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Genetic characterization of African swine fever virus in Romania during 2018-2019 outbreak

Abstract

African swine fever (ASF) is a highly contagious and lethal viral disease of swine with
significant socio-economic impact in the developed and developing world. Since its
reintroduction in 2007 in the Republic of Georgia, the disease has spread dramatically thorough
Europe and Asia. Among the most affected countries in Europe is Romania, which initially
reported the disease in 2017 and in 2018-2019 lost about 1 million pigs. There is no molecular
characterization of the virus circulating in Romania during that reported period; therefore, the
purpose of this study was to provide an initial molecular characterization using samples collected
from two farms affected by ASFV. The causative strain belongs to genotype 11, and its closest
relatives are the strains circulating in Belgium, Russia, and China.

type of article: short communication

Key words: ASFV, Romania, phylogenetic analysis


https://doi.org/10.1101/2019.12.15.876938
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.15.876938; this version posted December 15, 2019. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-ND 4.0 International license.

93 Introduction
94 African swine fever (ASF) is a lethal hemorrhagic fever of swine and is the most important
95 foreign animal disease threatening the worldwide agriculture, currently spreading in Europe and
96 Asia. Since there is no vaccine or treatment available, strict biosecurity measures and trade
97  restrictions are implemented during an initial outbreak (Sanchez-Vizcaino, 2015). ASF is caused
98 by a macrophage-tropic, double stranded (ds) DNA virus with a 170-190 kb genome, currently
99 the only member of the Asfarviridae family (Dixon, 2011). The principal routes of disease
100  transmission are direct contact between infected pigs and indirect contact through contaminated
101 feed and food products (EFSA, 2014). Moreover, the virus is maintained in the sylvatic cycle
102  through the soft ticks of genus Ornithodoros (Diaz, 2012).
103 The disease was initially described in Kenya in the early 1900s, causing high morbidity
104  and mortality among domestic pigs (Montgomery, 1921). The first transcontinental spread of
105  African swine fever virus (ASFV) occurred in 1957, in Portugal and Spain (Manso Ribeiro, 1958).
106  As of today, ASF still remains endemic in Africa and on the island of Sardinia, in Italy. Since then,
107  ASFV spread again out of Africa to the Caucasus and subsequently to Eastern Europe, resulting
108 in outbreaks in the Russian Federation and in neighboring countries, including Belarus, Ukraine,
109  Lithuania, Estonia, Poland, Latvia, Czech Republic, Moldova, Romania and Hungary. Recently,
110  ASFV outbreaks have occurred in major swine-producing countries in China, Mongolia, and
111 Vietnam. ASFV has a wide range of genetic variation (24 different genotypes), as shown by the
112 sequencing of the C-terminal end of the major capsid protein p72 and full sequencing of p54.
113 Variation between closely related genotypes is shown by sequencing the central variable region
114  (CVR) of B602L (Bastos, 2004; Achenbach, 2017; Quembo, 2018).
115 Since the first case in 2017, Romania’s National Sanitary Veterinary and Food Safety
116  Authority (NSVFSA) confirmed more than 1000 ASF cases, including large scale biosecurity
117  facilities and backyard farms (OIE, 2019). Therefore, Romania’s economy had suffered major
118  economic losses among European Union (EU) members due to massive depopulation strategies.
119  However, there is no molecular characterization available to monitor ASFV evolution in Romania.
120 The purpose of the present study was to perform initial genetic characterization using
121 classical approach of genotyping of p72, p54 and CVVR of B602L (Bastos, 2004; Achenbach,
122 2017; Quembo, 2018).

123
124  Materials and methods
125 Tissue samples from four infected pigs were collected from two backyard pig farms

126 during 2018-2019 outbreak (between September 2018-February 2019). Samples were collected
127  from one farm in N-W Romania, Bihor county (September 2018) and one farm in S-E Romania
128  from Braila county (February 2019), were diagnosis of ASF was confirmed by the NSVFSA

129  local laboratories. DNA was extracted from tissue homogenates (spleen, tonsil, and lymph

130  nodes) of each animal. Next, we performed PCR analysis using specific primers used for

131  genotyping (Gallardo, 2009). The DNA sequencing reactions were performed as described

132 previously (Zaulet, 2012). Briefly, the reaction products were purified using Wizard® PCR Preps
133  DNA Purification System (Promega, Madison, W1, USA), and the concentration and purity of
134  the products were evaluated by spectrophotometry (Eppendorf BioPhotometer, Hamburg,

135  Germany). The sequencing was performed on a 3130 Genetic Analyzer and the obtained

136  sequences were truncated manually and received GenBank accession numbers (Figure 1).

137 Sequence alignments and phylogenetic analysis were performed using CLC Workbench software
138 v 7.6.3 using a set of reference sequences corresponding to all 24 genotypes of ASFV.
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139  Results and discussion

140 Two data sets were generated for the phylogenetic analysis 1) p72 analysis using 41

141 sequences corresponding to all currently available ASFV genotypes and 2) p54 analysis using 36
142 sequences corresponding to all the sub-genotypes available for ASFV (excluding genotypes

143 XXl and XXIV, which there were no sequences available for p54). Unweighted pair-group

144  arithmetic average (UPGMA), neighbor joining (NJ), and minimum evolution (ME)

145  phylogenetic tress were constructed using Kimura 2-parameter substitution model, as determined
146 by a model selection analysis used by CLC Workbench v. 7.6.3 (Figure 1, panel A for p72 and
147  panel B for p54). Bootstrap analysis was performed 1,000 times to assess the degree of statistical
148  support for the resulting p72 and p54 trees.

149 Phylogenetic analysis revealed that the strain currently circulating in Romania belongs to
150  genotype Il, and is identical with the ones described in Georgia, Russia, China and Belgium for
151  both p72 and p54. We obtained similar results by sequencing CVR within B602L revealing

152  100% identity with the isolates currently circulating in Ukraine and Russia (data not shown)

153  (Gallardo, 2014). The results obtained confirm that evolution of ASFV in the Romanian pig

154  farms follows one evolutionary direction. It is important to note that the samples were collected
155  from two different regions during the outbreak season of 2018-2019; therefore, our analysis

156  revealed that the virus did not acquire any additional mutations in the three genes used for

157  genotyping.

158 However, a further genome-wide genotyping focusing on variable intergenic markers will
159  consolidate our findings and bring more information regarding ASFV evolution in Romania and
160 in Eastern Europe.
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Figure 1. Minimum evolution (ME) phylogenetic trees for major capsid protein gene (p72; panel
A) and envelope protein (p54; Panel B) of ASFV isolated during 2018-2019 outbreaks in
Romania. Corresponding genotypes are labeled I-XXIV. The strain name and GenBank
accession number are indicated. Vertical black lines indicate the genotype from Romanian
sequences generated during this study. Scale bar indicates nucleotide substitutions per site. The
percentage of replicate trees >50% in which the associated taxa clustered together by bootstrap
analysis (1,000 replicates) is shown adjacent to the nodes.
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