

1 Structural studies of thyroid peroxidase show the monomer interacting with autoantibodies in 2 thyroid autoimmune disease

3

4 Daniel E. Williams¹, Sarah N. Le¹, David E. Hoke¹, Peter G. Chandler¹, Monika Gora², Marlena
5 Godlewska³, J. Paul Banga⁴ and Ashley M. Buckle^{1,*}

6

7 Affiliations

⁸ ¹Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia

10 ²Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland

11 ³Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education,
12 Warsaw, Poland

13 ⁴Emeritus, King's College London School of, London, United Kingdom.

14

15 *To whom correspondence and reprint requests should be addressed:

16 Ashley M. Buckle

17 The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash
18 University, Clayton, Vic 3800 Australia; Tel: +613 99029313; Email: ashley.buckle@monash.edu

19

20 Keywords: Autoimmune thyroid disease, thyroid peroxidase, autoantigen, electron microscopy

21

?? Disclosure Summary: The authors have nothing to disclose

23

24 **Abstract**

25

26 Thyroid peroxidase (TPO) is a critical membrane-bound enzyme involved in the biosynthesis of
27 multiple thyroid hormones, and is a major autoantigen in autoimmune thyroid diseases such as
28 Graves' disease and Hashimoto's thyroiditis. Here we report the biophysical and structural
29 characterisation of two novel TPO constructs containing only the ectodomain of TPO and lacking the
30 propeptide. Both constructs were enzymatically active and able to bind the patient-derived TR1.9
31 autoantibody. Analytical ultra-centrifugation data suggests that TPO can exist as both a monomer
32 and a dimer. Combined with negative stain electron microscopy and molecular dynamics
33 simulations, these data show that TR1.9 autoantibody preferentially binds the TPO monomer,
34 revealing conformational changes that bring together previously disparate residues into a
35 continuous epitope. In addition to providing plausible structural models of a TPO-autoantibody
36 complex, this study provides validated TPO constructs that will facilitate further characterization,
37 and advances our understanding of the structural, functional and antigenic characteristics of TPO, a
38 molecule behind some of the most common autoimmune diseases.

39

40

41

42 **Introduction**

43

44 Thyroid Peroxidase (TPO) is an enzyme in the thyroid gland responsible for oxidising iodide ions
45 to form iodine (mediated by hydrogen peroxide), which can then be incorporated into the key
46 thyroid hormones triiodothyronine (T₃) and thyroxine (T₄) ¹. These hormones are critical in the
47 regulation of metabolism. TPO is of clinical significance, as it is a target of autoantibodies and
48 autoreactive T cells in autoimmune thyroid diseases (AITD) such as destructive thyroiditis
49 (Hashimoto's disease) and hyperthyroidism (Grave's disease) ^{2,3}. AITDs are some of the most
50 common autoimmune diseases in the developed world, with Hashimoto's disease being a strong risk
51 factor for thyroid cancer ⁴. TPO is suspected to be involved in the pathogenesis of Hashimoto's
52 thyroiditis (prevalence 300-2980 cases per 100,000 in the Western world), leading to thyrocyte
53 destruction via CD8+ T-cell infiltration resulting in hypothyroidism ^{1,3,5}. This incidence rate can be
54 compared to other autoimmune diseases – for example type 1 diabetes, which has an incidence in
55 the developed world of 310-570 cases per 100,000 patients - demonstrating the immense disease
56 burden caused by AITDs ⁵. The pathogeneses that underlies these autoimmune diseases is complex,
57 however the lack of any tertiary or quaternary structure of TPO complicates matters. The absence of
58 a structure in which to understand binding of anti-TPO antibodies, which are prevalent almost
59 ubiquitously (>95%) in cases of destructive thyroiditis, complicates the understanding of the
60 pathogenesis and nature of the disease. The precise mechanism by which these antibodies cause
61 damage is uncertain ². Additionally, in some cases AITDs can occur without these autoantibodies
62 being present, and transplacental passage of anti-TPO antibodies does not necessarily cause thyroid
63 damage in the offspring ^{3,6,7}. Despite this, transplacental passage of these autoantibodies can
64 potentially have cognitive effects on the child. In addition, antibodies to thyroglobulin (Tg) and
65 thyroid stimulating hormone receptor have been identified in both conditions, indicating that there
66 may be multiple antigens in AITD pathogenesis ².

67 TPO is a member of the animal heme peroxidase family, which also includes myeloperoxidase

68 (MPO), eosinophil peroxidase (EPO) and lactoperoxidase (LPO). This family is characterised by high
69 sequence identity and their iron containing heme groups required for their peroxidase activity.
70 Additionally, a conserved calcium binding site (TPO: His261) is observed across the family, which is
71 critical for coordination of the heme group into the active site ⁸. Proteins within this family exist as
72 both monomers (EPO, LPO) and well as dimers (MPO) *in vivo* ¹. Additionally, TPO is extensively post-
73 translationally modified (PTM) via N- and O-glycans, another feature of the family. TPO however is
74 the only member of this family which is a transmembrane protein ^{9,10}. TPO is a 933 amino acid long,
75 107 kDa transmembrane glycoprotein made up of several domains: a heme-containing and
76 catalytically active myeloperoxidase (MPO)-like domain, a complement control protein (CCP)-like
77 domain, an epidermal growth factor (EGF)-like domain, a transmembrane domain and an
78 intracellular domain (Figure 1)^{1,11}. The known homologues of TPO, including LPO and MPO, have 48%
79 and 47% sequence similarity respectively (in relation to the MPO-like domain within TPO), and both
80 LPO and MPO are crystallisable with known structures ^{12,13}. However, no known structure of TPO
81 exists despite previously reported crystals, due to poor diffraction ^{14,15}. The MPO-like domain
82 contains the active site with the catalytically important heme group that is covalently attached to
83 Glu408 and Asp260, as well as His261 necessary for calcium binding ¹. This domain is highly alpha
84 helical. Both the CCP and EGF-like domains are small domains that are both β -strand rich ⁸.

85 To date, the question of whether TPO exists as a monomer or as a dimer remains open. MPO
86 functions as a dimer, and the conserved cysteine at residue 296 in TPO's MPO-like domain would
87 suggest a likely site of dimerisation. Despite this, no evidence revealing where in the cell TPO dimers
88 are formed is available, however it has been shown that MPO dimerises after leaving the ER ^{10,16}. In
89 contrast, it has been shown that MPO can exist and function as a monomer *in vivo* despite usually
90 presenting as a dimer ¹⁶. In the absence of structural characterisation, we previously modelled TPO
91 as homodimer bound by the conserved cysteine residue Cys296 ⁸. Due to the location of this linkage,
92 symmetry restraints and evidence from the primary sequence, it was proposed that the dimer can
93 be modelled in two plausible ways – with the active site of the MPO-like domain facing toward (*cis*)

94 or away (*trans*) from the thyrocyte membrane.

95 Epitope mapping studies using patient derived autoantibodies against TPO have revealed a
96 pattern of antibody recognition sites in two distinct regions, named immunodominant region A (IDR-
97 A) and immunodominant region B (IDR-B) (Table S1) ¹⁰. Mapping these regions onto models of a TPO
98 dimer showed that the MPO-like domain was the dominant locale of both IDRs ⁸. IDR-A was not
99 closely clustered on either the *cis* or *trans* model, and the epitopes in some cases were too sparse to
100 be engaged by a single antibody. This would suggest that TPO may exhibit flexibility allowing these
101 regions to coalesce into one discrete epitope. In IDR-B, the epitopes cluster close to the MPO-like
102 domain dimer interface in both *cis* and *trans* models, burying parts of the epitope in this interface.
103 As such, the question of whether TPO exists as a monomer or dimer is central to understanding its
104 autoantigenicity ^{1,8}. Thus, probing the structural characteristics of TPO may provide key insights into
105 the molecular basis of autoimmune disease.

106 In order to understand whether TPO exists as a monomer or dimer and to provide more insights
107 into its structure, here we report a structural, functional and biophysical characterization of two TPO
108 constructs; ΔproTPOe-8His and ΔproTPOe-GCN4, the latter with a leucine zipper dimerisation motif
109 engineered to stabilise the dimer form.

110

111

112

113

114 Materials and Methods

115

116 *Construction of pcDNA/FRT/ΔproTPOe containing a C-terminal 8x His tag*

123

124 Construction of *lproTPOe* containing the yeast GCN4 dimerisation motif

125 The gene for the yeast GCN4 dimerisation motif was chemically synthesised (GenScript) and
126 subcloned with *NotI* and *BamHI* into the pUC57 ampicillin resistant vector containing the C-terminal
127 Δ proTPOe sequence. The pcDNA5/FRT/ Δ proTPOe and pUC57/GCN4 plasmid was simultaneously
128 digested with *NotI* and *BamHI* and the final products isolated on a 1% agarose gel and subjected to
129 gel purification. Cloning of the yeast GCN4 dimerisation motif into the pcDNA5/FRT/ Δ proTPOe/8His
130 plasmid product was achieved by utilising an internal *BamHI* restriction site within the Δ proTPOe
131 protein sequence and a *NotI* site in the vector. Both plasmid products were digested with *BamHI*,
132 ligated and then transformed into chemically competent DH5 α cells. Successful colonies were
133 screened and sequenced on both strands.

134

135 *Expression in HEK293 cells*

136 EXPI293 cells (ThermoFisher Scientific) were transiently transfected with the ΔproTPOe-8His and
137 ΔproTPOe-GCN4 pcDNA5/FRT plasmids respectively. These cells were diluted to 0.5x10⁵ cells per
138 millilitre 48 hours prior to transfection with FreeStyle 293 Expression Medium (ThermoFisher
139 Scientific). Plasmid DNA isolated above was added to pre-warmed PBS at a ratio of 1 µg/mL of cell

140 culture, in addition to polyethylenimine at a rate of 4 μ g per 1 μ g of DNA. Cells were counted and
141 adjusted to 1.5x10⁶ cells/mL which had >95% viability for transfection. This buffer was added to the
142 culture to an amount equal to 10% of the final volume. Glucose concentration was adjusted to 33
143 mmol/L, and the cells were incubated at 37°C with 5% CO₂ for 7 days. Final concentrations of 20 μ M
144 hematin and 10 μ M hydrogen peroxide were added to the culture twice during the course of
145 expression.

146

147 *Protein Purification of Δ proTPOe-8His and Δ proTPOe-GCN4 constructs*

148 EXPI293 supernatants of each construct underwent centrifugation at 6,000x g for 5 min to
149 remove any cell debris. Δ proTPOe was purified from conditioned media via immobilised metal
150 affinity chromatography, using a nickel-nitrilotriacetic acid (Ni-NTA, Qiagen) sepharose. Once bound,
151 the resin was washed with wash buffer (PBST-0.05% Tween 20, 10 mM imidazole) to remove loosely
152 and non-specifically bound proteins. Δ proTPOe constructs were eluted with elution buffer (PBST-
153 0.05%, 240 mM imidazole), pooled and concentrated. As a final polishing step, Δ proTPOe was
154 further purified by a HiLoad Superdex S200 16/60 column (GE Healthcare) using gel filtration buffer
155 (1x PBS pH 7.4, 0.01% Tween 20). Δ proTPOe eluted as a single symmetric peak. Protein purity was
156 analysed by SDS-PAGE and Western blotting.

157

158 *TR1.9 protein transformation, expression and purification*

159 The TR1.9 Fab sequence contained within a pBP101 plasmid was transformed, expressed and
160 purified as previously published ¹⁸.

161

162 *Enzyme-linked immunosorbent assay (ELISA) of TPO-Fab interaction*

163 An ELISA was performed to determine whether TR1.9 Fab would bind to both TPO constructs,
164 Δ proTPOe-8His and Δ proTPOe-GCN4. The experiment included a number of controls (IgG, positive
165 control, conserpin ¹⁹, negative control, as well as PBS blanks).

166 A 96-well polystyrene ELISA plate (Corning) was coated with diluted antigen in PBS (either TPO or
167 control at 10 µg/mL) and incubated at room temperature for 4 hours. The plates were then washed
168 with PBST-0.05 (1x PBS pH 7.4, 0.05% Tween 20), four times and then blocked with 5% skim milk in
169 PBST-0.05, pH 7.4 overnight at 4 °C. The plates were then once again washed four times with PBST-
170 0.05, pH 7.4, after which primary antigen (TR1.9 Fab, 1 mg/mL) was added to the wells at a 1 in 500
171 dilution in PBST-0.05, and then incubated at room temperature for 30 minutes. The plates were
172 once again washed under the same conditions as stated earlier, before 1:2000 dilutions of the
173 secondary antibodies in PBST-0.05 (anti-human IgG conjugated with horseradish peroxidase (HRP),
174 or anti-His, ThermoFisher Scientific) were added, followed by another 30-minute incubation at room
175 temperature. After a final wash, detection was performed using a 1-Step Ultra-TMB (3,3',5,5'-
176 tetramethylbenzidine) ELISA solution (ThermoFisher Scientific). A final addition of an equal amount
177 of 100% acetic acid after one hour acted as a stop solution. The absorbance readings were then
178 measured via an endpoint protocol on a BioRad 96-well plate reader, at a wavelength of 450 nm.

179

180 *Analysis of ΔproTPOe-TR1.9 Fab complex using size-exclusion chromatography*

181 ΔproTPOe-8His and ΔproTPOe-GCN4 was incubated in two-fold molar excess of TR1.9 Fab, in 1x
182 PBS, pH 7.4 supplemented with + 0.01% Tween 20. This complex was incubated at 4 °C for 30
183 minutes before injection onto a Superdex S200 16/60 size-exclusion column (GE Healthcare). The
184 sample was run at 1.0 mL/min and eluted in 1.5 mL fractions, before being analysed by SDS-PAGE.

185

186 *Western blot analysis*

187 Following SDS-PAGE analysis, the proteins on the gel were transferred to a PVDF membrane at
188 100V for one hour. The membrane was then blocked in 5% skim milk in PBST-0.05 at room
189 temperature for one hour with shaking. Constructs containing a His tag were detected by a single
190 step horse radish peroxidase (HRP)-conjugated anti-His antibody produced in mouse (ThermoFisher
191 Scientific) at a 1:1000 dilution. TR1.9 Fab was detected by a HRP-conjugated anti-human IgG (Fab

192 specific) at the same dilution for one hour. Both were washed with TBS-T four times before
193 application of an electrochemiluminescence (ECL) solution (GE Healthcare) and visualised by X-ray
194 photographic film (FujiFilm) at various exposure times.

195

196 *Mass Spectrometry analysis of ΔproTPOe-GCN4*

197 Samples of ΔproTPOe-GCN4 were run on an SDS-PAGE gel with fresh tricine running buffer and
198 fresh Coomassie brilliant blue stain G-250. Bands were removed from the gel and mass
199 spectrometric analysis using LC-MS/MS was performed at the Monash Biomedical Proteomics
200 Facility. Peptide fragments were compared against a reference ΔproTPOe-GCN4 sequence.

201

202 *Guaiacol activity assay*

203 TPO can also oxidise the compound guaiacol, which remains colourless in solution, to
204 tetraguaiacol, which appears orange. This characteristic can be exploited by spectroscopic analysis
205 to record the enzymatic activity of TPO. This reaction was undertaken in 96-well plates, with each
206 reaction containing 0.1 mg/mL TPO sample, 1 mM hydrogen peroxide, 33 mM guaiacol and TPO.
207 Detection via a Bio-Rad 96-well plate reader occurred after a 5-minute incubation for these
208 reagents, at 450 nm. We also recorded this interaction over time, comparing with a HRP-conjugated
209 antibody (ThermoFisher Scientific, 1 in 1000 dilution) and a PBS blank for controls, recording optical
210 density over time.

211

212 *Soret peak analysis to determine incorporation of heme group*

213 The successful incorporation of an iron containing heme group in proteins can be detected by
214 what is known as a Soret peak. ΔproTPOe-8His and ΔproTPOe-GCN4 at a concentration of 0.5
215 mg/mL in 1x PBS pH 7.4 were placed in a cuvette and a fluorescence spectrum was obtained, with an
216 incident wavelength of 330 nm. A distinctive peak at 385 nm is a Soret peak and is distinctive of
217 hemoproteins. This absorbance spectrum was obtained on a HoribaJobinYvon FluoroMax4

218 spectrophotometer.

219

220 *Protein stability measurements*

221 TPO constructs at a final concentration of 0.3 mg/mL were placed in different buffer conditions
222 ranging from pH 4.0 to 8.0 (Table S2). Unfolding was measured via intrinsic tryptophan fluorescence
223 by heating from 20 to 95 °C, with a ramp rate of 1 °C/min, using a Prometheus NT.48 instrument
224 (NanoTemper).

225

226 *Binding affinity measurements*

227 Bio-layer interferometry experimental data was collected via a BLItz instrument (FortéBio). Ni-
228 NTA biosensors were equilibrated overnight in 1x PBS, 0.01% Tween 20, 1% BSA, pH 7.4 at 4 °C
229 before use. This assay consisted of five steps: initial baseline (30 s), protein loading (150 s), baseline
230 (30 s), association (240 s) and dissociation (480 s). All steps occurred using the same buffer
231 composition listed above. ΔproTPOe-8His was loaded onto the biosensors during the loading phase
232 at a concentration of 50 µg/mL as per the manufacturer's specifications, with a loading signal of
233 approximately 1 nm. TR1.9 Fab was incubated with the biosensors at concentrations of 0, 50, 100,
234 and 500 nM during the association phase. A blank control reading was used as a baseline during data
235 processing. Using the BLItz Pro version 1.2.1.3 software, the dissociation constant K_D (nM), and the
236 rate constants k_a (1/Ms) and k_d (1/s) were calculated using a 1:1 binding model with global fitting.
237 Curves were adjusted within the BLItz Pro software to match at the start of both association and
238 dissociation in order to adjust for changes in conditions between steps. R_2 values for the calculated
239 fit were reported as 0.97.

240

241 *Analytical ultra-centrifugation analysis (AUC)*

242 AUC can be used to observe the oligomerisation status of proteins, as well as analyse complex
243 formation. ΔproTPOe-8His and ΔproTPOe-GCN4, as well as each in complex with TR1.9 Fab, were

244 ultra-centrifuged in a BeckmanCoulter Analytical Centrifuge using a double sector cell with quartz
245 windows in 4-hole An60-Ti rotors. The wavelengths for further analysis were selected by an initial
246 scan at 3000 RPM at room temperature to select the best radial settings. For the sedimentation
247 velocity experiment, 420 μ L of sample and 400 μ L of buffer (1x PBS pH 7.4) were placed in each cell
248 and the experiment was run with the radial settings discussed earlier at 40,000 RPM. 500 scans were
249 performed with a rate of 15 scans per minute. Information about buffer viscosity, density and partial
250 volume were determined by the software SEDNTERP. A c(s) sedimentation distribution model was
251 determined using the SEDFIT software available from
252 <https://sedfitsedphat.nibib.nih.gov/software/default.aspx>.

253

254 *Negative stain electron microscopy (EM) analysis*

255 A TPO-Fab complex was formed by addition of a 2x molar excess of TR1.9 Fab to freshly purified
256 Δ proTPOe-8His. This was incubated on ice for 30 min before separation using an analytical S200
257 10/300 column in 1x PBS pH 7.4 (GE Healthcare). 10 μ L of Δ proTPOe-8His alone and in complex with
258 TR1.9 Fab at 0.05 mg/mL were pipetted onto freshly glow discharged carbon grids and stained with
259 2 % uranyl acetate. Micrographs at 67000x magnification were recorded on a FEI Tecnai Spirit T12
260 transmission electron microscope (TEM), with a spot size of 1, dose of 20 e/ \AA ⁻¹, and an exposure
261 time of one second. Fitting of the models within the density was performed using the inbuilt
262 commands within UCSF Chimera 1.13.1 ²⁰.

263

264 *Computational resources*

265 Parametrisation and molecular dynamics (MD) simulations of TPO constructs were performed on
266 in-house hardware using NVIDIA 1080 Ti Pascal GPUs.

267

268 *MD systems preparation*

269 Starting structures for *cis* and *trans* variants of Δ proTPOe were derived from the models

270 presented in Le and co-workers ⁸. An extended variant of ΔproTPOe was developed which did not
271 bias the orientation of the CCP-like and EGF-like in relation to the MPO-like domain. Additionally,
272 each structure had separate runs with unrestrained, as well as positionally restrained IDR residues.
273 These residues were weakly constrained with harmonic position restraints of 2 kcal Å⁻² mol⁻¹. These
274 proteins contained protonation states appropriate for pH 7.0 (as determined by PROPKA) and were
275 inserted in a rectangular box with a border with a minimum of 12 Å ^{21,22}. They were then explicitly
276 solvated with TIP3P water, sodium counter-ions were added and then the system was
277 parameterised using the AMBER ff99SB forcefield ²³⁻²⁶. After 10000 steps of energy minimisation, an
278 equilibration stage was performed. The temperature was raised from 0 K to 300 K with a constant
279 volume and a 10 K ramp over 1 ns, with Langevin temperature coupling relaxation times of 0.5 ps.
280 After the target temperature was achieved, the pressure was equilibrated to 1 atm using the
281 Berendsen algorithm over 0.5 ps ²⁷. The MD simulations used periodic boundary conditions and a
282 time step of 2 fs, with temperature maintained at 300 K using the Langevin thermostat and pressure
283 maintained at 1 atm using the Berendsen method as described above. All MD simulations were run
284 in triplicate, with the same starting structure but with altered starting velocities following the
285 equilibration and parametrisation steps. Each run extended for 400 ns using NAMD 2.9 ²⁸.

286

287 *MD analysis*

288 Manipulation and analysis of the simulations were performed using VMD 1.9.3, MDTraj and
289 custom scripts ^{29,30}. Models of ΔproTPOe were analysed for root mean square deviation (RMSD),
290 with the RMSD of backbone heavy atoms in relation to the initial structure calculated for every 0.1
291 ns of simulation after calculating a least-square fit. Output structures for further analysis were
292 selected from a plateau in the RMSD calculation, whereby the structure adopted a stable state.
293 Distance between selected IDR residues in each frame was also calculated using VMD and custom
294 scripts. RMSD is given as an average value per residue per 0.1 ns of simulation time. All structural
295 representations were prepared using PyMOL 2.3.2.

296

297

298

299 **Results**

300

301 **Expression and Purification of TPO constructs**

302 TPO's domain structure, the engineered constructs and structural models are shown in Figure 1.

303 The ΔproTPOe-8His construct lacks a propeptide domain, which has previously been shown to not

304 influence TPO secretion, activity or immunogenicity ¹⁷. Additionally, the expression of only the

305 ectodomain allows ΔproTPOe-8His to be secreted into the media rather than be retained in the

306 membrane. ΔproTPOe-8His was expressed into the media successfully in EXPI293 cells (Figure 2).

307 Purification of the secreted media shows the presence of a major band ~110 kDa that is ΔproTPOe-

308 8His. Upon a two-step purification involving Ni-NTA affinity chromatography and size-exclusion on a

309 Superdex S200 16/60 column, ΔproTPOe-8His elutes as a single symmetrical peak at 75.5 mL which

310 is consistent with that of a 110 kDa according to our calibration (Figure 2C). There appears to be no

311 other high molecular weight species on the chromatogram. Despite this, the fractions making up this

312 peak when analysed via reducing SDS-PAGE (Figure 2A) demonstrate a number of minor species,

313 which may be due the heterogeneous nature of the glycosylation of TPO or protein degradation

314 from proteases released from cells during the 7-day expression cycle.

315 In an attempt to favour TPO dimerisation we engineered a GCN4 leucine zipper dimerisation

316 motif into the C-terminus of TPO, creating ΔproTPOe-GCN4. Expression and purification proceeded

317 as with the ΔproTPOe-8His construct (Figure S1). SDS-PAGE followed by mass spectroscopic analysis

318 confirmed the presence of intact ΔproTPOe-GCN4 (~110 kDa) (Figure S2). Despite the quality of our

319 preparations, TPO suffered from a shorter shelf life and often appeared to degrade into a 75kDa

320 component according to SDS-PAGE. This fragment was analysed by mass spectrometry and was

321 identified as a truncated TPO (Figure S3). Enzymatic activity of the constructs was validated by

322 spectroscopic analysis, measuring both proper heme incorporation as well as function via the

323 guaiacol activity assay (Figure 3). Whereas ΔproTPOe-8His is enzymatically active, activity could not

324 be detected for ΔproTPOe-GCN4 (data not shown).

325 Δ proTPOe-8His shows statistically significant activity, suggesting that this protein is likely
326 enzymatically active and correctly folded (Figure 3B). Since the thermal stability of TPO has not been
327 reported to date, we measured the stability of the Δ proTPOe-8His construct using thermal unfolding
328 and monitoring intrinsic tryptophan fluorescence in several buffer conditions. The midpoint of
329 unfolding (T_m) of Δ proTPOe-8His reached a maximum of 55.2 °C at pH 7.0 (Table S2). We next
330 showed that TR1.9 Fab binding completely inhibits the catalytic activity of TPO (Figure 3C).

331

332 **Assessment of Oligomerisation State of TPO Constructs**

333 Chromatographic analysis suggests that the TPO constructs behave as monomers, but we
334 suspected that based upon previous work that the TPO molecule is elongated and relatively flexible,
335 and thus we are unable to unambiguously differentiate between monomers and dimers ^{1,8}. From the
336 size-exclusion chromatography data, it is possible that the monomer and dimer of TPO are not
337 separated if they have the same or similar Stokes radii (R_s), which may be possible given their
338 symmetry. We therefore next used analytical ultracentrifugation and sedimentation velocity
339 experiments to provide equilibrium information about TPO's shape, size and oligomeric state. For
340 Δ proTPOe-GCN4, two species could be detected, having a standardised weight-average
341 sedimentation coefficient of 3.6 and 5.2 (Figure 4A). The molecular weights reported by c(M)
342 analysis (not shown) in each case was 114 kDa and 201 kDa respectively, with a frictional ratio of
343 2.36. These molecular weights are consistent with a monomer (~110 kDa) and a dimer (~220 kDa)
344 species. The relative abundance of each of the two species was analysed by SEDFIT (using area
345 under the curve), with a monomer:dimer ratio of approximately 1.33:1, indicating the monomer is
346 more abundant. The frictional ratio of 2.36 suggest a non-spherical, elongated shape, consistent
347 with our previous modelling (a frictional ratio of 1 would suggest a perfect sphere) ⁸. For the
348 Δ proTPOe-8His construct (Figure 4B), two species of standardised weight-average sedimentation
349 coefficient of 3.5 and 5.0 were detected, which were similar to the Δ proTPOe-GCN4 construct. The
350 monomer:dimer ratio appears in this case to be closer to 1:1 in terms of distribution. This would

351 indicate that both constructs exist as monomeric and dimeric forms in solution. Calculated Stokes
352 radii are listed in Table S3.

353

354 **Characterisation of a human TPO-autoantibody complex**

355 In order to gain insight into the nature of the interaction between TPO and the patient-derived
356 TR1.9 autoantibody, we expressed the Fab portion of TR1.9 as previously described ¹⁸. TR1.9 Fab was
357 shown to bind both ΔproTPOe-8His and ΔproTPOe-GCN4 using ELISA (Figure 5). It is apparent from
358 the size-exclusion chromatogram that Fab binds to full-length ΔproTPOe-8His (Figure 5A). There was
359 only a minor peak shift with no appearance of any large species on the chromatogram (dimeric TPO
360 with two Fabs would exceed 320 kDa), which would suggest a stoichiometric monomeric TPO-Fab
361 complex. We also calculated the Stokes radii of the various TPO constructs with and without Fab
362 using analytical size-exclusion chromatography as well as AUC (Table S3). Bio-layer interferometry
363 indicated that ΔproTPOe-8His binds TR1.9 Fab with an affinity of 20 nM (Figure S4). Taken together,
364 this data confirms the antigenic quality of our constructs.

365

366 **Analytical Ultra-centrifugation of the ΔproTPOe-GCN4-TR1.9 Fab Complex**

367 We next used analytical ultra-centrifugation to investigate the association between TR1.9 Fab
368 and ΔproTPOe-GCN4, as well as the effect of TR1.9 Fab binding on the equilibrium of monomer and
369 dimer TPO species. The sedimentation coefficient for TR1.9 Fab alone was determined as $s_{w(20,w)} =$
370 2.6S. AUC analysis of an equimolar mixture of TR1.9 Fab and ΔproTPOe-GCN4 shows two peaks
371 (Figure 5C). The lack of a peak at 2.6S suggests that none, or very little of the Fab, remained un-
372 complexed. Therefore, the two remaining peaks are most likely the TPO monomer/dimer peaks as
373 observed in the previous experiment (Figure 4A). The observed shift in their standardised weight-
374 average sedimentation coefficients (4.1S, 6.6S, respectively) suggest a change in their shape and
375 mass, indicating Fab binding to both monomer and dimer ΔproTPOe-GCN4. The frictional ratio has
376 also changed to 1.77 (from 2.36 with ΔproTPOe-GCN4 alone), indicating that TPO has taken a more

377 spherical shape upon TR1.9 Fab binding. Importantly, the ratio of monomer and dimer has shifted to
378 approximately 2:1. This indicates that TR1.9 Fab preferentially binds the TPO monomer, thus
379 perturbing the monomer:dimer equilibrium.

380

381 **Analytical Ultracentrifugation of ΔproTPOe-8His with TR1.9 Fab**

382 The same sedimentation velocity experiments were undertaken with ΔproTPOe-8His in the
383 presence of TR1.9 Fab, with the Fab in 2-fold excess of TPO. Two distinct species were observed
384 (Figure 5D), with a standardised weight-average sedimentation coefficient of 2.8 and 3.9. This is
385 largely consistent with the Fab alone (2.6S) and ΔproTPOe-GCN4 monomer plus TR1.9 Fab (4.1S)
386 data obtained previously with the alternate construct. Interestingly, in this case there appears to be
387 no other large species, indicating that the binding of Fab has pushed the monomer:dimer
388 equilibrium such that all ΔproTPOe-8His exists exclusively in its monomeric form. AUC further shows
389 that TR1.9 Fab can successfully bind both TPO constructs.

390 The monomeric ΔproTPOe-8His with Fab has a frictional ratio of 1.90 and a Stokes radius of 57.4,
391 similar to that of the monomeric form of ΔproTPOe-GCN4 bound with Fab (Table S3). Taken
392 together, these data indicate that TPO adopts an elongated, non-spherical structure, consistent with
393 our previous model 8. However, a decrease in both the frictional ratio and Stokes radius when bound
394 with TR1.9 Fab suggests that ΔproTPOe-8His adopts a more compact, globular shape upon antibody
395 binding.

396

397 **Molecular Dynamics Simulations Reveal Monomer Conformations Compatible with Antibody
398 Binding**

399 Given the structural changes indicated by AUC data, we next used molecular dynamics
400 simulations to explore the structure of TPO monomers in molecular detail. Our previous modelling
401 analysis of epitope mapping data suggest that some residues in IDR-A are too far away to be
402 engaged by a single autoantibody 8. One such autoantibody, T13, is reported to bind H353-Y363,

403 P377-R386, K713-S720 and Y766-Q775³¹⁻³⁴. The average maximum dimension of an epitope-
404 containing surface is reported at 28 Å (s.d. of 8 Å)³⁵. In contrast, in our previous models of TPO
405 residues implicated in antibody binding are more disperse, with some residue pairs separated by
406 more than 70 Å⁸. This discrepancy suggests that TPO may undergo significant conformational
407 change upon antibody binding, such that epitope residues are brought into closer proximity,
408 consistent with our AUC analysis. To explore this hypothesis, we performed molecular dynamics
409 simulations of a ΔproTPOe monomer in three starting configurations: the *cis* and *trans* monomer as
410 generated previously⁸, and an *extended* conformation in which the CCP-like and EGF-like domains of
411 TPO extend out from the MPO-like domain without any bias in its orientation.

412 After approximately 250 ns of MD simulation time, the CCP-like and EGF-like domains of the *cis*
413 model (containing the epitope Y766-Q775) move towards the MPO-like domain, such that this
414 epitope coalesces around the T13 epitope residues H353-Y363 and R377-R386 (Figures 7, 8 & S6A).
415 As a result, the average residue separation within the epitope decreases from 56 to 40 Å, reaching
416 21 Å at some points in the simulation. This distance is such that it could reasonably be engaged by a
417 single autoantibody via a continuous epitope, which may suggest a mechanism by which
418 autoantibodies could engage multiple sites on TPO that in previous modelling may appear distant.
419 The *trans* model of TPO behaved in a similar manner during simulation, decreasing its maximum
420 dimension from 100 to 82 Å. In contrast however, the CCP-like and EGF-like domains (again
421 containing the same epitope) tended to coalesce around the reported T13 epitope residues K713-
422 S720 on the MPO-like domain, which is also close to R225 and D707 epitope residues (Figures 7, 8,
423 S5 & S6C). Again, the distance between Y766-Q775 and K713-S720 in the *trans* model prior to
424 simulation is 51 Å, but approached 26 Å during simulation. For the extended model the maximum
425 dimension reduced from 130 Å to 83 Å during the simulation. However, the CCP-like and EGF-like
426 domains condensed in a less homogeneous manner compared to the *cis* and *trans* models, such that
427 it was able to adopt multiple conformations relative to the MPO-like domain. Despite this, it is able
428 to stably adopt conformations that result in all four published epitopes for the T13 autoantibody

429 colocalising to form a continuous epitope such that they could all be plausibly engaged by a single
430 autoantibody (Figures 7C & S6B). One such conformation selected from a stable state provided by
431 our MD simulation suggest that all residues involved in these four epitopes are no more than 43 Å
432 away from all other residues in the set of 39 residues previously implicated in the T13 epitope
433 (Figures 8C & S6B). Taken together, these observations may suggest a mechanism not only by which
434 TPO can alter its conformation to take a more compact and globular structure, but potentially
435 explain how disparate residues involved in the IDRs may compact to form a discrete, continuous
436 epitope.

437

438 **Analysis of TPO Structure Using Negative Stain Electron Microscopy**

439 We next investigated the structure of the ΔproTPOe-8His construct in complex with TR1.9 Fab
440 using negative stain electron microscopy. The most homogenous population of the TPO-Fab complex
441 was selected using size-exclusion chromatography (Figure 5). The representative 2D class averages
442 show a globular compact protein complex and initial 3D reconstruction stalled at a resolution of ~20
443 Å (Figure 8). Although this limitation in resolution means that we cannot unambiguously determine
444 the structure of a TPO-Fab complex, we can however rule out certain configurations. Docking of
445 various models of Fab-bound monomeric and dimeric TPO into the EM envelope suggests that
446 various configurations are feasible. Visual inspection suggests that ΔproTPOe adopts a relatively
447 compact, rather than extended conformation, consistent with our MD analysis. For further
448 modelling we therefore proceeded using the aforementioned compact conformations resulting from
449 MD simulations for further analysis.

450 First, we sought to determine if fitting might provide information germane to the oligomerisation
451 state of TPO. For simplicity, only the *trans* arrangements of ΔproTPOe will be presented here. There
452 is sufficient space in the EM envelope for either a monomer or dimer of TPO, or a monomer of TPO
453 bound to Fab. There is insufficient space however, for a dimer with two bound Fabs, and so this
454 possibility was rejected. A Fab molecule was fitted to the envelope with the complementarity

455 determining regions (CDRs) positioned at a distance of 4 Å from the previously published epitope of
456 TR1.9, K713-S720. This is consistent with studies showing an antibody-epitope distance of 4.5-5 Å
457^{35,36}. We also additionally selected a plausible conformation from our MD simulations of *trans* TPO
458 that showed superior fitting to the EM volume, i.e. a folded or condensed monomer. Calculating the
459 goodness of fit of molecules to the EM envelope as the percentage of molecules contained within
460 the envelope, the *trans* dimer, *trans* monomer-Fab complex and condensed monomer-Fab complex
461 contained 54, 53 and 58 percent of molecules within the volume, respectively (Figure 9). This would
462 indicate that the condensed TPO monomer suggested by the MD simulations is the most likely
463 approximation to the solution conformation, at least in the presence of Fab. Fitting the Fab in
464 sequentially with TPO, i.e. not biasing the Fab orientation toward the published epitope, the fit
465 improves to 68%. Despite this however, this fit does not place the CDRs facing in a realistic location –
466 the CDRs face away from TPO itself. Intrinsic flexibility between the variable and constant domains
467 of a Fab often results in ambiguity in fitting into EM data, with only the variable domains being
468 resolved in EM density³⁷⁻³⁹. Accordingly, fitting only the variable domains of the Fab in a TPO
469 monomer-Fab complex within the envelope improves the fit to approximately 73% (Table S4).

470 Given the orthogonal agreement within the presented data from SEC, BLItz, ELISA and AUC
471 analysis indicating we have a high affinity binding interaction between ΔproTPOe-8His and TR1.9
472 Fab, it is unlikely that the Fab is not contained within the EM envelope. Unbound monomer or dimers
473 are thus unlikely. Given that AUC analysis suggests that TR1.9 Fab binds to a TPO monomer and
474 adopts a compact shape upon complexation that is consistent with our MD analysis (Figures 5 and
475 6), the EM data suggests strongly that at least in its non-membrane bound form, TR1.9 binds to TPO
476 as a monomer.

477

478 **Discussion**

479 Native TPO can be isolated and purified from tissue, although the availability of human thyroid
480 tissue is a limiting factor in any preparation of TPO and rarely is enough produced for significant
481 structural characterisation ⁴⁰. Additionally, during maturation TPO is trimmed by proteolytic cleavage
482 within its N-terminal propeptide region ^{17,41}. This process of proteolysis is at least in some way
483 responsible for the low homogeneity of TPO that is purified from tissue. The ΔproTPOe-8His and
484 ΔproTPOe-GCN4 constructs we describe improve the biochemical quality and production yield of
485 recombinant TPO considerably, having similar functional and immunogenic properties to wild-type
486 TPO.

487 The correct incorporation of the heme porphyrin ring is essential for the nascent protein's exit
488 from the ER and indeed for protein functionality ¹⁶, requiring hydrogen peroxide provided by the
489 dual oxidase (DUOX) family of proteins present in the thyroid follicular cell membrane and are
490 closely associated with TPO ^{10,42,43}. Anticipating that the autocatalytic process of heme incorporation
491 might be reduced during mammalian expression due to a lack of hydrogen peroxide, the media was
492 supplemented with hydrogen peroxide as well as hematin, resulting in enzyme activity for
493 ΔproTPOe-8His but not ΔproTPOe-GCN4 ¹⁰. Given that we demonstrate that the heme group has
494 been incorporated, one explanation for the absence of enzyme activity for ΔproTPOe-GCN4 is
495 possible occlusion of the active site as a result of enforced dimerization due to incorporation of the
496 leucine zipper dimerisation motif.

497 Both ΔproTPOe-8His and ΔproTPOe-GCN4 constructs showed an approximately 75kDa
498 degradation product after the initial purification, which co-eluted with the full-length protein during
499 size-exclusion chromatography. This behavior may be due to instability or altered glycosylation,
500 which could account for up to 25% of TPO's 110 kDa molecular mass. There are many splice variants
501 of TPO that have been characterised, indicating its complicated biosynthesis and the relevance of
502 our engineered constructs in providing a consistent protein product ^{40,44}. It is now known that there
503 is more than 10 TPO isoforms ¹⁰. Given the importance of glycosylation in the folding and post-

504 translational trafficking of TPO⁹⁻⁴⁵, it is unlikely that non-post-translationally modified TPO would be
505 exported. A mere 2% of TPO synthesised by cells reaches the cell surface as most is degraded by
506 proteases or the proteasome due to partial or complete misfolding⁴⁵. It is possible that during the 7-
507 day time course for expression, proteolytic activity, rather than inherent instability may have led to
508 the observed degradation, consistent with our thermal stability data.

509 There exists evidence for both monomeric and dimeric forms of TPO, and no consensus
510 agreement on its physiological oligomerization state^{17,46-48}. Bioinformatic analysis of the peroxidase
511 family is consistent with both monomer and dimer. LPO is the most closely related protein to TPO,
512 with 48% sequence identity between their MPO-like domains, and is functionally monomeric¹. MPO,
513 with 47% sequence identity with TPO, is an active dimer stabilized by intermolecular disulfide bonds
514 via a conserved Cys296, which is also conserved in TPO⁴⁸. As such, the MPO-like domain of TPO has
515 been modelled exclusively upon the MPO homodimer. Given however that much of the epitope
516 mapping data suggests that autoantibodies disproportionately recognise epitopes of the MPO-like
517 domain of TPO, and that to date TPO dimerization has not been investigated in any detail, a greater
518 understanding of its oligomerization state would be a great benefit in understanding its
519 autoantigenicity⁴⁹. Some insights may be gleaned from studies on MPO, given its common ancestry
520 and function with TPO. MPO dimerisation occurs in the secretory pathway during proteolytic
521 processing¹⁶. In TPO biosynthesis, the propeptide is cleaved after exit from the Golgi apparatus and
522 dimerisation is likely to occur prior to reaching the plasma membrane¹⁰. As such, dimerisation may
523 occur during the secretory pathway as in MPO, although MPO is not localized in the plasma
524 membrane like TPO, providing additional sites at which TPO may dimerise. A small percentage
525 (~10%) of MPO is secreted as a fully functional monomer with exactly half the enzyme activity
526 compared to the dimer¹⁶. As such, MPO activity does not require dimerization and the functional
527 advantages of dimerisation are not understood. It is reasonable to hypothesize therefore that TPO is
528 functional in both monomeric and dimeric states.

529 AUC analysis of the ΔproTPOe-GCN4 construct is consistent with a monomer:dimer equilibrium,

530 slightly favoring the monomer. TR1.9 Fab binds the monomer preferentially, shifting the equilibrium
531 to 2:1, suggesting a role of the autoantibody in the monomer-dimer interplay. However, since the
532 GCN4 leucine zipper was introduced as a dimerisation motif, any affect on dimerization by Fab-
533 binding must be interpreted with caution. AUC analysis for Δ proTPOe-8His construct follows similar
534 behavior in that it can exist as both monomer and dimer, with only the monomer binding to TR1.9
535 Fab. Interestingly, whereas the Δ proTPOe-8His construct was enzymatically active, the Δ proTPOe-
536 GCN4 construct was not, suggesting that either the dimer interface may occlude the active site of
537 the protein, or that GCN4 interferes with activity via another mechanism. Inspection of epitope
538 mapping data on the *cis* model of dimeric TPO indicates that several residues that comprise
539 immunodominant regions are buried. Furthermore, the large and diffuse nature of IDR-A and -B
540 determinants in both *cis* and *trans* models suggest that significant conformational changes would be
541 necessary to form a continuous epitope compatible with antibody engagement ⁸. Some residues
542 may be surface exposed, but the dimer conformation may prevent autoantibody binding due to
543 steric occlusion. In support of this, AUC analysis shows that the TPO-Fab complex undergoes a large
544 conformational change to become more compact, and also that TR1.9 Fab preferentially binds the
545 monomer, thus shifting the monomer:dimer equilibrium.

546 Our EM analysis provides the first ever structural glimpse regarding information about the
547 ectodomain of TPO. Although the EM resolution is limited, it is consistent with our other data,
548 allowing us with high confidence to eliminate a complex between Fab and a TPO dimer.
549 Furthermore, the EM data strongly supports our SEC and AUC analysis showing that Δ proTPOe-8His
550 is a monomer when bound to TR1.9 Fab. Modelling of TPO has suggested that membrane bound
551 TPO is an elongated molecule with domains outstretched, however our experimental EM and AUC
552 data suggests that at least for the TPO ectodomain, a much more globular and compact space is
553 taken up in solution, especially when bound to its cognate antibody. This experimental data is
554 supported by MD simulations of Δ proTPOe in its non-membrane bound form, whereby TPO is able
555 to undergo large changes in conformation (Figure S6). Thus, MD simulations, AUC and EM provide

556 convincing evidence that TPO is able to coalesce into a more compact, globular structure in solution.
557 Furthermore, MD analysis reveals how the TPO monomer can change shape such that residues
558 implicated in autoantibody binding that are disparate in space can be brought together to form a
559 continuous epitope. However, we cannot from this data suggest definitively that this is the
560 conformation of TPO when bound to T13 autoantibody. Instead, we argue that our data suggest that
561 TPO may be able to change conformation in such a fashion that previously distal epitopes can
562 coalesce into one discrete, continuous epitope. This may explain the previously conflicting epitope
563 mapping data for some autoantibodies in IDR-A and IDR-B that contained residues that were too far
564 from each other to be engaged by the CDRs of a single autoantibody, based on previous modelling.
565 Despite previous attempts to resolve this issue ^{14,15}, a definitive answer, however, awaits a high-
566 resolution structure for TPO alone and in complex with cognate autoantibodies.

567 All of our analysis, including MD, considers TPO in solution. We expect that the conformational,
568 enzymatic and antigenic properties of TPO in solution are different when it is tethered to the
569 membrane in the human thyroid. We speculate that perhaps, in the case of some TPO
570 autoantibodies such as T13 that bind a range of spatially separate residues on TPO, when membrane
571 bound (due to steric constraints of the membrane and other membrane bound components) the
572 conformation required to display a continuous epitopes would be a rare event. Alternatively, this
573 compacted conformation may become available as the result of improper trafficking to the
574 membrane, followed by conformational change in solution. This rare conformation may perhaps be
575 an explanation behind the observation that diseases involving TPO autoantibodies have not only a
576 slow onset, but also explain the evidence suggesting that TPO autoantibody titre detected in patient
577 serum does not always correlate with disease state ⁵⁰. Perhaps only some TPO would enter this
578 rarer, antigenic configuration, and thus lead to downstream immune effects, whilst correctly
579 trafficked TPO or TPO in a non-antigenic configuration may remain unaffected by these
580 autoantibodies, resulting in patients with anti-TPO antibody titre without appreciable evidence of
581 disease. Our observation that TR1.9 Fab preferentially binds monomeric ΔproTPOe-8His may

582 indicate that the complex (and thus pathology within the patient) appears when cryptic epitopes
583 that are normally hidden are revealed to the immune system upon dissociation of the dimer. Our
584 data shows that the autoantibody TR1.9 inhibits the catalytic activity of TPO constructs produced,
585 either directly via blocking access to the active site, indirectly by favouring a conformational change
586 that occludes the active site, or both. Although a precise understanding awaits high resolution
587 structural analysis, this behavior suggests an intriguing connection between enzyme function and
588 autoantigenicity that has been demonstrated for other autoantigens 51.

589

590 **Conclusions**

591 Several key advances arise from this work. We designed and expressed two TPO ectodomain
592 constructs, ΔproTPOe-8His and ΔproTPOe-GCN4, representing new reagents with which to study
593 TPO structure, function and antigenicity. Biophysical characterisation using AUC suggests that the
594 TPO ectodomain can exist as both a monomer and a dimer. EM and molecular dynamics analysis
595 shows that the Fab fragment of the patient-derived TR1.9 autoantibody preferentially binds the TPO
596 monomer, and suggests conformational change that consolidates antibody-binding residues into a
597 continuous epitope. Taken together, these data represent the first glimpses of the structural
598 characteristics of TPO, which thus far has resisted structural characterization by any technique. As a
599 whole, our findings advance our understanding of TPO's structure and function, as well as its role as
600 a major autoantigen in autoimmune thyroid diseases.

601

602 **Acknowledgements**

603 TR 1.9 Fab construct was kindly provided by Sandra McLachlan and Basil Rapoport. We would like
604 to thank Dr. David Steer for help with MS analysis.

605

606 **Data Availability**

607 The datasets generated during and/or analyzed during the current study are not publicly available
608 but are available from the corresponding author on reasonable request.

609

610 **References**

- 611 1. Williams DE, Le SN, Godlewska M, Hoke DE, Buckle AM. Thyroid Peroxidase as an
612 Autoantigen in Hashimoto's Disease: Structure, Function, and Antigenicity. *Hormone and*
613 *metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme.*
614 2018;50(12):908-921.
- 615 2. Fröhlich E, Wahl R. Thyroid Autoimmunity: Role of Anti-thyroid Antibodies in Thyroid and
616 Extra-Thyroidal Diseases. *Frontiers in immunology*. 2017;8:521.
- 617 3. Godlewska M, Gawel D, Buckle AM, Banga JP. Thyroid Peroxidase Revisited - What's New?
618 *Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et*
619 *metabolisme*. 2019;51(12):765-769.
- 620 4. Silva de Moraes N, Stuart J, Guan H, et al. The Impact of Hashimoto Thyroiditis on Thyroid
621 Nodule Cytology and Risk of Thyroid Cancer. *Journal of the Endocrine Society*. 2019;3(4):791-
622 800.
- 623 5. Cooper GS, Stroehla BC. The epidemiology of autoimmune diseases. *Autoimmunity reviews*.
624 2003;2(3):119-125.
- 625 6. Sarkhail P, Mehran L, Askari S, Tahmasebinejad Z, Tohidi M, Azizi F. Maternal Thyroid
626 Function and Autoimmunity in 3 Trimesters of Pregnancy and their Offspring's Thyroid
627 Function. *Hormone and metabolic research = Hormon- und Stoffwechselforschung =*
628 *Hormones et metabolisme*. 2016;48(1):20-26.
- 629 7. Seror J, Amand G, Guibourdenche J, Ceccaldi PF, Luton D. Anti-TPO antibodies diffusion
630 through the placental barrier during pregnancy. *PLoS one*. 2014;9(1):e84647.
- 631 8. Le SN, Porebski BT, McCoey J, et al. Modelling of Thyroid Peroxidase Reveals Insights into Its
632 Enzyme Function and Autoantigenicity. *PLoS one*. 2015;10(12):e0142615.

633 9. Godlewska M, Arczewska KD, Rudzinska M, et al. Thyroid peroxidase (TPO) expressed in
634 thyroid and breast tissues shows similar antigenic properties. *PLoS one*.
635 2017;12(6):e0179066.

636 10. Godlewska M, Banga PJ. Thyroid peroxidase as a dual active site enzyme: Focus on
637 biosynthesis, hormonogenesis and thyroid disorders of autoimmunity and cancer. *Biochimie*.
638 2019;160:34-45.

639 11. Kimura S, Kotani T, McBride OW, et al. Human thyroid peroxidase: complete cDNA and
640 protein sequence, chromosome mapping, and identification of two alternately spliced
641 mRNAs. *Proceedings of the National Academy of Sciences of the United States of America*.
642 1987;84(16):5555-5559.

643 12. Singh AK, Singh N, Sinha M, et al. Binding modes of aromatic ligands to mammalian heme
644 peroxidases with associated functional implications: crystal structures of lactoperoxidase
645 complexes with acetylsalicylic acid, salicylhydroxamic acid, and benzylhydroxamic acid. *The*
646 *Journal of biological chemistry*. 2009;284(30):20311-20318.

647 13. Fiedler TJ, Davey CA, Fenna RE. X-ray crystal structure and characterization of halide-binding
648 sites of human myeloperoxidase at 1.8 Å resolution. *The Journal of biological chemistry*.
649 2000;275(16):11964-11971.

650 14. Gardas A, Sohi MK, Sutton BJ, McGregor AM, Banga JP. Purification and crystallisation of the
651 autoantigen thyroid peroxidase from human Graves' thyroid tissue. *Biochemical and*
652 *biophysical research communications*. 1997;234(2):366-370.

653 15. Hendry E, Taylor G, Ziemnicka K, Grennan Jones F, Furmaniak J, Rees Smith B. Recombinant
654 human thyroid peroxidase expressed in insect cells is soluble at high concentrations and
655 forms diffracting crystals. *The Journal of endocrinology*. 1999;160(3):R13-15.

656 16. Nauseef WM. Biosynthesis of human myeloperoxidase. *Archives of biochemistry and*
657 *biophysics*. 2018;642:1-9.

658 17. Godlewska M, Gora M, Buckle AM, et al. A redundant role of human thyroid peroxidase

659 propeptide for cellular, enzymatic, and immunological activity. *Thyroid : official journal of*
660 *the American Thyroid Association*. 2014;24(2):371-382.

661 18. Chacko S, Padlan EA, Portolano S, McLachlan SM, Rapoport B. Structural studies of human
662 autoantibodies. Crystal structure of a thyroid peroxidase autoantibody Fab. *The Journal of*
663 *biological chemistry*. 1996;271(21):12191-12198.

664 19. Porebski BT, Keleher S, Hollins JJ, et al. Smoothing a rugged protein folding landscape by
665 sequence-based redesign. *Scientific Reports*. 2016;6:33958.

666 20. Pettersen EF, Goddard TD, Huang CC, et al. UCSF Chimera--a visualization system for
667 exploratory research and analysis. *J Comput Chem*. 2004;25(13):1605-1612.

668 21. Dolinsky TJ, Nielsen JE, McCammon JA, Baker NA. PDB2PQR: an automated pipeline for the
669 setup of Poisson–Boltzmann electrostatics calculations. *Nucleic Acids Research*.
670 2004;32(suppl_2):W665-W667.

671 22. Søndergaard CR, Olsson MH, Rostkowski M, Jensen JH. Improved treatment of ligands and
672 coupling effects in empirical calculation and rationalization of p K a values. *Journal of*
673 *chemical theory and computation*. 2011;7(7):2284-2295.

674 23. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison of simple
675 potential functions for simulating liquid water. *The Journal of chemical physics*.
676 1983;79(2):926-935.

677 24. Joung IS, Cheatham III TE. Determination of alkali and halide monovalent ion parameters for
678 use in explicitly solvated biomolecular simulations. *The journal of physical chemistry B*.
679 2008;112(30):9020-9041.

680 25. Maier JA, Martinez C, Kasavajhala K, Wickstrom L, Hauser KE, Simmerling C. ff14SB:
681 improving the accuracy of protein side chain and backbone parameters from ff99SB. *Journal*
682 *of chemical theory and computation*. 2015;11(8):3696-3713.

683 26. Li P, Roberts BP, Chakravorty DK, Merz Jr KM. Rational design of particle mesh Ewald
684 compatible Lennard-Jones parameters for 2 metal cations in explicit solvent. *Journal of*

685 chemical theory and computation. 2013;9(6):2733-2748.

686 27. Berendsen HJ, Postma Jv, van Gunsteren WF, DiNola A, Haak JR. Molecular dynamics with
687 coupling to an external bath. *The Journal of chemical physics*. 1984;81(8):3684-3690.

688 28. Phillips JC, Braun R, Wang W, et al. Scalable molecular dynamics with NAMD. *Journal of*
689 *computational chemistry*. 2005;26(16):1781-1802.

690 29. Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. *Journal of molecular*
691 *graphics*. 1996;14(1):33-38.

692 30. McGibbon RT, Beauchamp KA, Harrigan MP, et al. MDTraj: a modern open library for the
693 analysis of molecular dynamics trajectories. *Biophysical journal*. 2015;109(8):1528-1532.

694 31. Bresson D, Cerutti M, Devauchelle G, et al. Localization of the discontinuous
695 immunodominant region recognized by human anti-thyroperoxidase autoantibodies in
696 autoimmune thyroid diseases. *The Journal of biological chemistry*. 2003;278(11):9560-9569.

697 32. Bresson D, Pugniere M, Roquet F, et al. Directed mutagenesis in region 713-720 of human
698 thyroperoxidase assigns 713KFPED717 residues as being involved in the B domain of the
699 discontinuous immunodominant region recognized by human autoantibodies. *The Journal of*
700 *biological chemistry*. 2004;279(37):39058-39067.

701 33. Rebuffat SA, Bresson D, Nguyen B, Peraldi-Roux S. The key residues in the immunodominant
702 region 353-363 of human thyroid peroxidase were identified. *International immunology*.
703 2006;18(7):1091-1099.

704 34. Estienne V, Duthoit C, Blanchin S, et al. Analysis of a conformational B cell epitope of human
705 thyroid peroxidase: identification of a tyrosine residue at a strategic location for
706 immunodominance. *International immunology*. 2002;14(4):359-366.

707 35. Ramaraj T, Angel T, Dratz EA, Jesaitis AJ, Mumey B. Antigen-antibody interface properties:
708 composition, residue interactions, and features of 53 non-redundant structures. *Biochimica*
709 *et biophysica acta*. 2012;1824(3):520-532.

710 36. Bordo D, Argos P. Evolution of protein cores. Constraints in point mutations as observed in

711 globin tertiary structures. *Journal of molecular biology*. 1990;211(4):975-988.

712 37. Jiang Q-X, Wang D-N, MacKinnon R. Electron microscopic analysis of KvAP voltage-
713 dependent K⁺ channels in an open conformation. *Nature*. 2004;430(7001):806-810.

714 38. Conway JF, Watts NR, Belnap DM, et al. Characterization of a Conformational Epitope on
715 Hepatitis B Virus Core Antigen and Quasiequivalent Variations in Antibody Binding. *Journal*
716 *of Virology*. 2003;77(11):6466-6473.

717 39. Wu S, Avila-Sakar A, Kim J, et al. Fabs enable single particle cryoEM studies of small proteins.
718 *Structure (London, England : 1993)*. 2012;20(4):582-592.

719 40. Gardas A, Lewartowska A, Pasieka Z, Sutton BJ, McGregor AM, Banga JP. Human Thyroid
720 Peroxidase (TPO) Isoforms, TPO-1 and TPO-2: Analysis of Protein Expression in Graves'
721 Thyroid Tissue1. *The Journal of Clinical Endocrinology & Metabolism*. 1997;82(11):3752-
722 3757.

723 41. Godlewska M, Krasuska W, Czarnocka B. Biochemical properties of thyroid peroxidase (TPO)
724 expressed in human breast and mammary-derived cell lines. *PLoS one*. 2018;13(3):e0193624.

725 42. de Carvalho DP, Lima de Souza EC, Fortunato RS, et al. Functional Consequences of Dual
726 Oxidase-Thyroperoxidase Interaction at the Plasma Membrane. *The Journal of Clinical*
727 *Endocrinology & Metabolism*. 2010;95(12):5403-5411.

728 43. Carvalho DP, Dupuy C. Role of the NADPH Oxidases DUOX and NOX4 in Thyroid Oxidative
729 Stress. *European thyroid journal*. 2013;2(3):160-167.

730 44. Elisei R, Vassart G, Ludgate M. Demonstration of the existence of the alternatively spliced
731 form of thyroid peroxidase in normal thyroid. *The Journal of clinical endocrinology and*
732 *metabolism*. 1991;72(3):700-702.

733 45. Fayadat L, Niccoli-Sire P, Lanet J, Franc JL. Role of heme in intracellular trafficking of
734 thyroperoxidase and involvement of H₂O₂ generated at the apical surface of thyroid cells in
735 autocatalytic covalent heme binding. *The Journal of biological chemistry*.
736 1999;274(15):10533-10538.

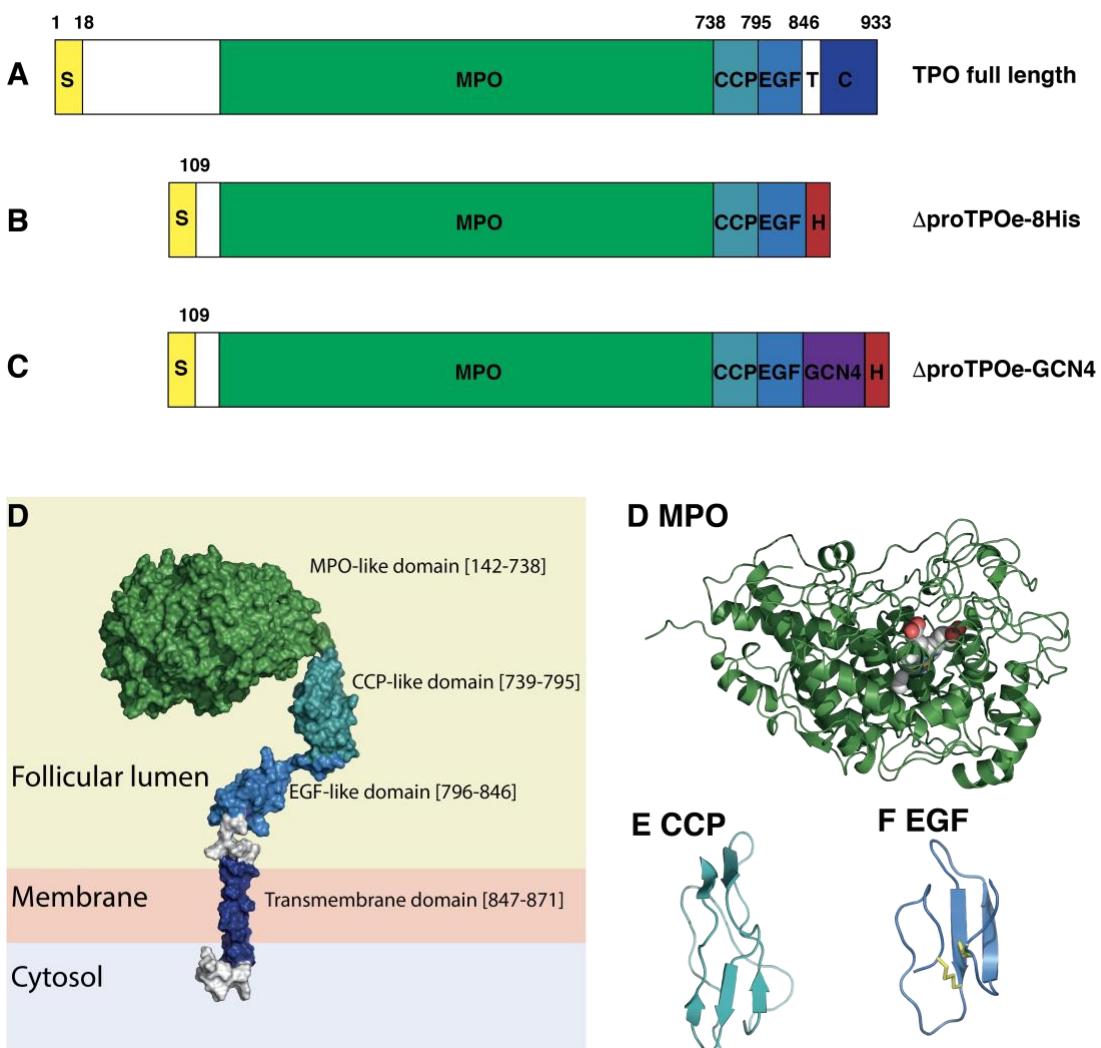
737 46. de Vijlder JJM, Bikker H. *Biochemistry and Physiology of Thyroid Peroxidase*. 2000; Berlin,
738 Heidelberg.

739 47. Baker JR, Arscott P, Johnson J. An analysis of the structure and antigenicity of different forms
740 of human thyroid peroxidase. *Thyroid : official journal of the American Thyroid Association*.
741 1994;4(2):173-178.

742 48. McDonald DO, Pearce SH. Thyroid peroxidase forms thionamide-sensitive homodimers:
743 relevance for immunomodulation of thyroid autoimmunity. *Journal of molecular medicine*
744 (*Berlin, Germany*). 2009;87(10):971-980.

745 49. Godlewska M, Czarnocka B, Gora M. Localization of key amino acid residues in the dominant
746 conformational epitopes on thyroid peroxidase recognized by mouse monoclonal
747 antibodies. *Autoimmunity*. 2012;45(6):476-484.

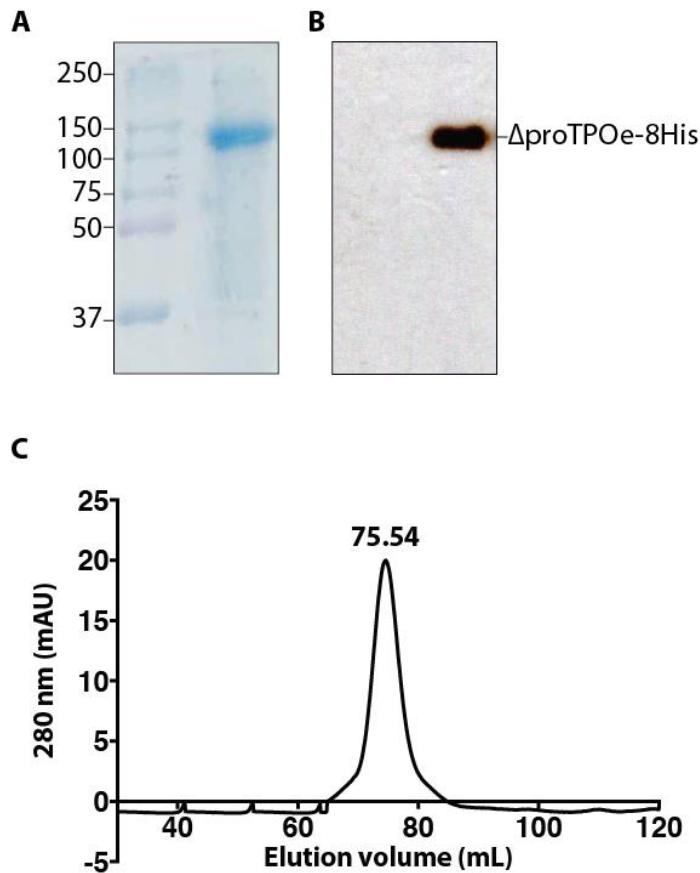
748 50. McLachlan SM, Rapoport B. Thyroid peroxidase autoantibody epitopes revisited*. *Clinical*
749 *endocrinology*. 2008;69(4):526-527.


750 51. Kass I, Hoke DE, Costa MGS, et al. Cofactor-dependent conformational heterogeneity of
751 GAD65 and its role in autoimmunity and neurotransmitter homeostasis. *Proceedings of the*
752 *National Academy of Sciences*. 2014;111(25):E2524-E2529.

753 52. Wiles AP, Shaw G, Bright J, Perczel A, Campbell ID, Barlow PN. NMR studies of a viral protein
754 that mimics the regulators of complement activation. *Journal of molecular biology*.
755 1997;272(2):253-265.

756 53. Downing AK, Knott V, Werner JM, Cardy CM, Campbell ID, Handford PA. Solution structure
757 of a pair of calcium-binding epidermal growth factor-like domains: implications for the
758 Marfan syndrome and other genetic disorders. *Cell*. 1996;85(4):597-605.

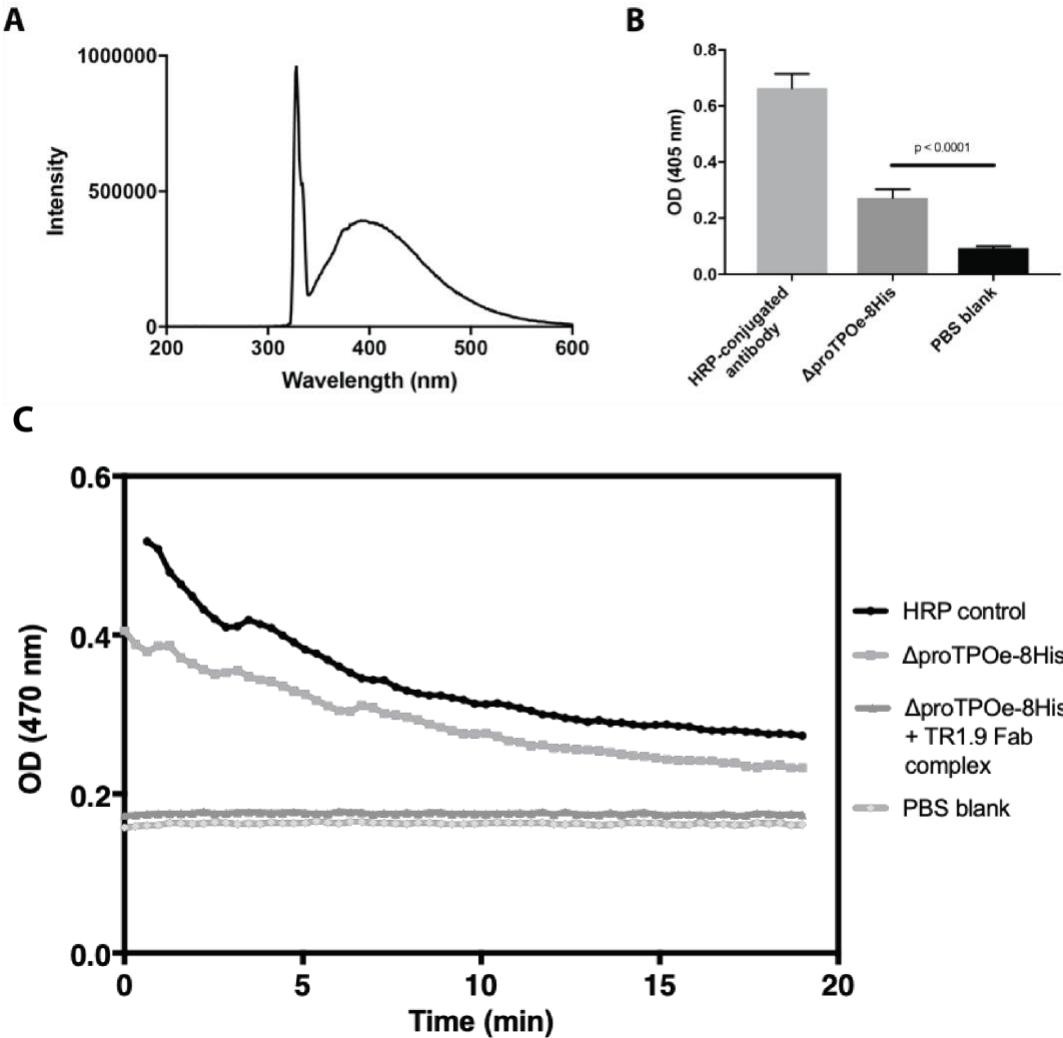
759


760 **Figures**

761

762 **Figure 1 - Schematic showing engineered TPO constructs. (A)** Full length human TPO. **(B)** TPO
763 ectodomain lacking the propeptide containing a C-terminal 8x His tag (Δ proTPOe-8His). **(C)** Construct
764 shown in **(B)** fused to GCN4 (Δ proTPOe-GCN4). S, signal peptide; MPO, MPO-like domain; CCP,
765 like domain; EGF, EGF-like domain; T, transmembrane span; C, cytoplasmic tail; GCN4, yeast general
766 control protein; H, 8x Histidine tag. **(D)** Schematic showing domain organisation of a TPO monomer
767 in its *trans* configuration. **(E)** X-ray crystal structure of human myeloperoxidase (MPO), with catalytic
768 heme group shown as spheres (PDB ID: 1CXP) ¹³. **(F)** NMR solution structure of the Vaccinia virus
769 complement control protein (PDB ID: 1VVD) ⁵². **(G)** NMR solution structure of a covalently linked pair
770 of EGF-like domains from human fibrillin-1 (PDB ID: 1EMO) ⁵³. Disulfide linkages are shown as yellow
771 sticks.

772

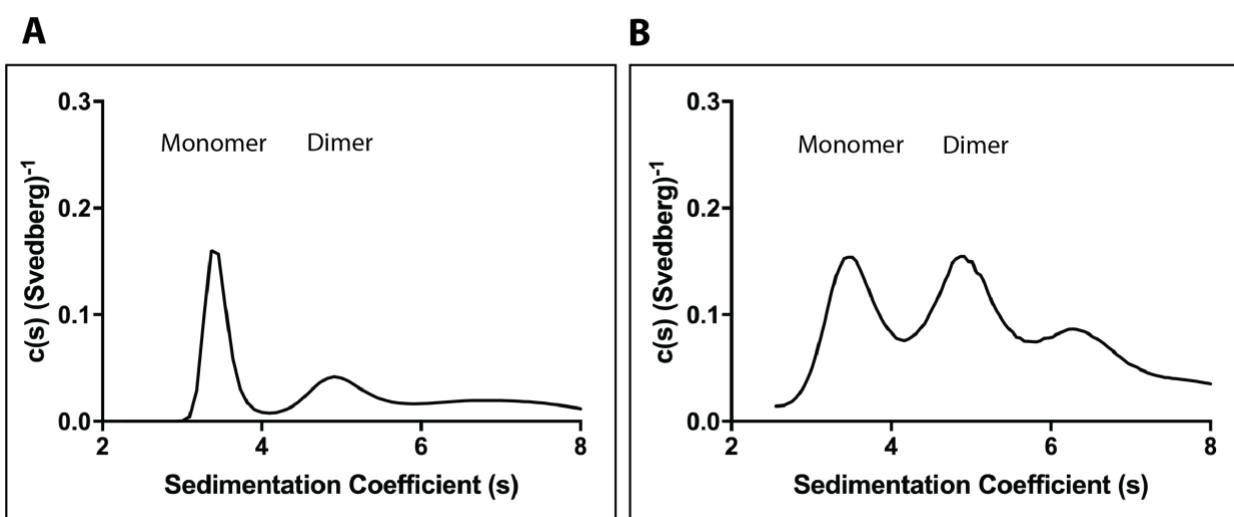

773

774

775 **Figure 2 - Purification of TPO construct ΔproTPOe-8His.** (A) SDS-PAGE analysis of purified
776 ΔproTPOe-8His shows a major band at ~110 kDa. (B) Western blot of purified ΔproTPOe-8His with
777 anti-His antibody shows an immunoreactive protein at the same molecular weight as in (A). (C) A
778 chromatogram from Superdex S200 16/60 column, showing ΔproTPOe-8His being purified as a single
779 major peak at 75.54 mL.

780

781

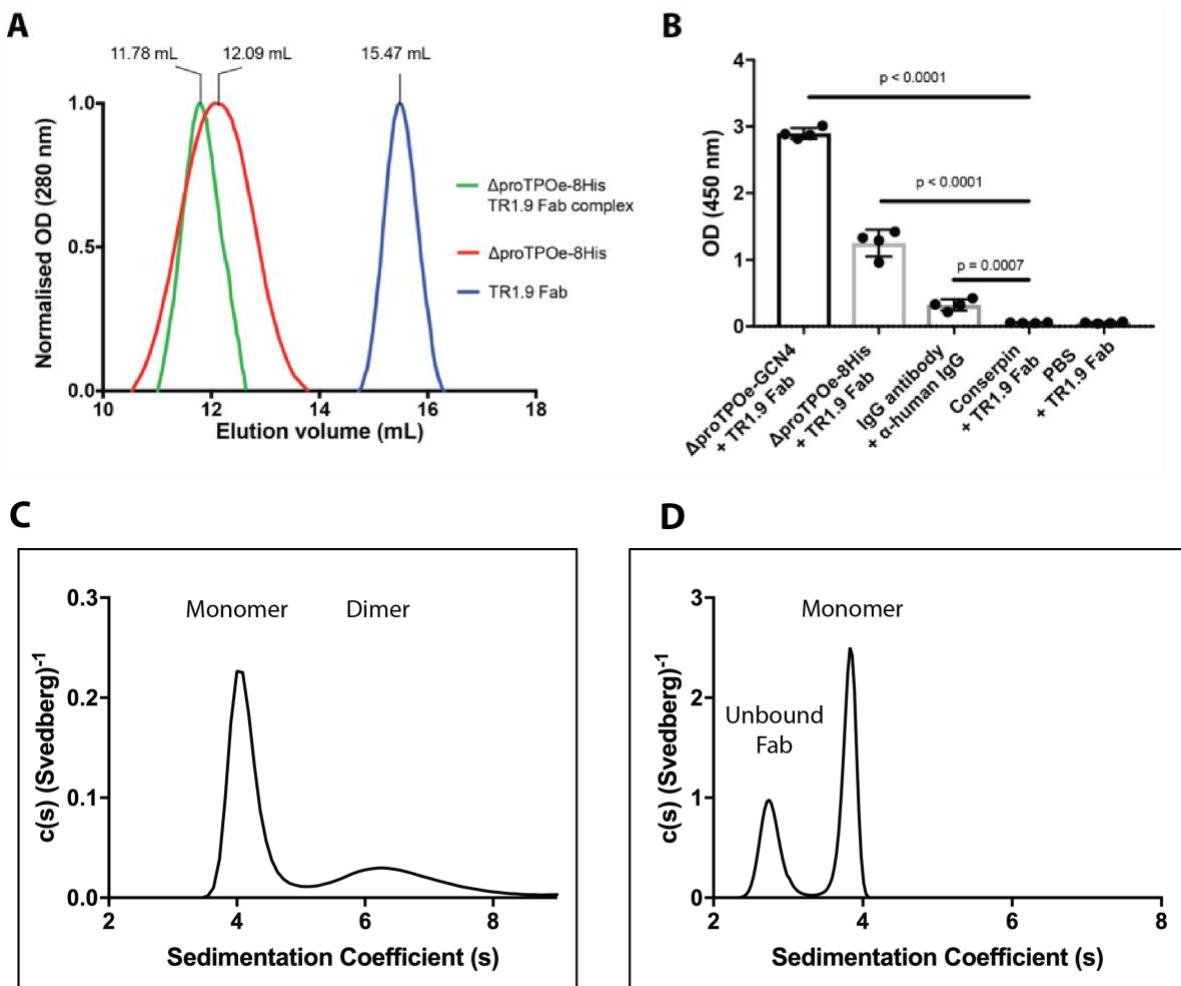


782

783 **Figure 3 – Characterisation of enzyme activity.** **(A)** Spectral scan of ΔproTPOe-GCN4. An excitation
784 wavelength of 330nm resulted in a Soret peak at 385nm, which is characteristic of hemoproteins.
785 This indicates successful heme group incorporation into ΔproTPOe-GCN4. Intensity is given in
786 arbitrary units. **(B)** TPO activity as measured by the guaiacol activity assay. Optical density was
787 recorded at 405nm for the three samples after 10 minutes, including an HRP positive control.
788 ΔproTPOe-8His shows statistically significant activity indicating that it is enzymatically active. Error
789 bars are standard deviation from the mean and statistical tests performed with a two-tailed t-test
790 with a 95% confidence interval. All samples were performed in quadruplicate. **(C)** ΔproTPOe-
791 8His activity is prevented in the presence of TR1.9 Fab during the guaiacol assay.

792

793

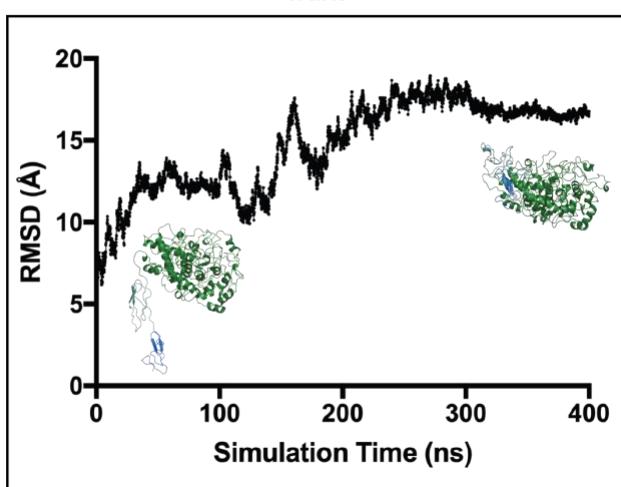

794

795 **Figure 4 – Sedimentation distribution of Δ proTPOe-GCN4 alone and Δ proTPOe-8His alone**

796 **(A)** Two distinct species are detected at a $sw_{(20,w)}$ of 3.6 and 5.2 respectively on the sedimentation
797 distribution for the Δ proTPOe-GCN4 construct. **(B)** Two major species are detected at a $sw_{(20,w)}$ of
798 3.5 and 5.0 respectively on the sedimentation distribution in the Δ proTPOe-8His construct.

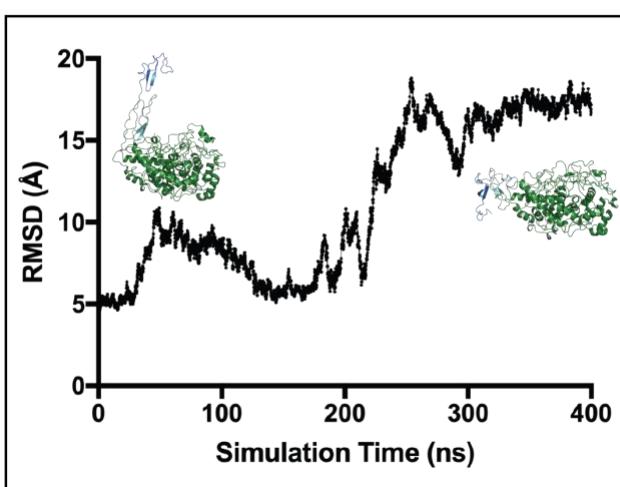
799

800

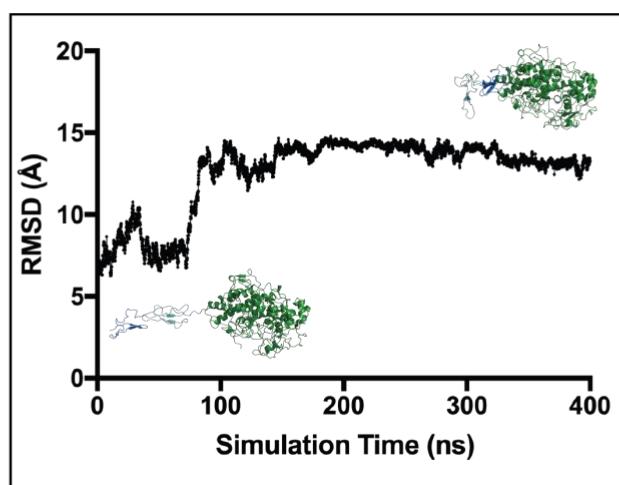

801

802 **Figure 5 – TPO-TR1.9 Fab complex characterization.** (A) Analytical size-exclusion chromatography
803 of the ΔproTPOe-8His-TR1.9 Fab complex. Elution profiles of ΔproTPOe-8His alone (red), ΔproTPOe-
804 8His-TR1.9 Fab complex (green) and TR1.9 Fab alone (blue). (B) ELISA results of TPO-Fab binding.
805 TR1.9 Fab shows statistically significant binding to both TPO constructs, with a p value less than
806 0.0001 compared to a non-specific protein that does not have the required epitope (conserpin 19,
807 negative control), as well as a PBS blank. IgG antibody and anti-human IgG was used as a positive
808 control. Error bars are standard deviation from the mean and statistical tests performed with a two-
809 tailed t-test with a 95% confidence interval. All samples were performed in quadruplicate. (C)
810 Sedimentation distribution of ΔproTPOe-GCN4 bound to TR1.9 Fab. Two distinct species are
811 detected at a $sw_{(20,w)}$ of 4.1 and 6.6 respectively. (D) Sedimentation distribution of ΔproTPOe-8His
812 bound to TR1.9 Fab. Two distinct species are detected at a $sw_{(20,w)}$ of 2.8 and 3.9 respectively.

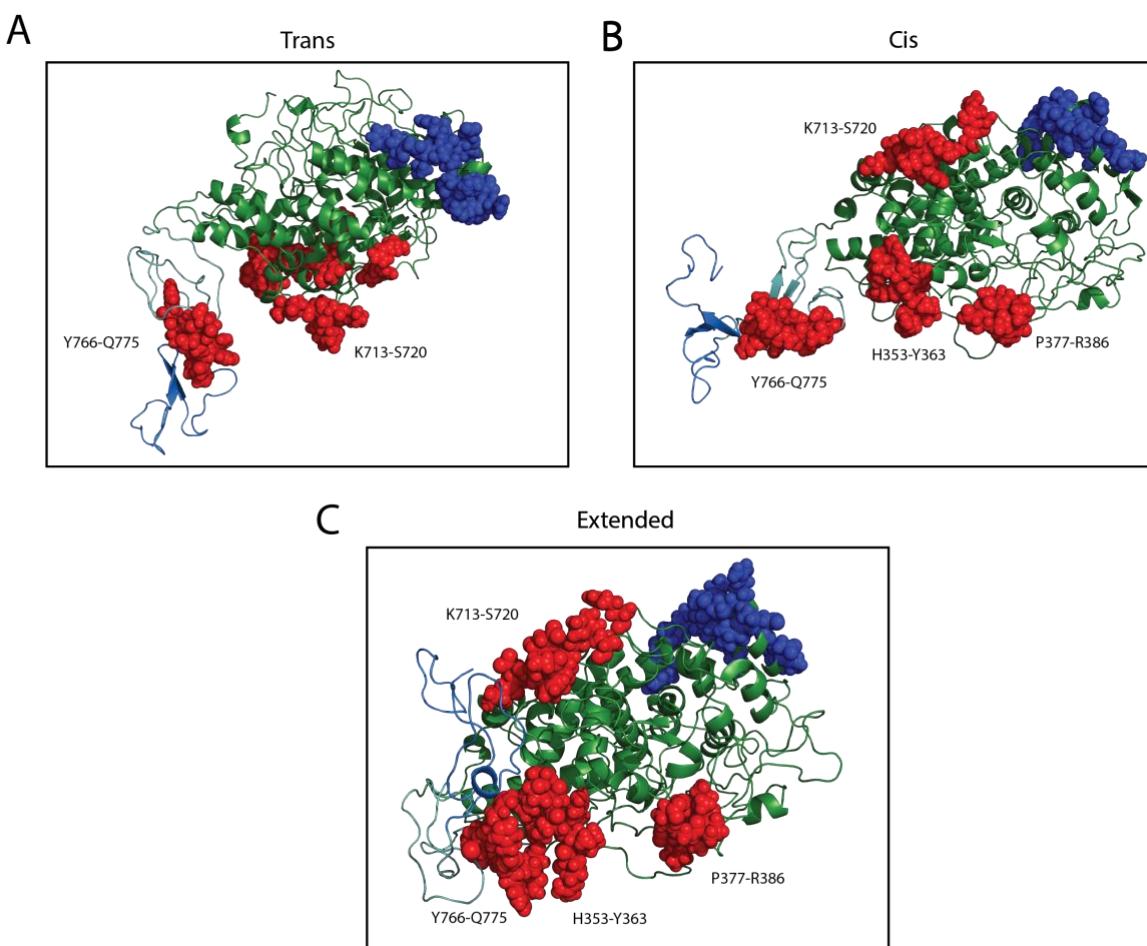
813


A

Trans

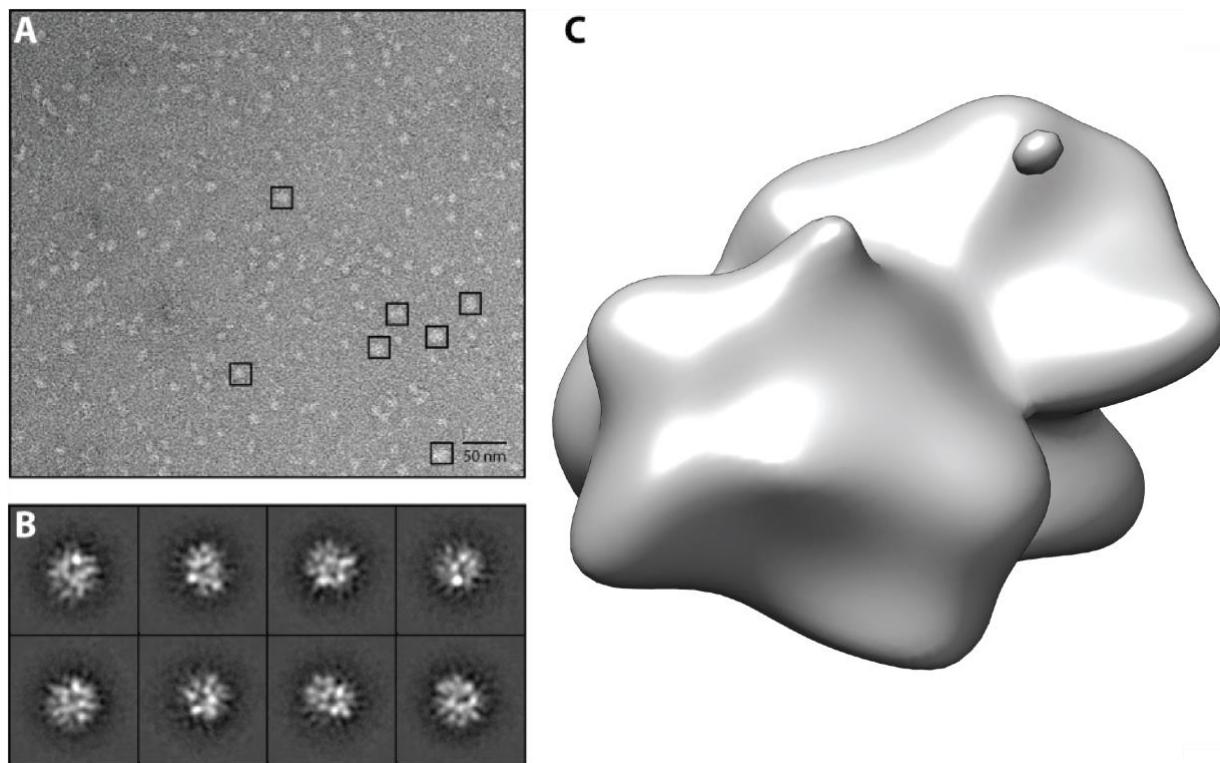

B

Cis


C

Extended

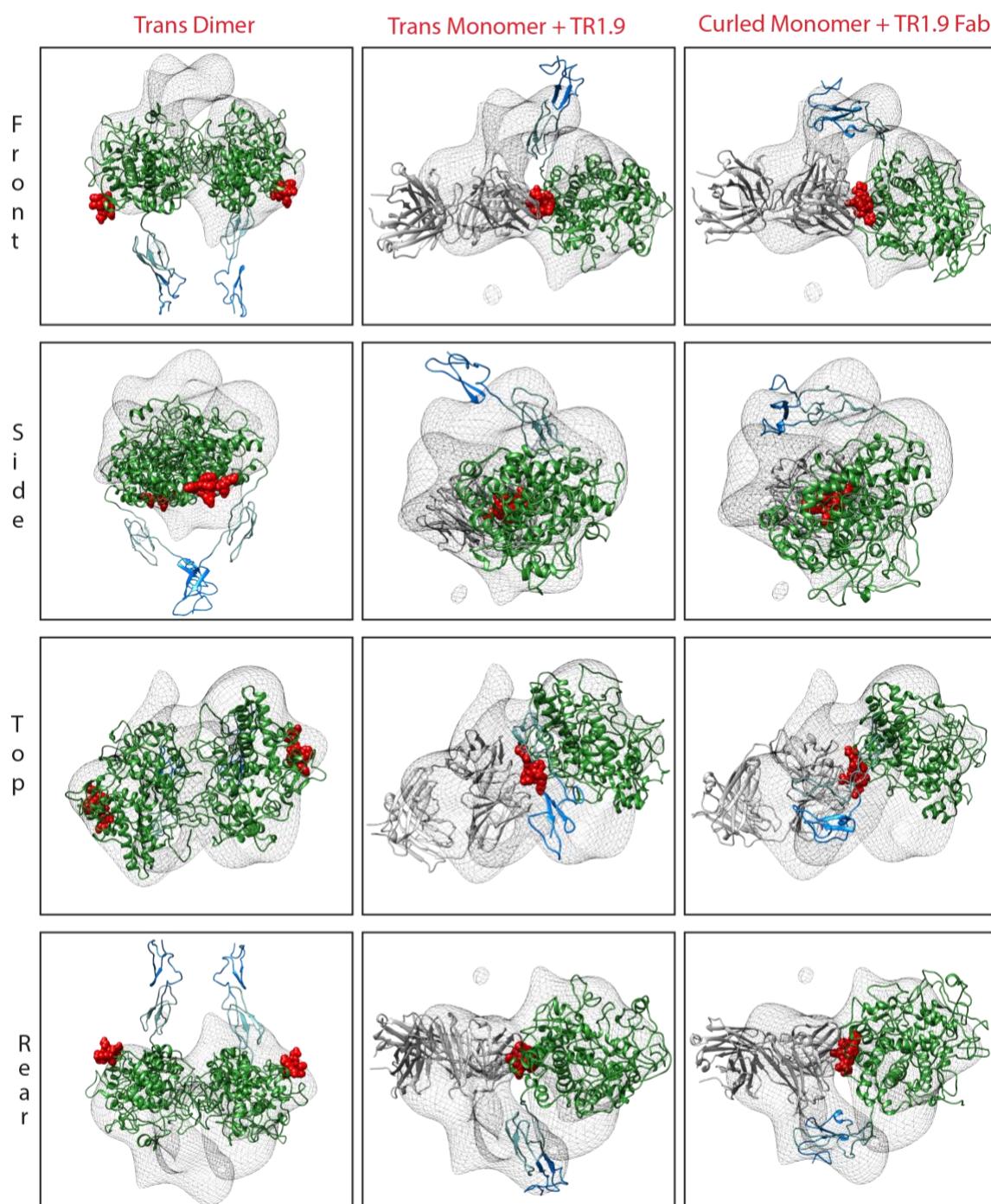
814


815 **Figure 6 – Molecular dynamics simulations of a ΔproTPOe monomer.** Root mean square deviations
816 (RMSD) is given as an average value per residue per 0.1ns of simulation time for the (A) *trans*, (B) *cis*
817 and (C) *extended* models of ΔproTPOe. Within each panel is a model representation of a starting
818 structure of the particular form of TPO on the left, with a model taken from the plateau of the MD
819 run on the right-hand side. The MPO-like domain, CCP-like domain and EGF-like domain are coloured
820 in forest green, light teal and marine blue respectively (as in Figure 1).

821

822 **Figure 7 – IDRs in the context of the MD simulations.** A representative structure taken from the MD
823 simulations at equilibrium for each of the **(A)** *trans*, **(B)** *cis* and **(C)** extended forms of the ΔproTPOe
824 monomer. IDR-A residues are highlighted by red spheres, and IDR-B residues by blue spheres. The
825 MPO-like domain, CCP-like domain and EGF-like domain are coloured in forest green, light teal and
826 marine blue respectively (as in Figure 1). **(A)** The IDR-A epitopes of K713-S720 and Y766-Q775 are 28
827 Å apart from each other in this selected frame from the *trans* MD simulation. **(B)** In the *cis* model,
828 Y766-Q775 is 21 Å from the H353-Y363 epitope and 40 Å away from the P377-R386 epitope. **(C)** In
829 this representation of the *extended* model during the MD simulation, all four labelled epitopes of
830 IDR-A are no more than 43 Å away from each other. A comparison showing these structures
831 compared with the starting TPO models is shown in Figure S6.

832


833

834 **Figure 8 - Electron micrograph of ΔproTPOe-8His in complex with TR1.9 Fab. (A)** Representative
835 micrograph of the ΔproTPOe-8His/TR1.9 complex collected using a FEI Tecnai Spirit T12 TEM in low-
836 dose conditions. **(B)** 2D class averages generated from the single particles picked in (A) and used for
837 initial 3D model generation. **(C)** 3D reconstruction of the EM volume.

838

839

840

841

842 **Figure 9 – Construction of a 3D model of the ΔproTPOe-8His-TR1.9 complex via negative stain EM.**

843 3D reconstruction of the ΔproTPOe-TR1.9 Fab complex. ΔproTPOe *trans* dimer alone, ΔproTPOe
844 *trans* monomer with docked TR1.9 Fab, and monomer from MD simulations with docked TR1.9 Fab
845 were fitted into the EM envelope and are marked in their respective columns. The MPO-like domain,
846 CCP-like domain and EGF-like domain are coloured in forest green, light teal and marine blue
847 respectively (as in Figure 1). The previously published TR1.9 epitope (K713-S720) is indicated by red

848 spheres. Rows indicate orientation: Top and rear represent a + 90° and + 270° rotation respectively
849 in the y axis with respect to the Front representation, while Side indicates a - 90° rotation in the x
850 axis with respect to the Front representation.

851