

1 **Microbiome Determinants and Physiological Effects of the Benzoate-Hippurate**
2 **Microbial-Host Co-Metabolic Pathway**

3
4 François Brial^{1,17}, Julien Chilloux^{2,17}, Trine Nielsen^{3,17}, Sara Vieira-Silva^{4,5,17}, Gwen Falony^{4,5},
5 Lesley Hoyles^{2,6}, Ana L. Neves², Andrea Rodriguez-Martinez², Ghiwa Ishac Mouawad¹,
6 Nicolas Pons⁷, Sofia Forslund^{8,9}, Emmanuelle Le Chatelier⁷, Aurélie M. Le Lay¹, Jeremy K
7 Nicholson², Torben Hansen³, MetaHIT consortium, Karine Clément^{11,12}, Peer Bork^{7,13}, S.
8 Dusko Ehrlich^{14,15}, Jeroen Raes^{4,5,18}, Oluf Pedersen^{3,18}, Dominique Gauguier^{1,2,16,18}, Marc-
9 Emmanuel Dumas^{2,16,18}

10
11 ¹ Université de Paris, INSERM UMRS 1124, 45 rue des Saints Pères, 75006 Paris, France.
12 ² Imperial College London, Division of Computational and Systems Medicine, Dept of Surgery
13 and Cancer, Faculty of Medicine, Sir Alexander Fleming building, Exhibition Road, South
14 Kensington, London SW7 2AZ, UK.
15 ³ The Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and
16 Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark.
17 ⁴ Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega
18 Institute, KU Leuven, Herestraat 49, B-3000 Leuven, Belgium.
19 ⁵ Center for Microbiology, VIB, Kasteelpark Arenberg 31, B-3000 Leuven, Belgium.
20 ⁶ Nottingham Trent University, Department of Biosciences, School of Science and
21 Technology, Clifton, Nottingham NG11 8NS, UK.
22 ⁶ Nottingham Trent University, Department of Biosciences, School of Science and
23 Technology, Clifton, Nottingham NG11 8NS, UK.
24 ⁷ MGP MetaGénoPolis, INRA, Université Paris-Saclay, 78350 Jouy en Josas, France.
25 ⁸ Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117
26 Heidelberg, Germany.
27 ⁹ Max Delbrück Centre for Molecular Medicine, Berlin, Germany.
28 ¹⁰ Experimental and Clinical Research Center, a joint operation of the Max Delbrück Center
29 in the Helmholtz Association and the Charité University Hospital, Berlin, Germany
30 ¹¹ INSERM, U1166, team 6 Nutriomique, Université Pierre et Marie Curie-Paris 6, Paris,
31 France.
32 ¹² Institute of Cardiometabolism and Nutrition (ICAN), Assistance Publique-Hôpitaux de
33 Paris, Pitié-Salpêtrière Hospital, Nutrition Department, Paris, France.
34 ¹³ Department of Bioinformatic Biocentrum, Würzburg University, 97074 Würzburg, Germany
35 ¹⁴ Institut National de la Recherche Agronomique, 78350 Jouy en Josas, France.

36 ¹⁵Centre for Host-Microbiome Interactions, Dental Institute Central Office, King's College
37 London, Guy's Hospital, London, UK.

38 ¹⁶McGill University and Genome Quebec Innovation Centre, 740 Doctor Penfield Avenue,
39 Montréal, QC, H3A 0G1, Canada.

40 ¹⁷Co-first authors.

41 ¹⁸Senior authors.

42 Correspondence should be addressed to M.-E.D. m.dumas@imperial.ac.uk or

43 D.G.dominique.gauguier@inserm.fr

44

45 **ABSTRACT**

46

47 **Objective.** Gut microbial products are involved in type 2 diabetes, obesity and insulin
48 resistance. In particular, hippurate, a hepatic phase 2 conjugation product of microbial
49 benzoate metabolism, has been associated with a healthy phenotype. This study aims to
50 identify metagenomic determinants and test protective effects of hippurate.

51

52 **Design.** We profiled the urine metabolome by ^1H Nuclear Magnetic Resonance (NMR)
53 spectroscopy to derive associations with metagenomic sequences in 271 middle-aged
54 Danish individuals to identify dietary patterns in which urine hippurate levels were associated
55 with health benefits. We follow up with benzoate and hippurate infusion in mice to
56 demonstrate causality on clinical phenotypes.

57

58 **Results.** In-depth analysis identifies that the urine hippurate concentration is associated with
59 microbial gene richness, microbial functional redundancy as well as functional modules for
60 microbial benzoate biosynthetic pathways across several enterotypes. Through dietary
61 stratification, we identify a subset of study participants consuming a diet rich in saturated fat
62 in which urine hippurate, independently of gene richness, accounts for links with metabolic
63 health that we previously associated with gene richness. We then demonstrate causality *in*
64 *vivo* through chronic subcutaneous infusions of hippurate or benzoate (20 nmol/day)
65 resulting in improved glycemic control in mice fed a high-fat diet. Hippurate improved insulin
66 secretion through increased β -cell mass and reduced liver inflammation and fibrosis,
67 whereas benzoate treatment resulted in liver inflammation.

68

69 **Conclusion.** Our translational study shows that the benzoate-hippurate pathway brings a
70 range of metabolic improvements in the context of high-fat diets, highlighting the potential of
71 hippurate as a mediator of metabolic health.

72

73

74

75 **INTRODUCTION**

76

77 The human obesity epidemic raises the risk of type 2 diabetes and cardiovascular disease.
78 Dysbiosis of the gut microbiome is now recognised as a key feature of these disorders.[1]
79 The microbiome collectively encodes up to 10 million different microbial genes.[2,3] In
80 particular, gene richness has been proposed as a marker of ecological diversity mirroring
81 improvements in metabolic health.[4,5] Although the microbiome directly impacts various
82 biological processes of the host through production or degradation of a multitude of
83 compounds, the vast majority of molecules involved in this chemical crosstalk remains
84 elusive.[6-9]

85 There is growing evidence that hippurate, one of the most abundant microbial-host co-
86 metabolites in human urine, is positively associated with metabolic health through inverse
87 associations with blood pressure, fatty liver disease, visceral fat mass and Crohn's
88 disease.[10-14] Its microbial precursor, benzoate is taken up by organic anion transporter
89 MCT2[15] and conjugated with glycine in the liver and kidney to form hippurate. We showed
90 in a genetic cross between diabetic and normoglycemic rat strains that serum benzoate
91 under host genome control.[16] Hippurate was recently shown to be associated both with
92 microbiota diversity based on 16S rRNA gene sequencing[17] and with reduced risk of
93 metabolic syndrome.[13]

94 However, there is a critical need for an in-depth characterization of the complex nutrition-
95 microbiome-host interaction in the benzoate-hippurate pathway, in relation to: i) associations
96 with enterotype, gene richness and functional redundancy, ii) population stratification
97 according to nutritional patterns to identify patient sub-groups in which hippurate improves
98 metabolic health, and iii) translational elucidation of these effects on host phenotypes *in vivo*.
99 To address these specific points, we characterized the urinary metabolome and the fecal
100 microbiome of 271 middle-aged non-diabetic Danish individuals from the MetaHIT study.[4]
101 Through dietary stratification we delineate the complex interaction between dietary intake,
102 microbiome and metabolome its impact on body weight, immune and metabolic markers,
103 which we further confirm and characterise in a mouse model of diet-induced obesity and
104 diabetes.

105

106 **METHODS**

107

108 **Human subjects**

109 All analyses were done on non-diabetic Danish individuals from the MetaHIT study
110 (n=271),[4,18] including the subset of 193 individuals who completed a validated food
111 frequency questionnaire (FFQ).[19] The study was approved by the Ethical Committees of
112 the Capital Region of Denmark (HC-2008-017 and H-15000306) and was in accordance with
113 the principles of the Declaration of Helsinki. All individuals gave written informed consent
114 before participating in the study. Sampling and clinical phenotyping were performed as
115 described previously.[4,18] In short, all study participants were recruited from the population-
116 based Inter99 study.[20]. The study program consisted of two visits with approximately 14
117 days apart. At the first visit all participants were examined in the morning after an overnight
118 fast. Blood sampling was performed at the fasting state, and urine was collected upon arrival
119 at the centre. At the second visit, a Dual Energy X-Ray Absorptiometry (DXA) scan was
120 performed. Serum glycine levels were previously assessed.[19] Estimated glomerular
121 filtration rate (eGFR) was calculated with the CKD-EPI formula with age, gender and
122 creatinine (μmol/L) and without ethnicity factor.[21]

123 **Dietary assessment**

124 A subset of the study participants (n=193) completed a validated FFQ in order to obtain
125 information on their habitual dietary habits.[22] The FFQ gathered dietary information from
126 all meals during a day and the intake frequencies within the past months were recorded. The
127 dietary data were evaluated by determining the consumed quantity and multiplying the
128 portion size by the corresponding consumption frequency as reported in the FFQ. Standard
129 portion sizes for women and men, separately, were used in this calculation; all food items in
130 the FFQ were linked to food items in the Danish Food Composition Databank as previously
131 described.[19] Estimation of daily intake of macro-and micronutrients for each participant
132 was based on calculations in the software program FoodCalc version1.3
133 (<http://www.ibt.ku.dk/jesper/FoodCalc/Default.htm>).

134 **Sample collection**

135 Fecal sample collection and analysys was performed as previously described.[4] Urine was
136 collected at the first visit upon arrival at the study site and stored at -80°C until analysis.

137 **Metabolic profiling**

138 Urine samples were randomized, prepared and measured on a NMR spectrometer (Bruker)
139 operating at 600.22 MHz ^1H frequency using previously published experimental
140 parameters[23] The ^1H NMR spectra were then pre-processed and analyzed as previously

141 reported[10] using Statistical Recoupling of Variables-algorithm.[24] Structural assignment
142 was performed as reviewed in [25], using in-house and publicly available databases.

143 **Metagenomics**

144 Shotgun sequencing of microbial DNA and metagenomics processing workflow for gene
145 richness was performed as previously published.[4] Sequences were mapped onto the
146 previously released integrated gene catalog.[2] Following the previously published
147 strategy,[26] we built a novel set of manually curated gut-specific metabolic modules
148 (GMMs) to describe and map microbial phenylpropanoid metabolism from shotgun
149 metagenomic data. The set of 20 modules, following KEGG syntax, is provided in
150 supplement, including references to the original publications where pathways were
151 discovered and described (***Supplementary List***).

152 **Univariate statistical analysis**

153 A ROUT test was performed to identify potential outliers (Q=1%). For statistical comparisons
154 between study groups, normality was tested using D'Agostino-Pearson omnibus normality
155 test, then one-way ANOVA was used, followed by Tukey's HSD post hoc testing when data
156 were normally distributed, otherwise groups were compared using the two-tailed Mann-
157 Whitney test. Data are displayed as mean \pm s.e.m in all figures. Multiple testing corrections
158 were performed using Storey's procedure.[27]

159 **Multivariate statistics**

160 Probabilistic principal component analysis (PCA) was performed using MATLAB R2014a
161 function 'ppca' to handle missing values. Unconstrained ordination was performed using
162 principal coordinates analysis (PCoA) to visualize inter-individual variation in microbiota
163 composition using Bray-Curtis dissimilarity on the genus-level abundance matrix using the R
164 package *vegan*.[28] Distance based Redundancy Analysis (dbRDA) was used to determine
165 the cumulative contributions of a matrix of explanatory variables on the response data,
166 hippurate excretion inter-individual variation (Euclidian distance on log-transformed urine
167 hippurate concentration matrix) in R package *vegan*.[28]. Orthogonal partial least squares
168 discriminant analysis (O-PLS-DA) was performed in MATLAB R2014a for supervised
169 multivariate analysis as previously described.[29] The predictive capability of O-PLS-DA
170 models was evaluated through 7-fold cross-validation[29] to compute $Q^2_{Y\hat{Y}}$ goodness-of-
171 prediction parameters. The empirical significance of the $Q^2_{Y\hat{Y}}$ parameter was evaluated by
172 random permutation testing (10,000 iterations).[30]

173 **Animal experiments**

174 Six-week-old C57BL/6J male mice (Janvier Labs, Courtaboeuf, France) were maintained in
175 specific pathogen free condition on a 12h light/dark cycle and fed a standard chow diet

176 (R04-40, Safe, Augy, France) for a week. Groups of 10 randomly selected mice were then
177 fed either control chow diet (CHD) (D 12450Ki, Research diets, NJ) or high fat (60% fat and
178 sucrose) diet (HFD) (D12492i, Research diets, NJ). One week later, osmotic minipumps
179 (Alzet® model 2006, Charles River Lab France, l'Arbresle, France) filled with a solution of
180 either hippuric acid or benzoic acid (5.55mM in 0.9% NaCl) (Sigma Aldrich, St Quentin,
181 France) were inserted subcutaneously under isoflurane anesthesia. The metabolites were
182 delivered at a rate of 0.15 μ L/hour over a 42-day period (20 nmol/day).

183 Glycemia and body weight were recorded weekly. After 3 weeks of metabolite treatment,
184 mice underwent an intra-peritoneal glucose tolerance test (IPGTT, 2g/kg). Blood was
185 collected from the tail vein before glucose injection and 15, 30, 60 and 120 minutes
186 afterwards to determine glycemia using an Accu-Check® Performa (Roche Diagnostics,
187 Meylan, France). Cumulative glycemia (AUC) was calculated as the sum of plasma glucose
188 values during the IPGTT and cumulative glucose increase (ΔG) parameter was calculated
189 as AUC above the fasting glycemia baseline integrated over the 120 min of the IPGTT.
190 Insulinemia was determined at baseline and at 30 minutes using insulin ELISA kits
191 (Mercodia, Uppsala, Sweden). After 6 weeks of metabolite infusion, mice were killed by
192 decapitation and organs were dissected and weighed. Triglycerides were quantified using a
193 colorimetric assay (ab65336, Abcam, Paris, France) of liver homogenates. All procedures
194 were authorized following review by the institutional ethic committee and carried out under
195 national licence condition (Ref 00486.02).

196 **Histology and immunohistochemistry of animal tissues**

197 Liver fibrogenesis and immunohistochemistry were determined as previously described [31].
198 An epitope-specific antibody (C27C9) was used for immunohistochemistry detection of
199 insulin on pancreas sections (8508S Ozyme, Saint Quentin en Yvelines, France).

200 **RNA isolation and quantitative RT-PCR**

201 Liver RNA preparation and reverse transcription were performed as previously reported [31].
202 Quantitative RT-PCRs were performed using oligonucleotides designed for the genes *Col1*
203 (Forward: CACCCCAGCGAAGAACTCATA; Reverse:
204 GCCACCATTGATAGTCTCTCCTAAC) and *Col3* (Forward: GCACAGCAGTCCAACGTAGA;
205 Reverse: TCTCCAAATGGGATCTCTGG) and using the cyclophilin A housekeeping
206 gene.[31]

207

208 **RESULTS**

209

210 **Hippurate is the urine metabolite most strongly associated with fecal microbial gene
211 richness.**

212 To identify microbial and host compounds mediating beneficial effects in metabolic health,
213 we profiled the urinary metabolome of the MetaHIT population[4] using ^1H nuclear magnetic
214 resonance (NMR) spectroscopy to perform a Metabolome-Wide Association Study
215 (MWAS)[11] for microbial gene richness, a proposed criterion of metabolic and immune
216 health[4] (Figure 1). We first built an orthogonal partial least squares (O-PLS) regression
217 model based on the ^1H NMR spectra to stratify the population by gene richness quartiles
218 computed using our previously published 10-million integrated gene catalog (IGC)[2] (Figure
219 1A, $P=5.8\times 10^{-21}$). The cross-validated model significantly predicted variance associated with
220 gene richness through a permutation test (Figure 1B, $P=9.7\times 10^{-5}$, 10,000 randomizations).
221 Model coefficients for this discrimination revealed hippurate as having the strongest
222 association with microbial gene count (Figure 1C): individuals with low microbial richness
223 present significantly lower urinary hippurate levels than individuals with high microbial
224 richness (Figure 1D, $P=1.99\times 10^{-9}$, $r^2=0.173$). These data support reports of association
225 between hippurate levels and microbial functional redundancy[26] and Shannon's diversity
226 index[17] (Figure 1E, $P=0.024$ and Supplementary Figure 1A, $P=0.0058$).

227

228 Consistent with associations previously reported for microbial gene richness in the MetaHIT
229 population[4] and associations between hippurate and reduced cardiometabolic disease
230 risk[11,12,14,17], urinary hippurate significantly correlated with low values for body mass
231 index (BMI), bodyweight, the homeostasis model assessment of insulin resistance (HOMA-
232 IR) and fasting circulating levels of IL6, insulin, and C-peptide, whilst adjusting for age and
233 gender (partial Spearman's rank-based correlations, $q<0.1$, Supplementary Figure 1B).
234 Moreover, stratification on urinary hippurate concentrations in lean ($\text{BMI} < 25 \text{ kg/m}^2$), and
235 overweight or obese ($\text{BMI} > 25 \text{ kg/m}^2$) individuals showed improved glucose homeostasis in
236 participants excreting higher levels of hippurate (Supplementary Figure 1C, *median*
237 *threshold*). These observations depict hippurate, one of the main microbial-mammalian co-
238 metabolites found in human urine, as a key molecular marker associated with gene richness
239 which may underlie some of its health benefits. These results however raise questions
240 related to the entanglement of gene richness and hippurate as potential markers of
241 health[13,17]. Adjusting for hippurate weakens associations between gene richness and
242 bioclinical variables (Supplementary Figure 1B), consistent with the idea that hippurate could

243 mediate some of the observed benefits for subjects with higher gene richness. However,
244 hippurate associations with bioclinical variables adjusted for gene richness are no longer
245 significant, suggesting that the gene richness signal overrides hippurate associations in the
246 presence of confounding variation affecting urinary concentrations, such as diet, microbial
247 synthesis, host conjugation and clearance. Hippurate did not correlate either to glycine
248 bioavailability, which is required for hippurate synthesis through conjugation with gut
249 microbial benzoate[32] or kidney function (eGFR) which could limit hippurate synthesis and
250 clearance (Supplementary Figure 1D-E).

251

252 **Microbiome determinants of hippurate production in the phenylpropanoid pathway**

253 To characterize the microbial determinants of benzoate production, we next focussed on
254 high-throughput shotgun sequencing fecal metagenomics data (n=271). We functionally
255 annotated functions of the IGC to KEGG Orthology (KO) groups and found 2,733 KEGG and
256 6,931 EggNOG modules positively associated with urine hippurate levels (pFDR<0.05,
257 Supplementary Tables S1-2). Of specifically curated enzymatic modules[26] involved in
258 microbial benzoate metabolism (4 aerobic and 15 anaerobic; Supplementary List), only three
259 modules significantly correlated with urine hippurate levels: MC0004 (detected in 271
260 samples) corresponding to a 2-enoate reductase converting cinnamic acid into 3-(3-
261 hydroxyphenyl)-propionic acid, MC0005 (observed in 201 samples) converting cinnamate
262 into benzoate and MC0014, a benzoate 4-monooxygenase only observed in fewer than 15%
263 of individuals (Figure 2A, Supplementary Table S3). Abundance of these modules also
264 correlated with gene richness (Supplementary Table S4), thereby providing a functional
265 basis for the association between gene richness and urine hippurate levels observed in this
266 population (Figure 1). Genes involved in MC0004 and MC0005 were predominantly found in
267 genomes from unclassified Firmicutes and Clostridiales (Figure 2B, Supplementary Tables
268 S5-6). Among classified Firmicutes, the genera *Lachnoclostridium*, *Eubacterium* and *Blautia*
269 harbored MC0004. Conversely, MC0005 was encoded by Proteobacteria, i.e. *Klebsiella*,
270 *Enterobacter*, *Suterella* and *Comamonas* (Figure 2B). We then mapped these modules into
271 the enteroscope (as observed on the principal coordinates plot derived from normalized
272 genus abundances using Bray-Curtis distances,[26] Figure 2C), revealing that the
273 conversion of cinnamic acid into 3-hydroxy-3-phenylpropionic acid is linked to the
274 *Ruminococcus* enterotype, while capacity to convert cinnamate to benzoate is more
275 ubiquitously distributed across gut community types. Phenylpropanoid pathway potential is
276 increased in the *Ruminococcaceae*-enterotype compared to the *Bacteroides*- or *Prevotella*-
277 enterotypes, the former being confirmed by analyzing gradients of key taxa instead of

278 enterotypes (Supplementary Table S7). The results altogether suggest a wide range of
279 substrates, taxa and species are involved in benzoate production, consistent with its
280 association with gene richness.

281

282 **Urine hippurate levels associate with improved metabolic health in patients with diets**
283 **rich in meat and saturated fats**

284 We next assessed individual nutritional intake through validated FFQs available in 193
285 MetaHIT individuals.[19] Associations with metabolic health were stratified according to
286 multivariate dietary patterns (Figure 3). A PCA of 133 dietary intake descriptors summarises
287 dietary patterns and loadings highlight four archetypal diets within our population: higher
288 consumption of fruits and vegetables (n=96) vs. high consumption of meat containing
289 saturated fats (n=97) on the first principal component (PC1) and carbohydrate-rich foods vs.
290 fish containing unsaturated fats on PC2 (Figure 3A), a trend which was observed at the food
291 ingredient and nutrient level (Supplementary Figure 2A-B). It is therefore possible to stratify
292 the population according to the median of dietary PC1 highlighting contrasts between
293 healthy (higher consumption of fruit and vegetables) and at-risk (higher consumption of
294 carbohydrates and meat) diets. Although hippurate was not correlated with the first two
295 dietary principal components, its dynamic range was similar whilst stratifying according to
296 the first two principal components (Supplementary Figure 2C-E). To summarise the main
297 factors influencing inter-individual variation in urine hippurate excretion, we calculated the
298 cumulative contribution of several covariates using a dbRDA ordination approach (Figure
299 3B). Gene richness accounted for 12% (P=0.002), followed by MC0020 encoding a
300 hippurate dehydrolase (4%, P=0.002, observed in 271 subjects) catalysing the
301 retroconversion of hippurate into benzoate, and HOMA-IR (1.5%, P=0.008; n=265). When
302 taking diet into account (i.e., PC1 fruits and vegetables vs. meat; n=193) in the dbRDA, gene
303 richness contributes to 15% (P=0.002), diet adding another 4% (P=0.002) and hippurate
304 retroconversion 3% (P=0.004), suggesting that the pattern of hippurate associations could
305 be diet-dependent and requiring further analysis. We therefore stratified the data according
306 to diet (n=193) using a median threshold for the first dietary principal component,
307 highlighting a healthy diet associated with vegetables and fruit intake (low PC1 values, n=96)
308 and an at-risk diet rich in saturated fats derived from meat intake (n=97). For this latter
309 subset of individuals consuming a diet rich in saturated fats on the first dietary principal
310 component, urine hippurate levels significantly associated with decreased HOMA-IR,
311 circulating fasting levels of insulin, fasting associated adipocyte factor (FIAF, also known as
312 Angiopoietin-like 4, a peroxisome proliferator-activated receptor target gene environmentally

313 modulated by the gut microbiota inhibiting lipoprotein lipase in adipose tissue [33]) and TNF-
314 α , whilst displaying increased plasma levels of fasting adiponectin (Figure 3C-E,
315 Supplementary Table S8). Urine hippurate was not associated with any health benefits in the
316 subsets of participants consuming mostly a fruit and vegetable diet, a pescetarian diet or a
317 carbohydrate-rich diet (Supplementary Table S8).

318

319 To disentangle contributions arising from hippurate and gene richness to bioclinical variables
320 in subjects consuming a diet rich in fats, we compared unadjusted and adjusted Spearman's
321 rank-based correlations (Figure 3H). In the population consuming higher amounts of meat
322 and saturated fats, elevated urine hippurate levels significantly associated with an increase
323 in fasting plasma adiponectin and a reduction in adiposity, BMI, HOMA-IR and fasting
324 plasma insulin, which is consistent with gene richness being significantly associated with an
325 increase in adiponectin and a decrease in HOMA-IR and fasting plasma insulin. However,
326 the associations between gene richness and bioclinical variables were no longer significant
327 when adjusting for urine hippurate levels. Conversely, hippurate associations with insulin
328 and HOMA-IR were still significant after gene richness adjustment. We exemplified this
329 through a correlation graph taking into account the correlation between hippurate and gene
330 richness ($r=0.44$): this unadjusted correlation between gene richness and HOMA-IR
331 collapses when adjusting for gene richness ($\rho=0.143$, n.s.) and is in fact contributed for by
332 a partial correlation between urine hippurate and HOMA-IR (Figure 3I). The latter finding
333 suggests a possible preventive role for hippurate in metabolic disease driven by diets high in
334 meat and saturated fats, independently of gene richness.

335

336 **Hippurate and benzoate improve glucose tolerance in HFD-fed mice**

337 To further study the impact of benzoate and hippurate on host physiology, we treated mice
338 with subcutaneous infusion of hippurate (0.14 mg/kg/day) and benzoate (0.1 mg/kg/day) in
339 CHD and HFD (Figure 4). Under control diet, metabolite treatments had no effect on body
340 weight, BMI and fasting glycemia (Supplementary Figure 4). Benzoate caused a significant
341 elevation of the adiposity index and a reduction of the normalised heart weight
342 (Supplementary Figure 5A). During an IPGTT, both metabolites induced a slight increase in
343 glycemia (Figure 4A-B) and ΔG parameter (Figure 4C), respectively. Also, hippurate induced
344 a stronger glucose-stimulated insulin secretion than benzoate, compared to the saline-
345 treated mice (Figure 4D). Whilst HFD-feeding increased body weight and adiposity,
346 hyperglycemia and glucose intolerance (Figure 4E-H, Supplementary Figs 4D,E and 5),
347 mice treated with hippurate or benzoate showed a parallel improvement in glucose tolerance

348 compared to saline-treated controls (Figure 4E). This effect was illustrated by the highly
349 significant reduction of both the cumulative glycemia during the test (Hippurate vs. control -
350 23.90% P=0.001, benzoate vs. ctrl -31.52%, P=0.001) and the ΔG parameter (Hippurate vs.
351 ctrl -37.22% P=0.001, benzoate vs ctrl -33.35%, P=0.001) (Figure 4F,G). Hippurate and
352 benzoate treatments also significantly increased glucose-induced insulin secretion (Figure
353 4H). These data suggest that both metabolites have the capacity to improve glucose
354 tolerance and stimulate glucose-induced insulin secretion *in vivo* specifically in diet-induced
355 obesity and diabetes.

356

357 **Effects of hippurate and benzoate on the morphology of pancreatic islets**

358 To investigate the possible cause of stimulated insulin secretion by hippurate and benzoate,
359 we performed out a histological analysis of pancreatic islet structure. We confirmed that
360 insulin positive area was increased by hippurate (+194%, P=0.04, one-tailed) or benzoate
361 (+437%, p=0.02, one-tailed) respectively in mice fed control diet (Figure 5); hippurate
362 treatment Insulin positive area was also increased in HFD-fed mice treated with hippurate
363 (+168%, P=0.04, one-tailed). These data suggest that increased β -cell mass may explain
364 enhanced insulin production and secretion induced by hippurate and benzoate treatment.

365

366 **Effects of hippurate and benzoate on liver histopathology and function**

367 Liver triglyceride accumulation, fibrosis and inflammation are hallmarks of structural and
368 biochemical adaptations to HFD feeding. Liver triglycerides were more elevated in HFD fed
369 mice (29.30 ± 4.15 mg/g) than in mice fed control diet (8.63 ± 2.19 mg/g, P=0.002)
370 (Supplementary Figure 6). Hepatic triglycerides were not significantly affected by hippurate
371 or benzoate treatment in either diets. Benzoate induced a singifnican decrease in liver
372 triglycerides compared to hippurate in HFD (-57.35%, P= 0.02) (Supplementary Figure 6).
373 We next analysed hepatic fibrosis through quantitative analysis of collagen detected by red
374 picrosirius staining of histological sections (Figure 6A). Hippurate treatment resulted in a
375 marked reduction of liver collagen in mice fed control diet (-53.2%) or HFD (-55.7%),
376 whereas benzoate had no effects on collagen levels in these mice (Figure 6B,C). These
377 results were confirmed by liver expression of the genes encoding collagen 1 (*Col1*) and
378 collagen 3 (*Col3*) (Figure 6B,C): hippurate treatment induced a significant reduction of the
379 expression of *Col1* (-79.89%, P=0.02) and *Col3* (-29.37%, P=0.01) under control diet (Figure
380 6B). but the effect of the metaolites on *Col1* and *Col3* I HFD was marginal (Figure 6C).
381 Finally, we assessed the effects of hippurate and benzoate on liver inflammation through α -
382 SMA (alpha Smooth Muscle Actin) staining[34,35] (Figure 7A), which is increased by HFD-

383 feeding (+273.86%) (Figure 7B,C). Hippurate induced a marked reduction in α -SMA staining
384 in mice fed control diet (-82.71%) or HFD (-94.87%) (Figure 7B,C), suggesting reduced
385 presence of stellar cells and reduced liver inflammation when compared to saline-treated
386 controls. In contrast, benzoate treatment in chow diet induced a strongly significant increase
387 in stellar cells when compared to mice treated with saline (+564%, $P=10^{-7}$) or hippurate
388 (+3,741%, $P=10^{-7}$), thereby indicating liver inflammation in these mice (Figure 7B).
389 Collectively, these data show that hippurate decreases fibrosis and inflammation regardless
390 of diet, whereas benzoate reduces triglycerides and collagen accumulation in obese mice
391 fed HFD whilst stimulating inflammation in lean mice fed control diet.

392

393 **DISCUSSION**

394

395 Integrated analysis of metabolome profiling and deep metagenome sequencing data of 271
396 middle-aged non-diabetic Danish subjects from the MetaHIT study sample [4] identified
397 urinary hippurate as the metabolite most significantly associated with microbial gene
398 richness based on the microbial IGC.[2] This observation largely confirms previous reports
399 associating hippurate with gene richness in steatosis and bariatric surgery contexts[14,36]
400 as well as with increased gut microbial diversity as assessed by sequencing the 16S rRNA
401 gene amplicon.[17] Hippurate having previously been inversely correlated with blood
402 pressure, obesity and steatosis,[11-14] this study highlights diet-dependent relationships
403 between microbiota-host co-metabolism of benzoate and hippurate and health benefits
404 associated with gene richness. Our in-depth dissection of the metagenomic determinants of
405 urinary hippurate highlighted a series of richness-responsive gene modules functionally
406 related to benzoate synthesis. These modules are shared across several enterotypes and
407 taxonomic gradients. Population stratification analyses demonstrated that hippurate only
408 benefits individuals consuming a diet rich in saturated fats. This hypothesis of a diet-
409 dependent beneficial health effect of benzoate metabolism was confirmed *in vivo* in a
410 preclinical model of HFD-induced obesity.

411

412 **Hippurate brings diet-dependent metabolic improvements in pancreas and liver**

413 Our study shows that chronic hippurate treatment in a model of obesity induced by HFD-
414 feeding reduces glucose intolerance, stimulates insulin secretion, enhances β -cell mass and
415 reduces hepatic inflammation and fibrosis. Metabolomic studies have consistently shown
416 inverse associations variations between hippurate levels and pathophysiological elements of
417 the metabolic syndrome. Urinary hippurate is reduced in mouse models of insulin

418 resistance[10] and in rat models of spontaneously occurring hypertension (SHR), type 2
419 diabetes (Goto Kakizaki, GK) and obesity (Zucker) or the WKY rat.[37-39] This is consistent
420 with our previous reports showing an inverse association among hippurate, insulin
421 resistance, hypertension, obesity or liver steatosis[10-12,14] and observations that hippurate
422 exerts protective effects in β -cells.[40] We also showed in HFD-fed isogenic mice that
423 urinary hippurate measured before a 3-week HFD induction predicts the future development
424 of obesity, suggesting that functional variations in microbiome predicts disease risk
425 independently of genetics.[41] Whilst both hippurate and benzoate have similar *in vivo*
426 effects, including greatly improved glucose tolerance and stimulation of insulin secretion,
427 only hippurate results in beneficial effects on increased β -cell mass or reduced liver fibrosis.
428

429 **The phenylpropanoid-benzoate-hippurate pathway in metabolic health**

430 The range of responses observed in the animal model treated with hippurate and benzoate
431 depict subtle and context-dependent microbiome–host interactions. Benzoate and its co-
432 metabolite hippurate are the endproducts of several converging microbial biosynthetic
433 pathways.[15] The phenylpropanoid pathway is a broad network of reactions connecting a
434 wide range of dietary substrates such as phenylalanine, quinic acid, shikimic acid or
435 chlorogenic acid for instance to 4-coumaryl-coA. These pathways lead to much simpler
436 molecules, benzoate being their common endpoint. Dietary and microbial intermediates
437 (including cinnamic acids, coumarins, stilbenoids, flavonoids and isoflavonoids) in the
438 phenylpropanoid and connected pathways are associated with beneficial health
439 outcomes.[15,42]

440

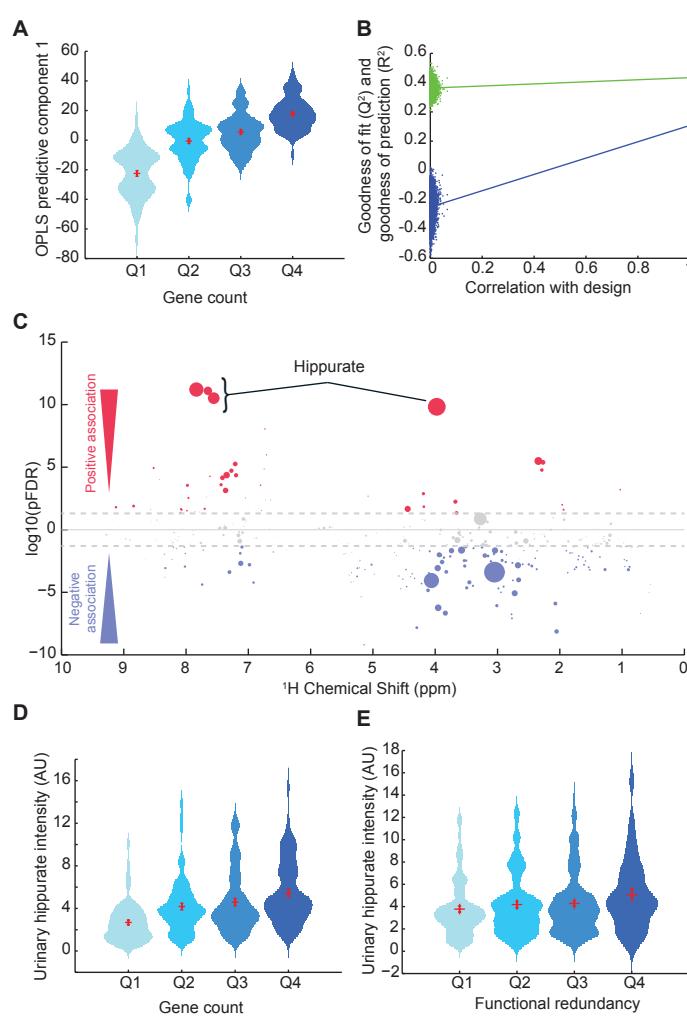
441 **Conclusion.** Our study depicts hippurate as a pivotal microbial-host co-metabolite mediating
442 part of the beneficial metabolic improvements associated with high microbial gene richness
443 in the context of Western-style diets. This work unifies previous reports in which hippurate
444 was associated improvements in insulin resistance, steatosis, hypertension and obesity[10-
445 12,14] and microbial ecological diversity.[14,17] Beyond the diversity of microbial
446 ecosystems and functions associated with hippurate, we uncover beneficial bioactivities in
447 the liver and pancreas resulting in health benefits in terms of metabolic control, liver
448 inflammation and fibrosis. Our observations support the existence of diet-dependent
449 microbial-host metabolic axis in which hippurate partly offsets unhealthy diets, further
450 exemplifying that the microbiome determines key components of human biochemical
451 individuality[43] and provides critical diagnostic and therapeutic potential in personalized
452 nutrition and stratified medicine.[44,45]

453 **Acknowledgements**

454 This research was funded by FP7 METACARDIS HEALTH-F4-2012-305312 with additional
455 funding from the Metagenopolis grant ANR-11-DPBS-0001 and support of the NIHR Imperial
456 Biomedical Research Centre. The Novo Nordisk Foundation Center for Basic Metabolic
457 Research is an independent research institution at the University of Copenhagen partially
458 funded by an unrestricted donation from the Novo Nordisk Foundation. S.V.S. is funded by
459 Marie Curie Actions FP7 People COFUND Proposal 267139 (acronym OMICS@VIB) and
460 the Fund for Scientific Research-Flanders (FWO-V). L.H. was an MRC Intermediate
461 Research Fellow (MR/L01632X/1).

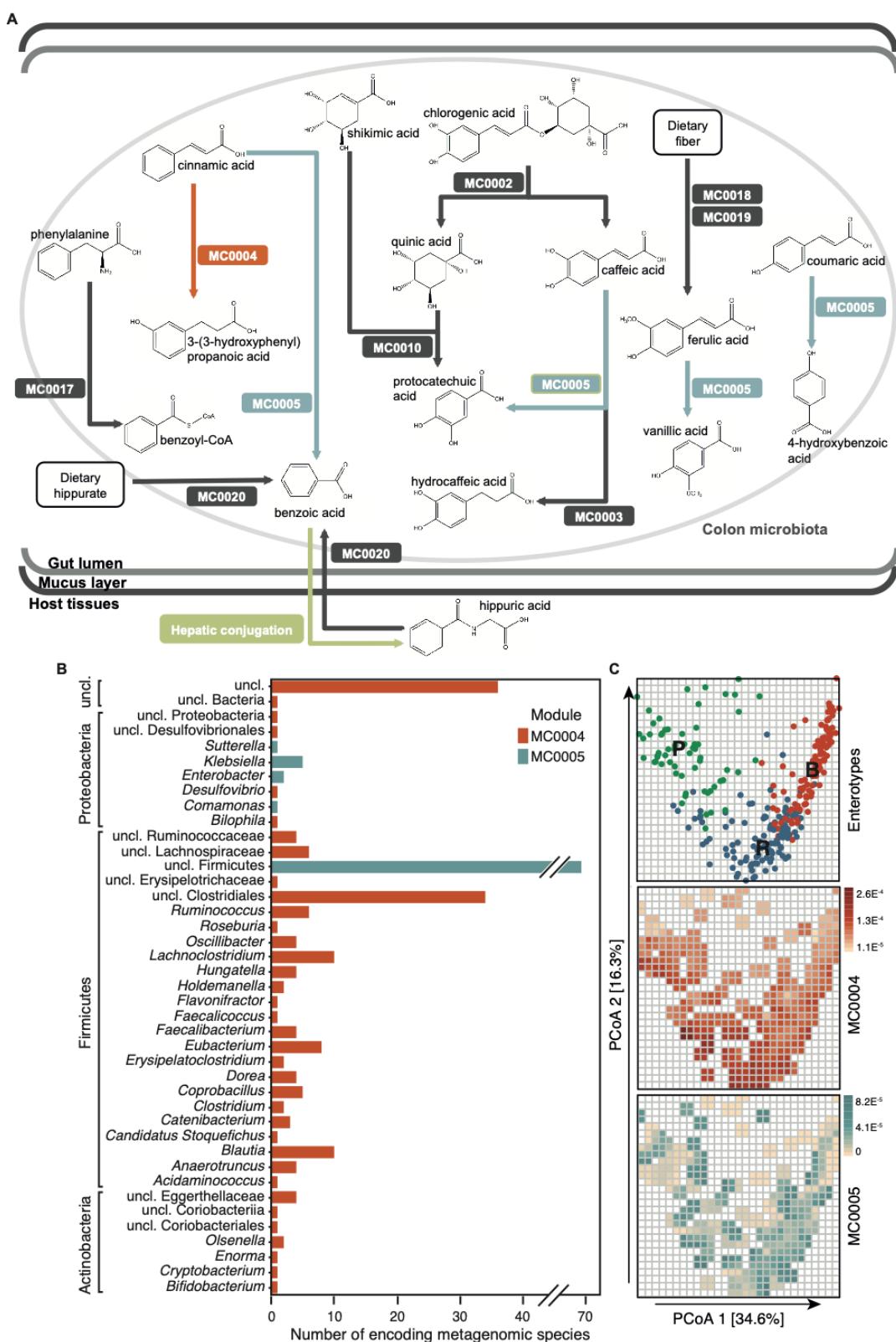
462

463 **Contributions**


464 F.B. J.C., T.N. and S.V.S. and contributed equally to this work. F.B. J.C. and G.I.M. acquired
465 data, J.C., T.N., S.V.S. performed analyses, G.F. and S.V.S. curated the gut-specific
466 metabolic modules, L.H., A.L.N., A.R.M., N.P., S.F., E.L.C., and A.M.L.L. participated in data
467 collection and processing, J.C., T.N., S.V.S., F.B. and G.F. performed statistical analyses.
468 M.-E.D., D.G., J.R. and O.P. designed the study. T.H., J.K.N. K.C., P.B., S.D.E., participated
469 in the study design and interpretation of the results, M.E.D. wrote the manuscript with
470 contributions from F.B., J.C., T.N., S.V.S, G.F., J.R., O.P and D.G.

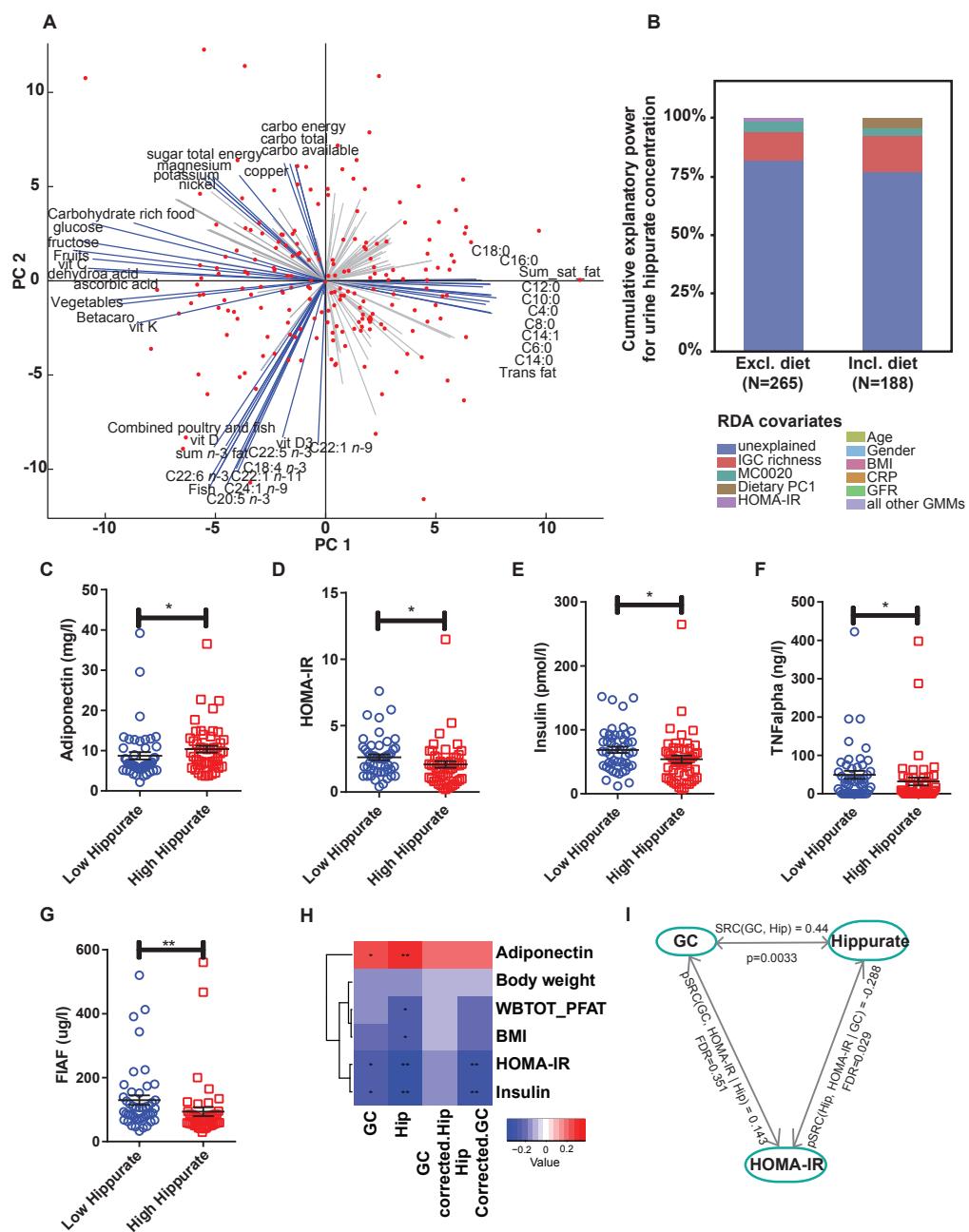
471

472 **Competing interests**


473 The authors declare no competing financial interests.

474 **Figure Legends**

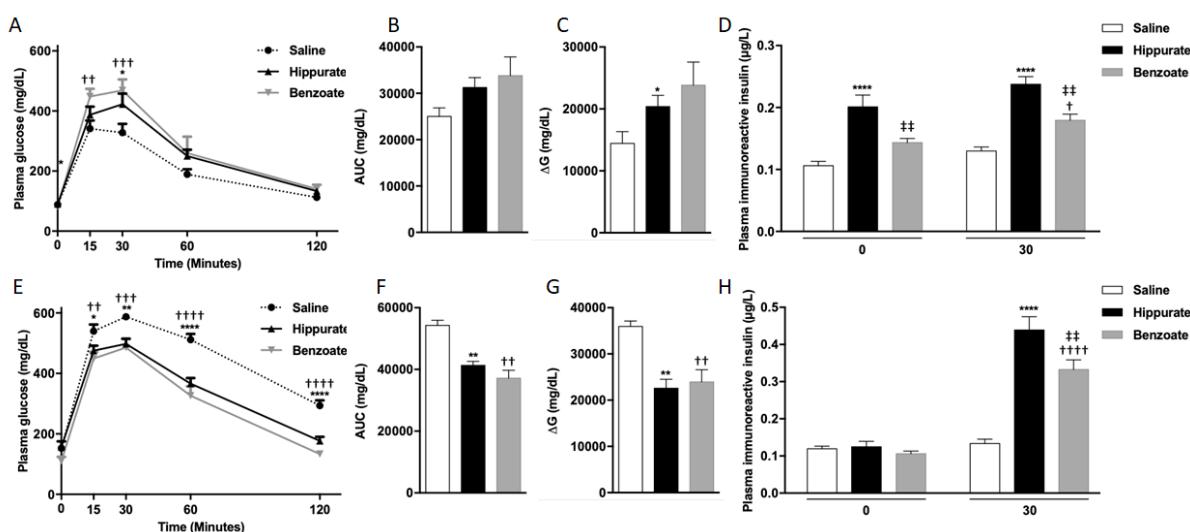
475


476 **Figure 1. Hippurate is the main metabolite correlated with gene richness and**
477 **functional redundancy of the microbiome. (A)** Scores plot (predictive component 1)
478 obtained for an O-PLS-DA model fitted using urinary ^1H NMR-spectra to predict microbial
479 gene richness, showing a significant association between gene richness quartiles and ^1H
480 NMR spectra ($p=5.84 \times 10^{-21}$ for a significantly non-zero slope using F-test, n=271). **(B)**
481 Empirical assessment of the significance of O-PLS goodness-of-fit parameter $Q^2_{Y\hat{h}at}$ by
482 generating a null distribution with 10,000 random permutations ($p=9.68 \times 10^{-5}$). **(C)** Manhattan
483 plot highlighting associations between ^1H NMR variables and gene count displayed in a
484 pseudo-spectrum layout. A negative value (blue circles) means a negative correlation while
485 a positive value (red circles) means a positive correlation. Grey circles are clusters with a p-
486 value > 0.01 . Size of circles represents the covariance of the cluster with the gene count. **(D)**
487 Association between urinary hippurate intensity and gene count quartiles ($p=1.99 \times 10^{-9}$ for a
488 significantly non-zero slope using F-test). **(E)** Association between urinary hippurate intensity
489 and microbial functional redundancy [26] quartiles ($p=0.0239$ for a significantly non-zero
490 slope using F-test, n=271).

491

492 **Figure 2. Detection of microbial phenylpropanoid metabolism-related modules in fecal**
 493 **metagenomes of healthy volunteers and their associations with urine hippurate**
 494 **concentrations. (A)** Visualisation of gut-specific metabolic modules (GMMs) encoding
 495 anaerobic phenylpropanoid metabolism-related pathways detected in more than 20% of

496 individuals; MC0004 (orange; Spearman rho=0.19, q-value=0.005) and MC0005 (blue;
497 Spearman rho=0.21, q-value=0.005) correlate positively to urine hippurate concentrations
498 (n=271). All metabolites are connected to benzoate but for clarity the non-significant
499 reactions were omitted. **(B)** Metagenomic species encoding modules MC0004 and MC0005.
500 **(C)** [top panel] Fecal microbiomes dissimilarity visualised on the first plane of the genus-level
501 principal coordinates analysis (PCoA, Bray-Curtis dissimilarity), with individual samples
502 colored according to enterotypes (R, Ruminococcaceae; B, Bacteroides; P, Prevotella).
503 [middle and bottom panels] Same genus-level PCoA overlaid with a mesh colored according
504 to the median abundances of GMMs MC0004 (red) and MC0005 (blue) in samples falling
505 within each cell of the mesh (n=271). See Supplementary Table S3 for correlation between
506 hippurate and GMMs.

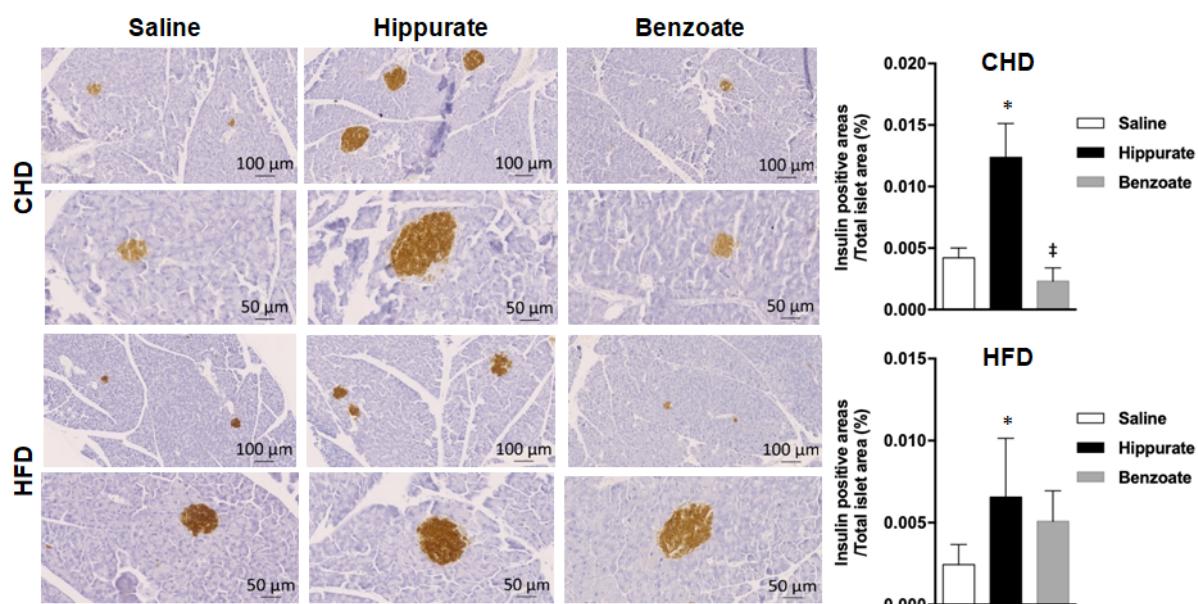

507

508 **Figure 3. Hippurate associates with improved glucose homeostasis only in**
 509 **participants consuming a diet rich in saturated fats. (A)** Biplot of the principal
 510 component analysis (PCA) of dietary intakes highlights opposite diets along first two
 511 principal components (PCs). The main drivers of each principal components are named and
 512 represented by blue arrows. **(B)** Cumulative contributions of explanatory variables to inter-
 513 individual variation in hippurate excretion, estimated by redundancy analysis (dbRDA).
 514 Explanatory variables included microbiota gene count, microbiota phenylpropanoid
 515 metabolism modules, host dietary principal components and clinical parameters (age,
 516 gender, BMI, HOMA-IR, CRP, serum glycine levels, and glomerular filtration rate (eGFR)
 517 estimation with CKD-EPI). **(C-F)** Evaluation of hippurate stratification (high hippurate, n=49

518 vs low hippurate, n=48) on bioclinical variables (q<0.1, Supplementary Table S8) for
519 individuals on high PC1 (i.e. high meat / high saturated fat diet). For full name description of
520 physiological data see Supplementary Table S8.

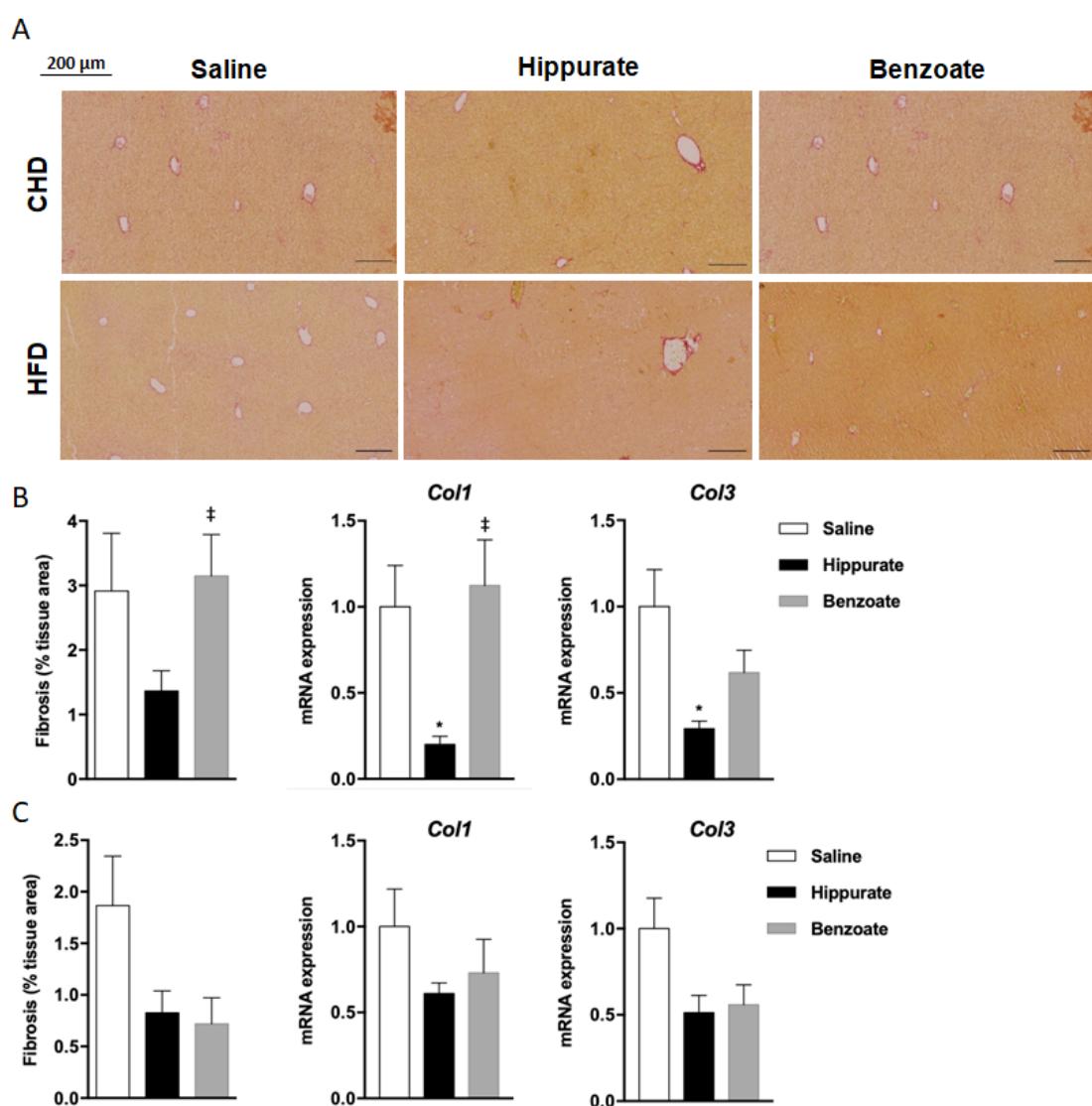
521

522

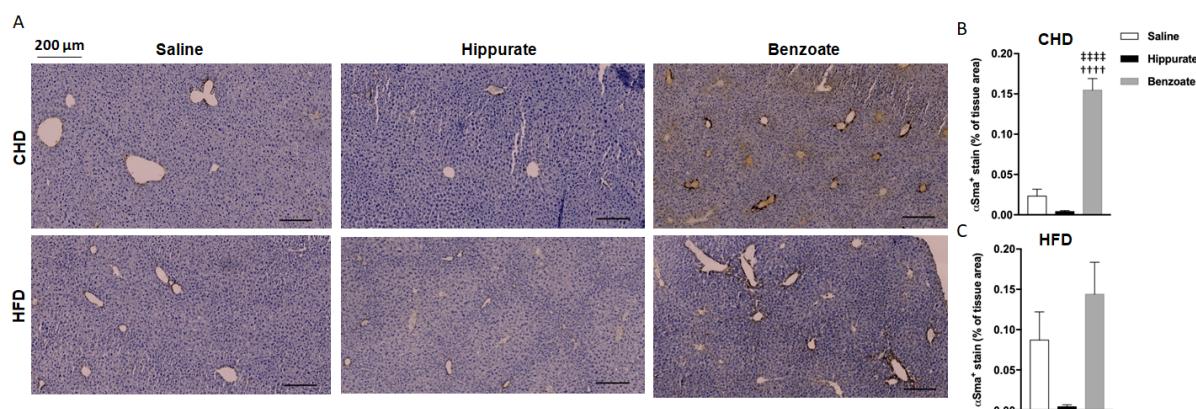

523

524 **Figure 4. Chronic hippurate treatment improves glucose homeostasis in HFD-fed**
525 **mice.**

526 **(A)** Heatmap summarising Spearman's partial correlation between gene richness,
527 hippurate, gene richness adjusted for hippurate and hippurate adjusted for gene richness and
528 bioclinical variables, all correlations adjusted for age and gender. Stars represent significant
529 pFDR corrected using Benjamini Hochberg procedure * pFDR<0.1, ** pFDR<0.05, ***
530 p<0.01. **(B)** Representation of the Spearman's correlations and partial correlations between
531 gene count and hippurate, hippurate and HOMA-IR adjusted for gene richness and between
532 gene richness and HOMA-IR adjusted for hippurate. **(C)** Plasma glucose during a glucose
533 tolerance test (GTT). **(D)** Area under the curve for glucose during the GTT. **(E)** Body weight
534 of mice during the 6 weeks of hippurate treatment. **(F)** Body mass index at sacrifice **(G)**
535 Adipose tissue weight normalised to body weight. **(H)** Plasma adiponectin concentration. For
536 chow diet and chow diet + hippurate, (n=10) and for HFD and HFD + hippurate (n=6). Data
537 shown are mean±SEM. Statistical analysis was performed using two-way ANOVA with
538 Tukey's posthoc test. ** p<0.01, **** p<0.0001. For panel (D), (F), (G) and (H), groups with
539 different superscript letters are significantly different (P<0.05), according to Tukey's posthoc
540 test.


541

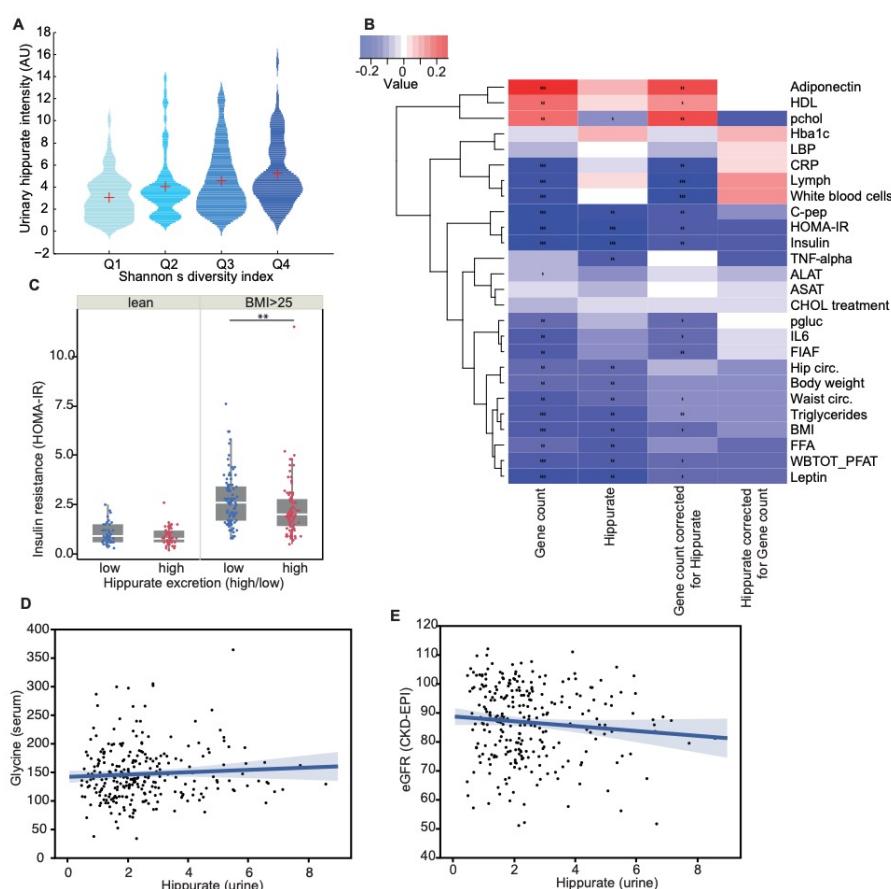
542



543

544 **Figure 5. Effect of chronic administration of hippurate and benzoate on pancreatic**
545 **islets in C57BL6/J mice.** The effect of chronic subcutaneous administration of the
546 metabolites (5.55 mM) for 42 days on islet density was tested in mice fed chow diet (CHD)
547 or high fat diet (HFD) for 56 days. Control mice were treated with saline. Each biological
548 replicate represents one slide per animal mounted with at least 3 tissue sections,
549 representing 3 technical replicates, the mean and variance of which is presented as the
550 result per biological replicate. Results are expressed as percentage of positive pixels.
551 ‡P<0.05, significantly different between mice treated with benzoate and hippurate.

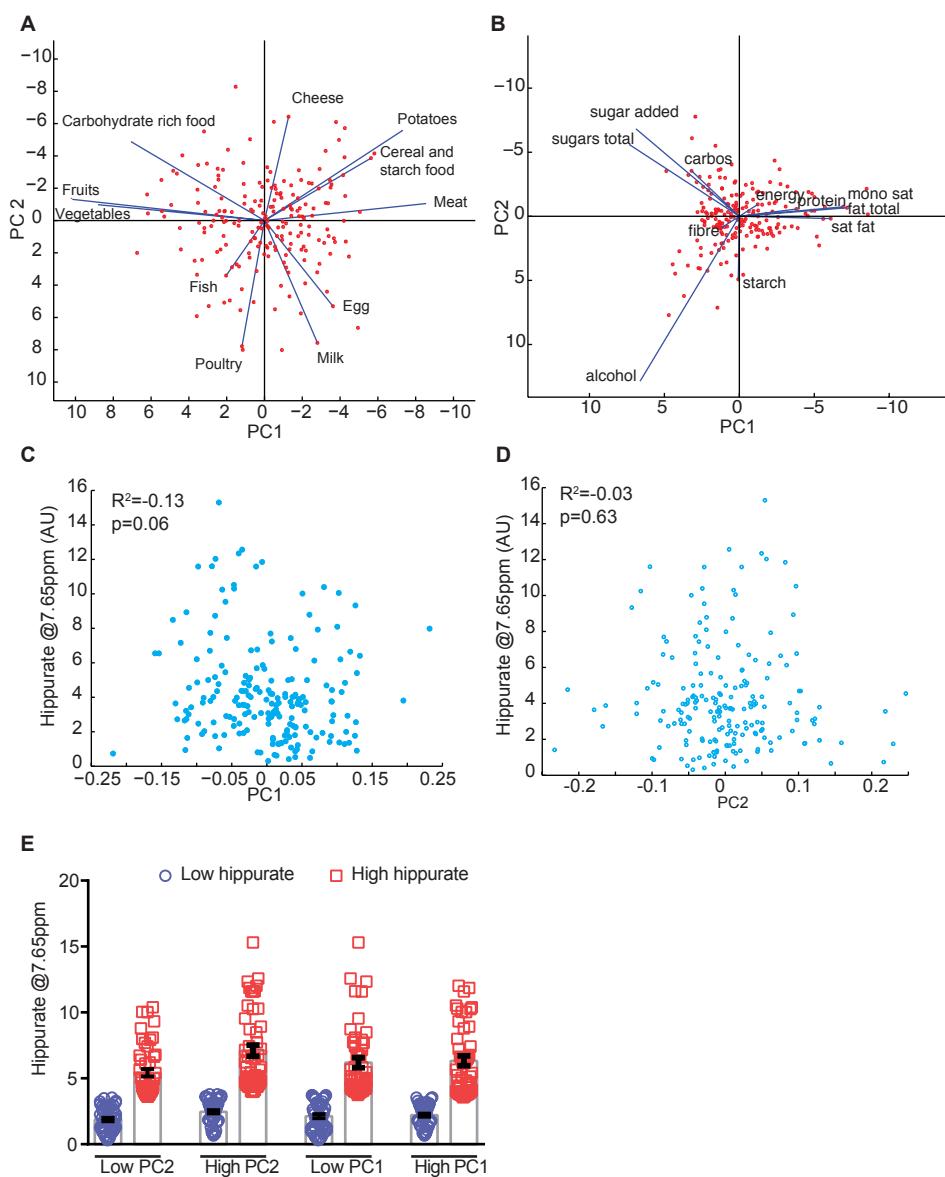
552
553 **Figure 6. Effect of chronic administration of hippurate and benzoate on liver fibrosis**
554 **(A)**The effect of chronic subcutaneous administration of the metabolites
555 (5.55 mM) for 42 days on liver collagen was tested in mice fed control chow diet (CHD) or
556 high fat diet (HFD) for 56 days. Control mice were treated with saline. Red Picosirius
557 staining of histological sections was used to visualise and quantify fibrosis in mice fed CHD
558 (**B**) or HFD (**C**). Each biological replicate represents one slide per animal mounted with at
559 least 3 tissue sections, representing 3 technical replicates, the mean and variance of which
560 is presented as the result per biological replicate (**B,C**). Liver expression of the genes
561 encoding collagen 1 (*Col1*) and collagen 3 (*Col3*) was assessed in mice fed CHD (B) or HFD
562 (**C**) by quantitative RT PCR in 6 mice per group. Data were analyzed using the unpaired
563 Mann-Whitney test. Results are means \pm SEM. * $P<0.05$ significantly different between mice
564 treated with hippurate and controls. $\ddagger P<0.05$, significantly different between mice treated
565 with benzoate and hippurate.


566

567 **Figure 7. Effect of chronic administration of hippurate and benzoate on liver**
568 **inflammation in C57BL6/J mice.** αSMA staining of liver slides was used to assess
569 inflammation in mice fed chow diet (CHD) or high fat diet (HFD) for 56 days and chronically
570 treated with subcutaneous administration of the metabolites (5.55mM) for 42 days (**A**).
571 Control mice were treated with saline. Each biological replicate represents one slide per
572 animal mounted with at least 3 tissue sections, representing 3 technical replicates, the mean
573 and variance of which is presented as the result per biological replicate in mice fed CHD (**B**)
574 or HFD (**C**). Data were analyzed using the unpaired Mann-Whitney test. Results are means
575 ± SEM.
576 †††P<0.0001, significantly different between mice treated with benzoate and saline treated
577 controls. ‡‡‡P<0.0001, significantly different between mice treated with benzoate and
578 hippurate.

579

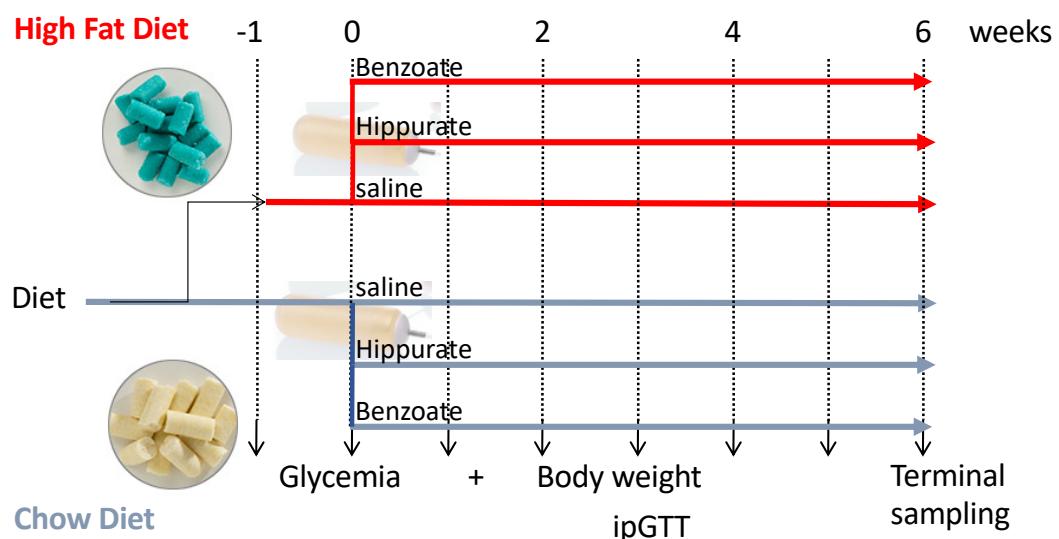
580 **SUPPLEMENTARY SECTION**


581

582

583 **Supplementary Figure 1. Relationship between gene richness, hippurate and**
 584 **bioclinical variables**

585 **(A)** Association between urinary hippurate intensity and Shannon's diversity index quartiles
 586 ($p=6.04 \times 10^{-8}$ for a significantly non-zero slope using F-test, $n=271$). **(B)** Heatmap
 587 summarising significant ($p\text{FDR} < 0.1$) Spearman's correlation FDR corrected using Storey's
 588 procedure[27] between gene count, hippurate and gene count adjusted for hippurate and
 589 physiological data, all adjusted for age and gender. For full physiological data names and
 590 units see *Supplementary Table 8*. **(C)** Association between hippurate and insulin resistance
 591 (HOMA-IR) stratified according to BMI (lean ($\text{BMI} \leq 25$, $n=87$), overweight and obese ($\text{BMI} > 25$
 592 , $n=184$) and hippurate excretion levels (Mann-Whitney U test, $p=0.0058$). **(D)**
 593 Representation of the absence of significant correlation between urinary hippurate and
 594 eGFR. **(E)** Representation of the absence of significant correlation between urinary
 595 hippurate and circulating glycine.

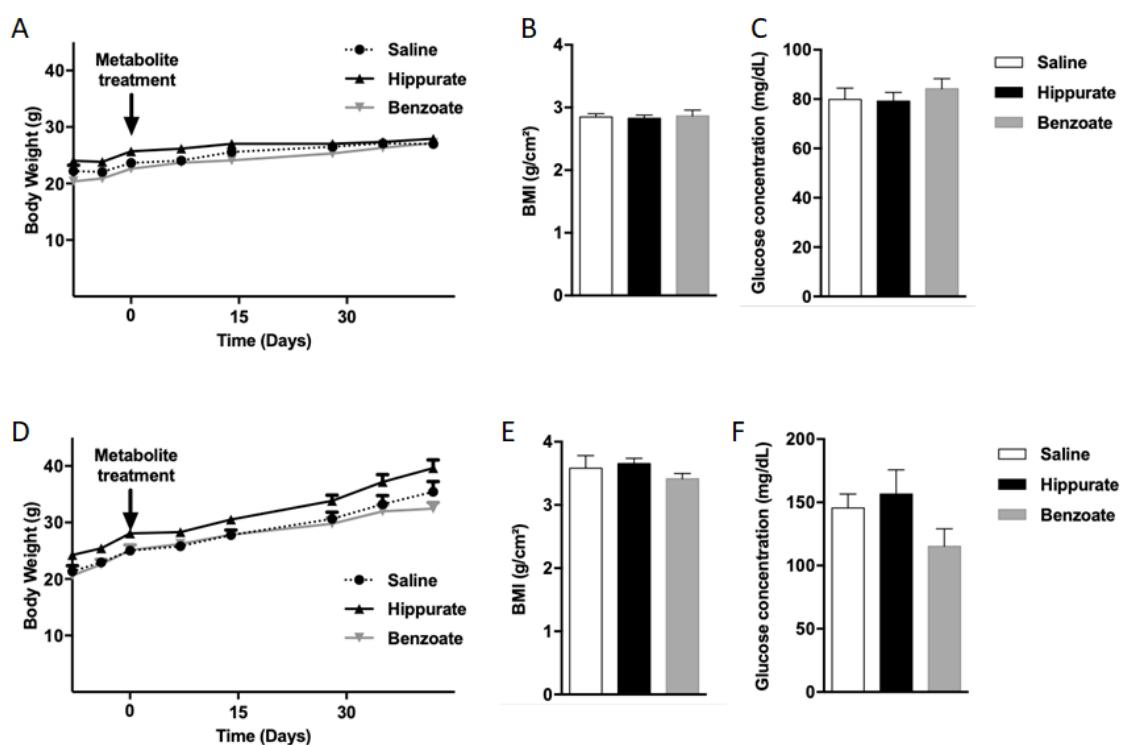


596

597 **Supplementary Figure 2. Urinary hippurate does not correlate with main dietary**

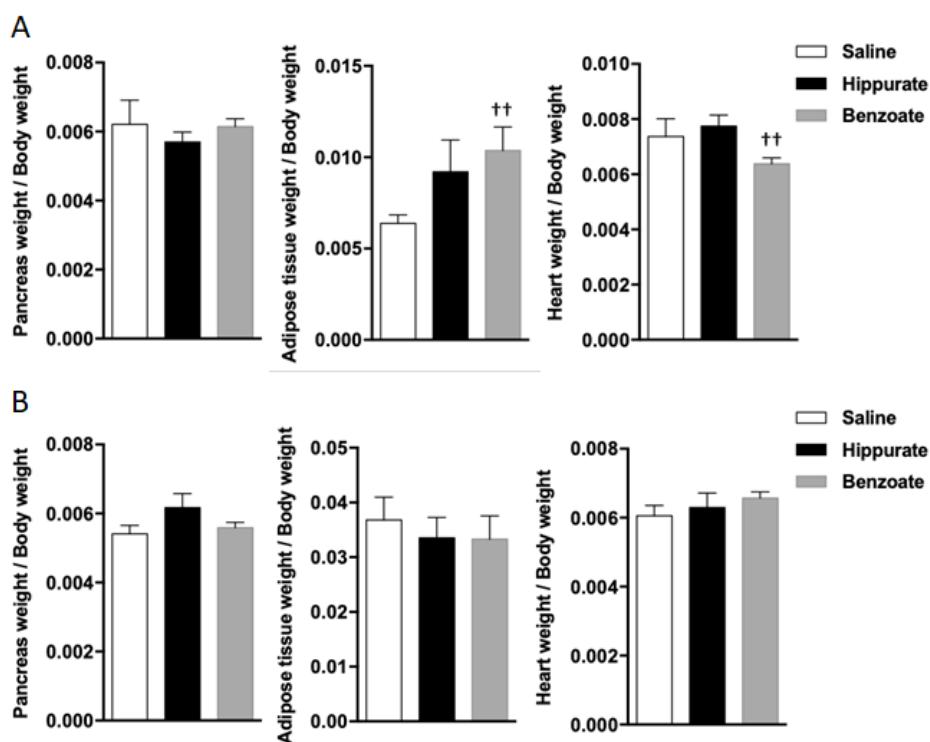
598 **trends summarized and presents a high variability within each subgroup**

599 **(A)** Biplot of the dietary data generated using only food items. **(B)** Biplot of thmicrobial e
600 dietary data generated using only macronutrients items. **(C)** Representation of the absence
601 of correlation between hippurate concentration and principal component 1. **(D)**
602 Representation of the absence of correlation between hippurate concentration and principal
603 component 2. **(E)** Distribution of hippurate urinary concentration within each
604 individualsubgroup stratified in high and low hippurate using median.


605

606 **Supplementary Figure 3. Experimental design for chronic six-week administration of**
607 **benzoate and hippurate**

608 Experiment design showing groups and durations of each step for the chronic treatments
609 with benzoate and hippurate in mice.

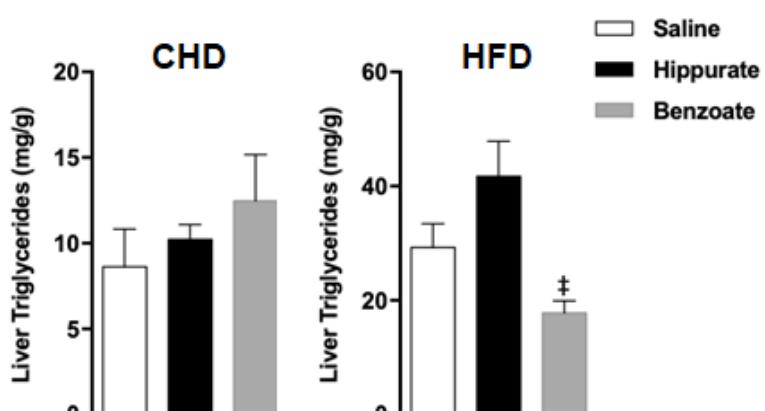

610

611

612

613 **Supplementary Figure 4. Effects of chronic administration of hippurate and benzoate**
614 **on body growth and fasting glycemia.** C57BL6/J mice fed control chow diet (**A-C**) or high
615 fat diet (**D-F**). The effects of chronic subcutaneous administration of the metabolites (5.55
616 mM) in mice were tested on body weight (**A,D**), body mass index (BMI) (**B,E**), fasting
617 glycemia (**C,F**). Control mice were treated with saline. BMI was calculated as body weight
618 divided by the squared of anal-nasal length. Results are means \pm SEM.

619


620 **Supplementary Figure 5.** Organ weight in C57BL6/J mice treated chronically with hippurate
621 or benzoate for 42 days. Control mice were treated with saline. Mice were fed chow diet
622 (CHD) or high fat diet (HFD) for 56 days. Data are expressed as the ratio between organ
623 weight and body weight. Data were analyzed using the unpaired Mann-Whitney test. Results
624 are means \pm SEM.

625 **P<0.01, significantly different between mice treated with hippurate and controls. †P< 0.05,

626 ††P<0.01, significantly different between mice treated with benzoate and saline treated
627 controls.

628

629

630

631 **Supplementary Figure 6. Effect of chronic administration of hippurate and benzoate**
632 **on liver triglycerides content in C57BL6/J mice.** The effect of chronic subcutaneous
633 administration of the metabolites (5.55mM) for 42 days on liver triglycerides was tested in
634 mice fed control chow diet (CHD) or high fat diet (HFD) for 56 days. Assay was carried out in
635 6 mice per group. Data were analyzed using the unpaired Mann-Whitney test.

636 Results are means \pm SEM

637 $\ddagger P < 0.05$, significantly different between mice treated with benzoate and hippurate.

638

639

640 **Supplementary Table S1**

641 Association between microbiota functional potential mapped to KEGG Orthologs (KOs)
642 database and urine hippurate levels.

643

644 **Supplementary Table S2**

645 Association between microbiota functional potential mapped to the eggNOG database and
646 urine hippurate levels.

647

648 **Supplementary Table S3**

649 Association between microbiota functional potential mapped to gut-specific metabolic
650 modules (GMMs) describing phenylpropanoid metabolism and urine hippurate levels.

651

652 **Supplementary Table S4**

653 Association between abundance of gut-specific metabolic modules (GMMs) describing
654 phenylpropanoid metabolism and gene richness.

655

656 **Supplementary Table S5**

657 Phenylpropanoid metabolism potential in metagenomic species, assessed by mapping to
658 GMMs significantly associated to urine hippurate levels.

659

660 **Supplementary Table S6**

661 Association between the microbiota composition profiled as metagenomic OTUs (mOTUs)
662 and urine hippurate levels.

663

664 **Supplementary Table S7**

665 pFDR from Spearman's rank-based correlations between GMMs describing
666 phenylpropanoid metabolism and gene richnessbioclinical variables using Storey's FDR
667 correction.

668

669 **Supplementary Table 8**

670 pFDR from Mann-Whitney U test for hippurate stratification in each bioclinical variable
671 between using Storey's FDR correction.

672

673

674 **REFERENCES**

675 1 Lynch SV, Pedersen O. The Human Intestinal Microbiome in Health and Disease. *N
676 Engl J Med* 2016; **375**:2369–79. doi:10.1056/NEJMra1600266

677 2 Li J, Jia H, Cai X, *et al.* An integrated catalog of reference genes in the human gut
678 microbiome. *Nat Biotechnol* 2014; **32**:834–41. doi:10.1038/nbt.2942

679 3 Qin J, Li R, Raes J, *et al.* A human gut microbial gene catalogue established by
680 metagenomic sequencing. *Nature* 2010; **464**:59–65. doi:10.1038/nature08821

681 4 Le Chatelier E, Nielsen T, Qin J, *et al.* Richness of human gut microbiome correlates
682 with metabolic markers. *Nature* 2013; **500**:541–6. doi:10.1038/nature12506

683 5 Cotillard A, Kennedy SP, Kong LC, *et al.* Dietary intervention impact on gut microbial
684 gene richness. *Nature* 2013; **500**:585–8. doi:10.1038/nature12480

685 6 Nicholson JK, Holmes E, Wilson ID. Gut microorganisms, mammalian metabolism and
686 personalized health care. *Nat Rev Microbiol* 2005; **3**:431–8. doi:10.1038/nrmicro1152

687 7 Dumas M-E. The microbial-mammalian metabolic axis: beyond simple metabolism. *Cell
688 Metab* 2011; **13**:489–90. doi:10.1016/j.cmet.2011.04.005

689 8 Nicholson JK, Holmes E, Kinross J, *et al.* Host-gut microbiota metabolic interactions.
690 *Science* 2012; **336**:1262–7. doi:10.1126/science.1223813

691 9 Neves AL, Chilloux J, Sarafian MH, *et al.* The microbiome and its pharmacological
692 targets: therapeutic avenues in cardiometabolic diseases. *Curr Opin Pharmacol*
693 2015; **25**:36–44. doi:10.1016/j.coph.2015.09.013

694 10 Dumas M-E, Barton RH, Toye A, *et al.* Metabolic profiling reveals a contribution of gut
695 microbiota to fatty liver phenotype in insulin-resistant mice. *Proc Natl Acad Sci USA*
696 2006; **103**:12511–6. doi:10.1073/pnas.0601056103

697 11 Holmes E, Loo RL, Stamler J, *et al.* Human metabolic phenotype diversity and its
698 association with diet and blood pressure. *Nature* 2008; **453**:396–400.
699 doi:10.1038/nature06882

700 12 Elliott P, Posma JM, Chan Q, *et al.* Urinary metabolic signatures of human adiposity.
701 *Sci Transl Med* 2015; **7**:285ra62. doi:10.1126/scitranslmed.aaa5680

702 13 Pallister T, Jackson MA, Martin TC, *et al.* Untangling the relationship between diet and
703 visceral fat mass through blood metabolomics and gut microbiome profiling. *Int J Obes
(Lond)* 2017; **41**:1106–13. doi:10.1038/ijo.2017.70

705 14 Hoyles L, Fernández-Real JM, Federici M, *et al.* Molecular phenomics and
706 metagenomics of hepatic steatosis in non-diabetic obese women. *Nat Med*
707 2018; **24**:1070–80. doi:10.1038/s41591-018-0061-3

708 15 Lees HJ, Swann JR, Wilson ID, *et al.* Hippurate: The Natural History of a Mammalian-
709 Microbial Cometabolite. *J Proteome Res* 2013; **12**:1527–46. doi:10.1021/pr300900b

710 16 Dumas M-E, Wilder SP, Bihoreau M-T, *et al.* Direct quantitative trait locus mapping of
711 mammalian metabolic phenotypes in diabetic and normoglycemic rat models. *Nat Genet* 2007;39:666–72. doi:10.1038/ng2026

713 17 Pallister T, Jackson MA, Martin TC, *et al.* Hippurate as a metabolomic marker of gut
714 microbiome diversity: Modulation by diet and relationship to metabolic syndrome.
715 *Scientific Reports* 2017;7:13670. doi:10.1038/s41598-017-13722-4

716 18 Pedersen HK, Gudmundsdottir V, Nielsen HB, *et al.* Human gut microbes impact host
717 serum metabolome and insulin sensitivity. *Nature* 2016;535:376–81.
718 doi:10.1038/nature18646

719 19 Forslund K, Hildebrand F, Nielsen T, *et al.* Disentangling type 2 diabetes and metformin
720 treatment signatures in the human gut microbiota. *Nature* 2015;528:262–6.
721 doi:10.1038/nature15766

722 20 Jørgensen T, Borch-Johnsen K, Thomsen TF, *et al.* A randomized non-pharmacological
723 intervention study for prevention of ischaemic heart disease: baseline results Inter99.
724 *Eur J Cardiovasc Prev Rehabil* 2003;10:377–86.
725 doi:10.1097/01.hjr.0000096541.30533.82

726 21 Levey AS, Stevens LA, Schmid CH, *et al.* A new equation to estimate glomerular
727 filtration rate. *Ann Intern Med* 2009;150:604–12.

728 22 Toft U, Kristoffersen L, Ladelund S, *et al.* Relative validity of a food frequency
729 questionnaire used in the Inter99 study. *Eur J Clin Nutr* 2008;62:1038–46.
730 doi:10.1038/sj.ejcn.1602815

731 23 Dona AC, Jiménez B, Schäfer H, *et al.* Precision high-throughput proton NMR
732 spectroscopy of human urine, serum, and plasma for large-scale metabolic
733 phenotyping. *Anal Chem* 2014;86:9887–94. doi:10.1021/ac5025039

734 24 Blaise BJ, Shintu L, Elena B, *et al.* Statistical recoupling prior to significance testing in
735 nuclear magnetic resonance based metabonomics. *Anal Chem* 2009;81:6242–51.
736 doi:10.1021/ac9007754

737 25 Dona AC, Kyriakides M, Scott F, *et al.* A guide to the identification of metabolites in
738 NMR-based metabonomics/metabolomics experiments. *Comput Struct Biotechnol J*
739 2016;14:135–53. doi:10.1016/j.csbj.2016.02.005

740 26 Vieira-Silva S, Falony G, Darzi Y, *et al.* Species-function relationships shape ecological
741 properties of the human gut microbiome. *Nat Microbiol* 2016;1:16088.
742 doi:10.1038/nmicrobiol.2016.88

743 27 Storey JD, Tibshirani R. Statistical significance for genomewide studies. *Proc Natl Acad
744 Sci USA* 2003;100:9440–5. doi:10.1073/pnas.1530509100

745 28 Dixon P. VEGAN, a package of R functions for community ecology. *Journal of
746 Vegetation Science* 2003;14:927–30. doi:10.1111/j.1654-1103.2003.tb02228.x

747 29 Cloarec O, Dumas ME, Trygg J, *et al.* Evaluation of the orthogonal projection on latent
748 structure model limitations caused by chemical shift variability and improved
749 visualization of biomarker changes in ¹H NMR spectroscopic metabonomic studies.
750 *Anal Chem* 2005;77:517–26. doi:10.1021/ac048803i

751 30 Blaise BJ, Giacomotto J, Elena B, *et al.* Metabotyping of *Caenorhabditis elegans*
752 reveals latent phenotypes. *Proc Natl Acad Sci USA* 2007;104:19808–12.
753 doi:10.1073/pnas.0707393104

754 31 Brial F, Le Lay A, Hedjazi L, *et al.* Systems Genetics of Hepatic Metabolome Reveals
755 Octopamine as a Target for Non-Alcoholic Fatty Liver Disease Treatment. *Scientific*
756 *Reports* 2019;9:3656. doi:10.1038/s41598-019-40153-0

757 32 Phipps AN, Stewart J, WRIGHT B, *et al.* Effect of diet on the urinary excretion of
758 hippuric acid and other dietary-derived aromatics in rat. A complex interaction between
759 diet, gut microflora and substrate specificity. *Xenobiotica* 1998;28:527–37.
760 doi:10.1080/004982598239443

761 33 Backhed F, Ding H, Wang T, *et al.* The gut microbiota as an environmental factor that
762 regulates fat storage. *Proc Natl Acad Sci USA* 2004;101:15718–23.
763 doi:10.1073/pnas.0407076101

764 34 Bridle KR, Crawford DHG, Ramm GA. Identification and characterization of the hepatic
765 stellate cell transferrin receptor. *Am J Pathol* 2003;162:1661–7. doi:10.1016/S0002-
766 9440(10)64300-3

767 35 Shi J, Zhao J, Zhang X, *et al.* Activated hepatic stellate cells impair NK cell anti-fibrosis
768 capacity through a TGF- β -dependent emperipolesis in HBV cirrhotic patients. *Scientific*
769 *Reports* 2017;7:44544. doi:10.1038/srep44544

770 36 Aron-Wisnewsky J, Prifti E, Belda E, *et al.* Major microbiota dysbiosis in severe obesity:
771 fate after bariatric surgery. *Gut* 2019;68:70–82. doi:10.1136/gutjnl-2018-316103

772 37 Akira K, Masu S, Imachi M, *et al.* ^1H NMR-based metabonomic analysis of urine from
773 young spontaneously hypertensive rats. *J Pharm Biomed Anal* 2008;46:550–6.
774 doi:10.1016/j.jpba.2007.11.017

775 38 Zhao L-C, Zhang X-D, Liao S-X, *et al.* A metabonomic comparison of urinary changes
776 in Zucker and GK rats. *J Biomed Biotechnol* 2010;2010:431894–6.
777 doi:10.1155/2010/431894

778 39 Pontoizeau C, Fearnside JF, Nayratil V, *et al.* Broad-Ranging Natural Metabotype
779 Variation Drives Physiological Plasticity in Healthy Control Inbred Rat Strains. *J*
780 *Proteome Res* 2011;10:1675–89. doi:10.1021/pr101000z

781 40 Bitner BF, Ray JD, Kener KB, *et al.* Common gut microbial metabolites of dietary
782 flavonoids exert potent protective activities in β -cells and skeletal muscle cells. *J Nutr*
783 *Biochem* 2018;62:95–107. doi:10.1016/j.jnutbio.2018.09.004

784 41 Dumas M-E, Rothwell AR, Hoyles L, *et al.* Microbial-Host Co-metabolites Are
785 Prodromal Markers Predicting Phenotypic Heterogeneity in Behavior, Obesity, and
786 Impaired Glucose Tolerance. *Cell Rep* 2017;20:136–48.
787 doi:10.1016/j.celrep.2017.06.039

788 42 Thaiss CA, Itav S, Rothschild D, *et al.* Persistent microbiome alterations modulate the
789 rate of post-dieting weight regain. *Nature* 2016;540:540–51. doi:10.1038/nature20796

790 43 Patterson AD, Turnbaugh PJ. Microbial determinants of biochemical individuality and
791 their impact on toxicology and pharmacology. *Cell Metab* 2014;**20**:761–8.
792 doi:10.1016/j.cmet.2014.07.002

793 44 Shoaei S, Ghaffari P, Kovatcheva-Datchary P, *et al.* Quantifying Diet-Induced Metabolic
794 Changes of the Human Gut Microbiome. *Cell Metab* 2015;**22**:320–31.
795 doi:10.1016/j.cmet.2015.07.001

796 45 Zeevi D, Korem T, Zmora N, *et al.* Personalized Nutrition by Prediction of Glycemic
797 Responses. *Cell* 2015;**163**:1079–94. doi:10.1016/j.cell.2015.11.001

Supplementary List: Module definitions

MC0001 phenylalanine degradation (cinnamate production)

cpd [phenylalanine] [cinnamate, NH3]

K10775

ref MetaCyc Pathway: trans-cinnamoyl-CoA biosynthesis

MC0002 chlorogenate degradation

cpd [chlorogenate] [caffeate, quinate]

K06889 K09252

ref MetaCyc Pathway: chlorogenic acid degradation ¹

MC0003 caffeate respiration

cpd [caffeate] [hydrocaffeate]

bactNOG04579

ref ²

MC0004 cinnamate conversion

cpd [cinnamate] [3-(3-hydroxyphenyl)propanoate]

K10797

ref KEGG Pathway: phenylalanine degradation

MC0005 coumarate degradation

cpd [coumarate] [hydroxybenzoate]

cpd [ferulate] [vanillate]

cpd [caffeate] [protocatechuate]

cpd [cinnamate] [benzoate]

K01904 bactNOG05057

K01692 K01715 K01782 K01825 K13767 K15016 bactNOG19280

K00141

ref MetaCyc Pathway: 4-coumarate degradation (anaerobic) 3

MC0006 (hydroxy)benzoate degradation

cpd [(hydroxy)benzoate] [3-hydroxypimeloyl-CoA]

K04105,K04107,K04108,K04109 K04110 bactNOG00950

K04112,K04113,K04114,K04115 K19515,K19516

K07537

K07538

K07539

ref MetaCyc Pathway: 4-coumarate degradation (anaerobic) MetaCyc Pathway: benzoyl-CoA
degradation II (anaerobic) Kegg module: M00541

MC0007 ferulate degradation

cpd [ferulate] [vanillin]

K12508

K18383

ref MetaCyc Pathway: ferulate degradation

MC0008 vanillate conversion

cpd [vanillin, (O2)] [protocatechuate]

bactNOG00059

K03862,K03863 K15066

ref MetaCyc Pathway: superpathway of vanillin and vanillate degradation Kegg Pathway:
aminobenzoate degradation

MC0009 cinnamate degradation

cpd [cinnamate] [benzoyl-CoA]

bactNOG08521

actNOG07134

COG0277

bactNOG05297

ref MetaCyc Pathway: trans-cinnamoyl-CoA biosynthesis MetaCyc Pathway: benzoyl-CoA biosynthesis

MC0010 quinate degradation

cpd [quinate] [protocatechuate]

cpd [shikimate] [protocatechuate]

K05358 COG0169

K03785 K03786 K13832

K09483 K15652

ref MetaCyc Pathway: quinate degradation I MetaCyc Pathway: quinate degradation II
4

MC0011 4-hydroxybenzoate conversion

cpd [4-hydroxybenzoate, O2] [protocatechuate]

K00481

ref Kegg Pathway: benzoate degradation 4 5

MC0012 catechin degradation

cpd [catechin] [protocatechuate, phloroglucinol carboxylic acid]

bactNOG14887

ref 6

MC0013 3-hydroxybenzoate conversion

cpd [3-hydroxybenzoate, O2] [protocatechuate]

K19065

ref Kegg Pathway: benzoate degradation

MC0014 benzoate conversion

cpd [benzoate, O2] [4-hydroxybenzoate]

K07824

ref Kegg Pathway: benzoate degradation

MC0015 benzoate degradation (aerobic)

cpd [benzoate, O2] [catechol, CO2]

K05549,K05550,K05784

K05783

ref Kegg module: M00551 MetaCyc Pathway: benzoate degradation I (aerobic)

MC0016 benzoate degradation (anaerobic)

cpd [benzoyl-CoA] [3-hydroxypimeloyl-CoA]

K04112,K04113,K04114,K04115 K19515,K19516

K19066

K07534

K07535

K07536

K04118

ref MetaCyc Pathway: benzoyl-CoA degradation III (anaerobic) Kegg module: M00540

MC0017 phenylalanine degradation

cpd [phenylalanine, 2-oxoglutarate] [CO2, glutamate, benzoyl-CoA]

K00832 K00812 K00813 K11358 K00817

K04103

K00146 K00129

K01912

K18361

K18355,K18356,K18357,K18358,K18359

ref MetaCyc Pathway: phenylacetate degradation II (anaerobic) MetaCyc Pathway: L-phenylalanine degradation II (anaerobic)

MC0018 cellulose and hemicellulose degradation (cellulolosome)

cpd [cellulose, hemicellulose] [ferulate, polysaccharide, oligosaccharide]

K01181 K13465

K09252

bactNOG05428

ref MetaCyc Pathway: cellulose and hemicellulose degradation (cellulolosome)

MC0019 feruloyl esterase (cellulolosome)

cpd [cellulose, hemicellulose] [ferulate]

K09252

ref MetaCyc Pathway: cellulose and hemicellulose degradation (cellulolosome) MC0018

MC0020 hippurate hydrolase

cpd [hippurate] [glycine, benzoate]

K01451

ref 7

References

1. Couteau, D., McCartney, A. L., Gibson, G. R., Williamson, G. & Faulds, C. B. Isolation and characterization of human colonic bacteria able to hydrolyse chlorogenic acid. *J. Appl. Microbiol.* **90**, 873–881 (2001).
2. Hess, V., González, J. M., Parthasarathy, A., Buckel, W. & Müller, V. Caffeate respiration in the acetogenic bacterium *Acetobacterium woodii*: a coenzyme A loop saves energy for caffeate activation. *Appl. Environ. Microbiol.* **79**, 1942–1947 (2013).
3. Hirakawa, H., Schaefer, A. L., Greenberg, E. P. & Harwood, C. S. Anaerobic p-coumarate degradation by *Rhodopseudomonas palustris* and identification of CouR, a MarR repressor protein that binds p-coumaroyl coenzyme A. *J. Bacteriol.* **194**, 1960–1967 (2012).
4. Brzostowicz, P. C., Reams, A. B., Clark, T. J. & Neidle, E. L. Transcriptional cross-regulation of the catechol and protocatechuate branches of the beta-ketoadipate pathway contributes to carbon source-dependent expression of the *Acinetobacter* sp. strain ADP1 *pobA* gene. *Appl. Environ.*

Microbiol. **69**, 1598–1606 (2003).

- 5. Gonthier, M.-P. *et al.* Metabolism of dietary procyanidins in rats. *Free Radic. Biol. Med.* **35**, 837–844 (2003).
- 6. Arunachalam, M., Mohan, N. & Mahadevan, A. Cloning of *Acinetobacter calcoaceticus* chromosomal region involved in catechin degradation. *Microbiol. Res.* **158**, 37–46 (2003).
- 7. Caner, V., Cokal, Y., Cetin, C., Sen, A. & Karagenc, N. The detection of *hipO* gene by real-time PCR in thermophilic *Campylobacter* spp. with very weak and negative reaction of hippurate hydrolysis. *Antonie Van Leeuwenhoek* **94**, 527–532 (2008).