

1 Non-shared dispersal networks with heterogeneity promote species

2 coexistence in hierarchical competitive metacommunities

3 Helin Zhang, Jinbao Liao^{*}

4 *Ministry of Education's Key Laboratory of Poyang Lake Wetland and Watershed*

5 *Research, School of Geography and Environment, Jiangxi Normal University, Ziyang*

6 *Road 99, 330022 Nanchang, China*

7 *Corresponding author: Prof. Dr. Jinbao Liao (jinbaoliao@163.com)

8 Address: Ziyang Road 99, 330022 Nanchang, Jiangxi Province, China.

9 Tel.: +86-(0)791-88133622 Fax: +86-(0)791-88120538

10

11 **Abstract**

12 Exploring the mechanism of biodiversity maintenance has become a fundamental
13 issue in ecology. To date, many mechanisms have been proposed subject to the niche
14 and neutral theories or the colonization-competition tradeoff. Despite these advances,
15 species-specific dispersal heterogeneities are not well integrated into our general
16 understanding of how coexistence emerges between competitors. Combining both
17 network and metapopulation approaches, we construct a discrete, spatially explicit
18 patch-dynamic model for metacommunities with hierarchically preemptive
19 competition, to explore species coexistence in the shared vs. non-shared dispersal
20 networks with contrasting heterogeneities (including regular, random, exponential and
21 scale-free networks). Our model shows that, in spite of dispersal heterogeneity,
22 species with the same demography (i.e. identical colonization and extinction rates)
23 cannot coexist stably in the shared networks (i.e. the same dispersal pathways). In
24 contrast, increasing dispersal heterogeneity in the non-shared networks greatly
25 promotes regional coexistence, due to the segregation-aggregation mechanism by
26 which each species is restricted to the self-organized clusters with the core of the most
27 connected patches. However, these competitive patterns are largely mediated by
28 species life-history attributes, for example, a unimodal biodiversity response to an
29 increase of species dispersal emerges in the non-shared heterogeneous networks, with
30 species richness peaked at intermediate dispersal levels. Interestingly, increasing
31 network size can foster more species coexistence, leading to a monotonic increase in
32 species-area curves. This strongly suggests that unexpectedly, many more species can

33 co-occur regionally than the number of limiting resources. Overall, this modelling
34 study, filling the gap between network structure and spatial competition, provides new
35 insights into the spatial mechanisms of multispecies coexistence, theoretically
36 demonstrating the importance of species-specific dispersal heterogeneity for
37 biodiversity maintenance.

38 **Keywords:** Dispersal heterogeneity, preemptive competition, competitive hierarchy,
39 regional coexistence, network theory, segregation-aggregation mechanism.

40 **Introduction**

41 Understanding the mechanisms of how species can coexist in natural communities has
42 already become a central issue in ecology (Tilman 1982; Chesson 2000; Amarasekare
43 & Nisbet 2001; Kraft et al. 2015). To date, many mechanisms have been proposed
44 subject to the niche and neutral theories or the colonization-competition tradeoff, and
45 significant advances have been made in our understanding of species coexistence and
46 consequently biodiversity maintenance (Tilman 1994; Hubbell 2001; Yu & Wilson
47 2001; Levine & HilleRisLambers 2009; Chu & Adler 2015). Yet, these theories suffer
48 their own shortcomings. For instance, many field studies fail to detect the evidence
49 for the classic resource-based niche differences or the colonization-competition
50 tradeoff (Harrison et al. 1995; Amarasekare 2000; Levine & Rees 2002), while the
51 species equivalence assumption of neutral theory is hard to reconcile with nature
52 (Turnbull et al. 1999; Yu and Wilson 2001; Jakobsson and Eriksson 2003; Allesina &
53 Levine 2011). This suggests that there should be a fundamental disconnect between
54 empirical findings and modelling assumptions (Cadotte et al. 2006). To solve this
55 mismatch between theory and experiment, non-hierarchical competition (e.g.
56 intransitivity) among multiple species has been recently proposed to be a potential
57 mechanism for biodiversity maintenance (Huisman & Weissing 1999; Kerr et al. 2002;
58 Laird & Schamp 2006; Allesina & Levine 2011). However, there remains one
59 unsolved question: whether and how species in nature can coexist stably in a spatial
60 system with hierarchical competition even without involving the
61 colonization-competition trade-off?

62 To probe the possible underlying mechanism above, we should switch our focus
63 on species dispersal in spatial patchy environments. It is well known that most
64 previous models of spatial coexistence often assumed species dispersal interactions in
65 a regular or random landscape (i.e. dispersal networks are assumed to be
66 lattice-structured or randomly-structured), ignoring the more realistic dispersal
67 heterogeneity across the landscape. In nature, evidence of dispersal networks with
68 heterogeneity abounds (Fortuna et al. 2006; Grilli et al. 2015). For example,
69 Kininmonth et al. (2010) found that the GBR (Great Barrier Reef) including 321 reefs
70 is a scale-free small-world dispersal network for the species, i.e. most of reefs have
71 one or a few links, and a very small proportion of reefs are extremely well-connected,
72 following a power-law degree distribution. Furthermore, while trees with
73 wind-dispersed seeds perceive the landscape as a homogeneous network, trees with
74 bird-dispersed seeds move through a heterogeneous network (Montoya et al. 2008).
75 Recently, there has been an increasing interest in characterizing the persistence and
76 dynamics of interacting species with dispersal heterogeneity using network theory
77 (Urban & Keitt 2001; Bode et al. 2008; Holland & Hastings 2008; Dale & Fortin 2010;
78 Kininmonth et al. 2010; Gilarranz & Bascompte 2012; Grilli et al. 2015; Gilarranz et
79 al. 2017). In these representations, each network is described as a graph consisting of
80 a set of nodes (i.e. patches), and links between these nodes indicate dispersal
81 pathways of individuals or sub-populations (Fortuna et al. 2006, 2009). These studies
82 found that the spatial heterogeneous networks greatly promote species persistence
83 relative to the homogeneous networks, demonstrating the importance of dispersal

84 network structure for ecological dynamics (e.g. Holland & Hastings 2008; Gilarranz
85 & Bascompte 2012).

86 Despite these advances, species-specific dispersal heterogeneities are not well
87 integrated into our general understanding of how coexistence emerges between
88 species. Even though a few models considered spatial dispersal with different
89 heterogeneities, they still assumed that all species share the same dispersal networks
90 (i.e. with the same dispersal pathways; e.g. Holland & Hastings 2008). This
91 assumption greatly neglects the fact that different species may perceive the landscape
92 differently and therefore display distinct dispersal pathways (i.e. non-shared dispersal
93 networks due to difference in habitat preference or dispersal traits), shaping different
94 patterns of patch connectivity (Bunn et al. 2000; Nicholson & Possingham 2006;
95 Fortuna et al. 2009). For instance, Codeco & Grover (2001) have empirically shown
96 that spatial variation in the supply ratio of Carbon and Phosphorous can favor
97 different algal or bacterial species at different spatial locations, therefore avoiding
98 competitive exclusion via dispersal. In addition, some species often exhibit markedly
99 different dispersal patterns, even though they disperse at similar times through similar
100 mechanisms (Nathan & Muller-Landau 2000; Kinlan & Gaines 2003; Becker et al.
101 2007; Clobert et al. 2009). Thus, there is an urgent need for spatial coexistence theory
102 to incorporate the non-shared dispersal networks with heterogeneity that is
103 widespread in nature (Amarasekare 2008).

104 In this study, we construct a discrete, spatially explicit patch-dynamic model for
105 multiple species with hierarchically preemptive competition, in order to make a

106 systematic comparative analysis of species coexistence in shared *vs.* non-shared
107 dispersal networks with contrasting heterogeneities. Four typical types of spatial
108 dispersal networks are considered (illustrated in Fig. 1): regular (Bascompte & Solé
109 1995), random (Erdős & Rényi 1959; Watts & Strogatz 1998), exponential and
110 scale-free networks (Barabasi & Albert 1999). Using this model, we attempt to
111 explore: (i) whether and how competitors with dispersal heterogeneity can co-occur in
112 shared *vs.* non-shared networks without involving the colonization-competition
113 tradeoff; and (ii) under what properties of dispersal network structure can best
114 maintain species diversity.

115 **Methods**

116 ***Model description***

117 We model a competition system structured in a large number of discrete habitat
118 patches connected by species dispersal. Each patch can be vacant or host a single
119 species. The system consists of n species with competitive hierarchy (i.e. ranking
120 species according to their competitive abilities), in which the first species is the best
121 competitor while the n -th species being the worst competitor ($1 > 2 > 3 > \dots > n$).
122 According to the more realistic situation that colonizing a patch already occupied by
123 another species may be intrinsically more difficult than colonizing an empty patch
124 (e.g. plant propagule) because of preemptive effect (Comins & Noble 1985; Calcagno
125 et al. 2006), we only consider the preemptive competition (no replacement among
126 species), i.e. species only compete for empty patches, with strong competitors having

127 priority to colonize empty patches. Thus, the inferior species can colonize the empty
128 patch only if those superior species fail to establish there. All species in the landscape
129 are assumed to have the same colonization (with rate c) and extinction rates (e), in
130 order to exclude the colonization-competition tradeoff. As such, we can
131 unambiguously attribute any species coexistence to our explicit structural properties
132 of dispersal networks. In each time step, each occupied patch becomes extinct with a
133 probability e regardless of species identity. At the same time, whether the empty patch
134 is colonized by its directly connected occupied patches depends on species
135 competitive hierarchy as well as species abundances (i.e. patch occupancy). Therefore,
136 the probability that a given empty patch i is colonized by the S -th competitor ($1 \leq S \leq n$)
137 should be

$$138 \quad P_i(S) = 1 - (1 - c)^{\sum_{j=1}^S x_j}, \quad (1)$$

139 where x_j (≥ 0) is the number of j -patches (occupied by species j) directly linked to the
140 empty patch i , and $(1 - c)^{\sum_{j=1}^S x_j}$ is the probability of the patch i being unoccupied by
141 those superior competitors (including species 1,2,3... S). Note that each empty patch is
142 colonized by one of its directly connected occupied patches with an independent
143 probability (c) regardless of species identity.

144 ***Dispersal networks with heterogeneity***

145 We represent the landscape as a graph (spatial network) consisting of a set of nodes
146 (patches) connected by links. The link between two nodes indicates the dispersal
147 potential or frequency between patches. Each node denotes a suitable patch linked

148 with a number of other patches (i.e. linking degree k), and links between patches
149 represent species dispersal pathways (i.e. functional connectivity among populations).
150 As such, each type of dispersal network can be characterized by its linking degree
151 distribution. Similar to Gilarranz & Bascompte (2012), four structures of dispersal
152 networks are considered (illustrated in Fig. 1a-d):
153 (i) A regular network with all patches having the same linking degree. For example,
154 Fig. 1a shows a completely homogeneous network where each patch owns four links
155 to other patches ($k=4$), equal to the lattice-structured model with nearest neighbour
156 dispersal (Bascompte & Sole 1995; Hiebeler 2000; Liao et al. 2013a,b).
157 (ii) A randomly structured network with randomly connected patches (Watts &
158 Strogatz 1998). In particular, patch linking degrees follow a Poisson distribution with
159 the variance equal to the average degree per patch (e.g. $\bar{k}=4$ in Fig. 1b), thus there
160 exists a small variation in patch linking degrees (Erdős & Rényi 1959).
161 (iii) An exponential network constructed based on the algorithm of Barabasi & Albert
162 (1999) with random attachment. For instance, Fig. 1c displays an exponential network
163 with the same average linking degree $\bar{k}=4$ but more variability in linking degrees
164 than the random network (i.e. higher heterogeneity; Fortuna et al. 2006).
165 (iv) A scale-free network constructed according to the algorithm by Barabasi & Albert
166 (1999) with preferential attachment. For example, Fig. 1d exhibits a scale-free
167 network (keeping average patch linking degree at $\bar{k}=4$) with extremely high
168 heterogeneity, i.e. most patches have a few links, while a few patches are extremely

169 well-connected, following a power-law degree distribution (Kininmonth et al. 2010).

170 In these networks, species are assumed to disperse equally in all directions with no
171 preference, i.e. when both patches i_1 and i_2 are linked, dispersal can occur from either
172 i_1 to i_2 or vice versa.

173 ***Spatially explicit simulations***

174 Initially all patches are assumed to be fully occupied by randomly assigning one of
175 competitors to each patch. Within each time step, we determine local population
176 extinction for each occupied patch with a given probability (e). Then we calculate the
177 probability that each empty patch becomes occupied by its directly connected species
178 according to their competitive hierarchy as well as population abundances (see Eq. 1).

179 Finally we record patch occupancy for each species at each time step using their
180 number of occupied patches divided by the network size (i.e. the total number of
181 patches).

182 To find the steady state, we preliminarily run the system for a long time, and find
183 that 5000 time steps are sufficient to achieve system stability. Thus we run each case
184 until 10,000 time steps, and estimate patch occupancy for each species at steady state
185 by averaging their patch occupancies between $t=9000\sim10,000$ time steps to avoid
186 transient dynamics. Each case is explored with 100 replicates, starting from different
187 dispersal architectures in each replicate but with identical network properties (e.g. the
188 same network size, total links and their degree distribution). Ultimately, the mean of
189 these 100 replicates (mean \pm standard deviation SD) yields species abundance at

190 steady state. A broad range of biologically reasonable parameter combinations are
191 explored and found to yield qualitatively similar outcomes (Figs S1-S21 in *Appendix*),
192 thus allowing us to present our general results in Figs 1-5 by choosing one of
193 parameter combinations as a reference case.

194 **Results**

195 ***Two-species system***

196 We first explore the coexistence of two competitors with the same demography (i.e.
197 identical colonization and extinction rates) in shared vs. non-shared dispersal
198 networks with contrasting heterogeneities, including (from most homogeneous to
199 most heterogeneous) regular, random, exponential and scale-free networks (Fig. 1).
200 All types of network have the same number of 1024 patches and 2048 links with the
201 same average linking degree $\bar{k}=4$, which is large enough to reduce the role of
202 stochastic effects (see Figs S1-S2 in *Appendix*), thereby allowing us to compare
203 species coexistence in different heterogeneous networks. In general, both species
204 cannot coexist regionally in the shared networks in spite of dispersal heterogeneity,
205 eventually with the superior species excluding the inferior species (Fig. 1I-IV). In
206 contrast, when their dispersal networks are non-shared, i.e. both competitors have
207 species-specific dispersal pathways but with the same heterogeneity (e.g. scale-free
208 networks in Fig. S3), they can co-occur stably (Fig. 1VI-VIII), except in the regular
209 networks where the poor competitor is competitively excluded (Fig. 1V; see
210 coexistence pattern in Fig. S4 in *Appendix*). Meanwhile, increasing dispersal

211 heterogeneity in the non-shared networks interestingly decreases the amplitude of
212 stochastic fluctuations on patch dynamics and increases the inferior species
213 abundance.

214 The coexistence patterns described above, however, can be altered by varying
215 species relative extinction or/and colonization rates (Fig. 2; Figs S5-S13 in *Appendix*)
216 as well as average patch linking degree (Fig. S14 in *Appendix*). On the one hand, both
217 species intuitively display a monotonic decline in global patch occupancy (mean \pm SD
218 of 100 replicates) as relative extinction rate (e/c) increases irrespective of whether the
219 heterogeneous networks are shared or not, therefore speeding up species exclusion.

220 Yet, species coexistence in the non-shared networks with higher heterogeneity can
221 tolerate much higher ratios of e/c . On the other hand, in the shared networks even
222 with high heterogeneity, increasing relative colonization rate (c/e ; i.e. dispersal rate)
223 expectedly leads to an increase in the superior species abundance, while the inferior
224 species is always outcompeted. In the non-shared networks, increasing values of c/e
225 promotes the superior species occupancy, but the patch occupancy of the inferior
226 species initially increases but latter declines to extinction, except in the regular
227 networks where the inferior species always goes extinct. Interestingly, we find that
228 intermediate levels of c/e can maximize the inferior species abundance and therefore
229 promote species coexistence, while further decreasing or increasing species dispersal
230 would speed up species exclusion. This outcome is similar to the case of increasing
231 average linking degree (Fig. S14 in *Appendix*). Furthermore, we find that increasing
232 network heterogeneity increases the parameter space (c/e) for regional coexistence.

233 We further explore species coexistence when both competitors (again with the same
234 demography) display different heterogeneous networks (Fig. 3). If the poor
235 competitor shows the regular dispersal network, the strong competitor with higher
236 dispersal heterogeneity (including random, exponential and scale-free) can
237 outcompete the poor competitor (Fig. 3II-IV). In contrast, the inferior species with
238 higher heterogeneity surprisingly can exclude the superior species with the regular
239 dispersal network. This strongly indicates that dispersal heterogeneity can compensate
240 the competitive disadvantage, thereby overturning the competitive outcome (Fig. 3I,
241 V & IX). In other cases where both competitors choose different dispersal networks
242 with more or less heterogeneity (excluding regular networks), we observe that both
243 species can co-occur regionally, and higher dispersal heterogeneity decreases the
244 fluctuation amplitude of patch occupancy dynamics (Fig. 3VI-VIII vs. X-XII).

245 ***Multispecies system***

246 Then we investigate how many competitors (with the same demography) can coexist
247 stably in multispecies metacommunities, again considering shared vs. non-shared
248 dispersal networks by varying relative extinction or/and colonization rates (Fig. 4;
249 Figs S19-S20 in *Appendix*). Generally, increasing relative extinction rate (e/c) reduces
250 species richness in both shared and non-shared dispersal networks, but there exist
251 differences in biodiversity maintenance among networks with different dispersal
252 heterogeneities (Fig. 4a & c). For example, if all species have the same dispersal
253 pathways, we surprisingly observe that more species can co-occur regionally in the
254 regular networks than in other heterogeneous networks but only at relatively low

255 values of e/c . In contrast, in the non-shared networks, higher dispersal heterogeneity
256 can result in more species persistence (i.e. scale-free > exponential > random >
257 regular). When varying relative colonization rate (c/e), we find that, in most cases,
258 only the best competitor can survive in the shared networks regardless of dispersal
259 heterogeneity, whereas more species can coexist with increasing dispersal
260 heterogeneity in the non-shared networks. Similar to the case of increasing average
261 linking degree (Fig. S21 in *Appendix*), an increase of c/e interestingly leads to a
262 unimodal biodiversity response: moderate levels of c/e can maximize species diversity,
263 while further increasing or decreasing ratios of c/e (i.e. dispersal rate) would result in
264 more species extinctions.

265 Finally we examine the effect of network size on biodiversity maintenance (i.e.
266 species-area curve) again in both shared and non-shared dispersal networks with
267 contrasting heterogeneities (Fig. 5). In the shared networks, only the best competitor
268 survives regardless of network size and dispersal heterogeneity. In contrast, increasing
269 network size in the non-shared heterogeneous networks (except in the regular network
270 where only the best competitor stays alive) can surprisingly lead to a monotonic
271 increase in species richness, with more heterogeneity resulting in higher species
272 diversity.

273 **Discussion**

274 Our spatially explicit model focuses on how species-specific dispersal networks and
275 hierarchically preemptive competition interact to affect species coexistence, by

276 assuming that all species have the same demographic traits to exclude the
277 colonization-competition tradeoff. Yet, most current theoretical understanding comes
278 from models with very regular connections among patches, by contrast with the
279 heterogeneity in natural systems that are far from regular (Hanski & Ovaskainen 2000;
280 Fortuna et al. 2006; McIntire et al. 2007). In our study, we thus concentrate on
281 dispersal heterogeneity, specifically in network structure (including regular, random,
282 exponential and scale-free), demonstrating the importance of spatial dispersal
283 heterogeneity for species coexistence in the non-shared networks. Since we observe
284 that in spite of dispersal heterogeneity, species cannot coexist stably in the shared
285 networks if there is no colonization-competition tradeoff (Figs 1, 2 & 4). Intuitively,
286 sharing the same dispersal pathways indicates that competitors encounter each other
287 very frequently, and the best competitor would eventually drive all other inferior
288 species to extinction by quickly seizing the empty patches. Thus, previous
289 patch-dynamic models only focusing on the shared regular networks, might have
290 largely underestimated species diversity, as species in natural communities always
291 exhibit diverse dispersal patterns with more or less heterogeneity.

292 In contrast to the shared dispersal networks, the non-shared heterogeneous
293 networks greatly promote species coexistence and therefore biodiversity maintenance,
294 more obviously at higher dispersal heterogeneity (Figs 1, 2 & 4). We further explore
295 the mechanism underlying the competitive outcome by analyzing spatial distribution
296 for each species subject to their specific dispersal networks (Fig. S4 in *Appendix*), and
297 relating a patch's incidence (i.e. the proportion of time steps that the node is occupied

298 along the dynamics) with its linking degree as well as with the average degree of the
299 patches it interacts with (Figs S15-S18 in *Appendix*). As observed in Fig. S4,
300 species-specific dispersal networks with heterogeneity allow species to shape many
301 clusters of occupied patches with the core of the most connected patches, locally
302 forming many self-organized small worlds. This should be ascribed to variability in
303 linking degree across patches, which results in variability across patches' incidence
304 (Figs S15-S16 in *Appendix*). Obviously, patch incidence grows non-linearly with
305 linking degree (Eq. 1), that is, patches require a minimum degree to stay occupied in
306 the majority of time steps, but patch incidence would saturate after a threshold in
307 degree. In turn, the highly connected patches for the focal species can provide benefit
308 for their directly linked patches in terms of incidence (Figs S17 & S18 in *Appendix*).
309 For example, when comparing patches with the same degree, those attached to the
310 more well-connected patches have a larger incidence (positive feedback). Essentially,
311 conspecifics tend to develop into clusters segregated from other species in space
312 because of dispersal heterogeneity, which increases the frequency of neighbourhood
313 dispersal within conspecifics but decreases competition among heterospecifics,
314 thereby allowing demography-equivalent species to co-occur regionally in spite of
315 preemptive competition (so-called the segregation-aggregation mechanism; Pacala
316 1997; Murrell et al. 2001; Holyoak & Loreau 2006). This mechanism can also be
317 thought of as generating a type of spatial refugia for the poor competitors, i.e.
318 locations within the clusters favoring persistence of the focal species after the
319 extinction in surrounding areas.

320 When both competitors exhibit different dispersal heterogeneities, they are able to
321 coexist stably, even though the poor competitor displays lower dispersal heterogeneity
322 than the strong competitor (Fig. 3), again demonstrating that dispersal heterogeneity
323 can weaken interspecific competition and therefore promote species coexistence.
324 Furthermore, the poor competitor with higher dispersal heterogeneity can exclude the
325 strong competitor of having the regular (homogeneous) dispersal, therefore altering
326 the species' competitive rankings. Logically, even very low dispersal heterogeneity
327 (e.g. random dispersal) can greatly promote population abundance for the poor
328 competitor relative to the homogeneous dispersal, and such a large numerical
329 advantage can overwhelm the competitive superiority, thereby excluding the strong
330 competitor. This indicates that effects of spatial dispersal heterogeneity far outweigh
331 the effect of preemptive competition, further confirming its important role in
332 maintaining species diversity. However, these patterns of regional coexistence are
333 greatly mediated by species life-history traits. Interestingly, a unimodal biodiversity
334 response to an increase of dispersal rate emerges in the non-shared heterogeneous
335 networks, showing diverse (positive as well as negative) effects of species dispersal
336 on multispecies coexistence (Figs 2 & 4). More specifically, intermediate dispersal
337 levels can maximize species richness, while further increasing or decreasing species
338 dispersal results in more species exclusion. Intuitively, species is unable to persist
339 locally at very low levels of dispersal rate. Yet, too much dispersal promotes patch
340 colonization opportunities for the superior competitors, and consequently leads to the

341 region-wide exclusion of the poor competitors under surplus dispersal, similar to the
342 situation of increasing average patch linking degree (Figs S14 & S21 in *Appendix*).
343 A final observation is that increasing network size leads to a monotonic increase in
344 species richness in the non-shared heterogeneous networks, with higher dispersal
345 heterogeneity promoting more species persistence (Fig. 5). The resulting
346 monotonically increased species-area curves refute the previous view that the number
347 of species coexisting cannot exceed the number of limited factors (Levin 1970;
348 Tilman 1982). Instead, we theoretically demonstrate that, when there is
349 species-specific dispersal heterogeneity, there should be many more species
350 coexisting regionally than the number of limiting resources, as empirically observed
351 in several natural systems (Tilman 1982; Kotler & Brown 1988; Wellborn et al. 1996).
352 Previously, coexistence of an unlimited number of species because of the
353 colonization-competition tradeoff (Tilman 1994) was ascribed to a stepwise
354 asymmetric model of competition rather than spatial heterogeneity (Adler &
355 Mosquera 2000). However, our model provides another potential explanation that if
356 the landscape is large enough, non-shared dispersal heterogeneities allow many more
357 species to co-occur regionally than expected due to the segregation-aggregation
358 mechanism.

359 Our work helps fill the gap between network structure and spatial competition,
360 demonstrating that the architecture of dispersal networks largely affects species
361 coexistence, greatly mediated by species life-history attributes. We find that
362 incorporating species-specific dispersal heterogeneities into the traditional

363 hierarchical competitive systems can greatly promote regional coexistence due to the
364 formation of self-organized clusters. This strongly implies that traditional shared
365 lattice- or randomly-structured models might have severely underestimated
366 biodiversity maintenance. More importantly, this model suggests important
367 implications for biodiversity conservation and management. For instance, as different
368 species often display diverse patterns of patch connectivity based on their dispersal
369 traits, we should first construct and analyze dispersal networks independently for
370 multiple target species, and then overlay or intersect the multiple networks to find
371 locations that are important for these species, so as to design multispecies
372 conservation planning (e.g. Bunn et al. 2000; Urban & Keitt 2001; Nicholson &
373 Possingham 2006). Overall, this modelling study, integrating both network and
374 metapopulation approaches, takes an important step toward understanding the
375 coexistence mechanism of multiple species with spatial dispersal heterogeneity,
376 thereby strengthening our comprehension of biodiversity maintenance in hierarchical
377 competitive metacommunities.

378 **Acknowledgements**

379 This study was supported by the National Science Foundation of China (No.
380 31760172 & 31901175), the Thousand Young Talents Plan of China, the Key Joint
381 Youth Project of Jiangxi Province (No. 20192ACBL21029), the Jiangxi Provincial
382 Education Department (No. GJJ160274), and the Doctoral Scientific Research
383 Foundation of Jiangxi Normal University (No. 12017778).

384 **Author contributions**

385 J.L. conceived and wrote this manuscript, and H.Z. conducted simulations and
386 analyzed results.

387 **Competing interests:** The author declares no competing interests.

388 **Supplementary Material**

389 Appendix accompanies this manuscript is also supplied.

390 **Data accessibility**

391 This is a theoretical modelling study and does not use data.

392 **References**

393 Adler, F.R. & Mosquera, J. 2000. Is space necessary? Interference competition and
394 limits to biodiversity. *Ecology* 81, 3226-3232.

395 Allesina, S. & Levine, J.M. 2011. A competitive network theory of species
396 diversity. *PNAS* 108, 5638-5642.

397 Amarasekare, P. 2000. Coexistence of competing parasitoids on a patchily distributed
398 host: local vs. spatial mechanisms. *Ecology* 81, 1286-1296.

399 Amarasekare, P. & Nisbet, R.M. 2001. Spatial heterogeneity, source-sink dynamics,
400 and the local coexistence of competing species. *Am. Nat.* 158, 572-584.

401 Amarasekare, P. 2008. Spatial dynamics of food webs. *Annu. Rev. Ecol. Evol. Syst.* 39,
402 479-500.

403 Barabasi, A.L. & Albert, R. 1999. Emergence of scaling in random networks. *Science*
404 286, 509-512.

405 Bascompte, J. & Solé, R.V. 1995. Rethinking complexity: modelling spatio-temporal
406 dynamics in ecology. *Trends Ecol. Evol.* 10, 361-366.

407 Becker, B.J., Levin, L.A., Fodrie, F.J. & McMillan, P.A. 2007. Complex larval
408 connectivity patterns among marine invertebrate populations. *PNAS* 104,
409 3267-3272.

410 Bode, M., Burrage, K. & Possingham, H.P. 2008. Using complex network metrics to
411 predict the persistence of metapopulations with asymmetric connectivity patterns.
412 *Ecol. Model.* 214, 201-209.

413 Bunn, A.G., Urban, D.L. & Keitt, T.H. 2000. Landscape connectivity: a conservation
414 application of graph theory. *J. Environ. Manage.* 59, 265-278.

415 Cadotte, M., Mai, D., Jantz, S., Collins, M., Keele, M. & Drake, J. 2006. On testing
416 the competition-colonization trade-off in a multispecies assemblage. *Am. Nat.* 168,
417 704-709.

418 Calcagno, V., Mouquet, N., Jarne, P. & David, P. 2006. Coexistence in a
419 metacommunity: the competition-colonization trade-off is not dead. *Ecol. Lett.* 9,
420 897-907.

421 Chesson, P. 2000. Mechanisms of maintenance of species diversity. *Annu. Rev. Ecol.*
422 *Syst.* 31, 343-366.

423 Chu, C. & Adler, P.B. 2015. Large niche differences emerge at the recruitment stage
424 to stabilize grassland coexistence. *Ecol. Monogr.* 85, 373-392.

425 Clobert, J., Le Galliard, J.F., Cote, J., Meylan, S. & Massot, M. 2009. Informed
426 dispersal, heterogeneity in animal dispersal syndromes and the dynamics of
427 spatially structured populations. *Ecol. Lett.* 12, 197-209.

428 Codeco, C.T. & Grover, J.P. 2001. Competition along a spatial gradient of resource
429 supply: a microbial experimental model. *Am. Nat.* 157, 300-315.

430 Comins, H.N. & Noble, I.R. 1985. Dispersal, variability, and transient niches: species
431 coexistence in a uniformly variable environment. *Am. Nat.* 126, 706-723.

432 Dale, M. & Fortin, M.J. 2010. From graphs to spatial graphs. *Annu. Rev. Ecol. Evol.*
433 *Syst.* 41, 21-38.

434 Erdős, P. & Rényi, A. 1959. On random graphs I. *Publ. Math.* 6, 290-297.

435 Fortuna, M., Gómez-Rodríguez, C. & Bascompte, J. 2006. Spatial network structure
436 and amphibian persistence in stochastic environments. *Proc. R. Soc. B* 273,
437 1429-1434.

438 Fortuna, M., Albaladejo, R., Fernández, L., Aparicio, A. & Bascompte, J. 2009.
439 Networks of spatial genetic variation across species. *PNAS* 106, 19044-19049.

440 Gilarranz, L.J. & Bascompte, J. 2012. Spatial network structure and metapopulation
441 persistence. *J. Theor. Biol.* 297, 11-16.

442 Gilarranz, L.J., Rayfield, B., Liñán-Cembrano, G., Bascompte, J. & Gonzalez, A.
443 2017. Effects of network modularity on the spread of perturbation impact in
444 experimental metapopulations. *Science* 357, 199-201.

445 Grilli, J., Barabási, G. & Allesina, S. 2015. Metapopulation Persistence in Random
446 Fragmented Landscapes. *PLoS Comput. Biol.* 11, e1004251.

447 Hanski, I. & Ovaskainen, O. 2000. The metapopulation capacity of a fragmented
448 landscape. *Nature* 404, 755-758.

449 Harrison, S., Thomas, C.D. & Lewinsohn, T.M. 1995. Testing a metapopulation model
450 of coexistence in the insect community on ragwort (*Senecio jacobaea*). *Am. Nat.*
451 145, 546-562.

452 Hiebeler, D. 2000. Populations on fragmented landscapes with spatially structured
453 heterogeneities: landscape generation and local dispersal. *Ecology* 81, 1629-1641.

454 Holland, M.D. & Hastings, A. 2008. Strong effect of dispersal network structure on
455 ecological dynamics. *Nature* 456, 792-794.

456 Holyoak, M. & Loreau, M. 2006. Reconciling empirical ecology with neutral
457 community models. *Ecology* 87, 1370-1377.

458 Hubbell, S.P. 2001. *The Unified Neutral Theory of Biodiversity and Biogeography*.
459 Princeton University Press, Princeton, NJ.

460 Huisman, J. & Weissing, F.J. 1999. Biodiversity of plankton by species oscillations
461 and chaos. *Nature* 402, 407-410.

462 Jakobsson, A. & Eriksson, O. 2003. Trade-offs between dispersal and competitive
463 ability: a comparative study of wind-dispersed *Asteraceae* forbs. *Evol. Ecol.* 14,
464 233-246.

465 Kerr, B., Riley, M.A., Feldman, M.W. & Bohannan, B.J.M. 2002. Local dispersal
466 promotes biodiversity in a real-life game of rock-paper-scissors. *Nature* 418,
467 171-174.

468 Kininmonth, S.J., De'ath, G. & Possingham, H.P. 2010. Graph theoretic topology of
469 the great but small barrier reef world. *Theor. Ecol.* 3, 75-88.

470 Kinlan, B.P. & Gaines, S.D. 2003. Propagule dispersal in marine and terrestrial
471 environments: a community perspective. *Ecology* 84, 2007-2020.

472 Kotler, B.P. & Brown, J.S. 1988. Environmental heterogeneity and the coexistence of
473 desert rodents. *Ann. Rev. Ecol. Syst.* 19, 281-307.

474 Kraft, N.J.B., Godoy, O. & Levine, J.M. 2015. Plant functional traits and the
475 multidimensional nature of species coexistence. *PNAS* 112, 797-802.

476 Laird, R.A. & Schamp, B.S. 2006. Competitive intransitivity promotes species
477 coexistence. *Am. Nat.* 168, 182-193.

478 Levin, S.A. 1970. Community equilibria and stability, and an extension of the
479 competitive exclusion principle. *Am. Nat.* 104, 413-423.

480 Levine, J.M. & Rees, M. 2002. Coexistence and relative abundance in annual plant
481 assemblages: the roles of competition and colonization. *Am. Nat.* 160, 452-467.

482 Levine, J.M. & HilleRisLambers, J. 2009. The importance of niches for the
483 maintenance of species diversity. *Nature* 461, 254-257.

484 Liao, J.B., Li, Z., Hiebeler, D.E., El-Bana, M., Deckmyn, G. & Nijs, I. 2013a.
485 Modelling plant population size and extinction thresholds from habitat loss and
486 habitat fragmentation: Effects of neighbouring competition and dispersal strategy.
487 *Ecol. Model.* 268, 9-17.

488 Liao, J.B., Li, Z., Hiebeler, D.E., Iwasa, Y., Bogaert, J. & Nijs, I. 2013b. Species
489 persistence in landscapes with spatial variation in habitat quality: A pair
490 approximation model. *J. Theor. Biol.* 335, 22-30.

491 McIntire, E.J.B., Schultz, C.B. & Crone, E.E. 2007. Designing a network for butterfly
492 habitat restoration: where individuals, populations and landscapes interact. *J. Appl.*
493 *Ecol.* 44, 725-736.

494 Montoya, D., Zavala, M.A., Rodríguez, M.A. & Purves, D.W. 2008. Animal versus
495 wind dispersal and the robustness of tree species to deforestation. *Science* 320,
496 1502-1504.

497 Murrell, D.J., Purves, D.W. & Law, R. 2001. Uniting pattern and process in plant
498 ecology. *Trends Ecol. Evol.* 16, 529-530.

499 Nathan, R. & Muller-Landau, H.C. 2000. Spatial patterns of seed dispersal, their
500 determinants and consequences for recruitment. *Trends Ecol. Evol.* 15, 278-285.

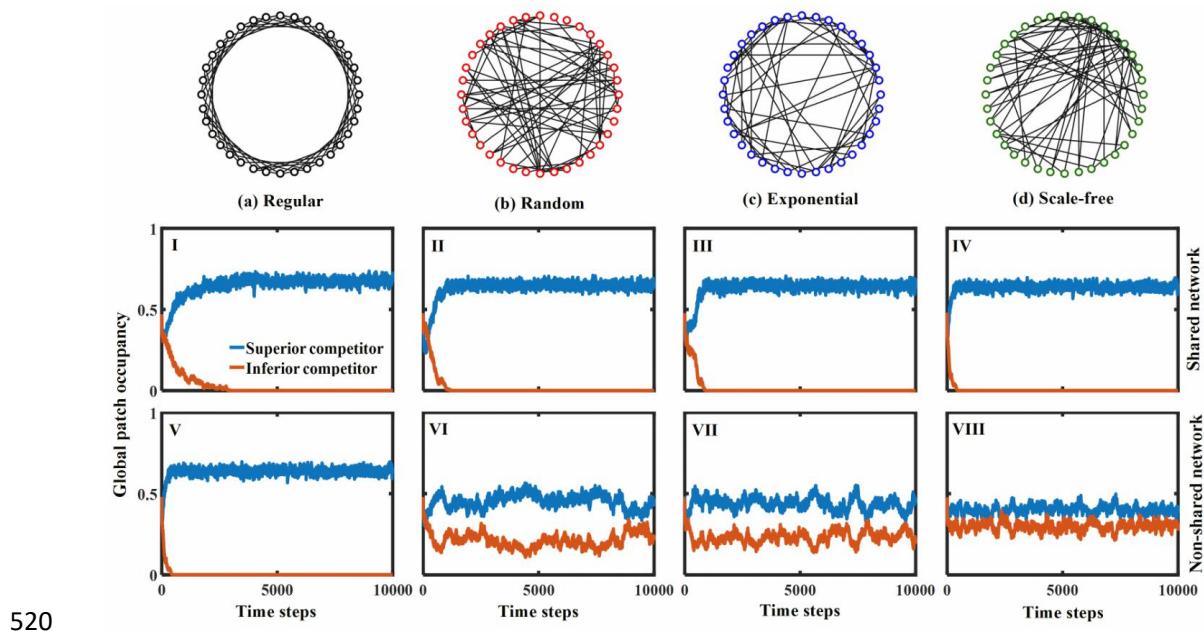
501 Nicholson, E. & Possingham, H.P. 2006. Objectives for multiple-species conservation
502 planning. *Conserv. Biol.* 20, 871-881.

503 Pacala, W. 1997. Dynamics of plant communities. In: (Ed. Crawley, M.) *Plant*
504 *Ecology*. Blackwell Science Ltd., Oxford, pp. 532-555.

505 Tilman, D. 1982. *Resource Competition and Community Structure*. Princeton
506 University Press, Princeton, NJ.

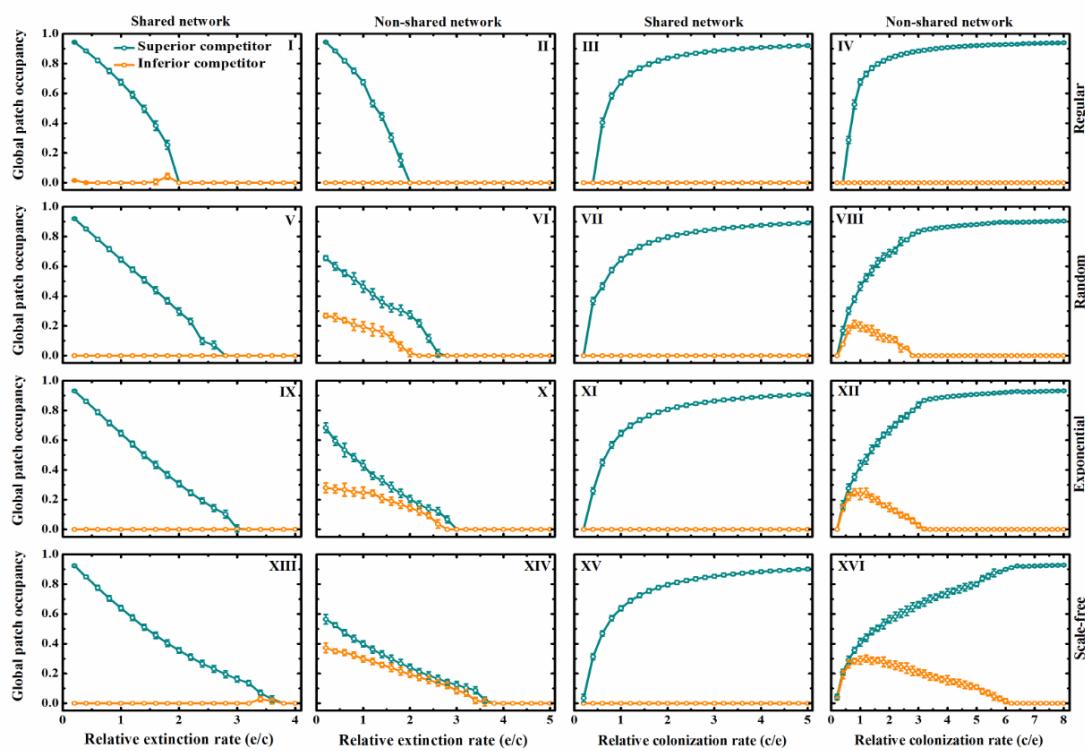
507 Tilman, D. 1994. Competition and biodiversity in spatially structured habitats.
508 *Ecology* 75, 2-16.

509 Turnbull, L.A., Rees, M. & Crawley, M.J. 1999. Seed mass and the
510 competition-colonization trade-off: a sowing experiment. *J. Ecol.* 87, 899-912.


511 Urban, D. & Keitt T. 2001. Landscape connectivity: a graph-theoretic perspective.
512 *Ecology* 85, 1205-1218.

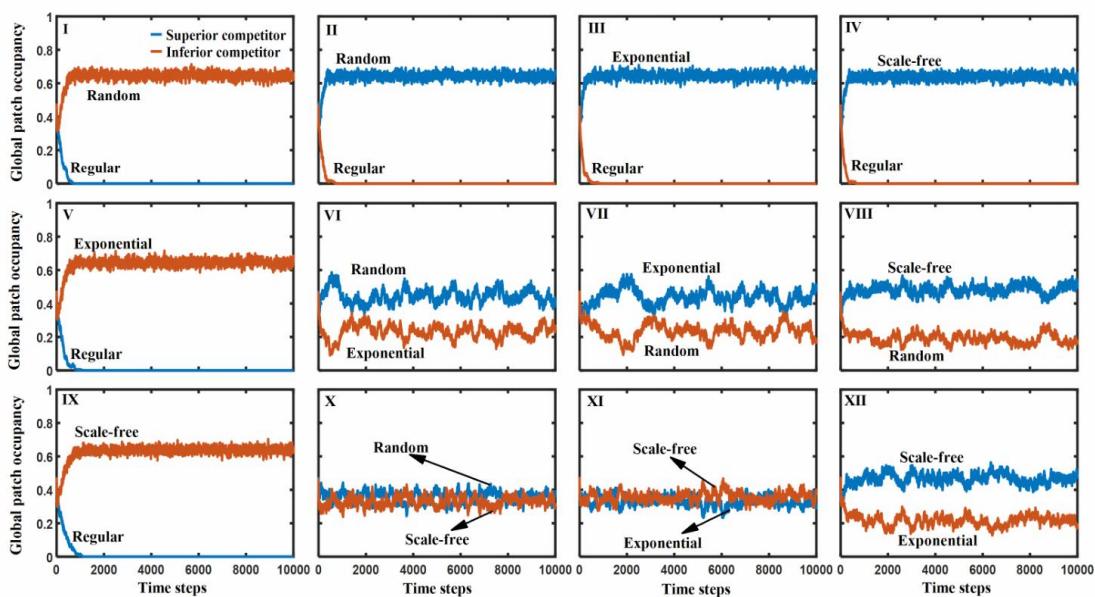
513 Watts, D.J. & Strogatz, S.H. 1998. Collective dynamics of ‘small-world’ networks.
514 *Nature* 393, 440-442.

515 Wellborn, G.A., Skelly, D.K. & Werner, E.E. 1996. Mechanisms creating community
516 structure across a freshwater habitat gradient. *Ann. Rev. Ecol. Syst.* 27, 337-363.

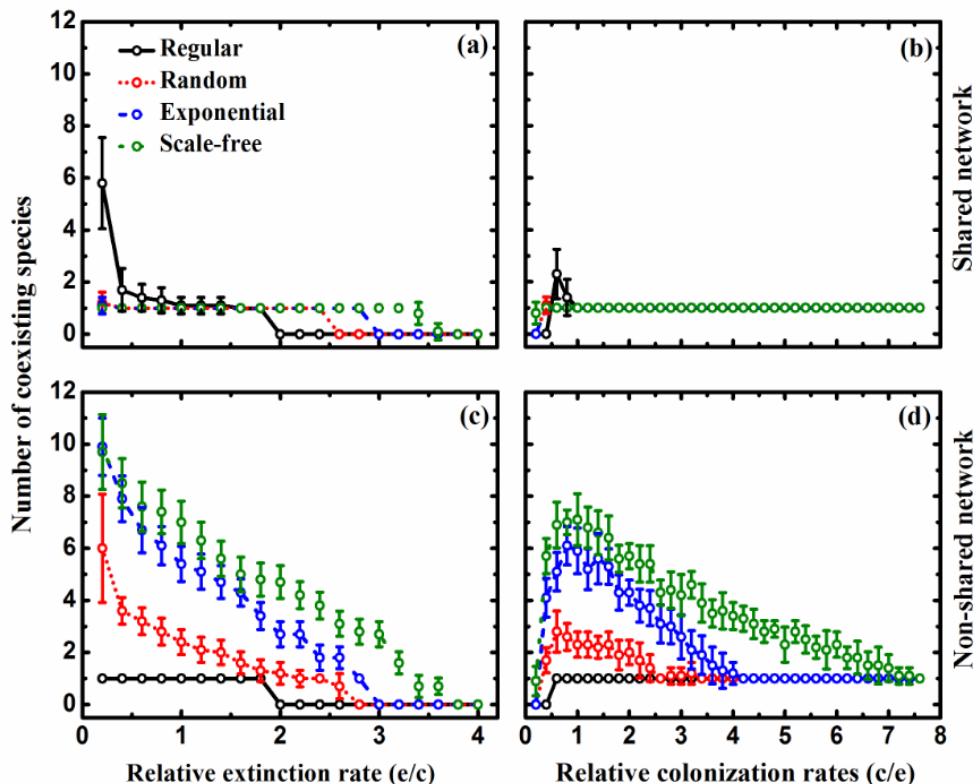

517 Yu, D. & Wilson, H.B. 2001. The competition–colonization trade-off is dead; long
518 live the competition–colonization tradeoff. *Am. Nat.* 158, 49-63.

519 **Figures & Captions**

521 **Figure 1.** Patch dynamics of two competing species in shared (I-IV) vs. non-shared
522 (V-VIII) dispersal networks (containing 1024 patches and 2048 links with average
523 linking degree $\bar{k}=4$). Four typical networks from the most homogeneous to the most
524 heterogeneous are included: (a) regular, (b) random, (c) exponential and (d) scale-free
525 networks. For display purposes, these networks only consist of 36 patches (nodes)
526 with 72 links. Here the shared networks indicate the same dispersal pathways for both
527 competing species; while the non-shared networks mean that both competitors show
528 different dispersal pathways but with the same heterogeneity. Parameter values are the
529 same for both species: colonization rate $c=0.05$ and extinction rate $e=0.05$.

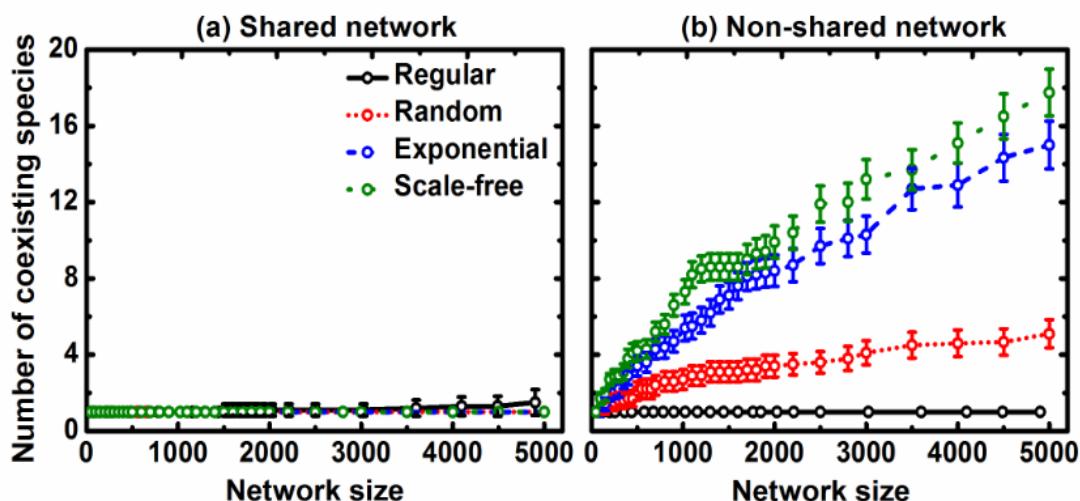

530

531


532 **Figure 2.** Effects of relative extinction (e/c at fixed $c=0.05$) and colonization (c/e at
533 fixed $e=0.05$) rates on patch occupancy (mean \pm standard deviation SD of 100
534 replicates) of both inferior and superior competitors at steady state in shared vs.
535 non-shared networks with different heterogeneities, including regular, random,
536 exponential and scale-free networks. These networks consist of 1024 patches and
537 2048 links, and non-shared networks indicate species-specific dispersal pathways for
538 both competitors but with the same network property.

539

541 **Figure 3.** Patch dynamics of both inferior and superior competitors with different
542 heterogeneous networks, consisting of 1024 patches and 2048 links. Four types of
543 dispersal networks are considered: regular, random, exponential and scale-free
544 networks. Parameter values for both species are the same: $c=e=0.05$.


545

546

547 **Figure 4.** Effects of relative extinction (e/c at fixed $c=0.05$) and colonization rates (c/e at fixed $e=0.05$) on the number of coexisting species at steady state (mean \pm SD of 548 100 replicates) in hierarchical competitive metacommunities, with preemptive 549 competition that species only compete for empty patches. Initially the competitive 550 system contain a sufficient number of species, and all species are assumed to have the 551 same colonization and extinction rates in shared (graphs a & b) vs. non-shared (graphs 552 c & d) networks, including regular, random, exponential and scale-free networks 553 (again with 1024 patches and 2048 links). Here non-shared networks mean that all 554 species have different dispersal pathways while keeping the same network property, 555 which is realized by regenerating the dispersal network with the same heterogeneity 556 and assigning them to each species.

558

559

560 **Figure 5.** Relationship between network size (i.e. total number of patches) and the
561 number of coexisting species at steady state (i.e. species-area curves) in hierarchical
562 competitive metacommunities with preemptive competition (mean \pm SD of 100
563 replicates). To exclude the colonization-competition tradeoff, all species are assumed
564 to have the same colonization and extinction rates ($c=e=0.05$) in (a) shared vs. (b)
565 non-shared networks (i.e. species-specific dispersal but with the same network
566 property), by fixing the average patch linking degree ($\bar{k}=4$). Again four types of
567 dispersal networks with contrasting heterogeneities are included: regular, random,
568 exponential and scale-free networks.