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Abstract

G protein-coupled receptors (GPCRs) drive an array of important physiological functions and
are the targets of nearly one-third of all FDA approved drugs. Large scale genomic initiatives
are mapping the genetic diversity in GPCRs, however, a map of which GPCR genetic variants
are associated with phenotypic variation and disease is lacking. Furthermore, the mechanistic
basis of how the individual GPCR genetic variants regulate molecular function is also largely
unknown. We performed a phenome-wide association analysis for 269 common protein-altering
variants in 156 GPCRs and 275 phenotypes using data from 337,205 unrelated white British UK
Biobank participants and identified 138 associations at a false discovery rate of 5%. We found a
novel association between rs12295710 in MRGPRE, a member of the Mas-related receptor
family involved in nociception, and migraine risk. We also identified an association between
rs3732378, a missense mutation in the binding pocket of CX3CR1, and hypothyroidism. Five
orphan GPCRs had eight genetic associations, highlighting novel biology for these receptors of
unknown function. We found several associations between GPCR variants and food intake
phenotypes, including an association between the variants in TAS2R38 known to affect the
ability to taste phenylthiocarbamide and tea intake as well as a non-additive associations
between variants in TAS2R19 and TAS2R31 and coffee and tea intake. Finally, we tested
whether genetic variants in ADRB2 associated with immune cell amounts and pulmonary
function affect downstream signaling pathways and found that two ADRB2 haplotypes are
associated with differential signaling relative to the most common haplotype. Overall, this study
provides a map of genetic associations for GPCR coding variants across a wide variety of
phenotypes that can inform future drug discovery efforts targeting GPCRs.
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Introduction

G Protein Coupled Receptors (GPCRs) are allosteric molecular machines that detect
extracellular messages, such as small molecules, peptides, light, or ions, and transmit a
reciprocal signal into the cell. There are over 800 GPCRs in the human proteome, and they play
key roles in diverse physiological functions and are the target of over a third of FDA approved
medications (Katritch et al., 2013). Interest from the pharmaceutical industry and basic science
has fueled intensive study of GPCRs, yet there still exist many GPCRs for which the primary
physiological function is unknown, and even for well studied receptors the full range of
physiological impacts may not be known. Understanding the role of GPCRs is particularly
relevant because their positioning on the cell surface make them relatively easy to target with
drugs, making it realistic to translate an association into a medication.

The UK Biobank dataset contains genetic and phenotypic data for nearly 500,000 individuals
and provides a unique opportunity to study the physiological impact of GPCRs by performing a
phenome-wide association study (PheWAS) to identify associations between variants in GPCRs
and diverse phenotypes such as immune cell measurements, vital signs, and disease risk
(Sudlow et al., 2015). A PheWAS focused on protein-altering variants in GPCRs can connect
GPCRs to specific phenotypes and generate novel therapeutic hypotheses as they are likely
candidates for causal variants (Altshuler et al., 2008). We can also leverage the increasing
number of GPCR protein structures and shared structural scaffold across the GPCR family to
identify specific genetic variants that are likely to impact protein structure and explain the
genetic associations. Additionally, while the vast array of GPCRs recognize a diverse set of
extracellular signals, they share a common set of intracellular binding partners: G Proteins and
arrestins (Venkatakrishnan et al., 2013). G protein and arrestin coupling are directly
measurable, providing insight into the molecular impact of GPCR variants.

In this study, we performed a PheWAS for 269 missense and protein-truncating variants in 156
GPCR genes across 275 phenotypes in the UK Biobank and identified 138 associations at a
false discovery rate of 5%. The associations spanned 52 coding variants in 41 GPCRs and 46
quantitative or binary phenotypes and included both novel and previously reported associations.
We identified five associations with binary phenotypes including an association between
rs12295710 in MRGPRE, a gene whose paralogs are involved in nociception, and migraine
(Dong et al., 2001). The remaining 133 associations were between coding GPCR variants and
quantitative phenotypes including immune cell measurements, body size, pulmonary function,
food intake, and others. Five orphan receptors of unknown function had associations with
quantitative traits including GPR35, a known drug target for inflammatory bowel disease and
cardiovascular disease (Divorty et al., 2015). We also found associations between variants in
GPCR taste receptors known to affect bitter taste perception and self-reported tea and coffee
intake. We tested genetic variants in ADRB2 associated with several phenotypes for effects on
downstream signaling pathways and identified two ADRB2 haplotypes with differential signaling
relative to the most frequent ADRBZ2 haplotype. This study links coding variation in GPCRs to a
range of diverse phenotypes and identifies novel biology for this important class of drug targets.
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Results

GPCR genetic associations across 275 phenotypes

To assess the impact of genetic variation in GPCRs on disease risk and other phenotypes, we
performed genetic association analyses between GPCR variants and phenotypes for 337,205
individuals of unrelated white British ancestry in the UK Biobank (see Methods for description).
Beginning with a list of 226 non-olfactory human GPCRs, we identified 251 missense and 18
protein-truncating variants in 156 human GPCR genes that were genotyped in the UK Biobank
arrays, passed quality control filters (Methods), and had minor allele frequency (MAF) greater
than 1% (Table S1). We tested for associations between these 269 variants and 146
quantitative phenotypes with at least 3,000 observations and 129 binary phenotypes with at
least 2,000 cases in the studied cohort (Methods, Table S1). The quantitative phenotypes
include continuous or ordinal phenotypes such as weight, waist size, and forced expiratory
volume. The binary phenotypes include the presence or absence of health conditions such as
hyperthyroidism, migraine, or lung cancer. Due to power differences between quantitative and
binary phenotype association tests, we corrected for multiple hypothesis testing separately for
the quantitative and binary phenotypes using the Benjamini-Yekutieli (BY) procedure at FDR
rate of 5%. Overall, we identified 52 coding variants in 41 GPCRs that were associated with at
least one of 46 quantitative or binary phenotypes for a total of 138 associations (Table S2).

Taking advantage of GPCRs sharing a common fold, we annotated the tested variants with
across-family conservation scores, GPCR functional regions, and PolyPhen-2 pathogenicity
scores (Methods) (Adzhubei et al., 2010; Pandy-Szekeres et al., 2018; Venkatakrishnan et al.,
2013). We compared the variants with and without significant associations to 86,601 rare
protein-altering GPCR variants from gnomAD (Karczewski et al., 2019) (MAF<1%) and 318
GPCR variants reported in ClinVar (Landrum et al., 2018) and found that both the significant
and non-significant UK Biobank variants had significantly lower PolyPhen-2 scores than the
ClinVar and rare gnomAD GPCR variants (Wilcoxon, p<1x107), consistent with the fact that the
GPCR variants tested here are common (MAF > 1%) variants (Figure S1a-d, Table S3).
Interestingly, there was not a significant difference between the UK Biobank variants with or
without significant associations (Wilcoxon, p=0.69) suggesting that differences with other
reference datasets have more to do with ascertainment of GPCR common variants in UK
Biobank. We also compared family conservation scores for variants in class A GPCRs and
found that the conservation scores generally agreed between the different variant sets except
that ClinVar variants had higher conservation scores than gnomAD rare variants (Wilcoxon,
p=3.8x10°) and variants without significant associations had lower conservation scores than
ClinVar variants (Wilcoxon, p=0.013, Figure S1e, Table S3). Among the 52 variants with
significant associations, we identified eight variants with associations that have PolyPhen-2
scores greater than 0.9, four variants located in the ligand binding pocket, and two variants
located in the intracellular coupling interface (Table 1). For instance, we identified an
association between rs3732378 (p.Thr280Met, MAF=17.3%) in CX3CR1 and hypothyroidism
(p=1.3x107, OR=1.07, 95% CI: 1.05-1.10). rs3732378 has a PolyPhen-2 score of 0.774 and is
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located in the binding pocket of CX3CR1. This GPCR is the sole receptor for the ligand
fractalkine (CX3CL1), a chemokine with anti-apoptotic properties that has been implicated in
oncogenesis (Pinato and Mauri, 2014; Rosen and Privalsky, 2011). We also identified
associations between rs3732378 and monocyte counts, monocyte percentages, and
lymphocyte counts (Table S2), consistent with previous studies (Astle et al., 2016). Expression
of CX3CR1 is upregulated in the absence of triiodothyronine (T3) by thyroid receptors TRa1 and
TRB1 with mutations observed in human hepatocellular carcinoma suggesting that thyroid
receptors may regulate CX3CR1 in some circumstances (Chan and Privalsky, 2009). Overall,
these results indicate that although the common variants tested are generally not predicted to
have a high impact on proteins, as is expected for common variants, they associate with
phenotypic variation and some indeed have large predicted impact on proteins (Table 1).

Gene Variant MAF HGVSp PolyPhen-2 | Function Number of
Associations
GIPR rs1800437 19.4% p.Glu354GIn 1 13
ADRB2 rs1800888 1.5% p.Thr164lle 0 Binding 6
ACKR2 rs2228467 6.1% p.Val41Ala 0.958 5
MC4R rs2229616 2.0% p.Val103lle 0.025 Binding 5
CX3CR1 rs3732378 17.3% p.Thr280Met 0.774 Binding 4
P2RY?2 Affx-5881601  24.0% p.Arg312Ser 0.015 Coupling 4
CELSR3 rs3821875 11.2% p.Ser805Thr 0.999 4
LGR4 rs34804482 2.6% p.Asp844Gly 1 2
P2RY13 rs1466684 18.0% p.Thr179Met 0.001 Binding 2
GPR35 rs3749171 18.2% p.Thr139Met 0.956 2
GPR45 rs35946826 14.3% p.Leu312Phe 1 1
NPFFR1 rs3812694 5.9% p.lle145Leu 0.999 Coupling 1
S1PR3 rs34075341 3.6% p.Arg243GIn 1 1

Table 1. GPCR variants with significant associations and PolyPhen-2 scores greater than 0.9 or known
functional annotations. “Number of Associations” indicates the number of significant associations
identified for each variant in this study across both quantitative and binary phenotypes.

Associations with binary medical phenotypes

We identified 5 associations between GPCR variants and binary phenotypes (BY-adjusted p <
0.05, Table 2, Table S2). We identified a novel association between rs12295710 (p.Gly15Ser,
MAF=47.1%) in MRGPRE, a member of the Mas-related receptor family, and migraine
(p=3.8x10®, OR=1.07, 95% CI: 1.05-1.10). Neither this variant nor other variants in linkage
disequilibrium (LD) with it (R>>0.8, British in England and Scotland (GBR)) have been previously
reported as associated with migraine in the GWAS Catalog, in a meta-analysis of migraine
GWAS including 375,000 individuals, or in a study of broadly-defined headaches in the UK
Biobank (Buniello et al., 2019; International Headache Genetics Consortium et al., 2016; Meng
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et al., 2018). Though the endogenous ligand of MRGPRE is unknown, Mas-related receptors
are expressed in nociceptive sensory neurons and play a role in pain response. MRGPRE is
expressed throughout the brains of macaque, mouse, and human including sensory neurons in
mouse (Dong et al., 2001; Manteniotis et al., 2013; Zhang et al., 2005). Suggestive associations
between variants in MRGPRE and white matter mean diffusivity and brain lesion distribution in
multiple sclerosis have been reported indicating a possible role for MRGPRE in neurological
disorders (Gourraud et al., 2013; Raffield et al., 2015).

We found an association between rs2234919 (p.Pro52Thr, MAF=5.5%) in the Thyroid
Stimulating Hormone Receptor (TSHR) and hyperthyroidism (p=3.6x107, OR=0.74, 95% CI:
0.66-0.83). Previous studies have found conflicting evidence regarding the association between
rs2234919 and hyperthyroidism (Pujol-Borrell et al., 2015), and the variant is flagged as likely
benign in ClinVar consistent with our finding that the minor allele lowers hyperthyroidism risk.
We also identified an association between rs72703203 (p.Arg2015Lys, MAF=4.2%) in CELSR2
and high cholesterol (p=1.5x10""", OR=0.85, 95% CI: 0.81-0.88). Variants in or near CELSR2
have been previously associated with cholesterol, response to statins, lipoprotein-associated
phospholipase A2 activity, and coronary artery disease (Arvind et al., 2014; Grallert et al., 2012;
Ma et al., 2010; Postmus et al., 2014; van der Harst and Verweij, 2018). While rs72703203 is
not in high LD with previously reported variants (Figure S2), it is not significant (p=0.21) in a
model that includes rs12740374, a 3’ UTR variant in SORT1 proposed as the causal variant in
this region (Musunuru and Kathiresan, 2019). We identified an association between rs2274911
(p.Pro91Ser, MAF=26.7%) in GPRCG6A and prostate cancer (p=8.2x10®, OR=1.12, 95% ClI:
1.07-1.17). rs2274911 is in LD with rs339331 (R?=0.846, GBR) which has previously been
associated with prostate cancer, and rs2274911 is not significant in a model that includes
rs339331 as a covariate (p=0.47) (Hoffmann et al., 2015; Takata et al., 2010; Wang et al.,
2015).

Gene Variant MAF HGVSp Phenotype | p-value OR OR 95% CI
High
CELSR2 rs72703203 4.2%  p.Arg2015Lys cholesterol  1.5x10""" 0.85 0.81-0.88
MRGPRE rs12295710 47.2% p.Gly15Ser Migraine 3.8E-08 1.07 1.05-1.1

Prostate
GPRC6A | rs2274911  26.7% p.Pro91Ser cancer 8.2x108 1.12 1.07 -1.17

Hypothyroid
ism/myxoed
CX3CR1  rs3732378 17.3%  p.Thr280Met ema 1.3x107 1.07 1.05-1.1

Hyperthyroi
dism/thyroto
TSHR rs2234919  5.5% p.Pro52Thr xicosis 3.6x107 0.74 0.66 - 0.83

Table 2. Significant associations between coding GPCR variants and binary phenotypes.
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Associations with quantitative phenotypes

We identified 133 quantitative phenotype associations for 49 protein-altering variants in 38
genes and 41 distinct phenotypes (BY-adjusted p < 0.05, Figure 1A-B, Table S2). 48 of these
associations are present in this GWAS Catalog or in LD (R*>0.8, GBR) with GWAS Catalog
associations (Buniello et al., 2019). We identified novel associations for variants in three GPCRs
with no entries in the GWAS catalog: rs7570797 in PROKR1 (p.Ser40Gly, MAF=4.6%) was
associated with platelet crit (p=1.59x107, $=-0.023, 95% Cl: -0.032 - -0.015); rs1466684 in
P2RY13 (p.Thr179Met, MAF=18.0%) was associated with neutrophil count (p=1.68x10, 8
=0.016, 95% CI: 0.0094-0.023); and rs4274188 in MRGPRX3 (p.Asn169Asp, MAF=23.4%) was
associated with standing height (p=7.69x10®, $=0.0090, 95% Cl: 0.0051-0.013). We stratified
the significant quantitative phenotype associations into the following phenotype categories
(where n indicates the number of phenotypes with at least one association for each category):
immune cell measurements (n=17), body size (n=6), lung function (n=6), food intake (n=4),
physical ability (n=3), urine biomarkers (n=2), vital signs (n=2), and intelligence (n=1) (Table
S1). We describe these associations in the sections below.
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Figure 1. (a) Manhattan plot for quantitative phenotype associations across 269 variants and
146 phenotypes. Dashed red line indicates significance threshold after applying Benjamini-
Yekutieli procedure. Scatter point colors indicate phenotype category (see legend in (b)) for
significant associations. P-values less than 1x10?° are plotted at 1x10%°. (b) Line plot showing
associations between coding variants in indicated GPCRs (left) and quantitative phenotypes
(right). Colors indicate phenotype category. Dashed lines indicate associations that are
present in the GWAS Catalog and dot-dashed lines indicate that the variant is in LD with a
variant associated with the phenotype in the GWAS Catalog.
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Genetic variation in orphan GPCRs associated with quantitative
phenotypes

The 269 variants tested for associations included 44 variants in 26 orphan GPCRs whose
ligands and function are generally unknown (Tang et al., 2012). We identified quantitative
phenotype associations for variants in five orphan receptors (Table 3). We found associations
between rs3749171 in GPR35 (p.Thr139Met, MAF=18.2%) and monocyte count (p=7.5x10"7,
=-0.024, 95% CI: -0.031 - -0.019) and monocyte percentage (p=5.7x107%, $=-0.25, 95% Cl: -
0.016 - -0.034). rs3749171 is in LD with the 5 UTR variant rs34236350 (R?>=1, GBR) that has
previously been reported as associated with monocyte count (Figure S3) (Astle et al., 2016).
rs3749171 is in high LD with the intron variant rs4676410 (R?=0.82, GBR), and these two variants
have previously been associated with ankylosing spondylitis, ulcerative colitis/inflammatory
bowel disease, and pediatric autoimmune diseases (Figure S3) (Ellinghaus et al., 2013; (igas)
and International Genetics of Ankylosing Spondylitis Consortium (IGAS), 2013; International
Multiple Sclerosis Genetics Consortium et al., 2015; Li et al., 2015; The International IBD
Genetics Consortium (IIBDGC) et al., 2016, 2012; Venkateswaran et al., 2018). We also found
associations between rs6437353 (p.Arg13His, MAF=45.6%) and mean platelet (thrombocyte)
volume (p=2.8x10°, $=-0.021, 95% Cl: -0.028 - -0.014) and rs3749172 (p.Ser294Arg,
MAF=42.6%) and monocyte count (p=2.6x10?, $=0.013, 95% Cl: 0.0084-0.017). These variants
are not in LD with rs3749171 or rs34236350 (Figure S3), and neither these variants nor variants
in LD with them have been previously reported as associated with these phenotypes in the
GWAS Catalog (Buniello et al., 2019).

We found associations for missense variants in orphan GPCRs GPR146, GPR20, GPR45, and
GPR78 as well (Table 3). The association between rs34591516 (p.Gly313Ser, MAF=4.6%) in
GPR20 and diastolic blood pressure (p=1.8x107, $=0.028, 95% Cl: 0.017-0.04) agrees with a
previous study that found the same variant associated with diastolic and systolic blood pressure
(CHARGE-Heart Failure Consortium et al., 2016). We find that rs9685931 (p.Arg342His,
MAF=11.3%) in GPR78 is associated with standing height (p=1.1x10, $=-0.012, 95% ClI: -
0.0077 - -0.017). A different variant in the 3’ UTR of GPR78, rs3775887, is in weak LD with
rs9685931 (LD=0.18, GBR) and has previously been associated with FVC. Overall these
associations indicate potential functions or relevant pathways for these orphan GPCRs.

Gene Variant MAF HGVSp Phenotype p-value | BETA | BETA 95% CI
GPR35 rs3749171 18.2% p.Thr139Met Monocyte count 7.5x10"7 -0.025 -0.031--0.019

Mean platelet

(thrombocyte)
GPR35 rs6437353 @ 45.6% p.Arg13His volume 2.8x10° -0.021 -0.028 --0.014
GPR35 rs3749172 42.6% p.Ser294Arg Monocyte count 2.6x108 0.013  0.0084 - 0.017
Monocyte

GPR35 rs3749171  18.2%  p.Thr139Met percentage 5.7x10® -0.025 -0.034--0.016

High light scatter
GPR146 rs11761941 14.8%  p.Gly11Glu reticulocyte count 3.1x107 -0.017  -0.023 - -0.01


https://doi.org/10.1101/2019.12.13.876250
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2019.12.13.876250; this version posted December 15, 2019. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

GPR45 rs35946826 14.3% p.Leu312Phe Standing height 3.2x107 -0.012 -0.017 --0.0077
GPR78 rs9685931 11.3%  p.Arg342His = Standing height 1.1x10® 0.013 0.0078 - 0.018

Diastolic blood
pressure,
automated
GPR20 rs34591516 4.6% p.Gly313Ser reading 1.8x10%  0.028 0.017-0.04

Table 3. Significant quantitative phenotype associations for orphan GPCRs.

Genetic variation in GPCRs associated with food intake

We identified 12 associations between coding variants in GPCRs and food intake phenotypes.
We found that variants in several taste receptors were associated with either coffee or tea
intake (Table 4). Variants in the bitter taste receptor genes TAS2R19, TAS2R31, and TAS2R42
were associated with coffee intake, though the variants in TAS2R719 and TAS2R31 are in high
LD (R?=0.9, GBR). rs10772420 (p.Arg299Cys, MAF=46.8%) in TAS2R19 has been shown to
affect perception of bitterness, though it is unclear whether rs10772420, rs10845295
(p-Arg35Trp, MAF=48.6%) in TAS2R31, or a different variant is causal (Hayes et al., 2015,
2011). We also found associations between variants in the taste receptors TAS2R19, TAS2R31,
TAS2R38, TAS2R42, and TAS2R7 and tea intake. The same variants in TAS2R19 and
TAS2R31 that are in high LD and were associated with coffee intake are also associated with
tea intake. The variants in TAS2R7 and TAS2R42 associated with tea intake are in moderate
LD (R®=0.59, GBR). The variants in TAS2R38 that are associated with tea intake are in high LD
and are known to affect the ability to taste phenylthiocarbamide (PTC) and 6-n-propylthiouracil
(PROP) (Figure S4) (Kim, 2003; Risso et al., 2016). The ability to taste PTC follows a dominant
model of inheritance where the alternate “taster” allele C is dominant to the “non-taster”
reference T allele for rs10246939 (Kim, 2003). We therefore fit additive and genotypic models
for tea intake and the variants in TAS2R38 to test whether the observed association with tea
intake is dominant. Interestingly, we found that the association between variants in TAS2R38
and tea intake is consistent with an additive effect where each additional copy of the taster C
allele is associated with increased tea intake (Figure 2A). We did find evidence, however, that
the association between rs10772420 in TAS2R 19 and coffee intake is non-additive, where only
one copy of the alternate allele accounts for the majority of the decrease in coffee intake (Figure
2B). We found weaker evidence that the association between variants in TAS2R179 and tea
intake is non-additive, where one copy of the alternate alleles accounts for most of the increase
in tea intake (Figure 2C). As noted above, rs10772420 is in LD with the rs10845295 in
TAS2R31 (0.895, GBR). Overall, we identified three independent associations between variants
in taste receptors and tea intake and two independent associations for coffee intake.

We also observed two associations between non-taste related GPCRs and self-reported food
intake. We found that rs1800437 (p.Glu354GIn, MAF=19.4%) in GIPR is associated with fresh
fruit intake (p=4.2x107, $=0.017, 95% CI: 0.01 1-0.023). GIP-R is a receptor of gastric inhibitory
polypeptide (GIP), which stimulates insulin release in the presence of elevated glucose (Dupre
et al., 1973). Mice lacking GIP-R exhibit higher blood glucose levels and impaired initial insulin
response following oral glucose load (Miyawaki et al., 1999). A previous pharmacological study
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of GIP-R found that there is a marked decrease in basal GIP-R signaling for the alternate
rs1800437 allele compared to WT (Fortin et al., 2010). We also identified several other
associations for rs1800437 in G/IPR (Figure 1b) that agree with reported associations in the
GWAS Catalog including associations with body mass index, weight, waist circumference, and
hip circumference, though the reported association with fresh fruit intake has not been
previously reported (Buniello et al., 2019). We also found that the splice donor variant rs274624
(MAF=37.0%) in GRM3 is associated with cereal intake (p=2.1x10®, $=-0.011, 95% Cl: -0.015 -
-0.0064). GRM3 encodes a metabotropic glutamate receptor that is involved in brain function.
Missense variants in GRM3 have been previously associated with cognitive performance and
self-reported math ability and non-coding variants near GRM3 have been associated with
several cognitive and psychiatric phenotypes including schizophrenia and neuroticism
(23andMe Research Team et al., 2018; Buniello et al., 2019). A non-coding variant near GRM3
has also been associated with body mass index, but no associations between variants in or
near GRM3 and food intake have been reported previously (Kichaev et al., n.d.). These results
demonstrate that genetic variation in GPCRs can be linked to food intake using self-reported
intake measurements in a population biobank.

Gene Variant MAF HGVSp Phenotype | p-value BETA | BETA 95% CI
Coffee -0.016 - -
TAS2R19 rs10772420 46.8%  p.Arg299Cys intake 2.6x10° -0.011 0.0065
Coffee -0.015 - -
TAS2R31 rs10845295 48.6% p.Arg35Trp intake 1.1x10% -0.01 0.0057
Coffee

TAS2R42 rs1669413 16.5%  p.Gly255Trp intake 1.5x10°  -0.019 -0.025--0.013
TAS2R19 rs10772420 46.8% p.Arg299Cys Teaintake  1.2x10° 0.012  0.0069 - 0.016
TAS2R31 rs10845295 48.6%  p.Arg35Trp  Teaintake  7.2x10° 0.011  0.006 - 0.015
TAS2R38 1510246939 44.6%  p.lle296Val  Teaintake  1.8x10® 0.013  0.0087 - 0.018

-0.018 - -
TAS2R38 rs1726866 44.6%  p.Ala262Val Teaintake  4.6x10%  -0.013 0.0084

TAS2R38 = rs713598 40.0%  p.Alad9Pro  Teaintake 4.5x10"° = 0.015 0.01-0.02
TAS2R42 rs1669413 16.5%  p.Gly255Trp  Teaintake  6.0x10'2 ~ 0.022 0.016 - 0.028

TAS2R7 rs619381 12.7%  p.Met304lle = Teaintake  6.4x10°  -0.021 -0.028 --0.014
Table 4. Associations between variants in taste receptors and coffee or tea intake.
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Figure 2. -logiop-values and effect sizes for additive (white background) and genotypic (grey
background) models of association between (a) rs10246939 in TAS2R38 and tea intake, (b)
rs10772420 in TAS2R19 and coffee intake, and (c) rs10772420 in TAS2R19 and tea intake.
The genotypic model includes separate terms for heterozygous and homozygous alternate
genotypes. Red boxes indicate non-additive effects. A AIC is the difference in AIC between
the two models (genotypic minus additive).

Genetic variation in ADRB?2 alters arrestin signaling

We identified associations between three missense variants in ADRB2, the 32 adrenergic
receptor, and immune cell counts and percentages as well as forced expiratory volume in 1-
second (FEV1) and peak expiratory flow (PEF) (Table 5). Several of these associations have
been reported previously in the GWAS Catalog or are in LD with reported associations, though
associations between rs1800888 (p.Thr164lle, MAF=1.5%) and eosinophil counts (p=5.6x10°, 8
=0.045, 95% Cl: 0.026-0.065) and eosinophil percentage (p=4.3x107, $=0.061, 95% CI: 0.039-
0.082) were not in the GWAS Catalog. Similarly, the associations between rs1042713
(p-Gly16Arg, MAF=36.1%) and immune cell counts and percentages were not in the GWAS
Catalog or in LD with associations in the GWAS Catalog (Table 5) (Buniello et al., 2019). Since
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rs1042713 and rs1042714 are in moderate LD (R?=0.469, GBR), we fit models for eosinophil
counts, eosinophil percentage, monocyte percentage, and neutrophil count using all three
variants in ADRB2. For all four phenotypes, only one of rs1042713 and rs1042714 were
significant (p<0.05) indicating that these two variants likely do not have independent effects on
these immune cell phenotypes. rs1800888 remained significant (p<0.05) conditioned on both
rs1042713 and rs1042714 for eosinophil counts and percentages.

To further explore how genetic variation in ADRB2 might impact the function of the receptor, we
assayed cAMP signaling, which is downstream of Gs, and P-arrestin-1 and "-arrestin-2
recruitment for the RQT, GET, GQI, and GQT ADRBZ2 haplotypes upon stimulation with the
endogenous ligands epinephrine (epi) and norepinephrine (norepi). We refer to the ADRB2
haplotypes by the residues at the 3 variable positions; for instance, the most common haplotype
is RQT where rs1042713 codes for arginine (Arg16Gly), rs1042714 codes for glutamine
(GIn27Glu), and rs1800888 codes for threonine (Thr164lle). We found that two of the
haplotypes displayed significantly different signaling profiles than the most frequent haplotype
RQT. The GET haplotype retained full arrestin recruitment but significantly affected Gs
signaling; for epi, GET has a decreased pEC50 in the cAMP assay (p=0.02, Tukey’s test),
indicating that a higher concentration of ligand is required to induce the same level of signaling
through cAMP (Figure S5, Table S4). Meanwhile, the GQI haplotype displayed decreased
arrestin pEC50 and full Gs signaling relative to RQT (p < 0.004, Tukey’s test).

Variant MAF HGVSp Phenotype | GWAS p-value | BETA| BETA 95% ClI
Catalog
Eosinophil
rs1042714 45.3% p.Glu27GIn count TRUE 2.5x10%  0.029 0.024 -0.034
Eosinophil
rs1042713 36.1% p.Gly16Arg count FALSE 1.9x10"°  0.02 0.015-0.025
Eosinophil
rs1800888 1.5% p.Thr164lle count FALSE 5.6x10®  0.045 0.026 - 0.065
Eosinophil
rs1042714 45.3% p.Glu27GIn  percentage TRUE 9.9x10*  0.037 0.032-0.042
Eosinophil
rs1042713 36.1% p.Gly16Arg percentage @ FALSE 4.6x10"°  0.025 0.019-0.03
Eosinophil
rs1800888 1.5% p.Thr164lle percentage @ FALSE 4.3x10%  0.061 0.039-0.082
rs1800888 1.5% p.Thr164lle FEV1 TRUE 4.6x10%  -0.042 -0.057 --0.027
FEV1, Best
rs1800888 1.5% p.Thr164lle  measure TRUE 1.1x10%  -0.04 -0.056 --0.024
FEV1,
predicted
rs1800888 1.5% p.Thr164lle percentage TRUE 9.2x10%  -0.075 -0.11--0.042
rs1042714 45.3% p.Glu27GIn = Monocyte TRUE 1.0x107  0.019 0.012-0.026
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percentage

Monocyte
rs1042713 36.1% p.Gly16Arg percentage @ FALSE 8.6x10®  0.016 0.0092 - 0.024

Neutrophil
rs1042714 45.3% p.Glu27GIn count TRUE 9.2x10  -0.027 -0.033--0.022

Neutrophil
rs1042713 36.1% p.Gly16Arg count FALSE 1.2x10""  -0.019 -0.025--0.014

Peak
expiratory
rs1800888 1.5% p.Thr164lle flow (PEF) TRUE 3.8x107  -0.043 -0.06 --0.026
White blood
cell
(leukocyte)
rs1042714 45.3% p.Glu27GIn count TRUE 1.3x10%  -0.016 -0.023 - -0.0098

Table 5. Associations between missense variants in ADRB2 and quantitative phenotypes. FEV1 is forced
expiratory volume in one second.

Discussion

This study provides a systematic catalog of associations between coding variants in GPCRs
and 275 diverse phenotypes in the UK Biobank. We replicated known associations between
variants associated with disease risk and quantitative phenotypes and identified novel
associations that in some cases indicate novel functions for GPCRs. The association between
rs12295710 in MRGPRE and migraine is particularly interesting given that the genes in this
family play a role in sensing pain (Dong et al., 2001). We found that rs3749171 in GPR35 is
associated with monocyte counts and percentage and is in LD withGPR35 variants associated
with ankylosing spondylitis, inflammatory bowel disease, and pediatric autoimmune diseases
(refs above). Interestingly, we also found a novel association between rs3749172 in GPR35 and
monocyte counts, though this variant does not appear to be in LD with loci previously
associated with diseases. The novel associations between GPCR taste receptors and self-
reported tea and coffee intake demonstrate the utility of questionnaire data in population
biobanks, even for relatively difficult-to-estimate phenotypes like food intake.

We found that the GET ADRBZ2 haplotype had decreased Gs signaling (as measured by cAMP
levels) relative to the RQT haplotype and that the GQI haplotype had decreased arrestin
recruitment relative to the RQT haplotype. The observed genetic association between
decreased forced expiratory volume and the rs1800888 allele that codes for isoleucine and our
results showing that GQI has decreased arrestin signaling might inform the role of B2AR in
pulmonary function. Since arrestin recruitment induces B2AR desensitization, and, somewhat
paradoxically, B2AR agonist activity is required for the development of asthma in mouse
models, it is possible that the GQI haplotype may decrease lung function by reducing agonist-
induced B2AR desensitization (Moore et al., 2007; Thanawala et al., 2013). It is also possible,
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however, that the acute differences observed in these experiments may differ from long-term
effects of differential signaling associated with genetic variants.

The genetic associations reported here link GPCRs to phenotypes and will be useful for
assessing the function of GPCRs and potential effects of modulating these genes with
therapeutics. Future studies utilizing exome or genome sequencing that can better ascertain
rare variants in these genes will likely identify new associations that are not observed for
common variants that have faced stronger selective pressure. In particular, studies that focus on
populations with unique genetic histories such as founder populations or groups with high
consanguinity offer an important opportunity to identify high-impact, rare variants in GPCRs that
may have large impacts on phenotypic variation and disease risk.

Methods

Quality Control of Genotype Data

We used genotype data from UK Biobank dataset release version 2 for all aspects of the study.
To minimize the impact of cofounders and unreliable observations, we used a subset of
individuals that satisfied all of the following criteria: (1) self-reported white British ancestry, (2)
used to compute principal components, (3) not marked as outliers for heterozygosity and
missing rates, (4) do not show putative sex chromosome aneuploidy, and (5) have at most 10
putative third-degree relatives. These criteria are reported by the UK Biobank in the file
“ukb_sqc_v2.txt” in the following columns respectively: (1) “in_white_British_ancestry_subset,”
(2) “used_in_pca_calculation,” (3) “het_missing_outliers,” (4)
“putative_sex_chromosome_aneuploidy”, and (5) “excess_relatives.” We removed 151,169
individuals that did not meet these criteria. For the remaining 337,205 individuals, we used
PLINK v1.90b4.4 76 to compute the following statistics for each variant: (a) genotyping
missingness rate, (b) p-values of Hardy-Weinberg test, and (c) allele frequencies (calculated
separately for the two genotyping arrays used by the UK Biobank).

GPCR Variants

UK Biobank Variant Annotation

Variants on the UK Biobank arrays were annotated using VEP version 87 and the GRCh37
reference (McLaren et al., 2016). Protein truncating variants were predicted using the VEP
LOFTEE plugin (https://github.com/konradijk/loftee). Linkage disequilibrium (LD) was calculated
for the GBR British population from 1000 Genomes Phase 3 (Version 5) using LDmatrix from
LDlink (https:/Idlink.nci.nih.gov/) unless otherwise stated(Machiela and Chanock, 2015).
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GPCR Gene Definition

A list of GPCRs was obtained from the International Union of Basic and Clinical Pharmacology
(IUPHAR) website in December 2017 (Table S1). This list excludes olfactory GPCRs.

GPCR Variant Filtering

We identified 1,263 coding variants in GPCRs that (1) were genotyped on the UK Biobank
genotyping arrays, (2) not filtered out during quality control of the genotyping data, (3) were not
in the major histocompatibility complex (chr6:28477797-33448354) (Church et al., 2011), and
(4) were annotated as one of the following variant types by VEP: missense_variant,
frameshift_variant, stop_gained, splice_region_variant, splice_donor_variant,
splice_acceptor_variant, stop_lost, inframe_deletion, start_lost, inframe_insertion,
incomplete_terminal_codon_variant. We filtered the variants to include only those with minor
allele frequency greater than 1% in the 337,205 white British subjects used in this study
resulting in 269 variants in 156 genes (Table S1). 251 of the 269 variants are missense variants
and the remaining 18 variants are predicted protein truncating variants.

GPCR Variant Annotation

86,601 rare protein-altering GPCR variants were obtained from from gnomAD (MAF<1%) and
318 GPCR variants were obtained from ClinVar (Karczewski et al., 2019; Landrum et al., 2018).
Family conservation scores were created using multiple sequence alignments from GPCRdb
(Pandy-Szekeres et al., 2018). The scores were defined as the frequency of the most common
residue at each structurally equivalent position. PolyPhen-2 (Adzhubei et al., 2010) scores were
obtained through the web portal at http://genetics.bwh.harvard.edu/pph2/bgi.shtml. Position of
variants on the GPCR fold were determined using the multiple alignment from GPCRdb (Pandy-
Szekeres et al., 2018).

Phenotype Definitions

Hospital Record and Verbal Questionnaire

As previously described, we used the following procedure to define cases and controls for non-
cancer phenotypes (DeBoever et al., 2018). For a given phenotype, ICD-10 codes (Data-Field
41202) were grouped with self-reported non-cancer illness codes from verbal questionnaires
(Data-Field 20002) that were closely related. This was done by first creating a computationally
generated candidate list of closely related ICD-10 codes and self-reported non-cancer iliness
codes, then manually curating the matches. The computational mapping was performed by
calculating the token set ratio between the ICD-10 code description and the self-reported illness
code description using the FuzzyWuzzy python package. The high scoring ICD-10 matches for
each self-reported iliness were then manually curated to ensure high confidence mappings.
Manual curation was required to validate the matches because fuzzy string matching may return
words that are similar in spelling but not in meaning. For example, to create a hypertension
cohort the code description from Data-Field 20002 ("Hypertension") was mapped to all ICD-10
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code descriptions and all closely related codes were returned ("I10: Essential (primary)
hypertension" and "I95: Hypotension"). After manual curation code 110 would be kept and code
195 would be discarded. After matching ICD-10 codes and with self-reported illness codes,
cases were identified for each phenotype using only the associated ICD-10 codes, only the
associated self-reported iliness codes, or both the associated ICD-10 codes and self-reported
illness codes.

Family History

We used data from Category 100034 (Family history - Touchscreen - UK Biobank Assessment
Centre) to define "cases" and controls for family history phenotypes. This category contains
data from the touchscreen questionnaire on questions related to family size, sibling order, family
medical history (of parents and siblings), and age of parents (age of death if died). We focused
on Data Coding 20107: lliness of father and 20110: lliness of mother.

Genetic Association Analyses

Quantitative phenotypes

We identified 146 quantitative phenotypes with at least 3,000 observations among the 337,205
white British subjects in the UK Biobank. As previously described, we took non-NA median of
multiple measurements across up to three time points (Tanigawa et al., 2019). We focused on
food intake, immune cell measurements, gross body measurements, behavioral phenotypes,
and several other phenotypes (Table S1). We performed linear regression association analysis
with v2.00a (20 Sep, 2017) for these 146 quantitative phenotypes. We performed quantile
normalization for each phenotype (--pheno-quantile-normalize option), where we fit the linear
model with covariates and transform the residuals to Normal distribution N(0, 1) while
preserving the original rank in the residuals. We used the following covariates in our analysis:
age, sex, array type, and the first four principal components, where array type is a binary
variable that represents whether an individual was genotyped with UK Biobank Axiom Array or
UK BILEVE Axiom Array. For variants that were specific to one array, we did not use array as a
covariate. We corrected p-values using the Benjamin-Yekutieli approach implemented in R’s
p.adjust. We considered associations with BY-corrected p-values less than 0.05 as significant
which controls the false discovery rate at 5% (Yekutieli and Benjamini, 2001).

Binary phenotypes

Wd identified 129 binary phenotypes with at least 2,000 cases among the 337,205 white British
subjects in the UK Biobank and performed logistic regression association analysis with Firth-
fallback using PLINK v2.00a (17 July 2017) (Chang et al., 2015). Firth-fallback is a hybrid
algorithm which normally uses the logistic regression code described in (Hill et al., 2017), but
switches to a port of logistf() (https://cran.r-project.org/web/packages/logistf/index.html) in two
cases: (1) one of the cells in the 2x2 allele count by case/control status contingency table is
empty (2) logistic regression was attempted since all the contingency table cells were nonzero,
but it failed to converge within the usual number of steps. We used the following covariates in
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our analysis: age, sex, array type, and the first four principal components, where array type is a
binary variable that represents whether an individual was genotyped with UK Biobank Axiom
Array or UK BILEVE Axiom Array. For variants that were specific to one array, we did not use
array as a covariate. We corrected p-values using the Benjamin-Yekutieli approach
implemented in R’s p.adjust. We considered associations with BY-corrected p-values less than
0.05 as significant which controls the false discovery rate at 5%.

Comparison to GWAS Catalog

We compared significant associations to the GWAS Catalog (Buniello et al., 2019) to determine
whether the associations we identified had been previously reported. We downloaded the
GWAS Catalog v1.0.2 on August 23, 2019. We matched phenotypes in the GWAS Catalog to
our phenotypes using the FuzzyWuzzy python package and manually reviewed matches. We
erred on the side of including similar phenotypes from the GWAS Catalog for matches that were
not perfect. We then matched the associated variants to variants in the GWAS Catalog using rs
identifiers and chromosome:position identifiers. In order to match variants using
chromosome:position, we used dbSNP or UCSC LiftOver (https://genome.ucsc.edu/cgi-
bin/hgLiftOver) to convert UK Biobank genotyping array coordinates in hg19 to GRCh38
coordinates to match with the GWAS Catalog.

We used LDIink (https://Idlink.nci.nih.gov/) (Machiela and Chanock, 2015) to identify variants in
LD with the variants that we found associations for using the GBR British population from 1000
Genomes Phase 3 (Version 5). We matched these variants in LD with the associated variants to
variants in the GWAS Catalog using rs identifiers and chromosome:position identifiers when rs
identifiers failed.

B2AR Conditional Analyses

We fit a model for each of eosinophil counts, eosinophil percentage, monocyte percentage, and
neutrophil count with the genotypes of rs1042713, rs1042714, and rs1800888 as independent
variables. We included a constant and age, sex, array type, and the first four principal
components as covariates for these models.

Coffee and Tea Intake Additivity Analysis

We fit two models for each of coffee and tea intake to test whether the associations were
consistent with non-additive effects. We performed quantile normalization for each phenotype to
transform the values to standard normal distribution. For the additive model, we encoded
genotypes as 0,1,2 and included a single term for the effect of genotype on tea/coffee intake.
For the genotypic model we included a term to indicate whether a subject was heterozygous
and a separate term to indicate whether a subject was homozygous alternate. We included a
constant and age, sex, array type, and the first four principal components as covariates for
these regressions.
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Figure S1. Distribution of PolyPhen-2 scores for (a) GPCR variants in ClinVar; (b) rare
(MAF<1%) GPCR variants in gnomAD, (c) variants analyzed in this study that were not
significantly associated with any phenotype, and (d) variants analyzed in this study that were
significantly associated with at least one phenotype. (e) Distribution of family conservation
scores for variants in class A GPCRs across the four groups of variants in a-d. The
distribution of conservation scores is significantly different (Wilcoxon p<0.05) between the
gnomAD Rare and ClinVar variants and between the ClinVar and UKB Not Associated
variants.
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Figure S2. Linkage disequilibrium in the GBR British population between rs72703203 (bold)
and other CELSR2 variants reported in the GWAS Catalog as significantly associated with
various lipid and cardiac phenotypes.
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Figure S3. Linkage disequilibrium in the GBR British population between variants in GPR35
with significant associations in this study (bold) and variants reported in the GWAS Catalog.
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Figure S4. Linkage disequilibrium in the GBR British population between variants in taste
receptors associated with (a) tea intake on chromosome 7, (b) tea intake on chromosome 12,
or (c) coffee intake on chromosome 12.
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Figure S5. pEC50 for cAMP signaling, beta-arrestin-1 recruitment, and beta-arrestin-2
recruitment for four ADRB2 haplotypes upon stimulation with the endogenous ligands
epinephrine (epi) and norepinephrine (norepi).

Supplementary Tables

Table S1. Phenotypes and GPCR genes and variants used for PheWAS. The “GPCR genes”
tab contains 398 GPCR genes that we used to identify GPCR genetic variants. The “GPCR
tested variants” tab contains the 268 variants that we tested in the PheWAS analysis. The
“GPCR variant summary” tab shows the number of each variant type included in the phe WAS
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analysis. The “Quantitative phenotypes” and “Binary phenotypes” tabs contain the phenotypes
analyzed and the number of observations and cases, respectively.

Table S2. GPCR PheWAS results. Summary statistics for quantitative and binary associations
with BY-adjusted p-value less than 0.05.

Table S3. GPCR variant annotations. Across-family conservation scores, GPCR functional
region annotations, and PolyPhen-2 pathogenicity scores for GPCR variants assessed in this
study, 86,601 rare GPCR variants from gnomAD (MAF<1%) and 318 GPCR variants reported in
ClinVar.

Table S4. p-values from Tukey'’s test for differences in pEC50 for cAMP signaling, beta-arrestin-
1 recruitment, and beta-arrestin-2 recruitment for four ADRB2 haplotypes upon stimulation with
the endogenous ligands epinephrine (epi) and norepinephrine (norepi).
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