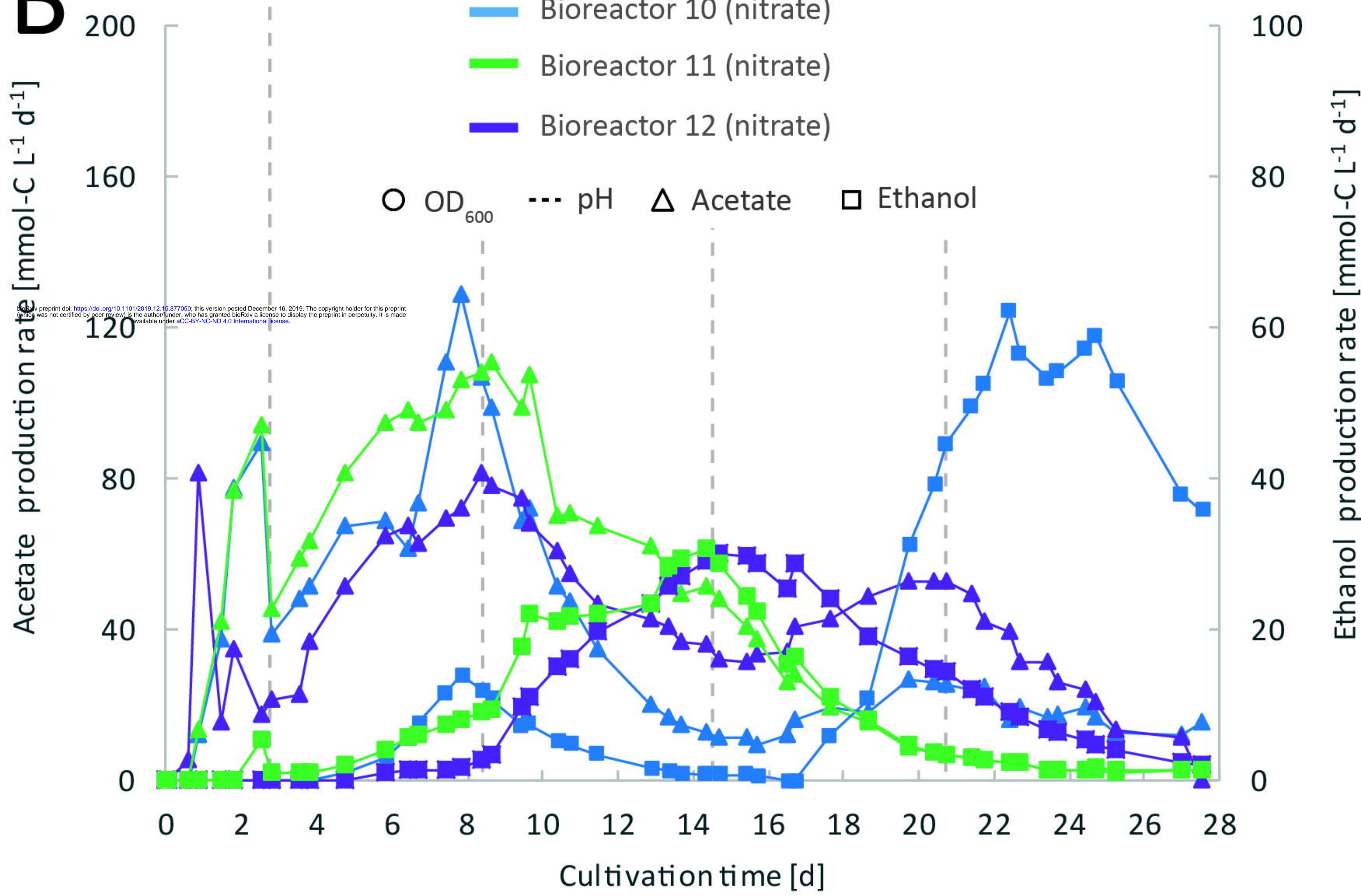
Operating conditions	OD ₆₀₀ ¹	Acetate production rate [mmol-C L ⁻¹ d ⁻¹] ¹	Ethanol production rate [mmol-C L ⁻¹ d ⁻¹] ¹	Ratio _{Et/Ac} ²
Period I (pH=6.0)	0.82 ± 0.04	73.1 ± 2.1	6.4 ± 1.6	0.1
Period II (pH=5.5)	0.69 ± 0.01	60.1 ± 3.4	22.5 ± 0.5	0.4
Period III (pH=5.0)	0.51 ± 0.05	53.7 ± 3.3	18.7 ± 4.8	0.3
Period IV (pH=4.5)	0.18 ± 0.06	29.2 ± 10.0	3.4 ± 1.4	0.1

610 ¹ Values for the bioreactors with ammonium feed (n=3) are given as the average (± standard deviation) from three
611 bioreactors for the last 5 data points of every period.

612 ² Et, Ethanol; Ac, Acetate.


613



614 **Table 2. Highest observed values for OD₆₀₀ and acetate/ethanol production rates at specific pH**
615 **during continuous fermentation of *C. ljungdahlii* with CO₂/H₂ and nitrate.**



Highest value for	Bioreactor 10 (nitrate)	Bioreactor 11 (nitrate)	Bioreactor 12 (nitrate)	Bioreactor 1-3 (ammonium) ¹
OD ₆₀₀	1.29 (pH 5.2)	1.36 (pH 5.5)	1.34 (pH 6.0)	0.90 ± 0.02 (pH 6.0)
Acetate production rate [mmol-C L ⁻¹ d ⁻¹]	128.8 (pH 6.0)	81.5 (pH 6.0)	108.3 (pH 6.0)	81.4 ± 3.0 (pH 6.0)
Ethanol production rate [mmol-C L ⁻¹ d ⁻¹]	62.0 (pH 5.0)	29.9 (pH 5.0)	30.6 (pH 5.5)	25.0 ± 2.7 (pH 5.0)
Ratio _{Et/Ac} ²	3.8 (pH 4.9)	0.7 (pH 5.5)	0.6 (pH 5.5)	0.4 (pH 5.5)

616 ¹ Values for the bioreactors with ammonium feed (n=3) are given as the average (± standard deviation) from three
617 bioreactors for the last 5 data points.

618 ² Et, Ethanol; Ac, Acetate.

A**B**

A**B**